

ISSN 1479-4403 87 ©Academic Conferences Ltd

Reference this paper as:
Schwieren J et al (2006) “Using Software Testing Techniques for Efficient Handling of Programming Exercises in an e-
Learning Platform” The Electronic Journal of e-Learning Volume 4 Issue 1, pp 87-94, available online at www.ejel.org

Using Software Testing Techniques for Efficient Handling of
Programming Exercises in an e-Learning Platform
Joachim Schwieren, Gottfried Vossen and Peter Westerkamp
University of Muenster, Germany
schwieren@uni-muenster.de
vossen@uni-muenster.de
westerkamp@uni-muenster.de

Abstract: e-Learning has become a major field of interest in recent years, and multiple approaches and solutions have
been developed. A typical form of e-learning application comprises exercise submission and assessment systems that
allow students to work on assignments whenever and where they want (i.e., dislocated, asynchronous work). In basic
computer science courses, programming exercises are widely used and courses usually have a very large number of
participants. However, there is still no efficient way for supporting tutors to correct these exercises, as experience has
shown that correction (and, beyond that, automatic grading) are difficult and time consuming.

In this paper we present an enhancement of the xLx platform developed at the University of Muenster to efficiently
support tutors in handling Java programming exercises electronically. The new component is based on concepts of
automatic static and dynamic testing approaches, well known from software engineering, and provides an automatic pre-
correction of submitted solutions. In addition, a tutor is able to annotate solutions manually, by adding comments that are
associated with the source code of the solution in an intelligent way. Static tests are based on a compilation of the
sources to find syntactical errors, while dynamic tests use test cases defined by tutors during the creation of the
exercises and have to be executed correctly on the solutions in order to receive credits for the exercises.

Keywords: Programming exercises, Automatic pre-correction, e-Learning, Blended learning

1. Introduction
e-Learning has become a major field of interest in
recent years, and multiple approaches and
solutions have been developed so far. A typical
form of e-learning applications are exercise
submission and assessment systems that allow
students to work on their assignments whenever
and where they want (i.e., dislocated,
asynchronous work). Since the demand for new
types of exercises arises based on the teaching
environment, it is important that e-learning
systems provide a flexible way to add new types
of exercises and that they are scalable concerning
the demands of different courses and lectures.
This paper describes an enhancement of an e-
learning platform by an automatic program testing
facility.

In undergraduate and basic computer science
courses, programming exercises and
assessments are widely used. These courses
usually have a very large number of participants
which leads to several problems when the
submitted exercises have to be corrected and
graded by tutors. The main reason for this is that
programming exercises, no matter which
programming language is used, tend to have a
large degree of freedom for learners. Thus, simply
comparing the provided solutions with a sample
solution does not produce a reasonable result that
can be used for grading, since different, yet still
correct solutions to one and the same exercise

exist. It is possible that the submitted solution still
fulfils the required aspects of the exercise, but
follows a completely different way to solve the
problem than the given sample solution. Only a
manual correction by an experienced tutor and a
semantic comparison with a sample solution can
lead to an acceptable form of correction. The tutor
must be aware that there are a lot of ways to
solve one specific programming problem. Some
programming languages offer a larger degree of
freedom than others, but generally this
characteristic is typical for a high-level
programming language.

As a consequence, correcting and grading of
programming exercises is commonly done
completely manually. Only centralized submission
systems are sometimes used to standardize the
submission process, but this does not solve the
actual problem that arises with this special
exercise type. Thus, tutors have to install a
submitted solution on a test system to execute
and run tests. Running tests on a submitted
source code is essential, since it has a high
complexity and even an experienced tutor might
overlook faults by only reviewing the source code
without executing it. In case of several hundred
submitted exercises, which is a regular figure in
courses at large universities, this can be an
exhausting task for a tutor. Annotating source
code is also not very comfortable since the
student will have to browse through the full source
code in order to find the annotations made by a

mailto:schwieren@uni-muenster.de
mailto:vossen@uni-muenster.de
mailto:westerkamp@uni-muenster.de

Electronic Journal of e-Learning Volume 4 Issue 1 2006 (87-94)

tutor. This is why annotations are often made
manually on printouts of the source code.
A couple of approaches for automatically
correcting and grading programming exercises
exist in the literature, but recent solutions mostly
offer an automated testing by interacting via the
command line with provided solutions. These
approaches are of course very limited since there
are a lot of applications or software components
that do not have a command line interface such
as most Java classes, GUI based applications or
stand-alone algorithms that are not embedded in
a specific program. The most sophisticated
system so far is “Praktomat” (Zeller 2000) which
has been developed at the University of Passau to
support programming learning classes. Other
approaches such as BOSS (Joy and Luck 1995),
TRY (Reek 1989), Online Programming
Assessment Tool (Roberts and Verbyla 2003) or
ELP (Truong et. al. 2003) mostly focus either on
offering a solution to submit exercises using a
Web interface or offer concrete testing
functionalities but not both.

