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Abstract 

This study aimed to identify misconceptions in medical student knowledge by mining user interactions in 
the MedU online learning environment. Data from 13000 attempts at a single virtual patient case were 
extracted from the MedU MySQL database. A subgroup discovery method was applied to identify 
patterns in learner-generated annotations and responses to multiple-choice items on the diagnosis and 
management of acute myocardial infarction (i.e., heart attack). First, the algorithm generated rules where 
single terms from the learner annotations were used to predict incorrect answers to the multiple-choice 
items. Second, the possible combinations of terms and their relevant synonyms were used to determine 
whether their inclusion led to better rates of prediction. The second step was found to significantly 
increase prediction precision and weighted relative accuracy, uncovering four misconceptions at a rate 
greater than 70%. These findings serve to inform the design of an adaptive system that tailors the delivery 
of formative feedback to promote better learning outcomes in the domain of clinical reasoning. 

Introduction

Many students enter medical school with misconceptions that are resistant to change. A study of 
first- and second-year medical students showed that half of first-year students held one or more 
misconceptions prior to attending a course on the cardiovascular system, with this number only 
decreasing slightly in their second year of study (Ahopelto, Mikkalä-Erdmann, Olkinuora, & Kääpä, 
2011). Students who held such misconceptions performed poorly on a related clinical reasoning task,
supporting the fundamental role of knowledge in developing clinical reasoning expertise (Norman, 2005).
In the absence of targeted instruction and detailed feedback, even more advanced medical students can
struggle to debug their own misconceptions and restructure their knowledge appropriately (Boshuizen, 
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van de Wiel, & Schmidt, 2012). Amongst practicing physicians, cognitive errors related to faulty prior 
knowledge or synthesis have been shown to contribute significantly to diagnostic error (Graber, Franklin, 
& Gordon, 2005). Furthermore, Graber et al. (2005) found that early errors influenced future errors, 
highlighting the need to identify and address misconceptions as early as possible in the learning process.

Misconceptions that lead to diagnostic errors can be challenging to examine in the clinical 
environment (Norman & Eva, 2010). In addition to providing valuable opportunities for students to 
practice and get feedback on their clinical reasoning skills, online learning environments can support 
instructors and researchers in tracking and logging user interactions to understand learning processes. 
Learning analytic techniques can be used to leverage the affordances of the large volumes of data 
generated by learners in these environments. The application of learning analytics to individualize 
instruction is referred to as learner modeling (Baker & Siemens, 2014; Ellaway, Pusic, Gallbraith, & 
Cameron, 2014; Ferguson, 2012; Kay, Reimann, Diebold, & Kummerfeld, 2013). Learner models allow 
instructional systems to capture and analyze user interactions in order to select and deliver the most 
suitable instructional content (Shute & Zapata-Rivera, 2012) and personalize the delivery of feedback 
(Feyzi Behnagh et al., 2014; Lajoie et al., 2013) to enhance learning outcomes. 

In our previous research, we investigated the utility of a learning analytic technique known as 
subgroup discovery (Wrobel, 1997; Klösgen, 2002), a data-driven approach for generating rules that 
describe subsets of a population that are both sufficiently large and statistically unusual. We used this 
approach to classify learner interactions in another computer learning environment (Lajoie, 2009) where 
students learn to reason about virtual patient cases by formulating diagnoses and ordering laboratory tests. 
By examining the laboratory tests selected by learners in the context of diagnosing a virtual patient, we 
were able to generate rules that were suggestive of relationships between specific laboratory tests ordered 
and misconceptions in clinical reasoning (Poitras, Lajoie, Doleck, & Jarrell, 2016). However, the
applicability of this approach for discovering knowledge from unstructured text-based data has yet to be 
determined. In the current study, we investigated the suitability of subgroup discovery methods for 
characterizing relationships between learner-generated text annotations and their subsequent responses to 
multiple-choice questions in the MedU online learning environment (Fall et al., 2005). Our aim was to 
examine the specific linguistic features of annotations associated with incorrect answers to identify 
common misconceptions, and to use such data to inform the provision of dynamic feedback in the context 
of problem-solving.

