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Vince Wright makes a convincing 

argument for presenting children 

with a different ‘prototype’ of a 

fraction to the typical one-half. 

Consider how the prototype that 

Wright mentions may be applied 

to a variety of fraction concepts. 

We are sure that you will never 

look at a doughnut in quite the 

same way.

Introduction

When you think of a prototype, an image of 
some innovatively designed communication 
device, automobile or aeroplane probably 
appears. It is the first of its kind, the prime 
example from which all other similar 
examples are copied. However, in psychology, 
prototypes are single, typical examples of a 
concept that embody the key features. Along 
with rules and trusted solutions, prototypes 
are important tools for generalisation that 
help us to see similar properties in different 
situations (Mancy, 2010). We give names to 
these examples, using words and symbols, so 
we can talk about them.

In the aviation or motor industry a huge 
amount of effort goes into creating prototypes 
that have the required functionality. A 
prototypical Concorde that flies faster than 
the speed of sound but is blown around 
like a beach ball in strong winds and has 
uncomfortable passenger seats will not fly 
(so to speak). In learning, prototypes give 
you a way to chunk together a whole lot 
of information and process it as a single 
artefact. Compression of many features into 
one example helps you to free memory 
resources (Bransford, Brown & Cocking, 
2000; Fauconnier & Turner, 2008; Gray & 
Tall, 2007). 

While prototypes are powerful thinking 
tools, compression comes with consequence. 
Prototypes also restrict the way in which you 
view situations. For example, students often 
possess a prototypical triangle, the upward 
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facing equilateral triangle. This inhibits their 
ability to classify other three-sided polygons 
as triangles and to work with other properties 
of triangles such as angles and symmetry.

Ask your students to write down the first 
fraction that enters their head and draw some 
picture of it. I have strong anecdotal evidence 
that most students record something like this:

 

Figure 1. Prototype of one-half.

Ask your students to explain the meaning of 
(in Figure 1) the symbols one and two and 
most will say, “One out of two.” Gould (2005) 
reminds us that this part–whole prototype 
involves two whole number counts which may 
limit the ability of students to consider one-
half as a single quantity. Given license, your 
students will draw a variety of representations, 
including lengths, areas, clocks, sets and 
number lines. The sad fact is that one-half 
is such a poor prototype that Kath Hart 
described it as “an honorary whole number” 
(Hart et al., 1981). The pizza is a perfectly 
reasonable representation of one-half but it is 
also an unhelpful prototype. Try using a pizza 
model to decide which fraction, two-thirds or 
five-sevenths, is larger (no protractors and 
calculators allowed). Dividing a circle model 
into equal pieces accurately enough to solve 
the problem is difficult.

Multi-functioning prototypes

An advertisement for a new model of car will 
be very unlikely to boast that the vehicle just 
moves. Saying one-half is “one out of two” is 
a bit like that. The television commercial will 
likely describe how the car accelerates like a 
hungry cheetah, offers sofa-like comfort and 
has style that makes other drivers envious. 
A fraction prototype should have multiple 
features as well. You owe a lot to previous 
fraction prototype designers for the modern 

improvements you now take for granted 
(Kieren, 1993; Post, Behr, Lesh & Wachsmuth, 
1986; Streefland, 1993).

Let us introduce the stunning six-tenths 
as an alternative prototype and describe its 
features. It is a multi-functioning fraction with 
excellent optional features to suit different 
conditions.

The measurement feature
Measurement is the basic multi-purpose 
mode since it expresses a fraction as a 
number. The measurement feature is ideal 
in situations like creating a number line 
where one is fixed.  Many young fraction 
drivers, like your students, do not realise the 
ubiquitous ‘whole’ for all fractions is actually 
the number one (Yoshida & Sawano, 2002). 
Suppose you have a length of paper. The 
beginning of the strip marks zero and the 
end of the strip marks one. Where is six-
tenths, our prototypical fraction? 

First, you need to find one-tenth; then 
count six of measures of one-tenth. So 6

10 
is short-hand for 1

10 + 1
10 + 1

10 + 1
10   + 1

10 + 1
10 . 

This is a useful addition to the simplistic ‘out 
of’ feature since it helps us make sense of 
improper fractions like thirteen-tenths.