In this paper we provide a closer look at the
integration of programming exercises in the xLx e-
learning platform that has been developed at the
University of Muenster (Hüsemann et al. 2002).
The new component is Web based and builds on
foundations well known from software
engineering. The exercises are a typical part of
undergraduate and basic computer science
lectures and normally several hundreds of
students assign to those courses. The paper
starts with an explanation of the existing platform
in Section 2, and then explains the enhanced
architecture of the xLx system that now integrates
JUnit and Apache ANT to automatically compile
sources and execute test cases on a submitted
solution in Section 3. In particular, we explain in
detail how tutors can define exercises and assign
(Java) test cases to them. We also show the
learner’s view and indicate how annotations are
provided for learners to learn from mistakes. In
Section 4 we provide a short explanation of
security reflections that had to be done since
submitted code is executed on the xLx server that
might be maleficent, and we conclude with a short
outlook.

2. xLx – a scalable e-learning platform
xLx is the abbreviation for “eXtreme e-Learning
eXperience” (Hüsemann et. al. 2002, Vossen and
Westerkamp 2004). It is a Web based online
learning platform developed at the University of
Muenster that can either be used in university or
commercial contexts. The main objective of xLx is
to support the exercise portion of technically
oriented university courses (e.g., database

systems, database implementation, computer
networks, workflow management). xLx is part of a
“blended learning strategy” that combines
classroom teaching with electronic exercise work.
This strategy is based on the observation that
classroom teaching in the courses mentioned is
necessary and leads to better learning results
than a complete shift of teaching solely to Web
courses. The original motivation for the
development of xLx was based on the following
observations: Current university classes (and
embedded exercises) typically take place in
strictly periodic meetings, are bound to certain
teaching environments, mostly ignoring the
progress, needs, and time constraints of individual
learners. Students spend less and less time and
effort to work on courses and exercises
continuously. Reasons for this trend are manifold
and shall not be discussed here. The target
courses of our system, in particular database and
information systems courses, offer lots of
potentials for computer-based, interactive, often
visualized or animated training and testing.
Learners need to practice and train their skills with
full-scale software systems (e.g., database
management systems) that are reasonably
administered at the university only.

xLx addresses these observations as follows.
Students can work on assigned exercises anytime
and anyplace if Internet access and a standard
Web browser are available. Students may
determine their own pace when solving exercises;
however, a didactically meaningful sequencing of
exercises is still enforced by the system (as is a
time limit per assignment). Moreover, students
may ask for additional exercises either if they
have difficulties with the presented material or if
they would like to work on more challenging
problems. Finally, learning modules based on
realistic problems and transparent access to
underlying commercial systems raise hopes in
more fun and better learning success while
solving the exercises accompanying a course.
Correcting and grading assessments can be quite
time consuming (depending on the exercise types
used in the assessment). The use of xLx to make
the grading process more efficient, particularly for
complex exercise types such as programming
exercises is also one of its primary goals.

xLx embodies a personalized learning platform
that offers hands-on experience in terms of
practical exercises, covering a wide range of
conceptual, language specific or algorithmic
aspects of a particular field. xLx gives transparent
access to underlying (commercial) systems (e.g.,
database or workflow management systems),
which are centrally administrated. The xLx
platform organizes exercise solving in terms of

www.ejel.org ©Academic Conferences Ltd 88

Joachim Schwieren, Gottfried Vossen and Peter Westerkamp

closed user groups, where every member has his
or her own password-protected account. Each
account provides access to a course portal that
offers traditional material such as slides, lecture
notes, learning objects (Downes 2001), and
further links as well as an email list, a discussion
forum, and a personalized training section. This
training section is divided into two parts: Test
section: In this section students are able to train
their skills concerning course relevant techniques
(e.g., SQL queries, object-relational features of
SQL: 1999, transformation of XML documents
with XSLT or XQuery), and they can deepen their
understanding of covered algorithmic techniques
(e.g., database system algorithms such as
algebraic query optimization, the two-phase-
locking protocol for transaction synchronization, or
the redo-winners protocols for restarts after
system crashes, see Weikum and Vossen 2002).

