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R E S E A R C H R E P O R T

Simulate to Understand Models, Not Nature

Neil J. Dorans

Educational Testing Service, Princeton, NJ

Simulations are widely used. Simulations produce numbers that are deductive demonstrations of what a model says will happen. They
produce numerical results that are consistent with the premises of the model used to generate the numbers. These simulated numerical
results are not empirical data that address aspects of the world that lies outside the model. In contrast, empirical data are central to the
scientific method. When a simulation is substituted for the assessment of hypotheses with real data, a false sense of understanding can
ensue and with it a biased perspective on the world. To illustrate the limitations of simulation and their proper role, examples are drawn
from simulation studies about score equating.
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Simulations abound in our field, as can be attested to by perusal of mainstream journals. Simulations produce numbers
that are deductive demonstrations of what a model says will happen. They produce numerical results that are consistent
with the premises of the model used to generate the numbers. These numerical results are not empirical data that address
aspects of the world that lies outside the model. Sometimes, simulations are deductive demonstrations that follow from a
model that purports to describe observed data. For example, a simulation may use observed estimates of item parameters
as the starting point for simulating test data. Sometimes the predictions are based on a model alone, in which case the
demonstrative nature of the simulation is quite evident. For example, a factorial design may be used in which different
levels of factors such as item difficulty and discrimination are crossed to produce different combinations of item parameter
for data generation. The numbers generated from this factorial design are deductive demonstrations of the generating
model. Whether the simulation uses real data as a starting point or is based on varying the values of the parameters of
a model, the results of the simulation are consequences of the model. These results are not empirical evaluations of a
substantive question.

In the next section, I note the centrality of empirical data to the scientific method. I contrast this data-based evidential
approach with an approach to inquiry that substitutes simulated numbers for empirical data. Examples are drawn from the
score equating literature to illustrate applications of simulation. I close with the recommendation to simulate to understand
models but collect empirical data to understand the natural world.

The Distinction Between Empirical Science and Simulation

The scientific method refers to an approach to inquiry that is characterized by recursive components of observation,
formulation of hypotheses, predictions generated from these hypotheses, and empirical evaluation of the predictions about
the world. The scientific method requires the collection of empirical data that can be used to test predictions that are based
on a model or hypothesis. This method of inquiry has been described in many ways. Here is how a Nobel Prize physicist
described it:

Science is a way to teach how something gets to be known, what is not known, to what extent things are known (for
nothing is known absolutely), how to handle doubt and uncertainty, what the rules of evidence are, how to think
about things so that judgments can be made, how to distinguish truth from fraud, and from show—Richard
Feynman. (Krauss, 2011, p. 1)
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A critical aspect of the scientific method that distinguishes it from other modes of inquiry is the collection of empirical
data, where possible via well-designed experiments, to test or revise hypotheses about nature. By nature, I mean the
material world that is accessible to us either directly or indirectly via our senses or their extensions, such as calibrated
scientific instruments. While test takers may invoke the supernatural for help, test takers and their performance on tests
are part of the material world. The proper use of empirical data is essential for distinguishing truth from what might just
be a hypothesis with an appealing narrative.

Scientific investigations tend to be time-consuming, multistage, multi-investigator processes fraught with many steps
that are twists and turns dictated by the quest to fit the model to data. One of the major appeals of a simulation study is
that it purports to possess the truth.

Ayer (1936) made a distinction between analytical propositions and empirical propositions. The evaluation of empirical
propositions requires collection of empirical evidence that is directly observable by the senses or, in some cases, using
calibrated scientific instruments. Empirical evidence may be collected via experiments or from observation studies. The
distinction between empirical and analytical differs from the distinction between data collected experimentally or via
naturalistic observation, both of which are empirical manifestations of the material world.

Analytical propositions are a mainstay of mathematics, where one starts with a set of axioms or assumptions and pro-
ceeds to prove or disprove the truth of propositions. A mathematical proof of a meaningful analytical statement, however,
does not constitute empirical verification.

