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Introduction

This paper is a natural extension of the root visualisation techniques first 
presented by Bardell (2012) for quadratic equations with real coefficients. 

Consideration is now given to the familiar quadratic equation y = ax2 + bx + c 
in which the coefficients a, b, c are generally complex, as shown explicitly in 
Equation (1) with the usual notation. 

y =(aR + iaI )x 2 +(bR + ibI )x +(cR + icI ) (1)

The roots are most easily found from the ‘standard’ quadratic equation 
formula, suitably modified to account for the complex coefficients thus:

x =
−(bR + ibI )± (bR + ibI )2 − 4(aR + iaI )(cR + icI )

2(aR + iaI ) (2)

A routine application of Equation (2) will furnish the desired roots, and for 
most students this is usually the final step in a given analysis. However, there 
are many rich nuggets of information to be mined from a fuller consideration 
of Equations (1) and (2), with the pièce de résistance being an ability to somehow 
visualise the location and nature of the roots. 

Surprisingly little has been written about this topic. Hardy (2008, pp. 94–
95) finds the solution for the roots by dividing Equation (1) through by the
(aR + iaI) term, effectively forcing the leading coefficient to be monic and 
thus losing the general condition that all coefficients are arbitrary complex 
numbers. His solutions are thus non-generic, and some of the conditions he 
puts forward for the type of roots that result from a given set of complex 
coefficients are therefore of limited value. McCarthy (n.d.) has also noted 
these shortcomings. In response he has produced a highly insightful article 
about the most general form of a quadratic equation with generally complex 
coefficients, as shown in Equation (1), and therein derives various criteria 
that can be applied to the complex coefficients in order to predict particular 
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types of roots. His solutions are totally generic and accord with the current 
work; all of his various root criteria are tried, tested, and proved herein.

A reasonable starting point would focus on plotting the curve represented 
by Equation (1). This is more difficult than it looks, and a simple x–y plot 
can only be found by separating the real and imaginary components of y and 
presenting them both on the same set of axes. However, such a plot is hard to 
interpret and in general does not reveal any information about the location or 
the nature of the roots. It is a lamentable fact that few mathematics text books 
get even this far, and the remarkable dearth of information on this particular 
topic has been noted by Hardy (2008, pp. 94–95) and McCarthy (n. d.). By 
way of illustration, consider the following equation:

	
y =(1−i)x 2 + (−2+ 6i)x + (3−2i)

	
(3)

The real and imaginary parts are plotted separately over the range –4 ≤ x ≤ 
6 as shown in Figure 1. 

Figure 1. Plot of the real and imaginary parts of Equation (3).

Although the curves for Re(y) and Im(y) may intersect each other and/
or the x-axis once, twice, or not at all, there is no great significance to any 
of these intersections. From Equation (2) the roots are determined as:  
x1 = 0.414 + 0.419i and x2 = 3.586 – 2.419i. From Figure 1, the Im(y) curve 
crosses the x-axis at points (a) x = 0.354 and (b) x = 5.646; the common 
intersection between the Re(y) and Im(y) curves occurs at points (c) x = 0.775 
and (d) x = 3.225; and the vertices of either curve are located at points  
(e) x = 1 and (f) x = 3. None of these points (a) to (f) corresponds to the real 
or imaginary part of either root. Such observations beg the questions: Where 
are the roots located, why does the x–y plot give no hint of their nature, and 
how can we visualise things more clearly?
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The aim of this paper is to answer these fundamental questions. The 
explanations offered will be of most interest to those teaching and studying 
a Mathematics Specialism (ACARA, n.d., Unit 3) such as the Victorian VCE 
(Specialist Mathematics, 2010), HSC in NSW (Mathematics Extension in NSW, 
1997) or Queensland QCE (Mathematics C, 2009). Some of the stated aims 
of Specialist Mathematics (ACARA, n.d., Rationale) are to develop students’ 
• “understanding of concepts and techniques drawn from complex numbers”,
• “ability to solve applied problems using concepts and techniques drawn

from complex numbers” and 
• “capacity to choose and use technology appropriately”.

Whilst the basics of these topics may be thoroughly covered in various 
textbooks, real-world applications and visualisations of these concepts are not 

—this paper helps answer these needs.

