
VOL. 21 NO. 1, MARCH, 2016

Contents | Author index | Subject index | Search | Home

Academic software downloads from Google Code: useful usage
indicators?

Mike Thelwall and Kayvan Kousha

Abstract

Introduction. Computer scientists and other researchers often make
their programs freely available online. If this software makes a valuable
contribution inside or outside of academia then its creators may want to
demonstrate this with a suitable indicator, such as download counts.
Methods. Download counts, citation counts, labels and licenses were
extracted for programs that were both hosted in the Google Code
software repository and cited in Scopus.
Analysis. Download counts were correlated with Web of Science
citations, the distributions of both were compared and common software
labels and licencing arrangements were identified.
Results. Although downloads correlate positively and significantly with
Scopus citations, the correlation is weak (0.3) because some software
has a large natural audience outside of academia. There is disagreement
on the best licence to use for shared software, with no licence chosen by
more than about a fifth of the projects. The most common language label
was Java (20%) and, excluding generic computing terms, the most
common topic labels were Google (5%), security (3%) and bioinformatics
(3%).
Conclusions. Download counts can give evidence of wider non-
academic uses of software. However, software that is apparently not
primarily designed for research but that is nevertheless cited by
academics can also attract many downloads. Overall, download counts
can be used as an indicator of academic value, but only if contextualised
with the purpose of the program.

Introduction

Academic research is often published in journal articles, monographs, book chapters, and
conference papers but the ultimate goal is to produce new and useful knowledge and this can
appear in other forms. This diversity is recognised in the UK Research Excellence Framework
2014, for example, with journal articles, books, book chapters, reports, physical artefacts,
exhibitions, performances, patents, compositions, designs, research reports, software, Website
content, digital or visual media, research data sets and databases all explicitly listed as valid
types of academic output (REF, 2013).

http://www.informationr.net/ir/21-1/infres211.html
http://www.informationr.net/ir/iraindex.html
http://www.informationr.net/ir/irsindex.html
http://www.informationr.net/ir/search.html
http://www.informationr.net/ir/index.html

Journal articles are sometimes assessed with the aid of citation analysis (e.g., in some subject
areas of the UK 's Research Evaluation Framework for University research) and citation counts
and publisher prestige (Torres-Salinas, Robinson-Garcia, Jimenez-Contreras, and Lopez-
Corza, 2012) can be used to help assess monographs (Kousha, Thelwall, and Rezaie, 2011).
Although the altmetrics movement (Priem, Groth, and Taraborelli, 2012; Priem, Piwowar, and
Hemminger, 2012) is currently developing new types of impact indicators from the Web, its
main focus is on journal articles and, to a lesser extent, books (e.g., Thelwall and Kousha,
2015ab, Kousha and Thelwall, 2015). The remaining output types are normally assessed by
peer judgements in national research assessment exercises, and for tenure, promotion and
funding applications.

This can be problematic for those producing outputs lacking quantitative indicators of value or
impact and can make the evaluation of such outputs more time-consuming. As a result, it is
important to assess whether any data could be gathered to inform decisions about the impact
or quality of a wider variety of research outputs.

One type of non-standard academic output is the online video. Some research projects with an
educational focus have produced YouTube videos and can make a case for their success by
reporting download counts (Haran and Poliakoff, 2011). This statistic is problematic for
videos, however, since the reach of a video may not be an indicator of its academic value
(Kousha, Thelwall, and Abdoli, 2012).

Scientific datasets also have a significant role in research communication in some fields, such
as medical genetics (Anagnostou, Capocasa, Milia, and Bisol, 2013; Borgman, 2012). Moreover,
there has been a call for a citation-like data usage index to help assess the impact of scientific
datasets (Ingwersen and Chavan, 2011) and Thomson Reuters (2015) has recently created the
data citation index for the Web of Science that includes information about nearly two million
data studies and datasets. A recent study found that only 15% of the datasets had been cited,
however (Peters, Kraker, Lex, Gumpenberger, and Gorraiz, 2015), although it is not clear
whether this is because few of the indexed datasets are useful in research (Wallis, Rolando,
and Borgman, 2013) or because they are not being formally cited, when used. Counts of
citations to the data did not have a significant positive correlation with a range of altmetrics.
More fundamentally overall, impact is difficult to assess in some subject areas (Belfiore and
Upchurch, 2013; Belfiore and Bennett, 2010; Brown, 2002), especially if impact is defined as
generally as fundamental changes in “organisations, communities or systems” (AHRC, 2015).

Software sharing is efficient from the perspective of saving the time needed to re-develop
existing applications, even when they are comprehensively described in published research.
Software reuse may also help with fault-free software creation (Frakes and Kang, 2005;
Mohagheghi and Conradi, 2007). The reuse of programming code, the number of downloads
and user ratings may reflect the success of software projects inside or outside of academia
(Rossi, Russo, and Succi, 2010; Crowston, Annabi, Howison, and Masango, 2004; Crowston,
Annabi, and Howison, 2003).

Free and open source software development goes further by combining code sharing and code
creating by hosting code in an environment where others can modify or add to it (Feller and
Fitzgerald, 2002; Lakhani and Von Hippel, 2003; West, 2003), and some research
communities use code sharing sites (Coleman and Johnson, 2014). This approach is also used
in industry to some extent, although there are complex organisational consequences of its
adoption (Hauge, Ayala, and Conradi, 2010). Three high profile successful free and open
source software development examples are the Apache Web server, the Mozilla Web browser
(Mockus, Fielding, and Herbsleb, 2002) and Linux (Hertel, Niedner, and Herrmann, 2003).

