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Usually a student learns to solve a system of linear equations in two ways: 
‘substitution’ and ‘elimination’. While the two methods will of course 

lead to the same answer they are considered different because the thinking 
process is different. In this paper we solve a system in these two ways to 
demonstrate the similarity in the computation. We then see that changing 
the point of view leads us to a ‘simpler’ way to solve a system of equations. 
This leads naturally to two other consequences, viz., what is known as Chio’s 
pivotal condensation process for computing determinants and Cramer’s Rule. 
While the condensation process for computing determinants is known, it 
is not widely known, and the manner of solving equations developed here 
has not been seen elsewhere. This should be of interest to anyone teaching 
solving systems of linear equations (especially by hand) and can be the basis 
for teaching the basics of solving systems of equations, or for use as a guided 
project. This material is particularly relevant for the topic of matrices in unit 
2 of the Specialist Mathematics, the topic of Algebra and matrices in unit 1 of 
the General Mathematics curriculum, as well as anywhere where multivariate 
applications appear such as finding regression lines in the data collection 
topic in unit 3 of essential mathematics (perhaps as a special project) and the 
bivariate data analysis topic of unit 3 of the general mathematics curriculum.

Solving systems of linear equations

While we can deal with any size system of equations, we will begin by considering 
the system of equations given by:

2x +3y + z = 4

x + 2y − z = −1

−x + 2y + 2z = 3

⎧

⎨
⎪

⎩
⎪

We can solve this in two ways, viz., ‘substitution’ and ‘elimination’. Let us 
consider one at a time.
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Substitution
Let us solve each of the equations for x. We get the system

	

x = −3y − z + 4
2

x = −2y + z −1

x = −2y − 2z +3
−1

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Substituting the right-hand side (RHS) of the first equation in for in the 
second and third equation and cross multiplying we find:

	

2x +3y + z = 4

2 −2y + z −1( ) = 1(−3y − z + 4)

2 −2y − 2z +3( ) = −1(−3y − z + 4)

⎧

⎨
⎪⎪

⎩
⎪
⎪

or, by multiplying both sides of the second and third equation by (–1) 
(distributing through the parentheses) and collecting variables on the left-
hand side, we have

	

2x +3y + z = 4

2 ⋅2−1⋅3( )y + 2 ⋅(−1)( ) −1⋅1( )z = 2 ⋅ −1( ) −1⋅4

2 ⋅2− −1( ) ⋅3( )y + 2 ⋅2− −1( ) ⋅1( )z = 2 ⋅3−(−1)⋅4

⎧

⎨
⎪⎪

⎩
⎪
⎪

or, by recognizing the coefficients as determinants of 2 × 2 matrices, we have

	

2x +3y + z = 4

2 3
1 2

y + 2 1
1 −1

z = 2 4
1 −1

2 3
−1 2

y + 2 1
−1 2

z = 2 4
−1 3

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

or, 

	

2x +3y + z = 4

y −3z = −6

7y + 5z = 10

⎧

⎨
⎪

⎩
⎪
⎪

So now each of the second and third equation can be solved for and cross 
multiplying yields:

	

2x +3y + z = 4

y = 3z − 6

y = −5z +10
7

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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or

	

2x +3y + z = 4

y = 3z − 6

7 3z − 6( ) = 1⋅(−5z +10)

⎧

⎨
⎪

⎩
⎪

So we have

	

2x +3y + z = 4

y −3z = −6

(1⋅5−7 ⋅ −3( ))z = 1⋅10−7(−6)

⎧

⎨
⎪

⎩
⎪

or

	

2x +3y + z = 4

y −3z = −6

1 −3
7 5

z = 1 −6
7 10

⎧

⎨

⎪
⎪

⎩

⎪
⎪

or,

	

2x +3y + z = 4

y −3z = −6

26z = 52

⎧

⎨
⎪

⎩
⎪

This can then be solved (via back substitution) to yield the solution z = 2, y = 0, 
x = 1.