Simulations can make complex abstract models more concrete and easier to understand. Simulations of data from a
particular mathematical model can inform us about the statistical properties of parameter estimates under the conditions
of the simulation. As deductive demonstrations, they are very valuable for didactic purposes. They can demonstrate what
the mathematical model means in terms of numbers and graphs, which are more readily understood than equations.

Simulations are very valuable for stress testing of models, checking how much the validity of deductions from a model
are affected by violations of model assumptions. Tucker, Koopman, and Linn (1969) illustrated this approach to stress
testing in the context of factor analysis procedures. Sinharay and Holland (2009, 2010) stress tested three curvilinear
equating procedures, as will be illustrated in the section on simulations of anchor test equatings.

Simulations can have negative value, however, when the numbers generated by a simulation are mistaken for nature
itself. One prominent example is the battle of the logistic models that proponents of the Rasch model and the three-
parameter logistic (3PL) model have had over the decades. Using the Rasch model to generate data will demonstrate its
parsimonious superiority to the cumbersome 3PL model. Likewise, using the 3PL model to generate data will yield results
that demonstrate its superior fit over the miserly Rasch model. Has either simulation demonstrated which model works
best with real data? No. Suppose a simulation uses a model of test-taker performance (e.g., how test takers perform when
they run short of testing time) to confirm the validity of the model. When conducted correctly, simulations produce results
that are logically consistent with the assumptions employed to generate the data. They should yield expected answers. They
have not demonstrated the validity of the model, however.

If a simulation produces results that surprise the simulator, several possibilities exist. The author of the simulation
may not have understood the model underlying the simulation well enough to derive the correct analytical propositions
or combinations of premises and conclusions. The author may not have executed the simulation properly (e.g., may have
made errors in coding). The author, perhaps in an effort to imitate reality better, may have made the simulation so complex
that the results were complicated and difficult to interpret. The choice of the word author is intentional; simulators are
authors of fiction. Some fiction mimics reality. Some fiction is fantastical. The best fiction often contrives particulars to
illustrate universals.

For fields like chemistry, an old science with an extensive empirical base and well-developed theories, it is possible to
collect data under controlled conditions and make precise testable predictions. Consider the ideal gas law. This law, which
can be found in introductory chemistry books, is a single equation that relates volume (V) of a vessel, absolute pressure
(P), absolute temperature (T), and the quantity of gas measured in number of moles (n),

PV = nRT,

where R is the ideal gas constant. The ideal gas law was based on empirical investigations. Over time, repeated application
of the scientific method led to the development in 1910 of van der Waals equation,

P + n2a
V2 (V − nb) = nRT,
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as a modification of the ideal gas law. This equation approximates the behavior of real fluids, taking into account the
nonzero size of molecules via the term b and the attraction between them via the term a. If the ideal gas law served
as the data-generating model for a simulation and the simulated results were compared to data collected under highly
controlled conditions, we would see that the simulated numbers would be highly related to the observed data. Examination
of residuals and revising the math should lead to something like the van der Waals equation. The key point is that real
data are necessary to assess the empirical validity of hypotheses (Dorans & Walker, 2013).

In The Signal and the Noise, Nate Silver (2012) examined how well a variety of disciplines predict data in their domains.
In some fields, rich empirical data are collected in naturalistic settings, as is the case with meteorology. Simulations based
on mathematical models that are grounded in these rich empirical data produce fairly accurate predictions of short-term
weather. As the time interval increases, prediction becomes more difficult as more and more uncontrolled variation enters
the system, as noted by Silver in Chapter 4.