Theory: Complex generalisation

Since the roots resulting from Equation (2) can be complex, this implies 
that the values assigned to x in Equation (1) do not have to be limited to 
the set of real numbers but rather could—and possibly should—include 
complex values. Whilst this is implicitly obvious, since no restriction was ever 
placed on x or y at the outset, it is rarely presented as an explicit proposition. 
Perhaps one reason why this is seldom considered is simply one of expedience 
—constructing a plot using generally complex values of x is not for the faint-
hearted! Nevertheless, if this line of reasoning is pursued, and x is allowed to 
take a generally complex value G + iH, in which i is the complex number −1 ,  
then substituting this into Equation (1) yields:

y =(aR + iaI )(G + iH )2 +(bR + ibI )(G + iH )+(cR + icI ) (4a)

Equation (4a) can be expanded and simplified to

y = aRG 2 −aR H 2 − 2aIGH + bRG − bI H + cR

+ i(2aRGH +aIG
2 −aI H

2 + bR H + bIG + cI ) (4b)

Since y must also be generally complex, of the form A + iB, then it is 
possible to equate the real (Re) and imaginary (Im) parts of both sides of 
Equation (4b).

Equating Re parts:	 A = aRG2 – aRH2 – 2aIGH + bRG – bIH + cR (5)
Equating Im parts:	 B = 2aRGH + aIG

2 – aIH
2 + bRH + bIG + cI (6)

Equations (5) and (6) represent three-dimensional surfaces describing the 
generalised complex form of Equation (1). It is noted that when H = 0, i.e., a 
section taken through either surface to reveal the real GA or GB plane, that 
the equations A = aRG2 + bRG + cR and B = aIG

2 + bIG + cI are obtained, and 
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the trace of each of these curves is nothing more than the original Equation 
(1) split into its real and imaginary parts. It is now becoming evident that 
the x–y plane shown in Figure 1 is simply a two-dimensional ‘slice’ of a more 
general three-dimensional solution space. This latter three-dimensional 
representation contains all the information necessary to reveal the nature of 
the roots given by Equation (2) and will be used to explain why they can occur 
in any general combination.

The surface A for Re(y)
The expression for Re(y) shown in Equation (5) is a quadric surface that can 
be identified and classified by reducing it to its simplest (canonical) form by 
translation and rotation of axes. See Bardell (2012, Appendix A), for further 
details, and the procedure for determining the expressions for m, n, p and β. 
Thus:

G' = G – m (7a)
H' = H – n (7b)
ZA = A – p (7c)

where

m = −(bRaR + bIaI )
2(aR

2 +aI
2)

(7d)

n = −(bIaR − bRaI )
2(aR

2 +aI
2)

	
(7e)

p = −bR
2aR − 2bRbIaI + bI

2aR + 4aR
2cR + 4aI

2cR

4(aR
2 +aI

2)
(7f)

followed by a counter-clockwise rotation in the plane of the newly translated 
G'H' axes about a normal through the local origin by an amount βA where

tanβA =
aR − aR

2 +aI
2

aI

(7g)

This coordinate transformation renders Equation (5) in the form, 

Z A = aR
2 +aI

2X A
2 − aR

2 +aI
2YA

2 (8)

which is readily classified as a hyperbolic paraboloid with a vertex centred at 
(m, n, p). This surface can easily be constructed over a range of G, H values 
for a specific quadratic equation with complex coefficients (see Bardell (2012, 
pp. 8–9). The following observations follow:
• Only aI, the imaginary part of the coefficient of the x2 term, causes the

rotation of the principal planes of the surface A. If aI = 0 then the orientation 
of the principal planes will align with the G'H'-axes. (This result follows
from Equation (7g), despite it appearing to become indeterminate on
account of the right hand side becoming 0/0. However, a single application
of L’Hôpital’s rule confirms that in the limit as aI → 0, the expression for
the right hand side also tends to zero, and hence βA = 0).
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• The altitude p of the local G'H' origin above the GH plane is independent
of cI but dependent on all the other coefficients.

• When the imaginary components of all the coefficients are zero, familiar
results for the real coefficient case are recovered, as expected; see Bardell
(2012) for a comparison.