Detecting Misconceptions in Online Learning
Learning outcomes in online learning environments can be measured in terms of the degree of

alignment between a learner model and an expert model of performance. Misconceptions and missing 
conceptions (Van Lehn, 1988) represent different types of discrepancies between these two models:
missing conceptions refer to knowledge that the expert model contains that the student model does not, 
while misconceptions refer to knowledge that the student model contains and the expert model does not. 
Once detected, these discrepancies can be addressed in different ways. In the model tracing approach
(Anderson, Boyle, Corbett, & Lewis, 1990), the learner model is continually compared against the expert 
model. If a discrepancy is identified, the learner is immediately and directly prompted to perform 
particular actions. In contrast, the use of novice-expert overlay models (Lajoie, Poitras, Doleck, & Jarrell,
2015) as a feedback mechanism puts the onus on learners to determine their next actions. The novice-
expert overlay approach appears to be particularly effective in ill-structured domains where there may be 
multiple paths to obtaining the correct solution (Lajoie, 2003). Feedback that addresses learner 
misconceptions can be provided when erroneous solution paths are identified. Examples of the use of 
novice-expert overlay models to promote expertise in clinical reasoning include the Diagnostic Pathfinder 
(Danielson et al., 2007), the NUDOV system (Wahlgren, Edelbring, Fors, Hindbeck, & Stahle, 2006), and 
BioWorld (Lajoie et al., 2013, 2015). In this study, we extended the prior analytics methods we used with 
BioWorld to analyze learner actions in the more widely-used MedU online learning environment. 
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Virtual Patient Cases in MedU
MedU (www.med-u.org) has a current user base of 30,000 learners across North America and 

contains sets of virtual patient cases targeted at various specialties including pediatrics, internal medicine, 
family medicine, and radiology (Fall et al., 2005). A virtual patient case in MedU consists of a series of 
interactive HTML screens, or “cards”. Each card presents the learner with new information, including 
patient symptoms, current vital signs, electronic medical records, and consultation notes from other
physicians. The sequential arrangement of the cards is intended to simulate how the condition of the 
patient evolves over time and in response to actions taken by the learner. The progression of patient 
symptoms is also made evident through explicit discussions of hospitalization, patient management plans,
and treatment outcomes. The MedU environment embeds a number of tools to support learners in 
formulating their own differential diagnoses and treatment plans (see Figure 1). The Navigation sidebar 
allows learners to view the full set of cards in a case and navigate back to a previously viewed card. The 
Tools/Resources sidebar contains three free-text input fields where learners can record key findings, 
differential diagnoses and make annotations pertaining to the case. 

MedU does not contain explicit learner or expert models. Instead, learner performance is 
analyzed through their responses to multiple-choice questions embedded throughout the case. These 
questions may address underlying knowledge and/or prompt learners to choose amongst a set of options 
for performing an action. The learner responses are highlighted as correct or incorrect and the appropriate 
actions that need to be taken are reviewed (e.g., “You should call a cardiology consult immediately”) and 
justified (e.g., “Urgency is critical as you want to prevent further myocardial damage…”). At the same 
time, the expert palette provides hints that are helpful in performing the correct action, as in a list of 
criteria to diagnose a left bundle branch block on an electrocardiogram (e.g., “The heart rhythm must be 
supraventricular in origin…”). Recent studies have sought to expand the nature of assessment in MedU. 
For example, Smith et al. (2016) developed a rubric for human tutors to assess students’ written case 
summary statements in MedU. We contend that learner annotations represent an important and as yet 
untapped source of data for detecting and addressing learner misconceptions.   

Figure 1. A screenshot of the MedU user interface.
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Research Objectives 
The aim of this study was to detect learner misconceptions in the context of solving MedU virtual 

patient cases. Specifically, we applied a subgroup discovery method to search for common patterns in the 
learner-annotation data that were predictive of incorrect answers to multiple-choice questions. In doing 
so, our objective was to gain insights into the nature of misconceptions that mediate diagnostic 
performance and should therefore be targeted for corrective feedback. Our specific research questions 
included:

(1) Which linguistic features of learner annotations are associated with errors? 
(2) Does the use of multiple terms increase prediction quality compared to single terms?
(3) Can the onset of misconceptions be detected? 