Submit section: This section contains the
exercises that have to be solved during the term
and according to predefined deadlines. New
exercises show up in this section as the
necessary background has been covered in class.
Solutions can be prepared and tested in the test
section mentioned above. Once submitted,
solutions cannot be changed any more, and they
appear on a work list of a teaching assistant by
whom they are corrected and annotated.

So far, xLx knows five types of exercises: free-
text, multiple choice, SQL queries, XSLT and
XQuery transformations. While the first two of
these exercise types are standard ingredients of
an e-learning system, the latter are unique to our
system, as they are coupled with transparently
integrated underlying systems, in our case a
relational database for SQL (IBM DB2 Universal
Database) and XSLT and XQuery processors.
The integration of different systems avoids
technological and administrative barriers, as
students do not have to install these systems at
home; instead, they are accessed via standard
Web browsers. Finally, exercises for the last four
of the above types are stored along with solutions
inside the xLx platform, which allows for an
automatic pre-checking of solutions and makes
life of teaching assistants easier.

Technically speaking, xLx is a Web based
application and implemented in typical three-tier
client-server architecture. To access xLx only a
standard Web browser is needed; special plug-ins
or additional client-side applications such as Java
Runtime Environment (JRE) or Flash™ are not
required. The xLx platform is implemented on top
of an Apache Web server and a mySQL database
running on a Linux platform, i.e., the entire xLx
system is based on open source software. The

mySQL database contains student data, exercises
and solutions. Communication between clients
and the xLx platform is secured by SSL (HTTPS),
which provides basic security of confidential
student data (passwords, solutions, and student’s
grades). All Web pages are generated
dynamically by PHP4 scripts (ordinary pages) and
Java Servlets (database connections via JDBC).
The database server IBM DB2 Universal
Database is used for database related exercises
(SQL: 1999, object-relational features, DB2
extenders). Thanks to the IBM DB2 scholar’s
program, there are no costs involved in using DB2
at universities. Finally, PHP is used for calls to the
XQuery and XSLT command-line processors.

3. Programming exercises and
assessments in xLx

Since xLx is mainly used in technically oriented
computer science courses at university, one very
specific type of exercise was so far missing to
support the all base courses in an efficient way:
xLx was not able to handle programming
exercises; we will now explain how we have
remedied this situation.

An analysis of this very specific type of exercise
has come to the conclusion that only certain
aspects of the solutions are relevant for grading.
This is on the one hand the question whether the
submitted solution fulfils the specifications stated
in the exercise and on the other hand the way
how certain problems have been solved (e.g.,
implementation of a specific sorting algorithm that
is required in the exercise). Other aspects such as
naming of internal variables, methods or classes
are (usually) not relevant for grading, but prevent
an automated code review based on a
comparative approach. Our approach to the
verification of programming exercise solutions is
based on methods and techniques well known
from the field of software testing. Software testing
has become quite a large field of knowledge in
recent years and many different techniques and
methods exist. Owing to the fact that (automated)
software testing represents an important aspect in
the quality assurance process of commercial
software development, our approach adopts these
techniques and methods to the context of e-
learning.

Two main types of software tests can be
distinguished (apart from many other possible
classifications that exist). On the one hand, static
tests analyse or probe a test object (in the e-
learning case this is the submitted solution)
without executing it. A syntax-check of source
code is an example for a static testing technique.
In addition, all kinds of reviews such as technical

www.ejel.org ISSN 1479-4403 89

Electronic Journal of e-Learning Volume 4 Issue 1 2006 (87-94)

walkthroughs or even informal reviews can be
classified as static tests. On the other hand, tests
of functionality are known as dynamic tests. The
first step in a dynamic test is to specify test cases
that invoke a certain reaction or output on the test

object. In addition, the expected outcome of the
tests needs to be defined in advance. Comparing
the expected behaviour with the actual behaviour
builds the foundation to classify a test as failed or
passed.

xLx-System

PHP

shell_execute(...);

Command Line OS-Function

File System

Compiler

Ant JUnit

Interpreter

Operating System

Ant

Figure 1: Integrative approach of the xLx-java-testing-module.