One popular code sharing site is Google Code, which began in 2006.

Developers can create a project, upload code and allow others to maintain or expand the code.
Version control is particularly important when multiple coders are working together (Dabbish,
Stuart, Tsay, and Herbsleb, 2012; Rodriguez-Bustos and Aponte, 2012), but Google Code
provides only basic support for this. Later sites, such as GitHub, provide more sophisticated
inbuilt version management. Because Google Code hosts open source projects, it also makes it
easy for those wishing to reuse software from different origins within their code, promoting
efficiency (Hummel, Janjic, and Atkinson, 2008).

Given the importance of software to computer science and some other research areas,
indicators are needed to support evaluations of their academic or wider contributions. As a
valid academic output (REF, 2013; Abramo and D'Angelo, 2015) impact indicators for software
may help its creators to make a case for its value in their CVs, funding applications and for
research assessment exercises. Although academic software can be associated with articles that
describe it (e.g., Thelwall, Buckley, Paltoglou, Cai, and Kappas, 2010) and could be cited,
software is often cited directly.

In many cases, software is also used in research and mentioned in publications without being
cited, but the development of automatic methods to identify these cases may help to index
such uses in the future (Pan, Yan, Wang, and Hua, 2015). The most logical indicator would be
the total number of users, but this information is rarely available. If software is hosted in an
online public repository, however, the total number of downloads may be used as a proxy for
the number of users. Individuals may download a program multiple times or download it once
and then share it with many others, but these practices seem unlikely to substantially bias
download counts when compared between programs.

Research questions

The objective of this paper is to assess whether download counts can be used as indicators for
the academic contributions of software. With any new proposed academic–related indicator, a
logical first step is to assess whether it correlates with another indicator of better known value
(Sud and Thelwall, 2014). In this case citation counts are the only available indicator for such a
comparison.

The most suitable repository to analyse downloads for is Google Code. Although it closed in
January 2016 (Google, 2015), it is the second most popular software repository in terms of
academic citations from Scopus, with 9,705 citations in Scopus (i.e., results for a Scopus
advanced search for research excellence framework ("code.google.com")). Sourceforge.net has
38,769 citations but does not report download information. The newer GitHub has only 4,329
citations and does not report download information and the other major repositories are much
smaller: codeplex.com has 902 citations, Bitbucket has 314 citations, and Launchpad.net has
175 citations.

Nothing is currently known about the types of software that are most frequently used by
academics. Whilst some is likely to be highly specialist, with few users, other programs may
have more generic functionality and may be more widely known as a result. Information about
the typical types of software used can give context to download counts so that individual
programs can be interpreted relative to similar types.

Open source software often has a licence attached to it and so it is possible to assess the types
of licencing used. It is helpful to know which common types of licence are applied in order to
better understand how the software can be used. The following research questions drive the

https://sourceforge.net/
https://github.com/
http://codeplex.com/
https://bitbucket.org/
https://launchpad.net/

study.

Considering only Google Code software cited by academic articles, do download counts
have a positive correlation with citation counts?
For Google Code software cited by academic articles, is it reasonable to use download
counts as an indicator of academic (rather than commercial or other) value?
Which types of Google Code software are most cited by academics?
How are Google Code projects cited by academics licenced?

Methods

The first stage was to identify all Google Code program that had been cited in Scopus. The
common part of the Google Code project URLs (“*code.google.com/p/*”) was entered in the
“References” field (REF) of the advanced Scopus search option to identify articles citing
Google Code projects. The inclusion of the /p/ part of the path excludes Google's
documentation and corporate projects as well as citations to the repository itself. The reference
lists of the 7,005 matching articles (68% were conference papers and 30% were articles) were
then downloaded for all articles citing Google Code URLs (e.g.,
https://code.google.com/p/smali/). A total of 7,659 Google Code URL citations were extracted
from this Scopus data using an application added to the free Webometric Analyst software
(http://lexiurl.wlv.ac.uk/, see Citation menu), and manually cleaned. The number of Scopus
citations to each Google Code project was then calculated by consolidating the results,
producing a list of 5,370 unique repositories. For instance, the URL
'code.google.com/p/gpuocelot' had been cited 21 times.

The Google Code homepages and downloads pages of the identified projects were crawled
using SocSciBot (http://socscibot.wlv.ac.uk/) and then a routine was created and added to the
free software Webometric Analyst to extract information from these pages. This information
included the date of the first and last code upload, the total number of downloads, and the size
of the largest download. Missing pages were ignored, as were the 22 pages reporting zero
downloads, although the latter did not affect the results. Only a minority of pages were still in
existence, leaving 1732 code projects for analysis. Spearman correlations were used to compare
citations and downloads since both are highly skewed.

To identify the types of software projects cited, the labels (if any) given by the Google Code
project owners were extracted from the home pages and compared against each other to
identify the most common topics. Although these labels may be created for different purposes
by the various code owners, this seems like a reasonable method to get a broad overview of the
software types.

