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Abstract

Many studies mentioned the deductive nature of Mathematical Induction (MI) proofs but almost all fell short in
explaining its potential role in the formation of the misconceptions reported in the literature. This paper is the first of
its kind looking at the misconceptions from the perspective of the absence of the deductive logic from one’s
conceptual scheme of Mathematical Induction proofs. In light of this framework, we give a detailed description of the
Tower of Hanoi game as a model that can be used to emphasize the Deductive Reasoning in MI proofs.
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Introduction

Not only novice learners but also some practitioners and professionals sometimes express a sense of
“not a real proof, just a bunch of algebraic manipulations” referring to the proof by Mathematical
Induction (MI). Indeed, to too many novice learners, Mathematical Induction proof is shown to be a
challenging topic pedagogically, epistemologically, and cognitively. Even after formally seeing a
Mathematical Induction (MI) proof, many college students still struggle with its meaning. Existing
studies report that many of these students resist the use of Inductive Hypothesis without considering
its absolute truth value. Consequently, the same group is not able to cope with how a statement to be
proven may become assumed [true] in the structure of the MI proof itself (Avital and Libeskind, 1978;
Ernest, 1984; Fischbein and Engel, 1989; Harel, 2002; Harel & Sowder, 1998; Ron and Dreyfus, 2004).

Mathematical Induction proof is among the three categories of the documented proof schemes:
external conviction, empirical and deductive proof (Harel & Sowder, 1998). In fact, it is an essential
deductive proof technique especially for the verification of the truth state of infinite recursive
sequences. The concept of recurrence lies at the heart of Mathematical Induction proofs (Ernest, 1984).
It is the key feature that allows one to consider the conditional proposition, P(n) = P(n+1),asa”
variable inference, ...,a place holder for the entire sequence of inferences” (Harel, 2002).Thus, if a learner does
not recognize the necessity of the inherent recursion in the deductive proof of the Inductive Step’s
true value then he/she may not be able to grasp Mathematical Induction as a valid proof technique.

The Mathematical Induction Principle (MIP) stated below is at the core of the ideas employed by MI
proofs (Avital & Libeskind, 1978; Ernest, 1984):

Mathematical Induction Principle (MIP):
Let P(n) be a mathematical proposition corresponding to a natural number, n.
If:
i. Basis: For a natural number k, P(k) is true;
ii. Induction Hypothesis: Assume P(n) foreach n = k.
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iti. Inductive Step: The conditional statement [P(n) = P(n+1)] is true
foralln=k;
Then,

P(n) is true for all natural numbers n > k.

The Mathematical Induction Principle (MIP) is stated symbolically as well:
(P(k) AV(n=k)[P(n) = P(n+1)]]) = Vn = kP(n)

Deductive Logic in MI Proofs

We believe deductive reasoning is what makes it possible one to arrive at the truth state of infinitely
many propositions without verifying the truth state of each individually. The particular type of
reasoning occurs first when considering the truth value of the Inductive Step,
V(n>k)[P(n) = P(n+1)], and next when making an inference about the truth value of

vn>kP(n).

Considering that MIP is a conditional proposition, let us first analyze the deductive logicof a generic
proposition P = Q via its truth values, given in Table 1. The truth value of a conditional statement

is determined by the truth values of its components. As seen on the table, the conditional statement is
true when P and Q are both either true, or both false. Alternatively, the proposition P = Q is true

regardless of the truth value of P as long as Q is true.

Table 1.Truth values for P = Q

Cases P Q P=0Q
1 T T T
2 T F F
3 F T T
4 F F T

In fact, the proof by Mathematical Induction employs the first case shown in table 1. That is, MI
proofs deduce the true truth value of the consequence of MIP via Modus Ponens. In other words, if
the conditional statement is accepted and the antecedent (P) holds, then the consequent (Q) is
inferred. Thus, in light of the truth value of MIP (a conditional proposition),and the inferred true state
of the Inductive Step, V(n > k)[P(n) = P(n +1)] coupled with the concretely verified true value of

the Basis Step, P(k),MI proofs infer the true value of the consequence, ¥n > kP (n).

Specifically, in MIP, the antecedent is P(k) A V(n > k)[P(n) = P(n+1)]], and the consequence is
Vvn > kP (n) . Considering that MI proofs employ Modus Ponens, for a valid inference of the truth

state of the consequence, one needs only to verify the truth value of the proposition,

P(k) AV(n>k)[P(n)= P(n+1)].
Misconceptions

In the literature, misconceptions about MI proofs is covered mainly under the following three topics:
1) Informal Logic
2) Inductive Reasoning
3) Deductive Nature of MI Proofs
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Informal Logic

Informal rules of logic appear to alter one’s ability to accurately look at the mathematical logic of an
argument. Baker (1996) for example reported his high school students’ reliance on informal logic in
their proof by Mathematical Induction. These students seemed to attribute the truth state of a
mathematical statement to the accuracy of a proof. Some of his participants, to give an
example,considered that an incorrect proof would imply a false mathematical statement. Another
group of participants on the other hand believed that the falsehood of a statement would imply a
wrong proof.

Another area of MI proofs adversely affected by the informal logic is its Induction Hypothesis
component. This component is applied incorrectly by many learners due to the commonly used
meaning of the term “Assume.” The term is used in daily language mainly in place of “Consider True.”
Thus, many students, functioning with the informal logic, take “Assume P(n)” as being “Consider that
P(n) is true.” Consequently, many feel uncomfortable with the feeling of “Already considering P(n)as
true, yet proving its truth value again.” This line of logic makes many of the novice learners form strong
doubts about the validity of MI proofs. The following excerpt clearly reveals Ernest’s participants’ use
of the daily meaning of “Assume,” and their consequential distrusts:“why do we need to prove P(n)’s
truth if we already assumed the truth of P(n)?” Ernest (1984).