Method

Materials
Dataset. We developed our analysis using the first case of the Structured Internal Medicine 

Patient Learning Experience (SIMPLE) set of MedU cases. In this case, Mr. Monson, a 49-year-old man, 
presents to the emergency department with an acute episode of chest pain, nausea and shortness of breath 
(Figure 1). The case walks the learner through the diagnosis and management of acute myocardial 
infarction (i.e., heart attack). This case consisted of 24 cards, 8 of which contained multiple-choice 
questions. With approval from the institutional review board at McGill University, we extracted 
anonymized student performance data for this case from the MedU MySQL database. The number of 
attempts for each multiple-choice question ranged from 12947 to 13262 (M = 13067, SD = 90). As the 
multiple-choice questions were designed such that multiple responses were required (i.e., “check all that 
apply”), we evaluated each item selection separately, for a total of 45 true/false items. For example, the 
first multiple-choice question asks students to select immediate treatment actions and provides four 
possible responses: (a) aspirin, (b) electrocardiogram (ECG), (c) sublingual nitroglycerin, and (d) a lab 
draw for cardiac troponins. These options were labelled as true/false items 1.1, 1.2, 1.3, and 1.4 for 
analysis purposes.

Sixty-seven percent of learners correctly identified acute myocardial infarction as a possible 
differential diagnosis (8786 correct, 4360 incorrect). This difficulty level suggested that some 
misconceptions were likely to be present.   

Data scoring and coding. An example of a learner annotation made while using the 
Tools/Resources toolbar is shown below:

associated symptoms include nausea, mild epigastric tenderness dyspnea on exertion; relieved 
after 5 minutes of rest patient has history of tobacco use patient has family history of heart 
disease CXR normal no rubs, gallops, bruits RRR somatoform disorder pancreatitis GERD 
musculoskeletal - pulled muscle Angina not sx: no sweating, nausea, vomiting, radiating pain MI 
not in pain currently ischemic arterial disease - CAD pain in center of chest   

We extracted linguistic features of the annotations through a series of text pre-processing steps. 
The annotations were first isolated into terms by tokenizing the full string using non-characters such as 
spaces. For example, in the annotation above, the words “associated,” “symptoms,” “include,” and 
“nausea” were each represented as separate terms. The terms were then transformed to lower case and 
filtered on the basis of length to exclude terms less than 2 characters. Any terms corresponding to stop-
words such as the, is, at, which, and on were also excluded. A vector was created for each annotation 
using the complete set of terms extracted. Each cell in the vector contained a binary value representing
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term occurrence (i.e., true = 1) or non-occurrence (i.e., false = 0). The complete session-by-term vector
was then pruned using a threshold of 10% in order to exclude terms with rare occurrences and reduce the 
dimensionality of the dataset.

Data analysis. Subgroup discovery involves an exhaustive search for relationships between 
learner behaviors, which consist of a set of predictor variables and a target variable of interest. In this 
study, the target variable in the dataset was the user selection for each of the 45 true/false items (i.e., 
binary value of 1 if selected or 0 if not selected). The subgroup discovery task was set to generate rules 
that account for incorrect responses to each item (i.e., true or false, depending on the item selected) on the 
basis of the linguistic features of learners' annotations to the Tools/Resources toolbar. For example, in the 
expert response to the first multiple-choice question, items a (1.1), b (1.2), and d (1.4) were selected. As 
our objective was to model incorrect responses, the target variables for the subgroup discovery algorithm 
were set to 0 (i.e., not selected) for items 1.1, 1.2, and 1.4, and 1 (i.e., selected) for item 1.3.

We applied the subgroup discovery algorithm to the MedU dataset using a two-step supervised 
approach. To facilitate analysis, the search task was constrained by a number of parameters. For example, 
the minimum coverage of a rule was set to 1% to ensure that errors in responding to the true/false items 
were prevalent enough to warrant intervention. In step one, the algorithm performed an exhaustive search 
across the dataset with the maximum depth of search set to 1, such that each rule contained a single-term 
antecedent from a learner annotation (e.g., nausea=true), that was associated with a conclusion (e.g., item 
1.1=incorrect). We optimized for precision of rule detection. The number of task iterations was limited to 
select the set of 10 rules that was most precise in detecting errors for each true/false item. In step 2, the 10 
antecedents from step 1 as well as relevant synonyms selected from an exhaustive word list generated 
from the text mining method were analyzed with the maximum depth of the search increased to 10. In 
doing so, the possible combination of terms and synonyms, up to a maximum of 10, were tested in order 
to determine whether a more precise solution could be obtained. All data analyses were performed in 
RapidMiner Studio, version 6.4 (https://rapidminer.com).