Results

There is a weak but statistically significant correlation between Scopus citations and total
downloads for Google Code programs (Table 1), but this may be partly due to more recently
deposited software having more time both to be cited and downloaded. Although older
software has longer to be cited, the correlation between the first upload date and Scopus
citation counts is not statistically significant, suggesting that later software is inherently more
likely to be cited than earlier software, offsetting the longer time period in which older
software can be cited. To factor out time differences, the key correlations were recalculated for
all software first uploaded in each year from 2008 to 2012 (Table 2). The results confirm a low
but statistically significant underlying Spearman correlation of about 0.3 between downloads
and citations. The size of the download is almost irrelevant for citations. It is also clear that the
longer after the initial upload that software has been last updated, the more citations it

attracts. Presumably, programmers are more motivated to maintain software if it is often used
or cited. Conversely, better maintained software may also attract more users.

Table 1. Spearman correlations between indicators for 1702 programs cited at least once in Scopus and
present in Google Code in March 2015. Days active records the number of days between the initial upload

and the most recent upload.

Spearman's
rho

Scopus
citations DownloadsFirst upload

date
Last upload

date
Days

active
Download
max. size

Scopus
citations 1 0.270** 0.015 0.146** 0.146** 0.079**

Downloads 1 -0.272** 0.088** 0.425** 0.112**
First upload
date 1 0.609** -

0.290** 0.104**

Last upload
date 1 0.476** 0.272**

Days active 1 0.273**
Download
max. size 1

**Significant with p<0.01

Table 2. Spearman correlations between indicators for 1702 programs cited at least
once in Scopus and present in Google Code in March 2015, broken down by year.
Days active records the number of days between the initial upload and the most

recent upload.

Year first
uploaded

Scopus citations
vs. downloads

Scopus citations
vs. days active

Downloads vs.
days active

2008 0.195** 0.131* 0.330**
2009 0.319** 0.269** 0.406**
2010 0.299** 0.178** 0.430**
2011 0.273** 0.220** 0.369**
2012 0.358** 0.164* 0.265**
*Significant with p<0.05; **Significant with p<0.01

A scatterplot of citations against downloads suggests a weak relationship between downloads
and citations although even the most downloaded software had received only one citation
(figure 1). Nevertheless, the more highly cited programs tended to have attracted at least a
moderate amount of citations and a positive relationship between downloads and citations is
evident for software with at least 10 citations (i.e., more highly cited software is more
downloaded but not vice versa).

 Figure 1: Scopus
citations against total downloads for 1723 programs, cited at least once in Scopus and
present in Google Code in March 2015 (logarithmic axis scales; articles with zero downloads
are not shown).

To identify why highly downloaded software was sometimes rarely cited and why highly cited

articles were relatively infrequently downloaded, individual outliers were examined. For the
former, the ten most downloaded articles with only one citation were examined and for the
latter, the ten articles at the top left hand of the above graph were examined.

The results (Table 3) suggest that rarely cited but heavily downloaded software tend to be
general purpose utilities created by companies or independent software developers that could

also be used by non-academic software developers. In contrast, the relatively
highly cited but rarely downloaded programs tended to be specialist scientific
code, developed by researchers and primarily or exclusively relevant to other
researchers.

The program with the most substantial academic contribution may be flyspeck because it is
part of an important formal mathematical proof (of the Kepler Conjecture). For this program,
the moderate number of downloads clearly does not reflect its academic value.

Finally, to give some context to the results, Figure 2 shows the distribution of citation counts
to, and downloads of, the articles analysed above. The distribution of citations is highly
skewed: whilst most (57%) programs attract just one citation, a few programs attract
hundreds. The straight line for the citations indicates a relatively pure power law but the bent
downloads shape suggests a different distribution, or a mix of distributions with a power law
tail (Clauset, Shalizi, and Newman, 2009).

A hooked power law or lognormal distribution is more common for counts of citations to
(Thelwall and Wilson, 2014) or readers of (Thelwall and Wilson, in press) homogeneous sets of
articles, and so the pure power law is unexpected and suggests a particularly strong tendency
for researchers to imitate others' use of software. The different shapes between the two lines
would be consistent with multiple dynamics driving the download counts, such as an academic
dynamic and one from a wider user base for more general software.

 Figure 2: Downloads
and Scopus citation counts for programs cited at least once in Scopus and present in Google
Code in March 2015 (logarithmic axis scales).

Code labels

A total of 2208 Scopus-cited Google Code projects contained labels, including some closed
projects. The number of projects and the total number of citations was counted for each label.
Many of these labels described the programming languages used, with Java occurring in 20%
of projects with labels and accounting for 20% of citations to projects with labels, followed by
Python (13%,12%), C (5%,5%), JavaScript (5%,6%), C++ (4%,9%), CUDA (2%,4%), PHP
(2%,1%), and C# (1%,1%). Other labels described operating systems, including Android
(8%,12%), Linux (3%,2%), and Windows (2%,1%). There were also some generic research-
related terms (academic [9%,6%], research [2%,2%], analysis [2%,2%]) and some generic
computing-related terms (library [4%,5%], framework [2%,2%], algorithm [2%,1%], testing

http://www.informationr.net/ir/21-1/p709tab3.png

[2%,2%]).

The most common of the remaining terms (Table 4) is Google, which seemed to be used for
software created by Google rather than, for example, to reference the Google Android
operating system (which seemed to be only referenced as Android).

Google Code hosts many widely downloaded and cited toolkits for technologies that Google
has developed for the Web (e.g., protobuf for a data interchange format; tesseract-ocr for
Optical Character Recognition (OCR), unladen-swallow for faster Python programs).
Presumably Google engineers that share software would choose Google Code in preference to
non-Google software sharing sites, so the presence of Google-related software is unsurprising.
Moreover, although is not an academic institution, Google conducts a large amount of
academic research in computing (e.g., a Scopus search for publications authored or co-
authored by Google [Affiliation 'Google'] returned 3999 matches in October 2015) and so the
citing of Google code in academic research is also unsurprising.