Preference for the informal logic rules may be explained by the ideas of Fuzzy Logic discussed in
Zazkis (1995). According to Zazkis, “...fuzzy thinking appears to be more intuitive, simple, and preferred by
many students.” She adds furthermore that “the lack of symmetry between the antonyms true and false is
one of the major pitfalls in students’ understanding of formal logic” (Zazkis, 1995). Therefore, dictated by
fuzzy logic, learners may be overgeneralizing the statement, ¥n > kP (n), thus ignoring the formal

logic of the particular proposition being true only when each proposition, P(n) for n >k, is true
(Ernest, 1984).

Inductive Reasoning

Another source of misconceptions is the confusion of “Inductive Reasoning” with the term “Induction”
used in the statement of MI proofs. It has been shown that in the traditional instructions, the most
dominant proof schemes are authoritative proof schemes focusing mainly on the pattern
generalization, which is, according to Harel and Sowder (1998), a manifestation of the empirical proof
scheme. Thus, such mathematical instructions may be reinforcing the learners’ interpretation of the
term “Induction” as an empirical method for which to arrive at a conjecture based on a few computed
values.

Contrary to the inductive reasoning, deductive reasoning calls for making inferences about the
behavior of a task based on the collective properties among its components. It is a logical process in
which a conclusion drawn from a set of assumptions that contain no more information than the
premises taken collectively. This behavior mirrors the variable inference form of the Inductive Step in
MI proofs (Harel, 2002). That is, at the particular step, inferences are considered as placeholders for
the entire sequence of inferences to be drawn so that there would be no need to run specific inference
steps such as: P(1) = P(2), P(2) = P(3) and so on ( Harel, 2002).

Under the influence of inductive reasoning, many learners attempt to verify the truth of each, P(1),
P(2),P(3) and so on, one by one at least for the first few of them before conjecturing on the truth of
all,P(n). Ernest (1984) for instance reported that many of his students attempted to apply Inductive
Reasoning to Mathematical Induction proofs. He adds that this resulted in his students arguing the
truth value of infinite cases on the basis of the truth of a few specific cases. Apparently, this in turn
caused some of his participants desire to verify one-by-one all of the earlier cases before making a
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decision on the truth value of a later cases. Precisely, in an infinite recursive sequence, to prove the
true value of the 11t term, many students in Ernest (1984) wanted to first verify the true truth value of
all the terms up-to and including the 10* statement.

Teachers of mathematics are no exception to such misconceptions (Ron & Dreyfus, 2004; Stylianides
et el. 2007). Ron and Dreyfus (2004) gave one teacher’s description as to what he did with his
students about the Inductive Basis, and Inductive Step in a proof by Mathematical Induction lesson:
“one student went home and checked all the cases up to 10 rings and basing on this we succeeded to prove that
it is true also for 11 rings?” This excerpt clearly indicates that the particular teacher not only was
advocating Inductive Reasoning but also holding an understanding of MI proof as an empirical proof
scheme.

Deductive Nature of MI Proofs
Many studies mentioned the deductive nature of MI proofs but almost all fell short in explaining the
potential role of the deductive logic in the formation of the misconceptions reported in the literature.
This paper is the first of its kind looking at the misconceptions from the perspective of the absence of
deductive logic from one’s conceptual scheme. We discuss the following misconceptions from a view
point of the deductive logic:

1) Circular Appearance of Inductive Step, andLimited Validity ofInduction Hypothesis.
2) Unnecessity of Basis Step.

3) MI Proofs as Algebraic Manipulations

4) Unawareness of Recursion’s role.

Circular Appearance of Inductive Step, and Limited Validity of Induction Hypothesis

Deductive Logic of ¥ (n>k)[P(n) = P(n+1)

In mathematical induction proofs, deductive logic occurs in making inferences about the truth value
of the inductive step, V(n > k)[P(n) = P(n +1). Inductive Step has to be proven independently as a

self-regulating statement with no regards to the truth state of the earlier statements. In other words, at
this step, learners need to be able to work with the generic proposition, P(n), without considering its
absolute truth value.

As we discussed earlier, the statement “Assume P(n) for an n > k,” included in mathematics textbooks
as the Induction Hypothesis step, seems to confuse many students to why they assume P(n)[meaning
to be true],yet prove its truth again. Evidently, these lines of reasoning give rise to the feelings of one
making unnecessary circular arguments. Fischbein and Engel’s (1989) findings for example indicate
that the Induction Hypothesis was considered as an isolated step to be shown, but not as the integral
component of the Inductive Step. According to Fischbein and Engel, only 28% of the students in their
study gave responses that reflect a conceptual understanding of both the Induction Hypothesis and
its deductive role in the Inductive Step. Apparently many of their students tended to consult the
absolute truth value of the Induction Hypothesis, P(n),for a specific value of n, in verifying the truth
value of the Inductive Step, P(n) = P(n +1), even though in deductive processes, such truth value

is irrelevant. The other 72% of their students distinctly shows preference for empirical processes.