There are number of quality measures used in subgroup discovery (Herrera, Carmona, Gonzalez, 
& Jose del Jesus, 2011) to quantify the statistical novelty of a subgroup or rule (Konijn, Duivesteijn, 
Meeng & Knobbe, 2014). Duivesteijn and Arno (2011) note that selecting the right quality measure is 
often a difficult task; this choice is either driven by familiarity with the measures or based on default 
choice. For the present study, we calculated four common quality measures for each rule: Accuracy, 
Coverage, Precision, and Weighted Relative Accuracy (WRAcc 2000).
Accuracy was a measure of the proportion of instances where the rule made the correct prediction: (true 
positives + true negatives) / (all instances), while Precision represented the proportion of correct rule 
predictions amongst all cases where the antecedent term was found: (true positives) / (all positives). 
Coverage was calculated by dividing the number of annotations where the antecedent term was found by 
the size of the complete data set: (all positives) / (all instances). The WRAcc metric balanced both 
coverage and accuracy to assess the novelty of a subgroup relative to the entire population (
2000). WRAcc was calculated by subtracting the product of the probabilities that either the antecedent or 
conclusion were true from the probability that both the antecedent and conclusion were true: P
(antecedent=true & conclusion=true) - [P(antecedent=true) X P(conclusion=true)]. WRAcc values can 
range from -.25 to .25, with values near 0 representing little novelty compared to the entire data set. 

For each of the 45 true/false items, we calculated the average for each quality measure across the 
10 rules generated for each step of the analysis. Paired t-tests were used to assess whether there were 
statistically significant improvements to any of the quality measures from step 1 to step 2 of the analysis.
We calculated item difficulty by dividing the number of incorrect answers from the total number of item 
responses. The item difficulty value is thus independent from the quality measures used to appraise the 
rules generated through the subgroup discovery mining algorithm, and serves to corroborate the findings 
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obtained from the analysis. In an attempt to facilitate early detection of misconceptions, we also mined 
the HTML content of the cards by extracting terms and matching them with a list of the antecedent terms
generated by the subgroup discovery method. 

Results

Summary Findings

After pruning to exclude rare terms, a total of 821 terms from the set of learner annotations were 
analyzed. Table 1 shows the descriptive statistics for each performance metric across all 45 true/false
items. From step 1 to step 2 of the subgroup discovery algorithm, there was a significant increase in the 
precision of detecting errors, t(44) = -10.73, p < .0005 and in the weighted relative accuracy, t(44) = -
2.61, p = .01, but no significant change to either accuracy, t(44) = -1.62, p = .11, or coverage, t(44) = 
1.42, p = .16.  

Table 1 
Means and Standard Deviations for Subgroup Discovery Algorithm Quality Metrics (N = 45) 

Metric Step 1 Step 2
M SD M SD

Accuracy 72.4% 19.3% 72.6% 19.4%
Precision 32.4% 21.7% 35.8% 22.5%
Coverage 1.9% .70% 1.6% 1.2%
Weighted Relative Accuracy .11% .10% .15% .14%

Figure 2 and 3 shows the average precision and weighted relative accuracy values for
each true/false item. Four items (2.3, 2.9, 3.4, and 3.5) were associated with average precision values
greater than 70%. All of these items also had relatively high difficulty scores, ranging from 62% to
76%. In the following section, we elaborate on the most difficult item (i.e., 3.4) to illustrate the
rule antecedents generated by the subgroup discovery task and the calculations of the different quality
metrics.

Figure 2. Average precision values for step 1 and step 2 across all 45 items for the Mr. Monson case.
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Figure 3. Weighted relative accuracy values for step 1 and step 2 across all 45 items for the Mr. Monson 
case.