The surface B for Im(y)
The expression for Im(y), as shown in Equation (6), is also that of a general 
quadric surface, with many similarities to surface A. Once again, by adopting 
exactly the same approach to transform and rotate the GHB axes, this equation 
can also be reduced to its simplest (canonical) form thus:

G' = G – q (9a)
H' = H – r (9b)
ZB = B – s (9c)

where

q = −(bRaR + bIaI )
2(aR

2 +aI
2)

(9d)

r = −(bIaR − bRaI )
2(aR

2 +aI
2)

	
(9e)

s = −bI
2aI − 2bRbIaR + bR

2aI + 4aR
2cI + 4aI

2cI

4(aR
2 +aI

2)
(9f)

followed by a counter-clockwise rotation in the plane of the newly translated 
G'H' axes about a normal through the local origin by an amount βB where

tanβB =
−aI + aR

2 +aI
2

aR

(9g)

This coordinate transformation renders Equation (6) in the form, 

ZB = aR
2 +aI

2XB
2 − aR

2 +aI
2YB

2 (10)

which again is readily classified as a hyperbolic paraboloid with a vertex 
centred at (q, r, s). This surface can also be constructed without difficulty; it 
is identical in form to that for A, (as confirmed by comparing Equations (8) 
and (10)) but differs in terms of its orientation—note the subtle difference 
between Equations (7g) and (9g)—and the altitude of its vertex origin above 
the GH-plane. The following observations follow:
• Only aI, the imaginary part of the coefficient of the x2 term, causes the

rotation of the principal plane XBZB of the surface. If aI = 0 then tanβB = 1
(from Equation (9g)) and the principal planes are rotated by π/4 counter-
clockwise about a normal through the local G'H' origin, as found by Bardell
(2012) for the case with only purely real coefficients.

• The altitude s of the local G'H' origin above the GH-plane is independent
of cR but dependent on all the other coefficients.
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• When the imaginary components of all the coefficients are zero, the results
for the real coefficient case are recovered, as expected; see Bardell (2012)
for details.

The relation between the surfaces A and B
Both these surfaces share a common origin projected on to the horizontal 
GH-plane, since m = q and n = r as shown by Equations (7d), (9d) and (7e), 
(9e). Incidentally, these terms ((m, n) or (q, r)) may be verified to be the real 
and imaginary parts respectively of the first part of Equation (2), namely

−(bR + ibI )
2(aR + iaI ) 	

(11)

rendered as a single complex number. This locates the common local G'H' 
origin of both surfaces when viewed in the GH-plane. Note that in general, 
because both m, q ≠ 0 and n, r ≠ 0, the local origin of each surface no longer 
lies at a single point (–b/2a) on the G-axis as it does for a quadratic equation 
with only real coefficients; indeed, it is now displaced away from the GH 
origin altogether such that it no longer lies in the GA plane, and it can vary 
in altitude. This is why a simple x–y plot of both Re(y) and Im(y), as shown 
in Figure 1, is unlikely to reveal the whereabouts of the roots, since a section 
taken at H = 0 will not, in general, pass through the common local G'H' origin 
as it does in the case of real coefficients. Note also that the vertical location 
of each surface’s origin—whether above or below the GH-plane—differs by 
an amount (p – s). The terms p (see Equation (7f)) and s (see Equation (9f)) 
may also be verified as the real and imaginary parts of 

−[(bR + ibI )2 − 4(aR + iaI )(cR + icI )]
4(aR + iaI )

(12)

which is just the term –Δ/4a generalised to its complex form; see Bardell 
(2012, Section 3.4) for further details. Here, the discriminant Δ takes the form 
Δ = (bR + ibI)

2 – 4(aR + iaI)(cR + icI). It is important to note that the origin of 
the surface B is no longer coincident with the GH-plane, i.e., s ≠ 0. It is for 
this reason that the G'H' axes are shown projected on the zero plane in the 
plots that follow.

Although both A and B are now rotated relative to the GH axes, the 
orientation of the principal plane XBZB of the surface B is always rotated 
counter-clockwise by a constant angle π/4 relative to the principal plane XAZA 
of the surface A regardless of the values of the participating coefficients. This 
result follows immediately from the well-known tangent relationship

tan(βB −βA)= tan(βB )− tan(βA)
1+ tan(βB )tan(βA) 	

(13)

which, upon substitution of the expressions for tan(βA) from Equation (7g) 
and tan(βB) from Equation (9g), reduces to 

tan(βB −βA)= 1	 (14a)

i.e., βB −βA = π
4 (14b)
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Both surfaces are hence ‘locked’ together in terms of their rotational 
relationship, and the GH coordinates of their origin; however, they are ‘free’ 
to rotate in unison about the common local Z-axis and also to move relative to 
one another, but in the vertical Z-sense only, i.e., (p – s) ≠ constant. As for the 
case with purely real coefficients, the roots are found from the two common 
points of intersection of the surfaces A = B = 0.