Fischbein and Engel (1989) discussed a group of participants assigning a limited validity to the
Induction Hypothesis. The particular group seemed to believe in the possibility that for certain
circumstances, the Induction Hypothesis may not hold. Assignment of a limited validity to the
Induction Hypothesis is highly likely the manifestation of a mental scheme holding more of inductive
reasoning structures than that of deductive logic ideas.
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It is obvious that both groups lacked an understanding of the Inductive Step as a deductive step
rather both displayed behaviors supporting empirical processes. If you recall, deductive logic dictates
that the conditional, P(n) = P(n+1), is proven without assigning any truth value for each

proposition, P(n), P(n+1), individually, and without regards to the numerical value of n.

Empirical processes on the other hand seek for the concrete verification of the proposition,
P(n),individually for each numerical value of n.

According to Ernest (1984), tendencies to assign absolute truth value to Induction Hypothesis led his
participants too forming a similar circular view of “the method in which we assume what you have to
prove, and then prove it,” and that “it has a suspicious likeness to assuming what you have to prove! "Baker’s
(1996) college student participants also revealed a similar view of Mathematical Induction. Many in
his study made arguments tangent to the statement: “you assume what you want to prove.” Fischbein
and Engel reasoned that their students made such statements most likely due to uneasiness with the
acceptance of: “the entire segment of the induction step on a statement which itself has not been proven, and
cannot be proven in this segment of the reasoning process” (Fischbein and Engel, 1989). We ascribe their
participants’ uneasiness, with the acceptance of proving a statement based on an unproven
proposition, to the lack of deductive reasoning from their conceptual scheme of the Inductive Step.
That is, a learner with an understanding of MI proofs that does not integrate the deductive logic is
naturally expected to feel uncomfortable working with statements that have not yet been verified
concretely.

Unfortunately, the teachers of mathematics display tangible misconceptions about the Induction
Hypothesis and the Inductive Step. For instance, Ron and Dreyfus (2004) documented some of their
teachers considering the Induction Hypothesis with a limited validity. One of their teachers stated
during an interview that:

“...we go to the hypothesis...if it works why do we have to assume that it works up to k? because I say,
If I see that it works then i assume that it will work until a certain stage. But, I can’t assume that it
will work forever because it can stop working like all the electric tools do...my task is to prove that it
will also work in the next stage” (p. 119).

We construe the phrase, “I see that it works,... my task is to prove that it will also work in the next stage,”
as, at the Inductive Step, this teacher wanting to first verify concretely the true state of the
proposition, P(n)for a specific value n, and then verify the true value of the next proposition,
P(n+1).This teacher undoubtedly displays an empirical process understanding of MI proofs, thus, at
the time, s/he may not have been aware of the deductive nature of the Inductive Step. Indeed, his
notion of empirical process is clearly seen on the excerpt: “I can’t assume that it will work forever because
it can stop working like all the electric tools do.” In other words, s/he did not appear to verify the true
truth value of, “P(n) = P(n +1),” as a single proposition without regards to the truth state of the

proposition, P(n), or the numerical value of n. On the contrary, this teacher shows tendency to check
each proposition one by one. To justify his reasoning for checking individually, he says: “because it can
stop working.”We believe analogies such as “electrical tools” may further reinforce reasoning with
empirical processes. Mathematics teachers introducing the Inductive Step with such analogies may be
instilling MI proofs as Inductive processes. Then, one may need models that focus more on the
deductive processes in order for learners to begin functioning with deductive logic at the Inductive
Step. Hence, later in the paper, we discuss Tower of Hanoi as one such model.

Deductive Logic of ¥'n > kP (n)

We believe some participants reported in the literature (Baker, 1996; Ernest, 1984; Fischbein and
Engel, 1989) formed a circular notion of MI proofs due to their inability to distinguish the truth state
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of the proposition, ¥n > kP (n), from the truth states of the statement, V(n > k)[P(n) = P(n+1)].
For instance, according to the 4t case in table 1, the conditional proposition, [P(n) = P(n +1)] ,gets

a true truth value as long as the statements P(n) and P(n+1) are both false for some n-values, whereas
the only time the proposition, ¥n > kP (n) ,gets a true value is when the statement, P(n), is true for all

n-values. For example, consider the following simple quantified conditional proposition,
vn>2eN,[(n=2)=(n+1)=3]. In fact, this proposition is true even though both its

components are false. Thus, not being aware of the deductive logic differences between the two
propositions of the type, V(n > k)[P(n) = P(n+1)], and ¥n > kP(n), learners may inaccurately

conclude that the statement,Vn > 2 e N,n =2, is true due to the true value of the conditional
statement, VN >2e€ N,[(n=2) = (n+1) =3].

Many learners as a matter of fact appear to consider (applying the 1+ case in table 1) the conditional
[P(n) = P(n+1)] having true value only when both propositions P(n) and P(n+1) are true. Thus,

not being able to recognize the various logic cases for the Inductive Step, these learners consider the
Inductive Step and the Conclusion component of MIP identical. This then results in them instinctively
thinking they already proved the true value of P(n) by proving the true state of the conditional
[P(n) = P(n +1)] .Accordingly, they feel there is no reason to prove the truth value of P(n) again.

Unnecessity of Basis Step

Another misconception reported in the literature is about the role of Basis Step in MI proofs. Indeed,
studies report that many students even some instructors appear to consider the Basis Step as an
independent step to carry out without regards to its deductive implication to the components of MIP.
Consequently, failing to recognize the role of the Basis Step, many learners either rely on the specific
examples in their arguments (Ernest, 1984; Fischbein and Engel, 1989) or skipped the Basis Step
entirely (Baker, 1996; Ernest, 1984).