Similarly, although the core search results ranking algorithms of Google are secret, its policy of
allowing engineers to spend 20% of their time on side projects (Gersch, 2013) seems likely to
have generated many shared programs and the Google Code results are evidence that some of
these have value in academic research.

Many of the remaining terms are related to the Web or computationally-intensive processes,
such as simulation and graphics processing, and for functionality that can form a component
within a larger system. From the non-Web technologies in particular it is clear that there are
some niche areas within computing, and perhaps also bioinformatics and physics, for which
Google Code is a useful repository.

The most cited software seems to be code that is used outside of the specialist area that
created it, however. The most cited, tesseract-ocr (157 Scopus citations) is described as, 'An
OCR Engine that was developed at HP Labs between 1985 and 1995... and now at Google'
(https://code.google.com/p/tesseract-ocr/), and is cited in research that either applies OCR in
new contexts, such as reading road signs, or as a tool within a larger system, such as a helper
robot for elderly and disabled people, or Google Books (Vincent, 2007). The fourth most cited
software, zxing, is a barcode scanning code library, which is also used as a component within
larger systems.

Internet security is another common theme. Secure technologies use complex mathematical
algorithms that are time consuming to create and shared security libraries can be an efficient
way to allow new software to incorporate secure communications. The most cited security
related Google Code project was Google’s browser security handbook (45 Scopus citations),
which “is meant to provide Web application developers, browser engineers, and information
security researchers with a one-stop reference to key security properties of contemporary Web
browsers” (https://code.google.com/p/browsersec/). This is primarily a reference work
although it also incorporates test software. Such information is clearly of value to people
assessing the security of Web technologies.

Label (first term) and comment Programs Citations
Google (mainly for Google's Web technologies) 105 (4.8%) 1030 (15.4%)
Security 67 (3.0%) 364 (5.4%)
Bioinformatics 57 (2.6%) 167 (2.5%)
API (Applications Programming Interface) 51 (2.3%) 197 (2.9%)
XML (eXtensible Markup Language) 48 (2.2%) 153 (2.3%)
MATLAB (matrix laboratory) for numerical computing 44 (2.0%) 235 (3.5%)
Web 42 (1.9%) 116 (1.7%)

Table 4. The 25 most common labels in cited Google Code projects, excluding programming
languages, operating systems and generic computing and research terms.

Simulation 41 (1.9%) 154 (2.3%)
MachineLearning 39 (1.8%) 144 (2.2%)
Simulator 38 (1.7%) 109 (1.6%)
Ajax (Asynchronous JavaScript and XML) 38 (1.7%) 77 (1.2%)
Performance 35 (1.6%) 132 (2.0%)
GPU (Graphics Processing Unit) 34 (1.5%) 281 (4.2%)
SemanticWeb 33 (1.5%) 109 (1.6%)
GWT (Google Web Toolkit) 33 (1.5%) 45 (0.7%)
RDF (Resource Description Framework) for Web metadata 32 (1.4%) 108 (1.6%)
Networking 32 (1.4%) 65 (1.0%)
Database 32 (1.4%) 55 (0.8%)
Ontology 31 (1.4%) 163 (2.4%)
OWL (Web Ontology Language) 31 (1.4%) 117 (1.7%)
Arduino – commercial open-source electronics platform 30 (1.4%) 52 (0.8%)
OpenGL (Open Graphics Library) 30 (1.4%) 51 (0.8%)
Physics 29 (1.3%) 89 (1.3%)
Visualization 28 (1.3%) 138 (2.1%)
Modeling 28 (1.3%) 78 (1.2%)

Licence types

No licence type is dominant, with the most popular being the Apache license 2.0 (Table 5).
Although the projects in Google Code are open source, this shows that their use has some
restrictions and that the software developers have different needs for their software. This may
reflect ideological differences between the code owners or differing types of sharing or
commercial exploitation needs.

The Apache licence 2.0 was created in 2004 by the Apache software foundation, a charitable
foundation in the USA for creating shared programs, as a convenient way for programmers to
licence their code by citing the licence URL rather than by composing their own text or copying
the licence test. It grants “a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or
Object form” (http://www.apache.org/licenses/LICENSE-2.0), which essentially allows
anyone to use the software in any way, although they must acknowledge its origins and
include a disclaimer. The new Berkeley software distribution license has similar affordances.

The second most popular type of licence is arguably more ideological because it blocks uses of
the software that are not shared. GNU general public license v3, for example, continues a long
tradition of supporting computer scientists that want to share their work but retain some
control over how it is reused (Rychlicki, 2008; Sauer, 2007). Copyleft requires any derivative
programs to be distributed free and hence blocks software that is sold from incorporating the
code. This is in general public license v3 but not general public license v2, although general
public license v3 allows commercial developments as long as the software itself is not sold
(Rychlicki, 2008).

Licence Projects URL

Apache License 2.0 369
(21.4%)

http://www.apache.org/licenses/LICENSE-
2.0

Artistic
License/GPL 16 (0.9%) https://gnu.org/licenses/gpl.html

Eclipse Public
License 1.0 22 (1.3%) https://www.eclipse.org/legal/epl-

v10.html

Table 5. The licences declared for the Google Code projects.