Location of the roots
To find the location of the roots in the GH-plane, a similar procedure to that 
described by Bardell (2012) is adopted. By definition, the roots occur when 
y = 0, implying that both Re(y) and Im(y) must simultaneously be zero. In 
other words, the location and nature of the roots will be defined where the 
two surfaces for Re(y) (≡ A) and Im(y) (≡ B) have a common intersection 
with a horizontal plane positioned at zero altitude. Analytically, this could 
be accomplished by solving Equations (5) and (6) simultaneously for G 
and H with both A and B = 0. However, this approach proves algebraically 
fairly intractable and will not be pursued further here, although it should 
nonetheless be mentioned that the resulting expressions for the roots x1 at 
(G1, H1) and x2 at (G2, H2) consist of the real and imaginary parts of Equation 
(2), as expected. It is also noted that in general G2 ≠ G1 which is in contrast 
to the (conjugate) form of the roots (where G2 = G1) that was reported by 
Bardell (2012) when all the coefficients are real.

It is also stated, without proof, that if the roots are considered in the G'H' 
axis system, which is centred at the combined surfaces’ common local origin 
at (m, n) in the GH plane, then these roots are equi-pitched about this local 
origin and lie diametrically opposite each other on a circle of diameter:

D = (G1 −G2)2 + (H1 −H 2)2 (15)

In the special case when all the coefficients are real, G1 = G2 and hence 
Equation (15) reduces to:

D = (H1 − H 2)=
4aRcR − bR

2

aR

(16)

which is recognised as the total distance along the H'-axis between a pair of 
conjugate roots.

Results and examples

In order to give some meaning to the concepts discussed above, attention will 
now be focused on the quadratic equation originally presented in Equation 
(3), which yields generally complex roots. In the three-dimensional surfaces 
that follow, the horizontal plane contains the Re(x) (≡ G) and Im(x) (≡ H) 
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axes, thus forming the Argand plane, whilst the vertical axis represents either 
Re(y) (≡ A) or Im(y) (≡ B) depending on which surface is being investigated.

All the three-dimensional plots presented in this paper were constructed 
using Mathcad (2007), which is one of many VCE/QCE/HSC-approved 
computer algebra systems available to schools, and fully commensurate with 
the following ACARA (2009, Section 6.5.2) stated aim: “digital technologies 
can make previously inaccessible mathematics accessible, and enhance the 
potential for teachers to make mathematics interesting to more students”.

Type I(a): Complex distinct roots
From Equation (3), the complex coefficients are: aR = 1, aI = -1; bR = –2, bI = 6; 
cR = 3, cI = –2. These data, when substituted in Equations (7d–7g) and (9d–9g) 
yield the surface parameters shown in Table 1; the roots follow from Equation 
(2) as: x1 = 0.414 + 0.419i and x2 = 3.586 – 2.419i.

Table 1. The complex generalisation surface parameters for y = (1 – i)x2 + (–2 + 6i)x + (3 – 2i).

Surface A Surface B

Parameter Value Equation Parameter Value Equation

ZA √2XA
2 – √2YA

2 (8) ZB √2XB
2 – √2YB

2 (10)

m 2 (7d) q 2 (9d)

n –1 (7e) r -1 (9e)

p 4 (7f) s 5 (9f)

βA π/8 or 22.5º (7g) βB 3π/8 or 67.5º (9g)

The surface A is 
constructed as described 
by Bardell (2012, pp. 8–9), 
and the following Figures 
2 to 5 illustrate the key 
surface parameters sum-
marised in Table 1. For 
clarity, the G'H' axes are 
shown projected on the 
zero plane.

Figure 2. The surface A corresponding to the real part of the  
complex generalisation of y = (1 – i)x2 + (–2 + 6i)x + (3 – 2i).
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Figure 3. View on the GA plane of the surface A.

Figure 4. View on the HA plane of the surface A.
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Figure 5. View on the GH plane of the surface A.