The new exercise type currently only supports
Java programming exercises. This decision was
made since Java is widely used both in
educational and business contexts. In addition,
sophisticated build tools such as Apache ANT and
test tools such as JUnit (Massol 2003, Hatcher
2002) are available for Java. As Apache ANT and
JUnit have already proved to work well in the
testing framework on which xLx relies, they have
been integrated into the platform. The enhanced
architecture of the xLx system is shown in Figure
1. The basic xLx system uses a HTTP based
upload mechanism to store the solutions of the
learners in the file system of the server. The calls
of the underlying test mechanisms are done by
the PHP command-line functionality and are
described next.

For pre-correction of programming exercises xLx
uses both static and dynamic tests. Like for each
exercise type supported by xLx the platform
provides a framework to create, solve, grade,
annotate and view the results of exercises. For
the programming exercise type the user interface
is quite simple, as the solution is developed on the
student’s machine by using an IDE (Integrated
Development Environment) or editor program of
his or her choice. xLx only has to provide a simple
browser-based upload functionality in order to
submit the file(s) of a learner’s solution to the xLx
server. After a learner has submitted a solution,
the first step of the automatic correction facility is
a static test by compiling the source code of the
learner. This is done by xLx on the server. The
compilation results are stored as an XML file that
is later parsed by PHP to get the results back into
the xLx system. It represents the static test results
since only a syntactically correct Java file can be
compiled. If the compilation fails (e.g., due to
syntax errors or due to irresolvable dependencies

to other java classes) the dynamic testing step is
not executed and an error message is presented
to the learner who has tried to submit the
exercise. If the compilation was successful, the
dynamic test cases are applied next.

JUnit is used as testing framework that executes
the test cases and collects the results. Special
JUnit test cases are defined in Java (see Listing
1) for every exercise. To better handle the
compilation and test process, Apache ANT is
used to both compile the submitted solutions, i.e.,
the Java files, and execute the JUnit test cases on
these solutions. JUnit and Apache ANT can be
integrated quite simple because of a so-called
ANT Task (a plug-in for ANT) for JUnit that is
already available. This enables a high flexibility
that comparable approaches, which focus on a
simple, command line-oriented, text-based
input/output concept, cannot offer. In contrast to
the new xLx module these command line-oriented
systems cannot use, for example, the Java
Reflection API in test cases to allow a very
detailed way of analysing the submitted solutions.
Other testing frameworks such as DejaGNU1 do
not offer a wide range of functionalities that can
be used so easily because typically those
frameworks use a very restricted and proprietary
scripting language to specify test cases. Since
Java is a full-fledged programming language there
are actually no limits for the creativity of test case
designers.

The test case shown in Listing 1 sketches the
basic design of a JUnit test class. One or more
methods beginning with the keyword “test”
indicate the test methods that will be executed by
the framework. After setting up the required

1 http://www.gnu.org/software/dejagnu/

www.ejel.org ©Academic Conferences Ltd 90

Joachim Schwieren, Gottfried Vossen and Peter Westerkamp

objects for the actual test (this setup is called
fixture in the JUnit terminology), the specific tests
are defined by using so-called assertions that are
fully maintained by JUnit. An assertion compares
a specified result value with its expected outcome.
A textual description of the assertion can be
added optionally. JUnit monitors the results of the
executed assertions automatically. Finally, a test
protocol is being created as a result.

import junit.framework.*;
public class TestMyTest extends TestCase {
 // Constructor to provide the class name
 public TestMyTest(String name) {
 super(name);
 }
 // actual test case
 public void testSampleTestmethod() {
 // Test fixture
 MyDate aMyDate = new MyDate();
 aMyDate.setJahr(2010);
 // Assertions
 Assert.assertEquals("Testing getter and setter
methods for year",
 2010,
aMyDate.getJahr());
 // ...
Listing 1: A basic test case.