GNU GPL v2 250
(14.5%) http://www.gnu.org/licenses/gpl-2.0.html

GNU GPL v3 348
(20.2%) http://www.gnu.org/copyleft/gpl.html

GNU Lesser GPL 197
(11.4%) https://www.gnu.org/licenses/lgpl.html

MIT License 174
(10.1%) http://opensource.org/licenses/MIT

Mozilla Public
License 1.1 18 (1%) https://www.mozilla.org/MPL/1.1/

Multiple Licenses 1 (0.1%)

New BSD License 284
(16.5%)

http://opensource.org/licenses/BSD-3-
Clause

Other Open Source 42 (2.4%)
Public domain 2 (0.1%)

Total 1723
(100%)

Discussion and limitations

An important limitation of this study is that it only covers one software code repository. It
seems unlikely that the results would be fundamentally different for others, such as
SourceForge, GitHub and BitBucket, if they included download statistics. Nevertheless, there
are likely to be differences due to the average age of the software in each one, the different
facilities available and the presence or absence of major contributors, such as Google. A study
of software located on university Websites might generate much stronger correlations between
citations and downloads, if available, due to fewer general purpose programs. For example, the
two programs used in the current paper are hosted on academic Websites and can be found by
cited reference searches [REF("lexiurl.wlv.ac.uk") gets seven citations and
REF("socscibot.wlv.ac.uk") gets six citations].

Another limitation is that software may have been recently transferred from Google Code to
another repository, as have all of Google's own projects (Google, 2015), and so its Google Code
downloads would underestimate the total usage. Google Code's Scopus citations peaked in
2013 (1,746, compared to 1,586 in 2014), confirming a shift away from it. Perhaps most
significantly, however, the study ignored all software in Google Code that had not been cited at
least once in Scopus. Including this software with zero citation counts in the data set could
alter the correlations, although it is not clear whether they would have increased or decreased.

Presumably the vast majority of Google Code software does not target an academic audience
and so selecting just the programs with academic citations is a convenient way of identifying
an academic-related subset. Nevertheless, there is an unknown number of uncited programs
that target an academic audience in Google Code. Given the power law relationship found for
the cited software, it would be reasonable to expect this set to be very large, and perhaps larger
than all the cited software. It seems probable that software targeted by academics but uncited
would be less likely to be downloaded frequently than cited software and so the overall
correlation might increase, but there is no evidence to test this hypothesis.

A limitation of the investigation of labels used to describe the cited software is that these vary
in terms of generality and so the most popular labels tend to be the most general terms used as
well as terms describing the software language or operating system used. This may have
obscured some themes in the software, such as a range of similar types of specialist use that
were described with different terms.

An important practical limitation is that download counts are not available for some open
source software repositories, such as SourceForge.net and GitHub, which may soon be the
most popular. GitHub reports publically the number of users that register to watch a project or
that award it with a star and these could be used for alternative indicators.

Another practical limitation is that many people contribute software to collaborative projects,
such as Linux, and their contribution cannot be directly cited. In addition, useful general
purpose software code may not be cited even when it makes a substantial contribution to a
study. Software may also be cited indirectly. For example, the collaboratively authored open
source statistical package R contains many packages created by individual named authors and
these may be cited via the package documentation or any describing article (Calenge, 2006)
rather than the code URL.

Conclusions

Although Scopus citations to software correlate significantly and positively with total Google
Code downloads, the correlations are low, at about 0.3. Thus, there is a weak tendency for
more used software to be more cited. The low correlation seems to be due to the data set
mixing academic software for a niche academic audience and general purpose software that is
more widely useful to software developers. Thus, whilst download counts can be presented by
academic software developers as evidence of the value of their work, download counts should
not be directly compared between computer programs if one targets a more specialist audience
(e.g., academics in a specific field) than another (e.g., all Website developers). Instead, the
download count should be presented to support a self-contained claim for the utility of the
software. Of course, download counts are easy to manipulate by the author repeatedly
downloading their own code and there does not seem to be a way to detect this and so
evaluators should use their judgement to decide whether a reported download count is
reasonable or not. Authors may also wish to use the download counts to self-evaluate the
uptake of their software (see also: Wouters and Costas, 2012). This could be particularly
valuable for those producing successful software since they may be encouraged to upgrade it
or to pursue related work.

The strong power law in the distribution of citations to software suggests a significant amount
of imitation between academics, with researchers being more prepared to use a program if
others are already using it. This may be due to the publicity or endorsement given by new
users to software by citing it or there may be a feedback loop in which programmers continue
to maintain and improve software when it is used.

The presence of Google-engineered code in the results is also evidence that the software
company has generated a substantial amount of freely-shared software that is valuable for
academic research. The analysis of the labels also points to the usefulness of shared code as a
component in larger systems and especially as an efficient way to incorporate complex code,
such as that dealing with graphics, image processing, or security.

The shared software is primarily licenced either to allow essentially any uses to be made of it,
or to restrict uses that are not freely shared (copyleft). This seems to be an ideological
distinction that impacts primarily on commercial uses, although both types of licence are
common. Overall, however, the shared software is licenced in a way that is altruistic in the
sense of not bringing direct commercial benefits to the originator.

In terms of future work, finding out more about the types of software that are used by
researchers would enable guidelines to be built to encourage the sharing of useful code. It
would also be interesting to systematically identify the range of ways in which software is

shared and in which shared software is acknowledged in others' work so that a more
comprehensive study could assess the overall contribution of software sharing to academic
research. Finally, it is important to assess the perspective of the users in order to interpret
both download counts and citations to software in a broader context.