According to Ron and Dreyfus (2004), teachers of mathematics are no exception to forming these
types of misconceptions. Failing to recognize the crucial role Basis step plays in the deductive
inference of the truth of the Conclusion component, Vn > kP (n), many teachers in their study

considered the action of verifying Basis Step as a motivation for the proof. Ron and Dreyfus (2004)
stated that one of their teacher participants for instance used an electrical tool as an analogy to tell
his/her students that “I want to buy a used tool. Before I bargain about the price, I plug it into see if it is
worth bargaining.” Here, one can see that the particular teacher is clearly using an irrelevant aspect of
the model in order to make a case for the necessity of the Basis Step. This teacher seems to use the tool
analogy as an action that justifies the proving effort, but not as an integral part of the deductive
process employed by MI proofs. Novice learners with a similar notion of basis step may for instance
verify the basis step for k=2 as a justification for starting the MI proof, and arrive at the incorrect
deduction for the truth of the conditional, VN> 2 e N,n= 2.

Indeed, this kind of behavior is due to the lack of deductive reasoning in one’s understanding of the
MIP statement:

[P(K)AV(n=K)[P(n)= P(n+1)]] = Vn=kP(n).
In a deductive process by means of modus ponens (employing the 1¢t case in table 1), one needs to
prove the truth value of the statement P(k) A V(n > k)[P(n) = P(n +1)]] in order to be able to
make an accurate inference about the truth of the conclusion component of MIP, ¥n > kP (n).The
truth value of the logical statement P(k) A V(n > k)[P(n) = P(n +1)]] depends both on the truth

value of the Basis case, P(k)) and on the truth value of the Inductive Step,
V(n>k)[P(n) = P(n+1)]. In fact, in MI proofs, the true value of the statement,

V(n>k)[P(n) = P(n+1)]is necessary but not sufficient to infer the true truth value of the
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proposition, Vn > kP (n) .As a matter of fact, focusing only on the truth state of the inductive step

may result in the inaccurate deductions of the MIP conclusion.

For instance, ignoring the Basis Step, in cases where the Inductive Step is true when each P(n) and
P(n+1) is false, learner may inaccurately infer the true state of ¥n > kP (n) . In these cases, Basis Step

plays a gate keeper role that prevents erroneous conclusions. Here is another scenario in which
incorrect deductions may be made. Consider the cases where P(n) and P(n+1) are true for all but a few
earlier cases, in these cases, the role of the basis step is to identify the very first n-value where P(n) is
true. Again, failing to recognize the earlier cases where P(n) is false, learners may mistakenly
conclude its true value for all natural numbers.

MI Proofs as Algebraic Manipulations

Failing to accurately grasp the role of deductive reasoning in MI proofs, many novice learners turn
their attention to the structure and symbolism over substance. This in turn leads to the
conceptualization of MI proofs to be only a set of procedures to carry out. Baker (1996) for instance
gives the following excerpts as a testament to some of his students’ procedural understanding: “Yes, it
started with an equation and proved it true through a number of different steps or assumptions.” Ernest’s
participants were not exempt from such conceptualizations either. Some of his participants stated
that: “when using the method in free variable form we assume the inductive hypothesis [meaning the true
value of P(n)] go through a [meaningless] complicated procedures and end up having proved [P(n)]” (Ernest,
1984).

Unfortunately, the type of problems used in the introduction of MI proofs further adds fuel to the fire.
Mathematical Induction proof presents itself in problems many of which can be addressed via
algebraic manipulations, thus reinforcing students’ notion of MI proofs being a bunch of meaningless
manipulations. For instance, when college students are asked to prove that the statement, “

5. n(n+1l) . . . . . .

ZI =———, VneN ” is true, most consider this task to be the algebraic manipulation of
i=L

simply adding the term “n+1” to both sides of the equation (Harel, 2002). As a matter of fact, such
tasks lack the necessary characteristics to provide the learning environments that are effective in
bringing the deductive process into view. As long as learners obtain acceptable responses (confirmed
by an external authority) via algebraic manipulations, many feel satisfied with their responses, and as
a result go on without studying the role of deductive logic in the conceptual framework of MI proofs.

Functioning only with procedural knowledge, learner may furthermore inaccurately infer the true
state of Vn > kP (n) . Let’s consider our example from above,Vn>2 e N,[(n=2) = (n+1) = 3].
We already discussed the fact that this quantified conditional is true for any value of n. Working with
only the tools of procedural knowledge, learners may simply verify the truth of P(2), and obtain
(n+1) =3 from n=2 via a meaningless algebraic manipulation of adding 1 to both sides of the

equation, n=2. As a result, they may come to the erroneous conclusion of the true truth value for
vYn>2eN,n=2.

According to Trigueros and Ursini, (2003), novice learners tend to attribute a fixed meaning to a
symbol especially when they function only with their procedural knowledge. This behavior is also
evident in MI cases. In fact, the procedural understanding appears to result in the confusions about
the role of symbolic representations used in the MI proofs. Ernest (1984) for example reports his
participants’ irrelevant understanding of the notations included in MIP. He indeed talks about the
confusions his students displayed when the symbol “n” is used both in the inductive step,
V(n=k)[P(n) = P(n+1)], and in the conclusion step, ¥n > kP (n) . In his study, dictated by their

procedural knowledge, many participants appeared to have assigned a single meaning to the symbol
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“n,” and as a result get confused on why they assumed the truth of the proposition, P(n),for n at the
inductive step, and at the end, proved the proposition P(n) for the same n-value. To them, n seems to
be referring to the same fixed value at both inductive and concluding steps even though MI proofs
call for two different meanings for the symbol n. MI proofs indeed consider n at the Inductive step
representing a generic constant, and at the conclusion step, a variable that can take any value greater
or equal to k (Trigueros & Ursini, 2003).