6
10

10

Figure 2. Paper strip model for six-tenths
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Finding one-fifth of one-half produces the 
same equally-sized piece as finding one-half 
of one-fifth. You could write this as 2

1  × 5
1  = 

5
1  × 2

1 which looks familiar as it involves the 
same commutative property of multiplication 
as 4 × 3 = 3 × 4. It is nice when the features 
of a prototype for one object, like whole 
number, mirror those of different objects, 
like fractional numbers. There is less new 
stuff for you to learn. Another interesting 
thing is that you get the same result only if 
you measure the same attribute (feature). 
If you fold the strip attending to area, not 
length, you can get this model of six-tenths 
(Figure 3). Different models are useful for 
different purposes. Your prototype needs to 
be versatile enough to meet these demands.

Figure 3. Area model of six-tenths.

 
The measure feature also allows us to change 
the appearance of six-tenths while retaining 
all of its other characteristics, especially its 
size. So you can rename six-tenths to suit 
your mood. Firstly, there are literally an 
infinite number of fraction names for it. For 
example, if you combine tenths in lots of two 
you get three-fifths. If you split tenths in half, 
six-tenths becomes twelve-twentieths.

If a fraction does not spin your wheels 
(pun intended) then you can change your 
prototype’s appearance to a percentage (60%) 
or a decimal (0.6). These appearances are 
very handy for shopping sprees and ordering 
materials that are sized in metres, kilograms, 
litres and other measurement units. But do 
not let appearances be deceiving: you will still 
have your six-tenths, since sixty-hundredths 
(60%) is an equivalent fraction and “point 
six” just means six-tenths.

The operator feature
A fraction prototype, like a car, may look 
pretty but can it handle interactions with 
other numbers? Ferraris may be great sports 
cars but try using one to jump start another 
vehicle, let alone tow a caravan or trailer, 
and Hummers can be impressive except 
in crowded traffic. Fractions act on other 
numbers and six-tenths is no exception. 
Suppose you want to find six-tenths of $40. 
You know from the measurement feature that 
six-tenths is ‘six lots of one-tenth’. You also 
know that multiplication is the ‘of’ function, 
like 4 × 7 means “four sets of seven.” So you 
can find one tenth and multiply that by six. 

Sometimes it is easy to forget that your 
prototype will interact with other numbers 
in the same way, no matter what appearance 
it has. Six-tenths of $40 has the same answer 
as 60% of $40 and 0.6 × 40. As an operator, 
your prototypical fraction obeys the same 
rules as more primitive prototypes like whole 
numbers. If it is okay to work out ‘ninety 
sets of six’ as ‘six sets of ninety’, it must be 
okay to find ‘ninety lots of six-tenths’ as ‘six-
tenths of ninety’. The digital display of your 

6
10

6
10

3
5

12
20

1 10 0

Figure 4. Equivalent measures to six-tenths.
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Figure 5. Finding six-tenths of $40.

6 : 4

12 : 8

3 : 2

fraction prototype might express this as 90 × 
6 = 6 × 90 so it follows that 90 × 6

10 = 6
10 × 90.

You often split factors up when you multiply 
whole numbers. Most people find 8 × 23 by 
calculating 8 × 20 and 8 × 3, then adding 
the products. With your six-tenths prototype 
you can do the same. Six-tenths is five-tenths 
(one-half) plus one-tenth, so you could work 
out 6

10 × 90 as 1
2  × 90 + 1

10 × 90. So a fraction
prototype that is worthwhile can partition 
itself into other fractions when it is useful.

The ratio feature
Ratios are all around us: in the mixes for 
weedkiller, cement and paint; the gears 
on bicycles; and the facial dimensions of 
supermodels. It is not that our prototypical 
fraction turns into a ratio. Rather fractions 
are found in ratios in two main ways. Figure 
6 demonstrates two different ratios in which 

Figure 6. Part-whole and comparison ratios.

6 : 4

6 : 10

six-tenths can be found. The ratios are 
different, so six-tenths will represent different 
relationships.

These different types are sometimes called 
part–whole and comparison ratios (Watanabe, 
2002). In the first ratio, six-tenths represents 
the fraction of the whole (ten cubes) that is 
the blue part (six cubes). In the second ratio, 
six-tenths represents what fraction the blue 
quantity is of the yellow quantity. This is a 
subtle variation to the operator feature since 
six-tenths of ten is six ( 6

10 × 10 = 6). When
you mix a fruit cocktail of six parts current 
juice to four parts apple juice you are using 
the part–whole feature. When you notice that 
the length of a supermodel’s nose is about 
six-tenths of the length between the pupils of 
her eyes, you are using a comparison ratio.