Detailed Item Analysis
We detected a potential misconception related to the third multiple-choice question, which asked 

the learner to select the appropriate treatment for the management of a patient with ongoing chest pain 
due to unstable angina. Item 3.4 was especially difficult for learners. This item referred to the 
anticoagulant drug Heparin, which was selected (i.e. “true”) in the expert response as being pertinent to 
the treatment plan. Of the 13073 learner responses to item 3.4 in the database, 9903 (76%) were classified 
as incorrect. The antecedents identified from the learner annotations in step 1 of the analysis included the 
terms: “segment,” “neg,” “reflux,” “central,” “felt,” “carrying,” “worse,” “yrs.,” “induced,” and “dad.”  
For example, of the 134 instances where the term “segment” was found in a learner's annotations, 108 
responses to item 3.4 were also found to be incorrect, resulting in a detection precision of 80.6% (i.e., 
108/134). As shown in Table 2, precision values increased in step 2 when multiple terms were used as 
antecedents.

In contrast to the high precision value, the accuracy of the term “segment” in detecting an 
incorrect response to item 3.4 was only 24.9% (i.e., [108 + 3144]/13073). This means that while 
mentioning “segment” was likely to be associated with an incorrect response to item 3.4, not mentioning 
“segment” was not necessarily indicative of a correct response to this item. As such, the mention of the 
antecedent term was a sufficient factor for inferring learner misconceptions, but not a necessary one. The 
coverage of this rule across the entire data set was 1.0% (i.e., 134/13073), meaning that misconceptions 
were typically rare amongst learners. Accordingly, the weighted relative accuracy was also low at .05% 
(i.e., 108/13073-[134/13073 X 9903/13073]). 

A subset of the antecedents listed in Table 2 were found in the HTML content of the cards for this 
case. Item 3.4 appeared on the 12th card. The term “induced” was only mentioned on the first card (i.e., 
“Cocaine-induced chest pain”) as a potential cause of chest pain related to the cardiovascular system. 
However, these terms figured prominently in the subsequent card where the patient complained about his 
symptoms: 
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…So, while I was pulling carpet out and carrying it up the stairs, I noticed some discomfort in my
chest.  It was not really severe; it felt like some pressure.  In retrospect, I think it might have been 
heartburn because I felt a little nauseated too… 

Table 2

Identified Rules from the Subgroup Discovery Task for Item 3.4
Antecedents Tru Fal Cov WRAcc Pre
Step 1
segment=true 108 26 0.01 4.97E-04 0.81
neg=true 149 37 0.01 6.20E-04 0.80
reflux=true 115 29 0.01 4.53E-04 0.80
central=true 110 28 0.01 4.18E-04 0.80
felt=true 156 41 0.02 5.18E-04 0.79
carrying=true 109 29 0.01 3.41E-04 0.79
worse=true 124 33 0.01 3.88E-04 0.79
yrs=true 138 37 0.01 4.16E-04 0.79
induced=true 141 38 0.01 4.13E-04 0.79
dad=true 421 114 0.04 0.001203 0.79
Step 2
negative=false AND reflux=true AND yr=false 109 25 0.01 5.73E-04 0.81
neg=false AND negative=false AND reflux=true AND 
yr=false

108 25 0.01 5.55E-04 0.81

negative=false AND reflux=true 112 26 0.01 5.71E-04 0.81

neg=false AND negative=false AND reflux=true 111 26 0.01 5.52E-04 0.81
negative=false AND reflux=true AND segment=false 
AND yr=false

106 25 0.01 5.18E-04 0.81

negative=false AND reflux=true AND worse=false AND 
yr=false

106 25 0.01 5.18E-04 0.81

neg=false AND negative=false AND reflux=true AND
worse=false AND yr=false

106 25 0.01 5.18E-04 0.81

negative=false AND reflux=true AND segment=false 109 26 0.01 5.15E-04 0.81
negative=false AND reflux=true AND worse=false 109 26 0.01 5.15E-04 0.81
neg=false AND negative=false AND reflux=true AND 
worse=false

109 26 0.01 5.15E-04 0.81

Notes: True Positives (Tru), False Positives (Fal), Coverage (Cov), Weighted Relative Accuracy 
(WRAcc), Precision (Pre)

Furthermore, these terms were also mentioned in the context of feedback provided to learners: 

…Most patients presenting with chest pain should have an ECG done immediately to look for ST
segment abnormalities that indicate myocardial injury.  ST segment elevations are present in a 
STEMI; in a NSTEMI, ST segment depressions may occur or the ST segments may be normal… 
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Table 3 shows the terms that could be traced back to the HTML content of each card.