There is another option for this problem which we now describe. Going back 
to 

	

2x +3y + z = 4

y = 3z − 6

y = −5z +10
7

⎧

⎨
⎪
⎪

⎩
⎪
⎪

we see that we can extend this substitution step to include the first equation 
(substituting the value of y found from the second equation in both the first 
and the third):

	

y = −2x − z + 4
3

y = 3z − 6

y = −5z +10
7

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪
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to get 

	

3 3z − 6( ) = 1⋅(−2x − z + 4)

y = 3z − 6

7 3z − 6( ) = 1⋅(−5z +10)

⎧

⎨
⎪

⎩
⎪
⎪

or, by multiplying both sides of the first and third equation by –1 (distributing 
that –1 through the parentheses) and collecting variables, we have 

	

2 ⋅1− 0 ⋅3( )x + 1⋅1−3 ⋅ −3( )( )z = 1⋅4 −3 ⋅ −6( )
y = 3z − 6

1⋅5−7 ⋅ −3( )( )z = 1⋅10−7 ⋅ −6( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

or, by recognizing the coefficients as determinants of 2 × 2 matrices, we have 

	

2 3
0 1

x − 3 1
1 −3

z = − 3 4
1 −6

y −3z = −6

1 −3
7 5

z = 1 −6
7 10

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

or,

	

2x +10z = 22
y −3z = −6

26z = 52

⎧

⎨
⎪

⎩
⎪

Now substituting in for z in both the first and second equation:

	

z = −2x + 22
10

z = −y − 6
−3

z = 52
26

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

So,

	

52 ⋅10 = 26(−2x + 22)

52(−3)= 26(−y − 6)

z = 52
26

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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or,

	

2 10
0 26

x = − 10 22
26 52

1 −3
0 26

y = − −3 −6
26 52

26z = 52

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

or

	

52x = 52
26y = 0

26z = 52

⎧

⎨
⎪

⎩
⎪

from which we can readily see that, as we found earlier, x = 1, y = 0 and z = 2.

Elimination
Now let us solve the same problem using elimination (boxing what is known 
as the pivot). We begin with the equation 

	

2 3 1 4

1 2 −1 −1
−1 2 2 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

and see that we should replace the second row (R2) by twice row 2 minus row 
1 (2 × R2 – R1) and the third row (R3) by twice row three minus negative one 
times row one (2 × R3 – (–1)R1). Of course, 2 × R3 – (–1)R1 = 2 × R3 + R1, but 
the formulation we use is more algorithmic in that it allows for easy adaptation 
to a different problem by replacing 2 and –1 by appropriate numbers taken 
from the matrix for that problem. So the new row two is 

	

(2 ⋅1−1⋅2) (2 ⋅2−1⋅3) (2 ⋅(−1)−1⋅1) (2 ⋅(−1)−1⋅4)( )
= 0

2 3
1 2

2 1
1 −1

2 4
1 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

and the new row three is

	

(2 ⋅(−1)−(−1)⋅2) (2 ⋅2−(−1)⋅3) (2 ⋅2−(−1)⋅1) (2 ⋅3−(−1)⋅4)( )
= 0

2 3
−1 2

2 1
−1 2

2 4
−1 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.
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So we have 

	

2 3 1

1 2 −1
−1 2 2

4
−1
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 3 1

0
2 3
1 2

2 1
1 −1

0
2 3
−1 2

2 1
−1 2

4

2 4
1 −1

2 4
−1 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
2 3 1 4

0 1 −3 −6

0 7 5 10

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Now using the boxed 1 as the pivot we want to replace R3 by (1 × R3 – 7 × R2) 
and (optionally if back-substitution will be used) R1 by (1 × R1 – 3 × R2), i.e., 
the new R3 are R1 are

	

R1= (1⋅2− 0 ⋅3) (1⋅3−3 ⋅1) (1⋅1−(−3)⋅3) (1⋅4 −(−6)⋅3)( )
= − 2 3

0 1
0

3 1
1 −3

3 4
1 −6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

and 

	

R3 = (1⋅0− 0 ⋅7) (1⋅7 −7 ⋅1) (1⋅5−7 ⋅(−3)) (1⋅10−7 ⋅(−6))( )
= − 0 1

0 7
0

1 −3
7 5

1 −6
7 10

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

giving

	