In contrast to weather prediction, simulations in other fields are based on models that are consistent with the theoretical
preferences of the simulator, preferences that may not be rooted in solid empirical ground. For example, the credit rating
agencies rated credit default swaps highly in part because they used simulation models for risk analysis that were based
on flawed assumptions (Silver, 2012, Chapter 1). They assumed that the probabilities of default for mortgages packaged
together were independent. Hence, the risk associated with a default on the collection of these mortgages was presumed to
be very small. These independence assumptions enabled them to package together collections of high-risk mortgages and
sell them as low-risk investments. They also assumed (hoped) that housing prices would continue to rise. When housing
prices did not continue to rise, and defaults among high-risk homeowners turned out to be quite correlated instead of
independent, these financial instruments became worthless and the financial crises of 2008 ensued. These financial com-
panies understood the mathematics of risk but grossly underestimated the uncertainty of the gamble they were taking.
Those who did recognize the folly of the independence assumption and the likelihood that housing prices would not rise
forever made a fortune by shorting the market on these instruments, as described in The Big Short by Michael Lewis
(2010).

Simulations are used widely in domains where science underpinnings are well established. Flight simulation is an oft-
cited example. Instead of crashing planes and losing the lives of pilots in the process, changes in planes are subjected
to extensive simulated exercises before the planes are released for use with live passengers. The effectiveness of space
exploration owes much to careful simulations that were rooted in well-supported scientific theories about nature.

Likewise, pilot skill can be effectively taught and evaluated with simulators. I would hesitate, however, to let the skills
at coping with crises situations rest on findings with a handful of pilots. As a means of eliminating the variability asso-
ciated with pilot skill and judgment, suppose that the latest models of human behavior were used to simulate how pilots
would react in an emergency. Based on these models, avatars could be substituted for real pilots in a flight simulator. This
substitution is an example of a simulation that is not rooted in well-supported scientific theory.

Closer to home, consider the plethora of simulations that generate item or test data that are consistent with a particular
mathematical model. These simulations may or may not have pertinence for reality as manifested in observed data because
the numbers produced by the simulations are merely consequences of the model used to generate the data, and the model
may or may not adequately describe reality. This statement is as true for the environment in which items and tests are
administered to examinees as it is for the carefully controlled experimental world in which variation of P, V , and T led
to the discovery of the ideal gas law or the data-rich world of meteorology or the speculative world of financing debt
instruments. In the next section, I use score equating simulations to illustrate some limitations of relying on simulated
data to resolve questions of substance.

Simulations About Anchor Test Equating Methods

The purpose of score equating is to produce, to the extent possible, scores from two or more tests that can be used inter-
changeably. The anchor test design is often employed to equate scores. In anchor test designs there are two populations, P
and Q, with a sample of test takers from P taking test X and a sample from Q taking test Y. In addition, both samples take
an anchor test. Table 1 represents the anchor test design. The symbol @ in the cell of the table indicates that the sample
from the population denoted by the row took the test or anchor indicated by the column. Von Davier, Holland, and Thayer
(2004) and Holland and Dorans (2006) called this the nonequivalent groups with anchor test (or NEAT) design. Kolen
and Brennan (2004) and others referred to this as the common-item nonequivalent groups design.
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Table 1 Design Table for the Anchor Test Design

Test X Anchor A Test Y

Population P @ @
Population Q @ @

Note: The symbol, @, in the cell of the table indicates that the sample from the population denoted by the row took the test or anchor
indicated by the column.

The role of the anchor test is to quantify the differences in ability between samples from P and Q that affect their
performance on the two tests to be equated, X and Y. The best kind of anchor for equating is a test that measures the same
construct that X and Y measure. The anchor, A, is usually, but not always, a shorter and less reliable test than the tests to
be equated.

The use of common items requires the use of assumptions to make up for the fact that X is never observed for test takers
in Q and that Y is never observed for test takers in P. For this reason, several distinct methods of scaling and equating
tests use the NEAT design. Three types of methods are usually studied: statistical approaches known as poststratification,
psychometric approaches that make assumptions about true scores, and approaches that decompose the anchor test design
into two single group designs and chain the two single group linkings though the anchor test. Each of these types of
methods makes different untestable assumptions about the missing data. The Appendix describes linear versions of these
three approaches.

