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Introduction

In Liping Ma’s 1999 seminal work, Knowing and Teaching Elementary 
Mathematics, the author discusses a facet of teaching that relies on both 

content knowledge and attitudes toward mathematics, namely, exploring 
a student conjecture: as the perimeter of a closed figure increases, so too 
must the area. USA teacher responses to the conjecture were largely non-
mathematical—blindly accepting the claim as true or deferring mathematical 
inquiry by expressing intentions to “look it up” or ask a more knowledgeable 
colleague. By contrast, Chinese teacher responses were largely mathematical, 
exemplifying what Ma termed four levels of understanding: (L1) disproving 
the claim, (L2) exploring possibilities, (L3) clarifying conditions, and (L4) 
explaining the conditions. These teachers had not been exposed to much 
content beyond elementary algebra and geometry, and yet provided arguments 
and justifications much like mathematicians would.

Ten years after the first publication of Knowing and Teaching Elementary 
Mathematics, the National Governors’ Association in the US set about a 
collaborative effort among the states to create what is now known as the 
Common Core State Standards in Mathematics, including a set of eight standards 
of mathematical practice, one of which is to “construct viable arguments and 
critique the reasoning of others” (CCSSM, 2014). This standard places a high 
demand on teachers—to not only foster rigorous thinking, but to develop in 
their students the process of questioning, exploring and evaluating possibilities, 
forming conjectures, piecing together arguments to prove conjectures—a 
special type of investigation usually termed “mathematical inquiry.” Must 
not the teacher be in possession of this ability first? Liping Ma concludes her 
chapter “Exploring New Knowledge” with: “Yet my assumption is that only 
teachers who are acculturated to mathematics can foster their students’ ability 
to conduct mathematical inquiry. To foster such an ability in their students, 
the teachers must have it first” (Ma, 1999).
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In this short paper we describe a project inspired by Ma’s “Exploring New 
Knowledge” in which future 7–12 grade mathematics teachers enrolled in a 
fall 2013 capstone course at a typical regional state university were assigned 
fictitious student conjectures. These future teachers (all current high school 
mathematics teachers) were classified as undergraduate mathematics majors 
with a concentration in mathematics education. The goal of the capstone 
course was for future teachers to connect the key ideas in middle school and 
high school mathematics with the higher-level mathematics studied in college 
courses through explorations, laboratory activities, technology and service-
learning experiences, and ideally the course runs immediately prior to the 
final semester of student teaching. We mention that the Conference Board of 
the Mathematical Sciences, an umbrella organisation of sixteen professional 
societies including the American Mathematical Society, the Mathematical 
Association of America, and the National Council of Teachers of Mathematics, 
recommends “9 semester-hours explicitly focused on high school mathematics 
from an advanced standpoint” (AMS, 2012).

Here are the conjectures:  
C1.	 The classical proof (Euclid) that 2 is irrational can be used to prove 

that the square root of any whole number that is not a perfect square is 
irrational.

C2.	 I have discovered a characterisation for kites: A quadrilateral is a kite if 
and only if the area of the quadrilateral is 1

2
 times the product of the 

lengths of the two diagonals. 
C3.	 We learned that SSS is a congruence property for triangles. I think that 

SSSS is a congruence property for quadrilaterals.
The candidates read Ma’s chapter on exploring new knowledge, discussed 

the four levels of understanding outlined therein, and then were charged with 
writing and then orally presenting a response to an assigned conjecture to their 
classmates. What can be expected when mathematics majors concentrating 
in math education are given such tasks? We discuss the responses in the 
following sections and draw the conclusion that such activities are necessary 
to illuminate the mathematical process of inquiry, argument, and critique in a 
setting that is relevant to prospective teachers, and, moreover, prove useful in 
measuring the mathematical confidence and attitudes toward mathematical 
inquiry possessed by these future teachers. All names in what follows are 
pseudonyms. 
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Responses to C1 

Malia first sketched the classical proof for the irrationality of 2 , familiar 
from here previous coursework in discrete mathematics: 

Suppose, by way of contradiction, that 2  is rational and thus can be written 
as a fraction in reduced form:

	
2 = p

q  
with gcd(p, q) = 1.

 

Then,
	

2 = p2

q 2 ⇒ p2 = 2q 2 ⇒ 2 | p2

and thus 2 | p by a lemma from number theory. This in turn implies 4 | 2q2, 
or 2 | q2, and thus 2 | q. But 2 | p and 2 | q contradicts our assumption that  
gcd(p, q) = 1. 

Malia’s notation “2 | p” means that 2 divides p, that is, 2 is a factor of p. Also, 
the “lemma from number theory” references the fact that if p2is even, then p is 
even. Malia then tested the proof for 6 , ultimately identifying the necessity 
of a lemma that 6 | p2 ⇒ 6 | p. Convinced of this lemma, Malia was satisfied 
that Euclid’s argument demonstrated the irrationality of 6 . However, the 
necessity of n | p2 ⇒ n | p for n other than 2 or 6 gave her pause, and indeed 
chose n = 12 to demonstrate that the lemma is false in general: “12 | 62 but 
12∤6.” 