Figure 5 clearly shows the how the surface A is rotated by an angle π/8 
counter-clockwise about its local origin at (m, n). Figures 6 to 9 are constructed 
for the surface B using the techniques described by Bardell (2012, pp. 8–9). 
These figures show a general quadric surface in contrast to the bi-linear 
(degenerate) case which resulted from purely real coefficients. Again, for 
clarity, the G'H' axes are shown projected on the zero plane.

B or Im(y) H or  Im(x) 

G or Re(x) 

H’ 

G’ 

Figure 6. The surface B corresponding to the imaginary part of the complex 
generalization of y = (1 – i)x2 + (–2 + 6i)x + (3 – 2i).
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Figure 7. View on the GB plane of the surface B.

Figure 7 vividly shows s ≠ 0 (s = 5 in this particular case) and Figure 8 shows 
r ≠ 0 (r = –1 in this particular case). The surface B hence has more ‘scope’ 
to influence the location and nature of the roots than its real-coefficient 
counterpart investigated by Bardell (2012), in which both s = 0 and r = 0.

Figure 8. View on the HB plane of the surface B.
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Figure 9. View on the GH plane of the surface B.

Figure 9 clearly shows how the surface B is rotated by an angle 3π/8 
counter-clockwise about its local origin at (q, r); superimposing Figures 9 
and 5 shows how a constant angular difference of π/4 is always maintained 
between surface B and surface A as per Equation (14b).

Figure 10. The distinct complex roots found at the common intersection of A = B = 0 from the complex 
generalization of y = (1 – i)x2 + (–2 + 6i)x + (3 – 2i).
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As explained above, the complex roots are defined by the simultaneous 
satisfaction of Equations (5) and (6), namely A = B = 0, or Re(y) = Im(y) = 0. 
This is shown graphically in Figure 10 by the two points resulting from the 
intersection of the surfaces A and B with each other and with a horizontal 
plane positioned at zero altitude. These points are the two roots of the 
quadratic equation.

Figure 11 shows a view on the GH (Argand) plane from directly above. 
The location of the two roots at G1 = 0.414 and H1 = 0.419; i.e., x1 = 0.414 + 
0.419i and at G2 = 3.586 and H2 = –2.419; i.e., x2 = 3.586 – 2.419i is clearly 
visible, being at the two unique points of intersection where A = B = 0. The 
location of the roots relative to the combined surfaces’ common origin at 
(2, –1) is x1' = –1.586 + 1.419i and x2' = 1.586 – 1.419i. These roots are each of 
equal magnitude 2.128 units and located opposite each other on a circle of 
diameter 4.256 units.

Figure 11. Plan view of the surfaces A and B showing the location of  
the generally complex roots of y = (1 – i)x2 + (–2 + 6i)x + (3 – 2i).

Finally, if a section is taken through both surfaces at H = 0, the traces of the 
‘cut’ ends of surfaces A and B fully replicate the curves for Re(y) and Im(y) 
respectively shown in Figure 1. This vividly illustrates how the original x–y 
plane alone is merely a ‘slice’ of a much bigger picture, and is therefore very 
limited in the information it can convey for this type of problem.
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Figure 12. Section taken at H = 0 revealing the original traces of Re(y) and Im(y)  
from Equation (3) and Figure 1.

This completes the detailed review of a specific case in support of the 
methodology advanced in the section Theory. It is noted that for a given set 
of participating coefficients, generally complex roots (which includes real, 
imaginary, or a combination thereof) may be expected to occur. Some further 
examples are now given to illustrate the wide variety of root combinations 
that can exist for this type of quadratic equation with complex coefficients. 
These examples are intended to showcase some of the many different surface 
arrangements that can occur as the participating complex coefficients in a 
given equation are varied, and hence the plethora of roots that are possible.