Much research has been conducted on methods employed with the anchor test design in score equating. This research
has been motivated by the divergence of results obtained by different methods when anchor test score distributions differ
and correlations between the anchor and total tests diverge more and more from one. Dorans, Liu, and Hammond (2008)
summarized several simulation studies that used data from the SAT® test, including Dorans (1990); Eignor, Stocking, and
Cook (1989); Lawrence and Dorans (1990); Livingston, Dorans, and Wright (1990); and Wright and Dorans (1993). These
studies varied in the way in which real data were manipulated to produce simulated samples of test takers.

Lawrence and Dorans (1990) used the verbal anchor to create differences from the reference or base population and the
pseudopopulations, and the same verbal anchor was used to equate the tests. Under these circumstances, the poststratifi-
cation methods did best, and the true-score methods did slightly worse than the chained method. Eignor et al. (1989) used
an item response theory (IRT) model to simulate data and found that the weakest results were obtained for poststratifica-
tion on the basis of the verbal anchor and that the true-score methods were slightly better than the chained method. The
Livingston et al. (1990) study used SAT Math to create difference in populations, and the results for the poststratification
method were not good for equating verbal scores.

In the studies cited previously, the methods that won (or lost) depended on how the data were simulated. Nearly 20 years
after these studies, Sinharay and Holland (2009, 2010) demonstrated conclusively how simulation models can be used to
produce a winner. Holland (2004) had long viewed the anchor test design as a missing data design (Braun & Holland, 1982;
Holland & Dorans, 2006; Holland & Wightman, 1982; von Davier et al., 2004). His work with Sinharay illustrated how
to simulate data that are consistent with the assumptions about missingness made by the poststratification equipercentile
equating, chained equipercentile equating, and observed score equating based on an IRT model that makes assumptions
about true-score relationships. Construction of the data based on poststratification was straightforward. Likewise con-
struction of data consistent with the IRT model was relatively easy. For chained equating, Sinharay and Holland (2009,
2010) used a relatively complex procedure called raking (Bishop, Fienberg, & Holland, 1975), however, to fill in the missing
data in a manner that is consistent with chained equating.

Having filled in the missing data in each of the three ways, Sinharay and Holland (2009, 2010) computed equating f unc-
tions in the complete data and used these as target equating functions in the subsequent simulations. Then, they computed
equating functions from the observed data with each of the three methods: poststratification, chained, and IRT observed
score equating. They compared each of these observed equating functions with the target equating functions obtained in
the complete data sets that were constructed to be consistent with the assumption underlying the three methods.

Two major findings resulted. First, the poststratification method worked best at reproducing the equating function
in the population constructed under the poststratification assumptions, the chained method worked best in the popula-
tion constructed under the chained assumptions, and the IRT observed score equating worked best with the population
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constructed according to the IRT assumptions. In short, the method most consistent with the data used to construct the
population was the winner.

The second point, which replicated what has been found elsewhere, was that the chained equating method either
finished first (when the data were constructed according to the chained assumptions) or second (when the data were
constructed according to either the poststratification assumptions or the IRT assumptions) in the three simulation con-
tests.

Chained equating appears to be the winner. It often is in simulations. Why is it the winner? Its success may be due to
its assumptions being the most consistent with the data. Or it may win because it tends to fall between a psychometric
method that uses assumptions about true scores and observed scores and a statistical method that makes adjustments in
accord with the degree of relationship between the anchor and the total test score.

Like many compromises, the chained approach won not because it was always correct, but because it was less likely to
be as incorrect as the other approaches might be. The use of different simulation models in the studies by Sinharay and
Holland (2009, 2010) demonstrated this point; even when it was the wrong model, the chained method was less incorrect
than the other wrong model for the data simulated to be consistent with the correct model.

The Appendix presents analytical relationships among the chained linear equating, Tucker equating, and Levine
observed score equating methods. Tucker equating is actually the linear form of the poststratification method. Chained
linear can be thought of as a linear version of the chained method. Levine, like IRT observed score equating, uses
assumptions about true scores. The Appendix describes why chained linear falls between the other two linear methods.