Again, Malia:

Although it is certainly true that n  is irrational (for n not a perfect 
square), the technique of Euclid’s proof only demonstrates this fact for those 
n for which we have the lemma n | p2 ⇒ n | p, p ∈ .

Up to this point, Malia had disproved the claim (L1), identified the 
possibilities (L2), and was beginning to clarify the conditions (L3). The 
remaining discourse rose to level four.

Define a natural number n to be thin if the standard prime decomposition 
for n = p1

k1 ⋅ p2
k2 ⋅ p3

k3…pl
kl  has ki = 1 for i = 1, 2, 3 … l, that is, n is a product 

of distinct primes, each occurring only once. For example, 6 = 2 ∙ 3 and  
30 = 2 ∙ 3 ∙ 5 are thin, but 12 = 22 ∙ 3 is not.

We mention that Malia’s definition for a “thin number” was non-standard—
mathematical texts would instead use the phrase, “Let n be a product of 
distinct primes.” Finally, Malia wrote a proof that n | p2 ⇒ n | p for thin n and 
concluded that for thin n Euclid’s proof shows n  is irrational.
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Carrie responded to the same conjecture, similarly demonstrating that the 
critical part of the proof, n | p2 ⇒ n | p, does not always hold. This future 
teacher quoted a theorem from number theory that maintained the truth of 
n | p2 ⇒ n | p for n a prime number and concluded that Euclid’s proof can be 
used to show n  is irrational for n a prime. At this point Carrie abandoned 
Euclid’s proof and instead described a different proof of the irrationality of 

2  she had encountered in a previous number theory course which, when 
extended to n , examined the prime factorisation of n and, in particular, a 
prime divisor a of n so that the maximum power k for which ak | n was odd. 
In this case p2 = nq2 produces a contradiction of an even maximal power of a 
on the left hand side of the equation, yet an odd maximal power on the right 
hand side.

Assume 6  is rational. Then

	
6 = c

d

for some c and d which are relatively prime. Then we can square both sides 
and obtain 

	
6 = c × c

d ×d

If we multiply both sides by d × d we get 6 ∙ d ∙ d = c ∙ c. So 6 ∙ d ∙ d is a 
different form of c ∙ c. Since every composite number can be written uniquely 
as a product of primes, we write 6 as 2 ∙ 3 and now count how many times 
2 appears in the equation 6 ∙ d ∙ d = c ∙ c. On the left, 2 appears once in 
the prime decomposition of 6, k times (let us say) in the decomposition of 
d, and another k times in the second d factor, for a total of 2k + 1times—
an odd number of times. On the right hand side, 2 appears m times (let us 
say) in the prime decomposition of c, and another m times in the second c 
factor, for a total of 2m times—an even number. By the uniqueness of prime 
decompositions, this is a contradiction since the power of 2 cannot be both an 
odd and an even number.

Carrie thus concluded that this proof for the irrationality of 2  could 
indeed be generalised to show the irrationality of n  for all n with some odd 
powered prime p in the prime decomposition for n, which she then rigorously 
demonstrated was all non-perfect squares. 

Both Malia’s and Carrie’s responses to C1 were mathematically mature 
and went well beyond merely disproving the conjecture (L1). Malia 
discovered exactly which natural numbers were amenable to Euclid’s proof 
for irrationality; Carrie proved that Euclid’s proof carried through for primes, 
but then reinterpreted the conjecture as a challenge to find a proof for 
irrationality that would work for all non-square integers. 
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Responses to C2

Future teacher Haylee was assigned C2—the equivalence of a quadrilateral 
Q being a kite and the area for Q being half the product of the lengths for 
the diagonals. Haylee maintained that the conjecture was true, constructing 
an incorrect proof of necessity and offering no discussion of the converse. 
(Note that the converse is indeed false.) First, Haylee assumed, rather than 
proved, that the diagonals of a kite are perpendicular—a necessary step in 
order to prove that a kite does indeed have the desired area formula. It was 
unclear to Haylee as to what properties of a kite she could use without proof, 
and this confusion could be traced to the fact that Haylee never articulated a 
definition for a kite—a quadrilateral with two pairs of congruent adjacent sides. 
Furthermore, Haylee merely verified the formula for a particular example, as 
shown in Figure 1, failing to extend her reasoning to the general case:

Area of kite is 
1
2

 ∙ 4 ∙ 3 + 
1
2

 ∙ 4 ∙ 7 = 20. 

And, 
1
2

 ∙ d1 ∙ d2 = 
1
2

 ∙ 10 ∙ 4 = 20.

3

7

4

Figure 1. Hayley verifies the formula for a special case.

Finally, Haylee never considered the possibility of kites that are not convex 
and the question as to whether the area formula still holds true. (It does.)