Additionally, as mentioned earlier, this line of reasoning may lead to the formation of MI proofs
containing unnecessary circular processes. Similarly, it may also become the validating factor for the
learners’ interpretation of “assume P(n)” being “take P(n) true” if the symbol “n” is considered as
having one meaning in both at the inductive and concluding steps.

Unawareness of Recursion’s Role

Ignorance of the deductive reasoning required at the Inductive Step is further elevated by the
unawareness of the role inherent recursion plays at this step. To be exact, in the absence of the
absolute truth of each of the propositions, P(n) and P(n+1),without knowing the specific value of 7,
only the inherent recursion makes it possible the deductive verification of the truth value of
[P(n) = P(n +1)] .In other words, by obtaining P(n+1) from P(n), recursion shows the equivalence

of the propositions, P(n) and P(n+l),at their truth states (i.e. both are either true or false)thus
deductively proves the true state of the conditional [P(n) = P(n+1)]. It does this regardless of the
value of n. For example, consider the following conditional proposition, “[(n = 2)] = [(n +1) = 3]
for a natural number n.” It is not possible to prove this conditional based on the truth value of each
component since, in this example, the specific value of n is not known, thus, the truth state of its
components cannot be determined. For that reason, it can only be proven deductively via the inherent
recursion by obtaining n+1=3 from n=2, that is, adding 1 to both sides of the equation, n=2.

Many learners treat the task-inherent recursion as if it is only a part of the algebraic manipulations,
and consequently do not put much attention to its crucial role in the deductive verifications. For

. n(n+1
instance in the finite task case, ”ZI =%, Vne N ,” adding “n+1” to both sides is

i=L
considered, by many students, as an algebraic manipulation rather than as a recursion that makes
possible the proof of the true truth value of the conditional,

“oon(n+1 ol n+1)(n+2
[ZI = M) (Z M] without  knowing  whether each  component,

Zn:i n(n+1) dni (n+1)(n+2)

i=1

is true or false. Thus, many lack an understanding of the

absolute necessity of recursions in the deductive confirmation of the true value of conditional
statements, [P(n) = P(n+1)]. Hence, many may fail to recognize that in tasks with no recursive

behavior, the conditional at the inductive step cannot be proven; hence MIP would not be a valid
option.

Ron and Dreyfus (2004) indeed relate some of their students’ difficulties to the lack of understanding
of the recursion’s role at the Inductive Step. Consequently, they recommend to give students
opportunities to gain confidence with recursion and its function through a naive approach, namely to
show how the truth of the statement for n=2 follows from its truth for n=1, the truth for n=3 from the
truth for #n=2, and so on. They further add that this can be done through models with problem solving
situations.
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“A role of models can be to demonstrate, illustrate and interpret the method of proof by mathematical
induction, and thus to support understanding by pictorial language that might be more accessible to
learners than the formal language commonly used in teaching mathematical induction” (Ron and
Dreyfus, 2004; p. 114).

Dubinsky argues that students will continue to be unsuccessful with Mathematical Induction proofs
as long as teaching methodologies continue to ignore the cognitive obstacles that students experience.
There are a few recommended instructional approaches reported in the literature. One such approach
is that of Dubinsky’s (1989) computer-based teaching method following a genetic decomposition of
Mathematical Induction proofs. For more details of the decomposition, see both Dubinsky (1989), and
Dubinsky and Lewin (1986). Apparently, his computer-based instruction provides students means
(via programing) to construct an object formation of the propositions included in the Mathematical
Induction Principle. According to Dubinsky (1989), in order to document the effect of the particular
approach, some of his students were given computer-based activities. Each activity targeted one
component of the genetic decomposition of MI proofs. He adds that once students completed the
activities, many of the participants were able to form a deeper understanding of MI proofs, and
moreover they were able to recognize the variety of situations calling for a proof by Mathematical
Induction, and apply it correctly.

Model Comparison

Domino model is the most commonly used model in demonstrating the role of recursion in MI Proofs.
What sets Domino model apart from the computer-based decomposition of MI proofs is its visual
characteristics. Domino model in fact focuses more on the visual aspects of the inherent recursion. Its
visual properties furthermore are easily accessible. At times, however, this fact may lead to a quick
decision with the satisfaction of one’s knowledge regardless of the relevance. See table 2 below for a
summary of the features of Domino Model. Contrary to the computer-based programing approach,
Domino model lacks any relevance to the mathematical tasks on hand. Thus, many learners, without
an actual problem to guide, are not able to weed out the irrelevant aspects from the relevant ones
hence end up forming an understanding of MI proofs mainly based on the irrelevant features.
According to Ron and Dreyfus (2004), many teachers in their study for instance judged the recursion
as meaning that all the dominos are with equal distances yet close enough to each other, completely
missing the recursion’s role in the deductive proof of the inductive step.

Domino model in fact is used right up at the beginning to support the definition of MI proofs with no
connection to any realistic problem situation, failing to provide a meaningful experience.
Consequently, Inductive Step stays an artificial step to be carried out to too many learners.