The information that a test case has passed or
has failed is, in contrast to the compilation results,
not necessarily presented to the learner. This
decision depends on whether the test case has
been declared as public or hidden by the tutor.
For a public test case, the result of the test is
presented to the student. These test cases are not

used for grading and therefore no credits can be
achieved for public test cases. So the basic idea
of public test cases is to define a certain level of
quality and/or functionality that the submitted
solutions will have to fulfil in order to be accepted
by the system. Hidden test cases, on the other
hand, are used for grading the submissions of
learners. When designing a programming
exercise in xLx, the tutor can define for every
hidden test case the credit points that can be
achieved if a particular test case is executed
successfully. Figure 2 shows the xLx front-end to
define programming exercises. In the upper
portion of the screen a tutor can assign an
exercise to an already existing section that
comprises several exercises to be solved by
learners. The level classifies the difficulty of the
exercise, for which in this case a maximum of 10
points can be achieved. The type of the exercise
is “Java” which points to a (Java language)
programming exercise. The text of the exercise to
be solved is defined in the middle portion of the
screen and will be displayed to the learner. The
lower portion of the screen (with screen texts still
in German) defines the test cases (here:
Test1MyDate.java, Test2MyDate.java, and
MyDateTestHilfsmethoden.java) that will be
executed on the solutions of the learners. The first
test case is marked as essential for this exercise
and is defined as a public one without any credits.
The second one is a hidden test case for which
the learners can earn up to 10 points. In the lower
right part of the screen tutors can upload sample
solutions that will also be displayed for a corrector
of the exercise.

Figure 2: xLx GUI for a tutor to configure new exercises.

www.ejel.org ISSN 1479-4403 91

Electronic Journal of e-Learning Volume 4 Issue 1 2006 (87-94)

As mentioned before, test cases are specified
using the JUnit test case class. All test cases that
are stored in a separate class can be used for
grading. If more than one test case is provided in
a single class (a so-called test suite) the assigned
credits for this suite can only be achieved if all
tests inside the suite passed. This also gives the
tutor a lot of flexibility when designing test cases
and the associated grading scheme.

Clearly, test cases may fail for different reasons.
One is that the expected outcome does not match
the actual outcome of the submitted solution. This
is the most typical reason why a test case fails
and is just called “failure”. Another reason might
be an unhandled exception during the execution
of a test case. This could be the case when the
test case calls a test object with values that are
not allowed and that are not correctly rejected by
the test object. To this end, xLx can also track
exceptions. If a test case fails due to an exception
this is called “error”. The test protocol does not
only show the exact figure of passed and failed
test cases; in case of an exception, detailed
information is given about the latter and thus
learners get a clue of what went wrong and tutors
can get a better view inside the provided solution.

It should be obvious that an automated test can
only provide limited feedback information to a

student. To give learners more information on
their solution, xLx also offers a possibility to
review and annotate the source code of the
provided solutions in a very comfortable way by a
human tutor in addition to the automated features
that do not require any interaction with the tutor.
As shown in Figure 3, xLx displays all source files
within the browser window and applies a special
Java syntax-highlighting scheme to make the
reading of the source code more comfortable. To
annotate a certain line of code, the tutor simply
writes notes into a special input box and xLx
associates the comment with the source file and
the specified line of code without changing it.

When a student takes a look on the corrected and
graded solution, all initially submitted source files
can be viewed within the browser window. Figure
3 pictures this screen that is comparable to the
screen of the tutor. Every line that contains an
annotation made by the tutor is marked with a
special glyph that indicates the presence of a
comment (see source code lines 9 and 10 in
Figure 3). By clicking on the glyph the annotation
made by the tutor is shown in the lower part of the
window. The mixture of automated testing and
grading in combination with a source code review
done by a tutor provides a maximum learning
experience for the student.

Figure 3: Annotation window from the student’s point of view.

When developing the Java testing module for xLx,
a major aspect has been security. Since unknown
code provided by students is compiled and
executed on the same server on which xLx itself is
running on, there must be a guarantee that
malicious code cannot affect the system. Since
Java applications are not executed directly on the

physical machine but inside a virtual machine
(VM), there are some integrated security
mechanisms in the Java VM that can be used to
secure the system. The Java interpreter can be
configured using so-called Java policies. Policies
are simple text files that specify detailed rules
describing which classes of learners’ solutions are

www.ejel.org ©Academic Conferences Ltd 92

Joachim Schwieren, Gottfried Vossen and Peter Westerkamp

allowed to execute which functionalities on the
system. This also includes a precise way to
control IO access to the hard disk and to the
network. Using a very restricted policy for the
programming exercise module of xLx, we can
ensure that even malicious code cannot harm the
system if it gets executed.