By contrast, Kelsey constructed a careful argument that the diagonals for a 
kite are indeed perpendicular, but also assumed convexity (see Figure 2). She 
demonstrated the congruence of triangles ABD and ACD by SSS, and then 
triangles ABE and ACE by SAS in order to conclude the supplementary angles 

∠AEB and ∠AEC are congruent and therefore right. The area formula then 
followed from the area of the triangles ABD and ACD as half the base times 
the height.

A

B

D

CE

Figure 2. Kelsey’s diagram.
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Kelsey focused on this key property of perpendicular diagonals. She was 
able to construct counterexamples to the converse implication by starting 
with two perpendicular segments (the diagonals) and then completing to a 
(convex) quadrilateral Q for which A = 1

2
 ∙ d1 ∙ d2, but clearly was not a kite, as 

shown in Figure 3.

d1 ⊥ d2 Q with d1 ⊥ d2 and therefore A = 
1
2

d1 d2

Figure 3. Kelsey’s counterexample for the converse implication.

Kelsey had thus disproved the claim (L1) and was beginning to examine 
conditions (L2). This is where she stopped. Kelsey did not independently 
pursue a true characterisation for kites (for example, d1 a perpendicular 
bisector for d2), nor addressed the concave kites.  

Malia and Carrie had recently completed a number theory course. Haylee 
and Kelsey had not recently completed a geometry course, and perhaps a 
lack of confidence in relevant content knowledge contributed to their limited 
responses. More importantly however, Candidate Haylee’s written response 
and oral presentation clearly revealed a limited appreciation for the role of 
mathematical inquiry in the classroom—much like the US teachers in Ma’s 
study. For Haylee, mathematical inquiry simply was not an integral part of 
school mathematics, especially when compared to using formulas and 
performing computations. 

Response to C3

Darren was assigned the third conjecture, which was also geometric in nature. 
From the outset Darren was confounded by the conjecture and could not 
take any type of initial investigative step. The instructor introduced Geostrips—
plastic strips of various lengths that can be joined together at the ends by using 
paper fasteners to produce various polygons. Darren discovered the rigidity 
of triangles and the flexing of polygons with more than three sides, and 
ultimately disproved the conjecture that SSSS is a congruence property for 
quadrilaterals. Darren used four Geostrips to construct a quadrilateral Q1 which 
then flexed to produce a second quadrilateral Q2 with the same four sides as 
Q1, but with different internal angles—two non-congruent quadrilaterals. 

If we call my original quadrilateral ABCD, and then compare it to my new 

quadrilateral A'B'C'D', which is just ABCD flexed to produce different angles, 
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we have SSSS: AB ≅ A 'B ', BC ≅ B 'C ', CD ≅C 'D ', DA ≅ D 'A ' . But the two 

quadrilaterals are not congruent because the angles do not match.

Figure 4. Darren’s use of Geostrips to explore SSSS.

Darren’s presentation was well-organised, providing the Common Core 
definition for congruence, illustrating examples where SSS is used in high 
school mathematics, and ultimately focused on the key “flexing” property 
which led to an interesting discussion on possible flexing for polyhedral 
surfaces. Yet, Darren did not attempt to refine C3 to a conjecture that would 
indeed lead to a congruence property for quadrilaterals (SASSS?). Convexity 
was mentioned in passing, but not used to restate the conjecture or produce 
cases in a proof. In short, Darren provided a L2 response.

Conclusion

The responses to the student conjectures were varied with respect to Ma’s 
L1—L4. All candidates had successfully completed courses in calculus, linear 
algebra, abstract algebra, and other upper level mathematics courses, and 
yet only some candidates seemed to exhibit the instincts and qualities that 
characterise mathematicians when confronted with new knowledge. Indeed, 
the desire and ability to resolve new student conjectures to complete and 
intellectually satisfying solutions do not evidently develop from content 
knowledge alone. Likewise, acculturation to mathematics, in particular, 
recognising that mathematical inquiry is an integral part of mathematics, 
seemingly does not occur automatically from successful completion of upper 
level mathematics courses. Subsequently, inquiry and critique should be 
addressed directly, by reading studies such as Ma’s and active participation in 
exploring mathematical conjectures whose content can be found in school 
mathematics.

The activity discussed in this paper will be extended in several ways. 
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•	 Future teachers responding to C2 and those responding to C3 will 
collaborate on discovering relationships between their findings. For 
example, since SSSS is not a congruence property for quadrilaterals, no 
area formula for a kite given solely in terms of the lengths of the four sides 
is possible.

•	 A second round of student conjectures will follow the first to gauge possible 
changes in attitudes toward mathematical inquiry.

•	 Future teachers enrolled in the course will collaboratively construct a 
scoring rubric for this activity. 

•	 The critical responses from one future teacher to another will be the 
subject of analysis. 

•	 Follow-up interviews and visits with current teachers who took part in 
the course will be conducted in order to measure the degree to which 
mathematical inquiry is a part of their classrooms. 
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