To reiterate, we believe the Domino model without a relevant meaningful problem solving situation
may still make the use of MIP looks, to a novice learner, like an artificial process. As a matter of fact,
we as the instructors of college mathematics, observed many of our college students totally disregard
the inherent recursion behavior despite the use of Domino Model in our lectures. Therefore, we
strongly deem the integration of relevant models that are not easily manipulated. We believe one
needs not just a model that provides geometric means, but needs a learning environment that
effectively put into view the crucial role recursion plays at the Inductive Step. Tower Hanoi model is
one such model that can elicit a strong awareness.

Here, we give a short comparison of the domino model with the Tower Hanoi problem. See table 2
below for an outline. Later in the paper, we will also provide a detail discussion of the Tower of
Hanoi model, and its relevance to the components of MI proofs.
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Similar to Domino Model, Tower of Hanoi too provides the visual representations of the inherent
recursion behavior. More importantly though this model, contrary to Domino Model, is structured
within a realistic problem situation providing more meaningful and relevant experiences. As a result,
it decreases the likelihood of making irrelevant interpretations. That is, if a visual characteristics
noticed by a learner do not fit into the problem situation, it is likely to be deemed as irrelevant hence
disregarded rather than embraced. In other words, the problem situation guides learners toward the
relevant features of the analogy hence diminishing the possibility of irrelevant interpretations.

In addition, Tower of Hanoi model is complex enough that it does not give easy access to the
irrelevant features of its visual representations, as a result decreases the possibility of one forming an
understanding exclusively based on the extraneous characteristics.

Table 2. Model Comparison. Domino vs. Tower of Hanoi
Domino Model Tower of Hanoi

No relevance to a mathematical task
Awareness of recursion only at the visual
level; artificial meaningless knowledge

In a context of a relevant problem situation
providing meaningful experience

Gives a sense of unnecessary work Awareness of recursion both visually and
algebraically; knowledge becomes meaningful
with the problem given

Reinforces necessity of components of MI proof

Easy access to visual characteristics leading to Provide visual mode

quick decision of satisfaction with knowledge

Breed incorrect interpretations

Sense of irrelevance thus understanding of MI
as artificial process breeding procedural
knowledge

Completely ignore deductive role of recursion
in the algebraic proof of Inductive step.

Highly complex, no easy access to irrelevant
features thus eliminating possible irrelevant
interpretations

Relevance to an actual problem to solve leading

to a relevant conceptual understanding.

Higher difficulty level of computational
approaches in addressing the problem

reinforces the need and the necessity of
recursion in the algebraic proof of Inductive
step.

Tower of Hanoi Model

Tower of Hanoi provides a mathematical task to be solved (find its statement below), which can elicit
an effective and accurate interpretation of the components of MI proofs. Similar to other models, this
model too provides visual modes (see fig.1 below). But, its visual modes are complex enough that it
leaves very little room for irrelevant interpretations. To be exact, even though learners are able to
easily conjecture a pattern solely playing the game for small quantities, it becomes almost impossible
to visually verify the same pattern for larger values. Consequently, one has to revert to an approach
that eliminates the need for the repeated application of the recursive pattern. It is the algebraic
approach (via deductive consideration of MIP) that diminishes the need for repeated computations.
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This algebraic process moreover brings out the need for the application of the recursive behavior in a
deductive process.

Figure 1.Illustration of the inherent recursion via moving three disks from the second tower (A) tothe
third tower (G). First two disks are moved to the first tower (A-C). Next, the last disk (larger
one) moved to the third tower (C-D). Finally, repeating the earlier moves (A-C), two smaller

disks located on the first tower (D) moved to the last tower (D-G).

Tower of Hanoi Problem:

Consider the towers and disks shown in Figure 1 below. What is the minimum number of moves one
needs in order to move 1000 disks from one tower to another following the two rules: (1) Only one disk
can be moved at a time; (2) No disk may be placed on top of a smaller disk.

Recall that models like Dominos make it easy to visualize the recursive behavior even for higher
quantities, thus giving a false sense of satisfaction. But, many of them fail to provoke any need for
other approaches. Even though Tower of Hanoi is similar to the Domino model in the sense that it
also provides pictorial representations (see Fig. 1), it is drastically different in the complexity of
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conceptualizing the recursive pattern for a larger quantity of disks. See Table 3 below for an outline of
the provoked behaviors due to the Tower of Hanoi activity.

Recursion

Tower of Hanoi Model is one of the suitable models for the visual introduction of recursion activities,
but also is effective in provoking learners to think about the recursion’s crucial function in proving
the Inductive Step.

The recursive behavior in the game comes from the fact that for the transfer of (k+1) disks from one
tower to the next, firstly k-many disks are moved from one tower to the next, secondly, the remaining
disk, (k+1)" disk, is moved to a separate tower (see fig. 1, frames A to D ). Furthermore, the same
moves used in the earlier step to transfer the first k-disks are repeated to move the very disks back
onto the present location of the (k+1)% disk (Fig. 1, frames D to G) .As seen in the description above, an
algebraic recursive behavior emerges naturally from the game itself. That is, the minimum number of
moves needed to move (k+1) many disks (call it Mk1) is double the minimum number of moves
needed to move k many disks (M), plus one. Then, the recursion formula inherent in the game is
given algebraically: Mi1=2Mi+1. It can easily be confirmed that the act of moving disks indeed leaves
no room for learners to direct their attention to the irrelevant features of the disks or the towers. In
fact, the problem on hand guides players to focus on the moves at all times. Another trait of the
model is clearly present in the description above. That is, contrary to many models with visualization
modes, Tower Hanoi not only provides means to observe visually the inherent recursion but also
provides needs (solving a mathematical problem) to translate this recursion into an algebraic
expression.