4. Summary and conclusions
xLx has been used successfully for several years
in different courses and in different universities
(VAWi 2002). The spectrum of these courses
covered databases, XML and computer networks.
Each student had to solve an average of 40
exercises throughout a term. One of the main
intentions of the xLx platform is the natural
integration of third-party modules to allow hands
on experience with real-world enterprise
application systems. The newly integrated Java
exercise type has so far been tested in small
courses only. A “real world” course scenario with
a many participants will be introduced soon, in
order to verify its design goals such as reduction
of work and time effort on correcting and grading
programming exercises.

It will be interesting to observe server
performance since it has to handle a load of
hundreds of users executing Java applications on
it in huge courses. The Java compiler has not
been designed to be used in a multi-user
environment, and it will be interesting to see how
performance will scale. If problems concerning
system performance and stability should arise, a

modification will have to be applied to the existing
architecture: by implementing a ticket-based
scheduler-driven compilation and testing process
it will be possible to better balance the high load
that is created by hundreds of submissions at the
same time. Though students won’t get an instant
feedback any more after submitting their
exercises since they will have to wait for the
compilation/testing job to be completed, this
should not be such a big problem because the
time between submitting a solution and getting a
feedback from the system should only take same
seconds.

For courses done in the last couple of years we
have recognized a high acceptance of the system
and particularly of the test section. There has
been a frequent usage of the attached third-party
systems; for example, more than 100 students of
a database course generated a total of 50.000
SQL statements against the underlying DB2
database. Students have also accessed the xLx
platform from all over the world and all around the
clock. Some of them, who stayed abroad, for
example in Finland and Australia, have used the
system to work on the exercises to manage their
examination after their return.

xLx can be found on the Web at https://dbms.uni-
muenster.de/xLx. Its front end is entirely designed
in English so that even foreign learners can use it.
A demo access can also be obtained over the
Web.

References
Downes, S. (2001) “Learning Objects: Resources for Distances Education Worldwide.” International Review of Research

in Open and Distance Learning 2 (1).
Hatcher, E. (2002) “Java Development with ANT”. Hanning, Book News, Inc., Portland, OR
Hüsemann, B., J. Lechtenbörger, G. Vossen, P. Westerkamp (2002) “XLX - A Platform for Graduate-Level Exercises.” In

Proc. International Conference on Computers in Education (ICCE) 2002, Auckland, New Zealand, pp. 1262-1266.
Joy, M., Luck, M. (1995) “On-line submission and testing of programming assignments.” In J. Hart, editor, Innovations in

Computing Teaching. SEDA, London, (1995).
Massol, V. (2003) “JUnit in Action“. Hanning, Book News, Inc., Portland, OR
Reek, K. A. (1989) “The TRY system -or- how to avoid testing student programs.” ACM SIGCSE Bulletin, vol. 21, no. 1,

pp. 112–116, 1989.
Roberts, G.H.B. and Verbyla, J.L.M. (2003) “An Online Programming Assessment Tool.” In Proc. Fifth Australasian

Computing Education Conference (ACE2003), Adelaide, Australia. Conferences in Research and Practice in
Information Technology, 20. Greening, T. and Lister, R., Eds., ACS. 69-75.

Truong, N., Bancroft, P. and Roe, P. (2003) “A Web Based Environment for Learning to Program.” In Proc. Twenty-Sixth
Australasian Computer Science Conference (ACSC2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, 16. Oudshoorn, M. J., Ed. ACS. 255-264.

VAWi (2002) “Virtuelle Aus- und Weiterbildung Wirtschaftsinformatik“, [online], Universität Essen, Prof. Dr. H. H.
Adelsberger, http://www.vawi.de/, 2002

Vossen, G., P. Westerkamp (2004) “XLX and L2P — Platforms for Blended Learning”. EMISA Forum 2/2004, 18–20.
Zeller, A. (2000) “Making students read and review code.” In Proc. Fifth ACM SIGCSE/SIGCUE Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE 2000), pages 89–92, Helsinki, Finland, July
2000.

Weikum, G., G. Vossen (2002) “Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery;” Morgan-Kaufmann Publishers, San Francisco, CA

www.ejel.org ISSN 1479-4403 93

Electronic Journal of e-Learning Volume 4 Issue 1 2006 (87-94)

www.ejel.org ©Academic Conferences Ltd 94