Simulate to Understand Models, Not Nature

The findings of Sinharay and Holland (2009, 2010) and the analysis in the Appendix demonstrated that simulations reveal
what they should be expected to reveal. Whether creating pseudotests with artificial differences in difficulty or creating
pseudopopulations on the basis of some variable, assumptions are made that should have predictable and significant effects
on the outcomes of the simulation.

Empirical investigations are difficult to conduct and rarely lead to truths. In contrast, simulations are so easy to do. In
addition, they come with a known truth that is often touted as an advantage of simulations. The numbers produced by
simulations, however, are not empirical data; they are manifestations of analytical propositions that can be deduced from
a generating model. The analysis of numbers generated by a simulation design by different methods enables one to make
comparisons to the truth of the model but not to truth about whether one method’s assumptions are more reasonable than
another method’s assumptions in real data settings. As Sinharay and Holland (2009, 2010) demonstrated, the truth of a
simulation depends on the assumptions that went into it. The results are analytical consequences of the simulation. These
consequences may have little bearing on reality. Simulations are valuable tools for demonstrations about the presumed
model but not necessarily useful for investigating what happens with real tests given to real people.

Working with real data as a starting point for a simulation imbues the simulation with an aura of authenticity that it
does not possess. The results of the Livingston et al. (1990) and Wright and Dorans (1993) studies illustrated this point
most vividly. For example, pseudopopulations for SAT Verbal equatings were constructed on the basis of SAT Math score
distributions. When the verbal anchor was used as the anchor for the SAT Verbal equatings, the poststratification meth-
ods tended to be outperformed by both Levine and the chained methods. When SAT Math was used as the anchor for
the SAT Verbal equatings, the Levine and chained methods produced very biased results whereas the poststratification
methods performed better than they had with the verbal anchor. In fact, the best equating results were obtained when
poststratification was used with the SAT Math score, which is as expected because it was the math score that was used
to construct the pseudopopulations. A bizarre simulation, stratification on the other test score, produced bizarre results,
results that could be explained by the simulation model.

What does this pair of studies have to do with reality? They used the same real data (and lots of it). This fact might lead
to the conclusion that each study had implications for practice. But that inference would be unwise. The manner in which
the samples were constructed influenced the results. If the same findings had been obtained with a simulation study that
generated the data from a model, they would have lacked the authenticity conferred to them by the fact that they used
real data as a starting point. The use of the SAT database as the starting point imbued the studies with a face validity that
may or may not have any meaningful bearing on reality. The unanswered question is this: How well do these artificial
simulations reflect what really led to population differences?1
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I used these selected equating studies to demonstrate that simulation studies are demonstrations of the implications
of the model used to generate the simulated data. This is true when the simulated data are numbers deduced via the
manipulation of variables in a mathematical equation. It is also true when simulated differences in tests or samples of
test takers are induced via manipulation of real data. Simulations are analytical exercises involving the generation of
numbers that are consistent with a set of assumptions. Simulations yield predictable outcomes; empirical investigations do
not. Simulations cannot provide evaluations of the empirical validity of their predictions. Observable data from carefully
designed and properly analyzed studies are needed for empirical evaluations.

To illustrate this latter point, the adequacy of equating methods can be evaluated directly without a simulation if one
is willing to make a relatively weak assumption, namely that large sample equivalent groups equating is a solid criterion.
Administering the same pair of tests, X and Y, with the same anchor, A, to random samples from two populations, P and Q,
will provide data for assessing different equating methods. The populations can be subpopulations, for example, females
(P) and males (Q), from a population, T, in which equivalent groups receive one of the two tests, X or Y, and the anchor,
A. This large sample experiment could test several hypotheses pertinent to equating. First and foremost, does the linking
between the tests meet the two most easily assessed requirements of equating mentioned by Holland and Dorans (2006):
equal reliability of scores on X and Y in a common population, be it P, Q, or T, and invariance of linking relationships
between X and Y across P, Q, and T. Second, how do the anchor test equatings approximate the equivalent groups equating,
provided it is the same in both populations P and Q? This real data experiment would avoid the use of artificial tests. It
would also avoid the creation of artificial populations. It simply requires a strong data collection, namely administration
of tests X, Y, and A to populations P and Q.