Table 3
Count of Item 3.4 Antecedent Term Mentions in the HTML Cards for the MedU Case

Discussion

This study examined the application of learning analytic techniques to learner-generated 
annotation data in MedU, an online virtual patient environment. Based on data from a single case 
completed by over 13000 actual users, we were able to use the subgroup discovery technique to 
automatically generate rules to associate learner annotations with incorrect responses to 45 true/false
items. From step 1 (single antecedent terms) to step 2 (multiple antecedent terms), we noted a significant 
increase in the precision and weighted relative accuracy of error detection, but no significant impact on 
either coverage or accuracy. 

Responding to Ellaway et al.’s (2010) caution on the risk of high false positives when using large 
data sets, we purposely selected the parameters of our analysis to generate rules with a high precision of 
error detection (i.e., a low false positive rate). The high correlation between item difficulty and precision 
values obtained validated the choice of precision as the optimizing metric. We contend that the rules 
associated with precision values greater than 70% are likely to represent misconceptions, where the 
learner model contains knowledge that the expert model does not. For example, the results from step 1 
suggest that an annotation of “reflux” was four times more likely to be associated with an incorrect 
answer to item 3.4 than a correct answer. All 10 rules generated in step 2 for this item also included the 
term “reflux” (see Table 2). Taken together, these results suggest that students may attribute Mr. 
Monson’s symptoms to gastroesophageal reflux disease, a common condition that mimics myocardial 
infarction (Mayo Clinic, 2015). Conversely, the low overall accuracy of the rules can be attributed to a 
high false negative rate where the rule fails to detect incorrect answers. The low accuracy rate suggests 
that subgroup discovery may be less effective in detecting missing conceptions, where the expert model 
contains knowledge that the learner model does not. The low coverage and weighted relative accuracy 
values suggest that the detected misconceptions were relatively uncommon, and therefore unlikely to be 
detected by other means.  

While automated techniques can successfully identify misconceptions, detecting their onset was 
considerably more difficult. By investigating the occurrence of the antecedent terms in the HTML content 
of the case, we were able to hypothesize about the nature of learner misconceptions. For example, the 
majority of the antecedent terms for item 3.4 appeared early in the HTML content of the case (see Table 

Antecedents Case Card Number
1 2 3 4 5 6 7 8 9 10 11 12

segment=true 5 1
neg=true
reflux=true
central=true
felt=true 3
carrying=true 1 1
worse=true 1
yrs=true
induced=true 1
dad=true 1
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3). Learners who used these terms in their annotations may have had difficulty updating their knowledge 
as the case evolved. Upon further investigation, we found that gastroesophageal reflux disease was a 
correct differential diagnosis for this case and was identified as such by 69% of learners (9088 correct, 
4058 incorrect). Instead of a knowledge misconception, the inclusion of “reflux” as an annotation may 
reflect a tendency towards the cognitive error of premature closure, where other possibilities are not 
considered once an initial diagnosis is made (Graber et al., 2005). A complementary approach to 
searching the HTML content for the antecedent terms would be to investigate the context of the 
annotations in which the terms were mentioned. Both of these sources of information would allow 
domain experts to interpret the nature of the misconception in more depth. 

Once identified, different approaches to providing feedback may be needed for different types of
misconceptions. Model tracing approaches (e.g., Anderson et al., 1990) may be more effective for 
resolving misconceptions related to underlying knowledge, while novice-expert overlay approaches are 
likely to be more effective for supporting learners in self-regulating their cognitive processes while 
problem-solving (Lajoie et al., 2013).   

Significance

Learning analytic techniques such as subgroup discovery provide an unprecedented opportunity 
to use data from real learners in authentic learning situations to better understand learning processes. This 
study illustrates how automated techniques can be used to detect learner misconceptions, formulate 
theory-based hypotheses about their sources, and inform the provision of personalized feedback to 
promote better learning outcomes.
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