As an example, Figure 1 above illustrates, for three disks, the recursive nature of the Tower of Hanoi
game. On the frame A, you see the three disks located on the second tower. The next frames, B to C,
depicts the transfer of the first two disks to the first tower keeping in mind the condition of making
minimum number of moves (using 3 moves). The frame D illustrates the relocation of the last disk
(third disk; the largest size) from the second tower to the third tower (using a single move). Finally,
the frames, E to G, demonstrate the act of repeating the steps, used earlier for the first two disks
(frames B to C), in moving the very same two disks back onto the third tower (again using 3 moves).
Note that just now you in fact experienced the visual verification of the minimum moves via the
repeated application of the recursion. This recursion can also be translated into an algebraic formula:
Ms=2 Mx+1=7whereM2>=3 so that the question on hand can be answered computationally.

Once students discover, and gain confidence with the inherent recursive pattern in the Tower of
Hanoi game, playing with a small quantity of disks such as 3 or 4 disks, instructors may the nask the
question of how to determine the minimum number of moves for 1000 disks (see the statement of the
problem above).It should be noted here that computing the moves with the repeated application of
the recursive formula even for 100 disks would be a daunting task not only for a human, but even for
a computational technology.

After several attempts, recognizing the high difficulty level of their arithmetic approach of applying
recursion repeatedly, it is highly plausible that many of them become discouraged from applying
computations further. Thus leading to a search for more effective approaches to address the problem.
This quality indeed lacks from the models like Dominos. Since there is no problem to solve with such
models, the urge to seek for other more effective means does not materialize.

Out of the need to eliminate the repeated arithmetic application of the recursion, learners may begin
searching for another algebraic expression (a closed formula) that does not require a recursion in its
arithmetic evaluation. As a result, they may be able to discover the non-recursive formula: M.=2"-1.1f
however learners fail to arrive at the particular formula on their own, it can be given to them only
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after going through a set of guided investigative activities. Next step then is to have learners think
about the validity of this formula for the larger number of disks. In fact, the verification of this
expression can be achieved by applying the recursion from the first disk to second and so on, but the
execution of this process is almost impossible for larger quantities. This in turn may lead to the
realization of the necessity of a mathematical proof that does not call for the verification of each step
with repeated computations. It is then, out of the need, the “Proof by Mathematical Induction,” emerges
naturally as a deductive proof technique. Again, models similar to Dominos lack such features that
can elicit the need for deductive proof techniques.

Inductive Step

Realizing that the repeated recursion application is no longer an option, learners may be guided to
think about the recursion’s help in the deductive verification of the Inductive Step. At this point, since
many students already aware of the impossibility of proving the formula for larger n-values with
repeated arithmetic, they may be more inclined to work with the Inductive Step without assigning an
absolute truth value to either statements, Mx=2"-1 and Mx1=2"1-1. Hence they may begin to consider
the role recursion plays in the proof of,[P(n) = P(n+1)], as a whole. Here, we consider P(n)

standing for M.=2"-1.

That is to say, in order to prove the conditional statement, [P(n) = P(n +1)], one has to verify that
the proposition, P(n+1) (namely Mx1=2"*1-1) is obtained from the proposition, P(n) (namely M.=2"-1),
without knowing whether the statement, M.=2"-1 is true or false for any n. Learners then may come to
the conclusion that the proof of [P(n) = P(n+1)] can only be achieved deductively with the
application of the recursive formula,Mu1=2 Mx+1.That is, applying the recursion, we arrive atMn«=2
(2n-1)+1= 2m1-1, replacing2"-Iwith Mx. Note that with this argument, learners don’t need to consider
the truth state of M.=27-1. That is, at this stage, even in the case of the falsehood of the proposition
P(n), the conditional [P(n) = P(n +1)] could be true.

In short, it is clear that Tower of Hanoi leaves very little room for learners to misinterpret the visual
recursion inherent in the game. Furthermore it is almost impossible for learners to address the
problem without the algebraic application of the recursion, especially for the larger numbers of disks.
Therefore, the model leaves no room for a possibility of learners ignoring the recursion. Indeed, the
game coerces one to become fully aware of the role recursion plays in answering the question,
otherwise cannot be addressed.

Role of Basis Step

To expand the activityy, one can ask learners if/whether the true value of
[(M, =2"-1)= (M, =2"" —1)] (that they just proved deductively applying the recursion)
would be sufficient enough to make accurate inferences about the true state of the proposition, P(n)=:
(M, =2"-1), individually for each n-value. In turn, this may bring out the role of the Basis Step in
MI proofs.

At this point, learners’ attention may be directed to the truth values given in Table 1 above, especially
the 4t case. They can be pointed to the fact that it is possible to deductively obtain a true value for
[P(k) = P(k +1)] while each of its components is false. To reinforce student exposure to similar

truth cases, they can be asked to consider the following simple proposition: “
[(n=2)] = [(n+1) = 3] for n.” As discussed earlier, this proposition is always true, yet for many n-
values neither of two statements, [(n = 2)],[(n +1) = 3], is true. Having seen examples of the 4t case
in table 1, learners then may be guided to question the condition(s) needed to guarantee the true
value for each P(n) individually. Students next can be directed to consider Modus Ponens on MIP.
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That is, they may be asked to apply (to MIP) the first truth case in table 1 above to deduce the truth
state of the conclusion, VN(M, = 2" —1) .Since the deduction of truth of ¥YN(M , = 2" —1), depends
on the differing truth states of the two MIP components, V(n > k)[P(n) = P(n+1)]]and

Vvn > kP (n), comparisons should then put forward discussions on the logic combinations, [T = T],
[F=>F]and [F = T].