Simulation as Substitution

In Thinking Fast and Slow, author Daniel Kahneman (2011) contrasted system 1 thinking and system 2 thinking. System
1 thinking is fast, automatic, frequent, emotional, stereotypic, and subconscious, relying on heuristics to arrive at conclu-
sions. System 1 is engaged when we walk effortlessly through the woods listening to a favorite piece of music. In contrast,
system 2 thinking is slow, effortful, infrequent, logical, calculating, and conscious. If we tried to multiply 147 by 59 as we
walked through the woods, we would probably come to a stop and concentrate on the math problem as our system 2 took
charge.

Because system 1 thinking is effortless, Kahneman (2011) noted that it is prone to biases such as stereotyping and
overgeneralization. One common bias is attribute substitution, in which a simple question is substituted for a more difficult
one. Simulations are so easy to do and have a “truth” embedded in them. In contrast, empirical investigations are often
difficult to conduct and rarely lead to universal truths. It should make it obvious, therefore, that the substitution of a
simulation for empirical investigation is suspect. According to Ayer (1936), analytic statements, such as the statements
of logic and mathematics, are tautologies. Their truth can be analytically derived. Simulations are tautologies. Empirical
propositions, in contrast, make assertions about nature. The validity of the proposition requires empirical verification.
Substituting an analytical consequence for empirical data is not science.

When a simulation is used as substitution for the assessment of hypotheses about real data, a false sense of understand-
ing can ensue and with it a biased perspective on the world of nature. While mistaking the results of a simulation study
for empirical science in the field of education is unlikely to contribute to a global economic crisis, it could have an adverse
affect on inferences about educational issues and practices.
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Note
1 In the process of simulating the data from real data, the answer to the question under investigation may change in a significant

manner. For example, in the process of creating parallel pseudotests, the degree of correlation between the anchor and the total
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test score is lowered because these tests are shorter and its effect of the simulation on the results is predictable: Poststratification
will be most negatively affected, a model-based method such as Levine and IRT will be less negatively affected, and chained linear
will be somewhere in the middle of the two.
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Appendix

Analytical Relationships Among Three Linear Equating Models

In linear equating, a transformation is found such that scores on test X and test Y are said to be equated if they correspond
to the same number of standard deviation units above and below the mean in T, where T is the population in which the
equating is performed.
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The Tucker or poststratification linear equating method assumes that the regression of total score, Y , onto the equating
or anchor test score, A, is linear and homoscedastic and that this regression, which is observed in the sample that took
the test, Y, with A, also holds in the sample that took the test, X, with A. A similar set of assumptions is made about the
regression of X scores on A scores.

The Levine linear equating method assumes that the true scores on Y and A are perfectly related and that the ratio of
the standard deviation of true scores on Y to the standard deviation of true scores on A is the same in the observed group,
Q, and the synthetic population, T, created from a mixture of the old and new form samples. In addition, it assumes that
the intercept of the regression line relating true scores on Y to true scores on A is the same in Q and T. Further, it assumes
that the standard error of measurement for scores on Y and A is the same for groups Q and T. A similar set of assumptions
is made about true scores on X and A in the observed groups P and T.

Chained linear equating assumes that the mean/sigma linking relationship between A and X scores in P would be the
same if it were observed in Q. Likewise, it assumes that the mean/sigma linking relationship that exists in Q between Y
and A scores would be the same in P if it were observed there.