Type I(b): Complex equal (repeated) roots
A pair of equal complex roots can only occur if m ≠ 0 and n ≠ 0 but p = s = 0 
such that only a single point results from the intersection of A = B = 0. This 
is equivalent to ensuring the discriminant Δ in Equation (2) is zero. From a 
consideration of both the real and imaginary parts of the discriminant, this 
levies the following constraint on the complex coefficients:

	
bR

2 − bI
2 =4(aRcR - aIcI ) and 2bRbI =4(aRcI − aIcR )

	
(17)

A suitable set of coefficients that satisfies Equation (17) is: aR = 4, aI = 16/3; bR 
= 8, bI = 4; cR = 3, cI = 0. These data yield Δ = 0, m = –0.6, n = 0.3, p = 0, s = 0. The 
resulting equal (repeated) roots are x1, x2 = –0.6 + 0.3i. Note how these roots 
coincide with the common local origin (m, n) of both surfaces at altitude  
p = s = 0. 
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Type I(c): Complex conjugate roots
A pair of complex conjugate roots can occur, but only if:
• they fall on a line running parallel to the H-axis—to ensure the same real

G-value; and
• the local origin of both surfaces is positioned at n = 0 in the GH-plane—to

ensure equal and opposite imaginary ±H-values.
McCarthy (n.d.) has proved that the complex coefficients must obey the 
criteria shown in Equation (18) to ensure conjugate roots:

bR
2 − 4aRcR < 0 and (aRbI − aIbR )= 0 and (aRcI − aIcR )= 0 (18)

Figure 13. The complex conjugate roots found at the common intersection of A = B = 0 
from the complex generalization of y = (1 + 2i)x2 + (2 + 4i)x + (5 + 10i).

McCarthy (n.d.) has shown further that if the complex coefficients are 
considered as vectors, then for complex conjugate roots to occur a, b, c must 
be collinear. A suitable set of coefficients that satisfies Equation (18) is: aR 
= 1, aI = 2; bR = 2, bI = 4; cR = 5, cI = 10. These data yield Δ = 48 – 64i, m = –1, 
n = 0, p = 4, s = 8. From Equation (2) the resulting complex conjugate roots 
are x1 = –1 – 2i, x2 = –1 + 2i. These roots are shown in Figure 13. Each root is 
clearly equidistant from the local G'H' origin at (–1, 0). For clarity, the G'H' 
axes are shown projected on the zero plane.

Hardy (2008, pp. 94–95) asserts that complex conjugate roots can exist 
only if all the coefficients are real. This is actually incorrect as will now be 
demonstrated. From the elementary theory of roots of a general quadratic 
equation, if ax2 + bx + c = 0 has roots α, β, then by definition the sum of the 
roots (α + β) = –b/a and the product of the roots αβ = c/a. This condition 
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holds for coefficients that are either real or complex. If the roots form a 
complex conjugate pair, i.e., α = G + iH and β = G – iH, then clearly the sum 
of the roots α + β = 2G is real, and the product of the roots αβ = G2 + H2 is 
also real. This means that the sum and product quantities –b/a and c/a in 
the original quadratic equation must also be real. This reasoning led Hardy 
to conclude that all the participating coefficients therefore had to be real for 
complex conjugate roots to result. However, this is not necessarily the case.1 
Only the ratios –b/a and c/a must be real, but not the actual coefficients 
themselves. (In the current example, with complex coefficients, the ratios 

–b/a = –2 and c/a = 5 are most definitely real). The ratios are unique, but
the actual values of a, b, c are not themselves uniquely determined. Now, it
must also be noted that if the original equation with complex coefficients is
divided through by the (aR + iaI) term, x2 + 2x + 5 = 0 results, and it could be
argued that the complex coefficients given here reduce to a real coefficient
example. However, the surface representations A and B that result from
the two forms of the quadratic equation are quite different, indicating each
equation is unique, even though the resulting roots turn out to be the same.
This illustrates why rendering a quadratic equation monic, as Hardy does,
masks certain important information, and shows that if only the roots are
given, it is not possibly to reconstruct the original quadratic equation with
complex coefficients unless the (aR + iaI) term is known.

Type I(d): Purely imaginary roots
Purely imaginary roots can only occur if they lie somewhere on the line G = 0. 
McCarthy (n.d.) has proved that the criteria for this to occur are:

bI
2 + 4aRcR ≥ 0 and (aRbI + aIbR )= 0 and (aRcI − aIcR )= 0 (19)

One possible set of coefficients that satisfies Equation (19) is: aR = 1, aI = 1; 
bR = –2, bI = 2; cR = 1, cI = 1. These data yield Δ = –16i, m = 0, n = –1, p = 2, 
s = 2. The resulting roots are x1 = –2.414i, x2 = 0.414i. These roots are located 
equidistant from the local origin at (0, –1) in the GH plane, as expected. 
McCarthy (n.d.) has also noted that if the complex coefficients are considered 
as vectors, then for purely imaginary roots to occur, a ⊥ b and a || c, which is 
demonstrated by the numerical values used here.