About the authors

Mike Thelwall is the head of the Statistical Cybermetrics Research Group, University of
Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, U.K. He has developed a wide
range of software for gathering and analysing Web data, including hyperlink analysis,
sentiment analysis and content analysis for Twitter, YouTube, blogs and the Web in general.
He can be reached at m dot thelwall at wlv.ac.uk
Kayvan Kousha is a researcher in the Statistical Cybermetrics Research Group at the
University of Wolverhampton, UK. His research includes Web citation analysis and online
scholarly impact assessment using Webometrics and altmetrics methods. He can be contacted
at k.kousha1 [....at....] wlv. ac. uk

References

Abramo, G. & D'Angelo, C. A. (2015). The VQR, Italy's second national research assessment:
methodological failures and ranking distortions. Journal of the Association for Information Science
and Technology, 66(11), 2202-2214.

Arts and Humanities Research Council. (2015). Understanding your project: a guide to self-evaluation.
London: Arts and Humanities Research Council. Retrieved from http://www.ahrc.ac.uk/What-We-
Do/Build-the-evidence-base/Pages/Self-evaluation.aspx. (Archived by WebCite® at
http://www.Webcitation.org/6X9D5rdhC)

Anagnostou, P., Capocasa, M., Milia, N. & Bisol, G. D. (2013). Research data sharing: lessons from
forensic genetics. Forensic Science International: Genetics, 7(6), e117-e119.

Belfiore, E. & Upchurch, A. (Eds.). (2013). Humanities in the twenty-first century: beyond utility and
markets. Basingstoke, UK: Palgrave Macmillan.

Belfiore, E. & Bennett, O. (2010). Beyond the “Toolkit Approach”: arts impact evaluation research and
the realities of cultural policy making. Journal for Cultural Research, 14(2), 121-142.

Borgman, C. L. (2012). The conundrum of sharing research data. Journal of the American Society for
Information Science and Technology, 63(6), 1059-1078.

Brown, C. D. (2002). Straddling the humanities and social sciences: the research process of music
scholars. Library & Information Science Research, 24(1), 73-94.

Calenge, C. (2006). The package “adehabitat” for the R software: a tool for the analysis of space and
habitat use by animals. Ecological modelling, 197(3), 516-519.

Clauset, A., Shalizi, C. R. & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM
review, 51(4), 661-703.

Coleman, R. & Johnson, M. A. (2014). A study of Scala repositories on GitHub. International Journal of
Advanced Computer Science and Applications, 5(7), 141-148.

Crowston, K., Annabi, H., Howison, J. (2003). Defining open source software project success. In
Proceedings of the 24th International Conference on Information Systems, Seattle, Washington,
USA. (pp. 327-340). Atlanta: GA: Association for Information Systems. Retrieved from
https://surface.syr.edu/cgi/viewcontent.cgi?article=1080&context=istpub (Archived by WebCite® at
http://www.webcitation.org/6fUr99qtg)

Crowston, K., Annabi, H., Howison, J. & Masango, C. (2004). Towards a portfolio of FLOSS project
success measures. Paper presented at the Workshop on Open Source So ware Engineering, 26th
International Conference on So ware Engineering, Edinburgh, Scotland, UK, 25 May. Retrieved from
http://surface.syr.edu/cgi/viewcontent.cgi?article=1077&context=istpub. (Archived by WebCite® at
http://www.webcitation.org/6fUqeoLOy)

Frakes, W.B. & Kyo Kang, (2005). Software reuse research: status and future. IEEE Transactions on
Software Engineering, 31(7), 529-536.

mailto:m.thelwall@wlv.ac.uk
mailto:k.kousha1@wlv.ac.uk
http://www.webcitation.org/6X9D5rdhC
http://www.webcitation.org/6fUr99qtg
http://www.webcitation.org/6fUqeoLOy
http://www.webcitation.org/6fUqeoLOy

Dabbish, L., Stuart, C., Tsay, J. & Herbsleb, J. (2012). Social coding in GitHub: transparency and
collaboration in an open software repository. Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work, Seattle, Washington, USA (pp. 1277-1286). New York, NY: ACM.

Feller, J. & Fitzgerald, B. (2002). Understanding open source software development. London: Addison-
Wesley.

Gersch, K. (2013). Google's Best New Innovation: Rules Around '20% Time'. Forbes Magazine. Retreived
from http://www.forbes.com/sites/johnkotter/2013/08/21/googles-best-new-innovation-rules-
around-20-time/ (Archived by WebCite® at http://www.Webcitation.org/6fImEhjT9)

Google (March 12, 2015). Bidding farewell to Google Code. [Web log entry]. Retrieved from
http://google-opensource.blogspot.co.uk/2015/03/farewell-to-google-code.html. (Archived by
WebCite® at http://www.Webcitation.org/6X9DEkmSI)

Haran, B. & Poliakoff, M. (2011). The periodic table of videos. Science, 332(6033), 1046-1047.
Hauge, Ø., Ayala, C. & Conradi, R. (2010). Adoption of open source software in software-intensive

organizations–a systematic literature review. Information and Software Technology, 52(11), 1133-
1154.

Hertel, G., Niedner, S. & Herrmann, S. (2003). Motivation of software developers in open source
projects: an Internet-based survey of contributors to the Linux kernel. Research policy, 32(7), 1159-
1177.