As with measures, there are an infinite 
number of ratios that are six-tenths of blue for 
every four-tenths of yellow. These are created 
by repeatedly copying 6:4 or equally dividing 
6:4. This is the only way that flavour, colour, 
density and other characteristics of the ratio 
stay the same. Here are a few examples:

Figure 7. Equivalent ratios to 6:4.
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A clever look at the prototype six-tenths 
in part–whole ratio form shows you the 
equivalent measure feature at work subtly 
under the surface. 3:2 is three-fifths blue, 6:4 
is six-tenths blue and 12:8 is twelve-twentieths 
blue. Note that 3

5 , 6
10   and 12

20 are equivalent
fractions, even though the whole is changing. 

The quotient feature
Just when you thought your prototypical 
six-tenths had exhausted its features, it pulls 
out another very practical application. With 
the outdated whole-number model, sharing 

items can be a problem. Imagine sharing five 
doughnuts equally among two people. Each 
person gets two doughnuts but the remaining 
one doughnut has to be thrown away. It is all 
very wasteful. Of course with fractions the 
remaining one can be cut into halves so each 
person gets two and a half doughnuts. So 
what happens when six doughnuts are shared 
equally among ten people? 

Start by imagining what happens when one 
doughnut is shared equally among ten people. 
It is obvious that each person will get one-tenth 
of the doughnut. That is hardly a mouthful.

Figure 8. Sharing one doughnut among ten people.

If there are six doughnuts and each 
doughnut is cut into tenths, then each person 
gets one-tenth of each doughnut. That is a 
total share for each person of six-tenths of one 
doughnut. You can write this as 6 ÷ 10 = 6

10  , 
where division is being treated as sharing. Like 
most appealing features, the way it works is 
predictable. Imagine three doughnuts shared 
equally among five people. Each person gets 
three-fifths of a doughnut. This can be written 
as 3 ÷ 5 = 3

5  . Imagine 12 doughnuts shared 
among 20 people: 12 ÷ 20 = 12

20   so each person
gets twelve-twentieths of a doughnut. You 
might notice that 3

5  , 
6

10  , and 12
20    are equivalent

fractions. If you look below, you may notice an 
interesting thing about the quotient feature: 
twice as many people sharing twice as many 
doughnuts results in the same sized share for 
each person.  

3 ÷ 5 = 3
5 

6 ÷ 10 = 6
10  

12 ÷ 20 = 12
20  

Looking ahead

So prototypes are not a bad thing. The issue 
is not whether or not you have prototypes 
because humans need to think with prototypes. 
Prototypes allow you to compress key features 
of situations into a single artefact with which 
you can think. The important criterion is the 
sophistication of the prototype. Six-tenths, 
with all its interesting features, is a more 
useful prototype than one-half, seen only as 
a part of a pie. Just like the coal range was 
once a great prototype, our previously useful 
ideas give way to more sophisticated ones 
as the need arises. Who wants to use a coal 
range for cooking when a modern stove or 
microwave is available?

When next you teach fractional number, 
create a chart of your favourite prototypical 
fraction. Concept maps based on a single 
example like six-tenths that can be built on 
and modified are one excellent way to do 
this. You might do this as shared knowledge 
with the whole class or ask each student to 
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create their own chart as an indicator of his 
or her growing understanding. Encourage 
your students to change and add to their chart 
regularly, particularly as they encounter new 
contexts in which their fraction can be used.

For example, consider another situation 
to which six-tenths applies: chance. The 
probability feature is hard to control as you 
never quite know what you are going to get 
(Alatorre & Figueras, 2005). Just when you 
think six-tenths is under control, it goes 
into variability mode. What does six-tenths 
look like as a probability? Here is a spinner 
created using an online applet (Utah State 
University, 2012). There is a six-tenths chance 
of landing on blue when you spin it.

So what actually happens when you spin 
the spinner ten times? Six out of ten times it 
should land on blue, right? Well, yes and no. 
Here are some results:

None of these results are six blue outcomes 
out of ten. If you keep generating samples of 
ten spins and graph the results on a dot plot 
you get a distribution something like this 
(Figure 11). Six-tenths is at the centre but 
there is a lot of variation.

So when they encounter new situations like 
this, students need to adapt the features of 
their prototypical fraction to suit. Managing 
their confidence is a delicate balance between 
having certainty and enabling flexibility. As 
a teacher, you should find ways for your 
students to reveal and share their prototypes. 
Let us get prototypes out of the private 
laboratory of individual student’s minds and 
into the open shared space where they can 
inspire new innovations.

Blue

White

Change Spinner Spin Spins: 10

Figure 9. A spinner that is six-tenths blue.

Figure 10. Four results of ten spins.
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Figure 11. Dotplot of experiments of ten spins.
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