Type II: Mixed roots—one complex root, one real root
A mixed root solution to Equation (1) can occur. The real root must lie 
somewhere along the G-axis (i.e, H = 0), but there is no restriction on the 
location of the complex root. No general criteria applicable to the coefficients 
have been reported that will guarantee this particular outcome. For clarity, 
the G'H' axes are shown projected on the zero plane.

1	 This conclusion is a direct conequence of Hardy (2008) making the term x2 monic.
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Figure 14. The mixed roots found at the common intersection of A = B = 0 
from the complex generalisation of y = (1 + i)x2 –2x + (–8 – 4i).

A suitable set of coefficients that will yield mixed roots is: aR = 1, aI = 1;  
bR = –2, bI = 0; cR = –8, cI = –4. These data yield Δ = 20 + 48i, m = 0.5, n = –0.5,  
p = –8.5, s = –3.5. The resulting roots are x1 = –2, x2 = 3 – i as shown in Figure 
14. About their local G'H' origin at (0.5, –0.5) these roots become –2.5 + 0.5i
and 2.5 – 0.5i, lying on a circle of diameter 26 . A plot of this quadratic 
equation in the Cartesian x–y plane shows the Re(y) and Im(y) traces both 
crossing the x-axis at x = –2. This point locates the purely real root, but there is 
no further information available to indicate the whereabouts of the complex 
root (see Figure 15). 

Figure 15. Plot of y = (1 + i)x2 – 2x + (–8 – 4i).
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Note also that it is quite possible to have a mixed solution consisting of a 
purely real root and a purely imaginary root. The real root must lie somewhere 
along the G-axis (i.e, H = 0) and the imaginary root must lie somewhere along 
the H-axis (i.e, G = 0). Again, no general criteria applicable to the coefficients 
have been reported that will guarantee this particular outcome.

Type III(a): Real distinct roots
Roots that are real and distinct must both lie along the G-axis (i.e., H = 0).

McCarthy (n.d.) has proved that the complex coefficients required to 
produce a pair of purely real roots must obey the following criteria:

bR
2 − 4aRcR ≥ 0 and (aRbI − aIbR )= 0 and (aRcI − aIcR )= 0 (20)

A set of coefficients that satisfies Equation (20) is: aR = 1, aI = 0.5; bR = 4,  
bI = 2; cR = –2, cI = –1. These data yield Δ = 18 + 24i, m = –2, n = 0, p = –6, 
s = –3. The resulting real and distinct roots are x1 = –4.449, x2 = 0.449 as 
shown in Figure 16. Although both roots are real, the view of the combined 
surfaces presented here, and the manner of their intersection with each other 
and the zero plane, looks very different from that found from the analogous 
real-coefficient case (see Bardell, 2012). For clarity, the G'H' axes are shown 
projected on the zero plane. 

Figure 16. The real and distinct roots found at the common intersection of A = B = 0 
from the complex generalisation of y = (1 + i/2)x2 + (4 + 2i)x + (–2 – i).
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Again, contrary to popular belief, purely real roots can result from a 
quadratic equation with generally complex coefficients. McCarthy (n.d.) has 
shown further that if the complex coefficients are considered as vectors, then 
for real roots to occur a, b, c must be collinear, per the present example. This 
condition is the same as that applicable to finding complex conjugate roots, 
and only the additional constraint on the value of bR

2 – 4aRcR dictates the 
final result. It is interesting to note that if bR

2 – 4aRcR = 0 then coincident real 
roots will result, these being the transition point between real and complex 
conjugate roots.

For the given example, following the argument presented for complex 
conjugate roots, a similar conclusion holds here. If the roots are purely real, 
i.e., α = G1 and β = G2, then clearly the sum of the roots α + β = G1 + G2 is real, 
and the product of the roots αβ = G1G2 is also real. This means that the sum 
and product quantities –b/a and c/a must also be real which could lead one 
to conclude that all the participating coefficients therefore have to be real for 
real roots to result. However, only the ratios –b/a and c/a must be real, but 
not the actual coefficients themselves. In the current example, –b/a = 4 and 
c/a = –2 (both real), yet the defining coefficients are themselves complex.