Hummel, O., Janjic, W. & Atkinson, C. (2008). Code conjurer: pulling reusable software out of thin air.
IEEE Software, 25(5), 45-52.

Ingwersen, P. & Chavan, V. (2011). Indicators for the data usage index (DUI): An incentive for publishing
primary biodiversity data through global information infrastructure. BMC Bioinformatics, 12, (Suppl
15): S3.

Kousha, K., Thelwall, M. & Abdoli, M. (2012). The role of online videos in research communication: a
content analysis of YouTube videos cited in academic publications. Journal of the American Society
for Information Science and Technology, 63(9), 1710–1727.

Kousha, K., Thelwall, M. & Rezaie, S. (2011). Assessing the citation impact of books: the role of Google
Books, Google Scholar and Scopus. Journal of the American Society for Information Science and
Technology, 62(11), 2147–2164.

Kousha, K. & Thelwall, M. (2015c). Web indicators for research evaluation, part 3: books and non-
standard outputs. El Profesional de la Información, 24(6).
http://www.elprofesionaldelainformacion.com/contenidos/2015/nov/04.pdf (Archived by WebCite®
at http://www.Webcitation.org/6fImSy9fv)

Lakhani, K. R. & Von Hippel, E. (2003). How open source software works: “free” user-to-user assistance.
Research Policy, 32(6), 923-943.

Mockus, A., Fielding, R. T. & Herbsleb, J. D. (2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology,
11(3), 309-346.

Mohagheghi, P. & Conradi, R. (2007). Quality, productivity and economic benefits of software reuse: a
review of industrial studies. Empirical Software Engineering, 12(5), 471-516.

Pan, X., Yan, E., Wang, Q. & Hua, W. (2015). Assessing the impact of software on science: a bootstrapped
learning of software entities in full-text papers. Journal of Informetrics, 9(4), 860-871.

Peters, I., Kraker, P., Lex, E., Gumpenberger, C. & Gorraiz, J. (2015). Research data explored: citations
versus altmetrics. Retrieved from http://arxiv.org/pdf/1501.03342v2.pdf

Priem, J., Groth, P. & Taraborelli, D. (2012). The altmetrics collection. PLOS ONE, 7(11), e48753.
Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048753 (Archived
by WebCitereg; at http://www.webcitation.org/6fUlEpPlw)

Priem, J., Piwowar, H. A. & Hemminger, B. M. (2012). Altmetrics in the wild: using social media to
explore scholarly impact. Retrieved from http://arxiv.org/html/1203.4745v1?

Research Excellence Framework. (2013). Output information requirements. Retrieved from
http://www.ref.ac.uk/about/guidance/submittingresearchoutputs/. (Archived by WebCite® at
http://www.Webcitation.org/6X9DIhewb)

Rodriguez-Bustos, C. & Aponte, J. (2012). How distributed version control systems impact open source
software projects. In Proceedings of the 9th IEEE Working Conference on Mining Software

http://www.webcitation.org/6fImEhjT9
http://www.webcitation.org/6X9DEkmSI
http://www.webcitation.org/6fImSy9fv
http://www.webcitation.org/6fImSy9fv
http://arxiv.org/pdf/1501.03342v2.pdf
http://arxiv.org/pdf/1501.03342v2.pdf
http://www.webcitation.org/6fUlEpPlw
http://arxiv.org/html/1203.4745v1?
http://arxiv.org/html/1203.4745v1?
http://www.webcitation.org/6X9DIhewb

Repositories (pp. 36-39). Los Alamitos, CA: IEEE Press.
Rossi, B., Russo, B. & Succi, G. (2010). Download patterns and releases in open source software projects:

a perfect symbiosis? In Pär Ågerfalk, Cornelia Boldyreff, Jesús M. González-Barahona, Gregory R.
Madey & John Noll, (Eds.). Open source software: new horizons. Proceedings 6th International IFIP
WG 2.13 Conference on Open Source Systems, OSS 2010, Notre Dame, IN, USA, May 30 – June 2,
2010 (pp. 252-267). Berlin: Springer. (IFIP Advances in Information and Communication Technology
Volume 319, p. 252-267) Retrieved from http://link.springer.com/chapter/10.1007%2F978-3-642-
13244-5_20#page-1.

Rychlicki, T. (2008). GPLv3: New software licence and new axiology of intellectual property law.
European Intellectual Property Review, 30(6), 232.

Sauer, R. M. (2007). Why develop open-source software? the role of non-pecuniary benefits, monetary
rewards, and open-source licence type. Oxford Review of Economic Policy, 23(4), 605-619.

Sud, P. & Thelwall, M. (2014). Evaluating altmetrics. Scientometrics, 98(2), 1131-1143.
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D. & Kappas, A. (2010). Sentiment strength detection in

short informal text. Journal of the American Society for Information Science and Technology, 61(12),
2544-2558.

Thelwall, M. & Kousha, K. (2015a). Web indicators for research evaluation, part 1: citations and links to
academic articles from the Web. El Profesional de la Información, 24(5), 587-606.

Thelwall, M. & Kousha, K. (2015b). Web indicators for research evaluation, part 2: social media metrics.
El Profesional de la Información, 24(5), 607-620.

Thelwall, M. & Wilson, P. (2014). Distributions for cited articles from individual subjects and years.
Journal of Informetrics, 8(4), 824-839.