2 3 1
0 1 −3
0 7 5

4
−6
10

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

2 3
0 1

0 − 3 1
1 −3

0 1 −3

0 0
1 −3
7 5

− 3 4
1 −6

−6

1 −6
7 10

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
2 0 10
0 1 −3

0 0 26

22
−6
52

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

While at this point we could solve using back substitution, we can also use 
the boxed value as the pivot we can replace R1 with (26 × R1 – 10 × R3) and 
R2 with (26 × R2 – (–3) × R3) giving the new rows:

	

R1= − (26 ⋅2− 0 ⋅10) 0 (26 ⋅10−10 ⋅26) (26 ⋅22−10 ⋅52)( )
= − 2 10

0 26
− 0 10

0 26
0 − 10 22

26 52

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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R2 = − (26 ⋅0−(−3)⋅0) −(26 ⋅1−(−3)⋅0) 0 −(26 ⋅(−6)−(−3)⋅52)( )
= − 0 −3

0 26
− 1 −3

0 26
0 − −3 −6

26 52

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

giving

2 0 10
0 1 −3

0 0 26

22
−6
52

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 10
0 26

0 0

0
1 −3
0 26

0

0 0 26

− 10 22
26 52

− −3 −6
26 52

52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
52 0 0
0 26 0
0 0 26

52
0
52

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

from which we can again see that x = 1, y = 0 and z = 2.

Comments on the two methods and a change of the 
point of view

Both of the above methods yield the following calculation in matrix notation:

2 3 1

1 2 −1
−1 2 2

4
−1
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 3 1

0
2 3
1 2

2 1
1 −1

0
2 3
−1 2

2 1
−1 2

4

2 4
1 −1

2 4
−1 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

which is equal to 

2 3 1

0 1 −3

0 7 5

4
−6
10

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 3 1
0 1 −3

0 0
1 −3
7 5

4
−6

1 −6
7 10

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
2 3 1
0 1 −3
0 0 26

4
−6
52

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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or

	

2 3 1

0 1 −3

0 7 5

4
−6
10

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 3
0 1

0 − 3 1
1 −3

0 1 −3

0 0
1 −3
7 5

− 3 4
1 −6

−6

1 −6
7 10

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
2 0 10
0 1 −3
0 0 26

22
−6
52

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

which can be written as

	

2 0 10
0 1 −3

0 0 26

22
−6
52

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 10
0 26

0 0

0
1 −3
0 26

0

0 0 26

− 10 22
26 52

− −3 −6
26 52

52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
52 0 0
0 26 0
0 0 26

52
0
52

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

from which we can again see that x = 1, y = 0 and z = 2.

The points of view of the methods of substitution and elimination are 
different (that is to say that thought processes are different). The substitution 
point of view involves a fair amount of algebraic manipulations to proceed 
from one step to another (and the augmented matrix formulation is unnatural 
using this approach), the elimination point of view involves dealing with adding 
multiples of vectors to each other in order to form the next augmented matrix 
(which is often done on the side). But in both cases the outcome of each step 
can be written simply by replacing certain elements of the augmented matrix 
with 2 × 2 determinants which are formed by using ‘submatrices’ and minus 
signs according to where the pivot is in relation to the opposite corner of 
the submatrix (the ‘counter pivot’). The sign situation is summarised in the 
following diagram where the pivot is in the centre and the plus or minus signs 
are the locations of the counter pivot:

	

+ * −
* pivot *

− * +

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

It should also be noted that there is some freedom in choosing pivots 
(which variables to substitute or which columns to ‘wipe out’) and they should 
be chosen in order that they not be zero (for then there is a division by zero 
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or a non-invertible row replacement, in the substitution and elimination views, 
respectively).

Example 1
Here is another example where different pivots are used.

	

0 −1 1

2 1 −1

2 0 −2

1
1
−2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−2 0 0
2 1 −1

2 2 0

−2
1
4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−4 0 0

2 0 −2
2 2 0

−4
−2
4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−4 0 0
0 0 8
0 −8 0

−4
16
−8

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

which leads to x = 1, y = 1, and z = 2.
Note: This procedure works for any size system of linear equations and can 

be used to solve equations of the form Ax = b for various b simultaneously; 
therefore it can easily be used to compute the inverse of a matrix (by starting 
with the identity on the right side of the dotted line).