Considering that these three truth combinations deductively infer the true value for the conditionals
of the form, V(n > k)[P(n) = P(n +1)]], students may begin a process of self-questioning, in their

quest to determine whether these truth combinations also result in the true state of the conclusion,
vn > kP (n) of MIP. As a result, they may realize that at least for the two truth combinations,

[F = F] [F=T], the the
V(n > k)[P(n) = P(n+1)]], the quantified statementVn > kP (n)is false. That is, learners may

recognize that the falsehood of the antecedent implies the existence of at least one n-value (greater
than or equal to k) where P(n) is false.

and despite true value of inductive  proposition

While applying Modus Ponens to MIP, students then may become aware of the impossibility of a
valid deduction of the truth of ¥n > kP (n),solely based on the true state of the inductive step,

V(n > k)[P(n) = P(n+1)]]. Thus, some may begin to ask what other condition(s) is needed so that
the valid inference of the truth state of the conclusionVn > kP(n) becomes plausible. Already
proven the Inductive portion of MIP,V(n > k)[P(n) = P(n+1)]], learners may then turn their
attention to the Basis Step component [P (k)] (Basis Step). In turn, they may become aware of the
necessity (in the Modus Ponens application on MIP) of the Basis Step for a valid inference of the true

truth value of the formula, M, =2 n_1, individually for each n-value.

Notice that addressing both recursion and the basis step in the context of the Tower of Hanoi game
not only diminishes the possibility of irrelevant interpretation of the visual features, it also eliminates
the formation of a feeling of recursion being only a procedural tool for meaningless algebraic
manipulations. Most importantly, it coerces learners into thinking about the role deductive logic plays
in MI proofs, moreover the role of Basis Step in this deductive process. See Table 3 for an outline.

Table 3. Outline of Tower of Hanoi Activity

Activity

Provoked Behavior

Play the game for smaller number of disks

Attempt to calculate Miooo
formula

using recursive

Attempt to verify the validity of Mn=2n-1 for large
n=1000

Attempt to Prove the Inductive

[P(n) = P(n+1)]

Step

Truth Analysis of the components of MIP:
Comparison of similarities and differences of

Discovery of the visual inherent recursion and
Need for
Mna1=2Mn+1
Awareness of the shortcomings of the repeated
application of the recursive arithmetic, and the
need for closed formula: Mn=2n-1.

Realization of computational difficulty, and elicit

an algebraic recursive formula:

the need for a deductive validation approach (MI
proof).

Impossibility of computational verification of
each P(n), and need to prove the conditional
knowing the
realization of o need for the application of the
inherent recursion.

Realization of need for the true state of P(k)
(basis step) for a valid inference of the true value

without truth wvalues hence
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v(n>Kk)[P(n) = P(n+1)]] and Vn >kP(n) of conclusion, ¥n > kP(n).
via the truth combinations: [T = T], [F = T]
and[F = F].

In summary, the expectation is that, through both internal and external questioning/guidance within
the Tower of Hanoi problem, learners may come to the realization that:

1) MI proofs are the application of Modus Ponens on MIP, needing deductive reasoning.
2) Induction Hypothesis does not mean assuming the true truth value of P(n )individually. In
fact, at this stage, P(n) cannot be assumed to be neither true nor false.

3) At the Inductive Step, the true truth value of the conditional statement, [P(n) = P(n +1)]

is proven as a whole for any n-value, without regards to the absolute truth of P(n).More
importantly, this can be done only with the application of the inherent recursion in task
on hand.

4) In light of the true value of the proposition, [P(n) = P(n +1)], and the true state of MIP

,Modus Ponens dictates that the only time the quantified propositionVn > kP (n) can be

inferred to be true if the Basis Step, P(k), is also true for ak-value.
Conclusion

We reported the pedagogical and cognitive difficulties students experience with Mathematical
Induction. Furthermore, in light of the recommendations reported in literature, we talked about the
approaches and models used in introducing MI proofs. We added new perspective into the existing
one by discussing these issues in the context of the deductive logic applied in MI proofs.

We came to a conclusion that the most appropriate approaches to addressing these obstacles need to
be through mathematical models with problem solving situations with relatively high difficulty level
of computations. Due to the hardship of the computations for larger quantities, we argued that such
problems may effectively elicit the cognitive awareness of the role and the necessity of each
component of Mathematical Induction proofs. We additionally argued that the models with relevant
problem settings diminish the likelihood of irrelevant interpretations. On the contrary, introducing
Mathematical Induction proofs with topics such as finite sums, we deemed, lead to the formation of
procedural knowledge, and furthermore to a view of MI proofs as unnecessary circular arguments.

In conclusion, for an effective instruction of MI proofs, we recommend the instructors of mathematics
to discuss the recursive nature of sequences specifically in the context of deductive reasoning. We
further recommend that learners are discouraged from concrete computations by directing their
attention to the larger values. Instead, learners should be guided toward the discovery of a non-
recursive closed formula, in turn the questioning of the validity of the closed formula for larger
quantities may bring out the need for MI proofs, and the role deductive processes play in the proof of
its components.
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