Thelwall, M. & Wilson, P. (in press). Mendeley readership altmetrics for medical articles: an analysis of
45 fields, Journal of the Association for Information Science and Technology.

Thomson Reuters (2015). The data citation index. Retrieved from
http://wokinfo.com/products_tools/multidisciplinary/dci/. (Archived by WebCite® at
http://www.Webcitation.org/6X9DOefxN)

Torres-Salinas, D., Robinson-Garcia, N., Jimenez-Contreras, E. & Lopez-Corza, E.D. (2012). Towards a
book publishers citation reports: first approach using the 'book citation index'. Revista Espanola De
Documentacion Cientifica, 35(4), 615-624.

Vincent, L. (2007). Google book search: document understanding on a massive scale. In Ninth
International Conference on Document Analysis and Recognition (pp. 819-823). Los Alamitos, CA:
IEEE Press

Wallis, J. C., Rolando, E. & Borgman, C. L. (2013). If we share data, will anyone use them? Data sharing
and reuse in the long tail of science and technology. PloS ONE, 8(7), e67332.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067332 (Archived by WebCite® at
http://www.webcitation.org/6fUqOFmVj)

West, J. (2003). How open is open enough?: melding proprietary and open source platform strategies.
Research Policy, 32(7), 1259-1285.

Wouters, P. & Costas, R. (2012). Users, narcissism and control: tracking the impact of scholarly
publications in the 21st century. Utrecht: SURF foundation. Retrieved from
http://www.surffoundation.nl/nl/publicaties/Documents/Users%20narcissism%20and%20control.pdf
(Archived by WebCite® at http://www.Webcitation.org/6X9DS0IQd)

How to cite this paper

Thelwall, M. & Kousha, K. (2016). Academic software downloads from Google Code:
useful usage indicators? Information Research, 21(1), paper 709. Retrieved from

http://InformationR.net/ir/21-1/paper709.html (Archived by WebCite® at
http://www.webcitation.org/6frI0cbJE)

http://www.webcitation.org/6X9DOefxN
http://www.webcitation.org/6fUqOFmVj
http://www.webcitation.org/6fUqOFmVj
http://www.webcitation.org/6X9DS0IQd
http://www.webcitation.org/6X9DS0IQd

Tweet

Find other papers on this subject

Check for citations, using Google Scholar

1

© the authors, 2016.
Last updated: 22 February, 2016

Contents | Author index | Subject index | Search | Home

0
Like

https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fwww.informationr.net%2Fir%2F21-1%2Fpaper709.html&ref_src=twsrc%5Etfw&text=Academic%20software%20downloads%20from%20Google%20Code%3A%20useful%20usage%20indicators%3F%3A&tw_p=tweetbutton&url=http%3A%2F%2Fwww.informationr.net%2Fir%2F21-1%2Fpaper709.html%23.VvB25PZGvIB.twitter
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fwww.informationr.net%2Fir%2F21-1%2Fpaper709.html&ref_src=twsrc%5Etfw&text=Academic%20software%20downloads%20from%20Google%20Code%3A%20useful%20usage%20indicators%3F%3A&tw_p=tweetbutton&url=http%3A%2F%2Fwww.informationr.net%2Fir%2F21-1%2Fpaper709.html%23.VvB25PZGvIB.twitter
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fwww.informationr.net%2Fir%2F21-1%2Fpaper709.html&ref_src=twsrc%5Etfw&text=Academic%20software%20downloads%20from%20Google%20Code%3A%20useful%20usage%20indicators%3F%3A&tw_p=tweetbutton&url=http%3A%2F%2Fwww.informationr.net%2Fir%2F21-1%2Fpaper709.html%23.VvB25PZGvIB.twitter
http://scholar.google.co.uk/scholar?hl=en&q=http://informationr.net/ir/21-1/paper709.html&btnG=Search&as_sdt=2000
http://www.digits.net/
http://www.informationr.net/ir/21-1/infres211.html
http://www.informationr.net/ir/iraindex.html
http://www.informationr.net/ir/irsindex.html
http://www.informationr.net/ir/search.html
http://www.informationr.net/ir/index.html

	informationr.net
	Academic software downloads from Google Code: useful usage indicators?

	lyLzIxLTEvcGFwZXI3MDkuaHRtbAA=:
	input0:

	lyLzIxLTEvcGFwZXI3MDkuaHRtbAA=:
	form1:
	sa:
	sa_(1):

	lyLzIxLTEvcGFwZXI3MDkuaHRtbAA=:
	form2:
	sa:

	g9OTA/QWNyb2JhdFdlYkNhcFRJRDEA:
	form0:
	fb_dtsg: AQGyQuuKsfZ1:AQFdf8HLIZKz
	href: http://www.informationr.net/ir/21-1/paper709.html
	action: like
	nobootload:
	iframe_referer: http://www.informationr.net/ir/21-1/paper709.html
	r_ts: 1458599686
	ref: .VvB25I_LOe0.like
	xfbml:
	app_id: 172525162793917
	button0:
	fb_dtsg_(1): AQGyQuuKsfZ1:AQFdf8HLIZKz
	href_(1): http://www.informationr.net/ir/21-1/paper709.html
	action_(1): like
	nobootload_(1):
	iframe_referer_(1): http://www.informationr.net/ir/21-1/paper709.html
	r_ts_(1): 1458599686
	ref_(1): .VvB25I_LOe0.like
	xfbml_(1):
	app_id_(1): 172525162793917