A plot of this quadratic equation in the Cartesian x–y plane (H = 0) shows 
the Re(y) and Im(y) traces have common intersections and cross the x-axis 
at x1 = –4.449, x2 = 0.449 which indicates the solution involves two real roots. 
It is noted the two roots are equi-spaced about the point (–2, 0) which is the 
common vertex of the curves represented by Re(y) and Im(y) in the x–y plane 
and of course the common vertex (m, n) of the surfaces A and B.

Figure 17. Plot of y = (1 + i/2)x2 + (4 + 2i) x + (–2 – i).
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Type III(b): Real equal (repeated) roots
With reference to the complex repeated roots presented in section Type I(b), 
the same criterion applies here but with the additional constraint that now n 
or r = 0 (which implies bIaR – aIbR = 0 from Equation(7e)) to enforce a solution 
on the real GA plane. Hence the complex coefficients must now obey:

	
bR

2 − bI
2 =4(aRcR − aIcI ) and 2bRbI =4(aRcI − aIcR ) and (aRbI − aIbR )=0

	
(21)

Alternatively, from Section 3.5 above, the following [equivalent] condition 
also holds:

	
bR

2 − 4aRcR = 0 and (aRbI − aIbR )= 0 and (aRcI − aIcR )= 0
	

(22)

A set of coefficients that identically satisfies Equation (21) and Equation (22) 
is: aR = 1, aI = 1/4; bR = 4, bI = 1; cR = 4, cI = 1. These data yield Δ = 0, m = –2, 
n = 0, p = 0, s = 0. The local origin of both surfaces lies on the zero plane at 
GH = (–2, 0) and is itself the single point that results from the intersection of 
A = B = 0. Hence the resulting repeated real roots are x1 = x2 = –2, coincident 
with the local origin.

Figure 18. Plot of y = (1 + i/4)x2 + (4 + i)x + (4 + i).

Figure 18 shows the traces of the Re(y) and Im(y) parts of the quadratic 
equation in just the Cartesian x–y plane (H = 0). Both curves have a single 
common point of intersection that is also tangential with the x-axis at x = –2. 
This point indicates the location of a repeated real root.
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Conclusions

A quadratic equation with generally complex coefficients can yield any possible 
combination of roots. This is in complete contrast to the real-coefficient 
counterpart studied by Bardell (2012). For a given set of complex coefficients 
it is not easy to predict what type and combination of roots will result—to this 
end some general criteria have been either quoted from McCarthy (n.d.) and 
verified, or developed from the graphical considerations presented herein.

This paper has shown that the complex generalisation of a quadratic 
equation may easily be extended to accommodate the case with complex 
coefficients. The roots are still found from the intersection of the hyperbolic 
paraboloid surfaces A and B, representing the real and imaginary parts of the 
generalisation respectively, with a plane at zero altitude, as first described by 
Bardell (2012). Many similarities between the two types are evident, although 
when the coefficients are generally complex any possible combination of the 
roots may occur. This is primarily due to both three-dimensional surfaces 
exhibiting a greater freedom of orientation and elevation compared with their 
real-coefficient counterparts and thus more varied opportunities to intersect 
each other and the zero plane. A fuller understanding of this, and other 
phenomena, has been facilitated by the visualisation techniques presented 
in this paper. It has further been shown that the roots are always spaced equi-
distant from the common local origin of the real and imaginary defining 
surfaces, and only under special circumstances do complex conjugate roots 
now result. Attempts to plot a quadratic equation with complex coefficients 
in only the Cartesian x–y plane fail to reveal any useful information about 
the location and nature of the roots unless they happen to contain a purely 
real part, in which case the curves representing Re(y) and Im(y) must both 
coincide at the point where they intersect the x-axis.

Finally, it should be mentioned that teachers can use programs such as 
Mathcad (2007) to show students how hyperbolic paraboloid surface functions, 
such as A and B described herein, can be easily plotted, zoomed, rotated, 
etc. The subject matter presented in this paper could easily form the basis 
of a classroom-based learning exercise in three-dimensional graphics using 
computer algebra systems that would amply satisfy the ACARA (2009, Section 
6.5.1) stated aim, namely, that “digital technologies allow new approaches to 
explaining and presenting mathematics”.
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