Holland (2004 cited in Dorans et al., 2008) made the simplifying assumption that the slopes of these three equating
functions are equal. This assumption is met when scores on tests X and Y are essentially tau-equivalent, the anchor A
measures the same constructs as scores on X and Y, and scores on A have the same reliability in P and Q. He derived the
following expressions for their intercepts:

Chained linear ∶ 𝜇YQ –B𝜇XP +
(
𝜎YQ∕𝜎AQ

) (
𝜇AP –𝜇AQ

)
, (A1)

Tucker ∶ 𝜇YQ –B𝜇XP + CT
(
𝜎YQ∕𝜎AQ

) (
𝜇AP –𝜇AQ

)
, (A2)

Levine ∶ 𝜇YQ –B𝜇XP + CL
(
𝜎YQ∕𝜎AQ

) (
𝜇AP –𝜇AQ

)
, (A3)

where
CT = (1 –w) 𝜌XAP + w𝜌YAQ, (A4)

CL = (1 –w)
(
𝜌XXP∕𝜌AAP

)
+ w

(
𝜌YYQ∕𝜌AAQ

)
, (A5)

and where B is the common slope for the equating of X scores to Y scores; 𝜇YQ and 𝜇XP are observed means on Y in Q
and X in P, respectively; and 𝜇AP and 𝜇AQ are the means of A in P and Q, and the corresponding standard deviations are
represented by 𝜎 terms.

In Equation A4 for the Tucker method, 𝜌XAP and 𝜌YAQ are the correlations of A scores with X and Y scores in P and Q,
respectively. In Equation A5 for the Levine method, 𝜌XXP and 𝜌AAP are the reliabilities of A and X scores in P, and 𝜌YYQ
and 𝜌AAQ are the reliabilities of A and Y scores in Q. In Equations A4 and A5, w is the weight assigned to P to create the
synthetic population T=wP+ (1−w)Q. Note that w does not appear in the expression for the chained linear method in
Equation A1.

If the correlation between anchor and total test score is 1, all three methods converge to the same equation. This is
obvious in Equation A4 for Tucker equating, where the term CT becomes 1. In Equation A5, a perfect anchor test and
total test score correlation implies perfect reliability for X, Y , and A, and so CL also becomes 1. From the perspective of the
Tucker approach, chained linear equating assumes a perfect correlation, and from the perspective of the Levine method,
which is rooted in classical test theory, the perfect correlation implies perfect reliabilities.

Holland (2004) demonstrated from the equations above that:

CT < 1 < CL. (A6)

This inequality in Equation A6 means that Tucker equating will tend to adjust scores less than chained equating, which
will adjust scores less than Levine equating. As the correlation between anchor and total drops, the Tucker procedure will
adjust less and less, whereas the Levine procedure will adjust more and more. The sensitivity of the Tucker method to the
correlation is apparent in Equation A4. Note in Equation A5 that the reliabilities of X and Y , presumed fixed, are divided by
the reliability of A, presumed to vary with changes in the relationship between the total tests and the anchor administered
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with them. In essence, the Tucker method discounts the information in the anchor as the correlation between total score
and anchor score drops. In contrast, the Levine method makes bigger and bigger adjustments because differences on
the anchor are viewed as attenuated more and more by the reliability of the anchor as lower anchor total correlations
are attributed by the approach to lower anchor test reliabilities. Chained linear ignores all bivariate information and sets
means and standard deviations equal.

Equation A6 has implications for interpreting the results of the simulation studies conducted by Sinharay and Holland
(2009, 2010). As expected, chained worked best with data that are consistent with its missingness assumptions. As noted
above, the chained equating method finished first or second (when the data were constructed according to either the
poststratification assumptions or the IRT assumptions) in the three simulation contests. Given Equation A6, chained is
expected to work better than poststratification with data constructed from a psychometric model, IRT in the Sinharay and
Holland simulations, which views observed data as a fallible version of the underlying data, than does a statistical method
that adjusts to the degree to which the covariate or anchor is trustworthy and relevant. Likewise, it is also expected to work
better with data constructed to be consistent with the missingness associated with the poststratification method than a
method that presumes that the low correlation between the anchor and the total is simply due to the fallibility of the data.
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