Determinants
Note that a determinant can be computed by using row operations, that is, by 
elimination. This procedure is based on the transformations described above 
and the following properties of determinants: 

•	 a ⋅ A = A '  (or A = 1
a

A ' ), where the ith row has been replaced by a times 
the ith row plus b times the jth row. 

•
	

a *
0 A '

= a ⋅ A '

•	 A = − A '  if A' is obtained from A by exchanging two adjacent rows or 
columns. 

So the determinant of the matrix 

	

2 3 1
1 2 −1
−1 2 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

can be computed by using the exact same procedure as above with the 
adjustments coming from the three changes above of which, in this case, only 
the first two are used (the third point is used when other pivots are chosen as 
we will demonstrate with examples below). We perform the calculation here:
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det

2 3 1

1 2 −1
−1 2 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
1
22 det

2 3 1

0
2 3
1 2

2 1
1 −1

0
2 3
−1 2

2 1
−1 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 1
22 det

2 3 1

0 1 −3

0 7 5

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Now we will use the 1 as a pivot, but since the determinant of a triangular 
matrix is as easy to compute as that of a diagonal matrix, we will only apply the 
operation with the pivot to row 3:

	

1
22 det

2 3 1

0 1 −3

0 7 5

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 1

22

1
11 det

2 3 1

0 1 −3

0 0
1 −3
7 5

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= 1
22

1
11 det

2 3 1
0 1 −3
0 0 26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 2
22

1
11 ⋅26 = 13

Generally, the determinant of an n × n matrix A = (aij) with a11 ≠ 0 can be 
written as the reciprocal of a11

n–2 times the determinant of an (n – 1) × (n – 1) 
matrix thusly: 

	
det(A)=

1
a11

n−2 det(A ')

where A' is an (n – 1) × (n – 1) matrix whose ijth entry is

	

det
a11 a1, j+1

ai+1,1 ai+1, j+1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The pivot (which in the above case is a11) may also be taken to be in the 
kl-position, provided that number is not zero, in which case the above 
formulation is that 

	

det(A)=
(−1)row+column of pivot

akl
n−2 det(A ')

where A' is an (n – 1) × (n – 1) matrix whose entries are |aklaij – akjail|,  
i ≠ k and j ≠ l, arranged in the same order as the subscripts ij appear in the 
matrix (since i ≠ k and j ≠ l there is one less row and one less column in A' than 
in A). Note that aklaij – akjail is plus or minus (depending on the relationship 
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between kl and ij) the determinant of a ‘sub-matrix’. This method is known 
as Chio’s pivotal condensation method, though according to Howard Eves, 
there are traces of the method in an earlier paper by Hermite (see Eves, 1966, 
p. 129). It is likely that it has been discovered a number of times. 

We give a few more examples to illustrate the procedure (using different 
pivots which are boxed).

Example 2
This example demonstrates why a (–1) shows up when using some pivot values 
(note the column swap needed to put the matrix in diagonal form).

	

2 3 1

3 2 −1
1 −2 1

= 1
32

2 3 1
5 0 −5
7 0 5

=(−1)⋅ 1
32

3 2 1

0 5 −5

0 7 5

where we have swapped the first two rows to avoid a non-zero pivot. Continuing,

	

=(−1)⋅ 1
32

1
51 ⋅

3 2 1
0 5 −5
0 0 60

=(−1)⋅ 3
32

5
51 ⋅60 =(−1)⋅ 1

31

1
50 ⋅60 = −20

Example 3
This is an example using a larger matrix.

	

det

2 1 0 1 1

1 1 1 1 1
2 0 2 0 2
0 1 3 3 0
0 0 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=
1
23 det

1 2 1 1

−2 4 −2 2
2 6 6 0
0 2 −2 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1
23

1
12 det

8 0 4

2 4 −2
2 −2 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
1
23

1
12

1
81 det

32 −24
−16 8

⎛

⎝⎜
⎞

⎠⎟

=
1
23

1
12

1
81 82(−2)

= −2
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Example 4
This example uses various choice of pivots. 

	

1 2 1 2 1

−1 1 −2 1 −2

2 1 0 0 −1
0 1 −1 1 1
1 1 1 1 1

=
−1

(−2)3

−1 −5 −5 0

−4 −2 0 2

−1 −1 −1 −4
−1 −3 −3 0

=
−1

(−2)322

−2 −10 −10

−14 −10 −2
−2 −6 −6

=
−1

(−2)322

(−1)1+1

(−2)3−2
−120 −136
−8 −8

=
−1

(−2)322(−2)
8(−16)

= 2

One variation of the method includes the application of the property of 
determinants: |A| = a|A'| if A' is obtained by A by dividing every member of 
one row or column by a. For example, during the previous computation we 
could have proceeded from the second line as follows: 

Example 4b

	

=
−1

(−2)3

1
22

−2 −10 −10

−14 −10 −2
−2 −6 −6

=
−1

(−2)322 (−2)3

1 5 5

7 5 1
1 3 3

=
−1
22

(−1)1+1

13−2
−30 −34
−2 −2

=
−1
22 2 ⋅(−4)

= 2

This method of computing determinants by hand has its advantages. As 
an illustration of one advantage, it should be noted however that in the 3 × 3 
determinant above, there a multiplier that can not be ‘gotten rid of’ in the 
same way as the (–2)3. Similarly, in Example 2, the multiplier of 1/3 could 
not be cancelled by using the properties of determinants. So the fact that our 
final answer is an integer is encouraging. If we had made a mistake along the 
way, we may have arrived at a non-integer answer and been forced to admit 
our mistake!
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Cramer’s rule

Let us now discover Cramer’s rule in the context of an example. Consider the 
solution to the same equation as before:

	

2 3 1 4

1 2 −1 −1
−1 2 2 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

We can solve this for z by putting in triangular form:

	

2 3 1 4

1 2 −1 −1
−1 2 2 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 3 1 4

0 1 −3 −6

0 7 5 10

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 3 1 4
0 1 −3 −6
0 0 26 52

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

So we find that z = 52/26. But the operations on the third and fourth column 
were identical and the same as the operations used to find the determinant of 
the matrix as described in the previous section. That is to say that

	

2 3 1
1 2 −1
−1 2 2

= K ⋅2 ⋅1⋅26

where K is a number depending on the pivots and their locations. But

	

2 3 4
1 2 −1
−1 2 3

= K ⋅2 ⋅1⋅52

for the same K. Therefore 

	

z = 52
26

= K ⋅2 ⋅1⋅52
K ⋅2 ⋅1⋅26

=

2 3 4
1 2 −1
−1 2 3

2 3 1
1 2 −1
−1 2 2

which is what Cramer’s rule says. 

Rearranging columns we see that

	

1 3 2 4

−1 2 1 −1
2 2 −1 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1 3 2 4

0 5 3 3

0 −4 −5 −5

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1 3 2 4

0 5 3 3

0 0 −13 −13

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

So, by the same argument 
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x = −13
−13

= K '⋅1⋅5 ⋅(−13)
K '⋅1⋅5 ⋅(−13)

=

1 3 4
−1 2 −1
2 2 3

1 3 2
−1 2 1
2 2 −1

=

4 3 1
−1 2 −1
3 2 3

2 3 1
1 2 −1
−1 2 3

And finally:

2 1 3 4

1 −1 2 −1
−1 2 2 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 1 3 4

0 −3 2 −6

0 5 7 10

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

2 1 3 4
0 −3 2 −6
0 0 −31 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

So,

y = 0
−31

= ′′K ⋅2 ⋅(−3)⋅0
′′K ⋅2 ⋅(−3)⋅(−31)

=

2 1 4
1 −1 −1
−1 2 3

2 1 3
1 −1 2
−1 2 2

=

2 4 1
1 −1 −1
−1 3 2

2 3 1
1 2 −1
−1 2 2

Conclusion

We have shown in the context of an example that the methods of substitution 
and elimination for solving systems of linear equations lead to the same 
computation, though through different thought processes. If we adjust the 
point of view still again to a component-wise computation, the calculations 
become simpler (no side-work is needed). This directly leads to the discovery 
of what is known as Chio’s pivotal condensation process for computing 
determinants and Cramer’s rule.
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