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Introduction

Which statistic would you use if you were 
writing the newspaper headline for the 
following media release: “Tassie’s death rate of 
deaths arising from transport-related injuries 
was 13 per 100,000 people, or 50% higher 
than the national average”? (Martain, 2007). 
The rate “13 per 100,000” sounds very small 
whereas “50% higher” sounds quite large. Most 
people are aware of the tendency to choose 
between reporting data as actual numbers or 
using percentages in order to gain attention. 
Looking at examples like this one can help 
students develop a critical quantitative literacy 
viewpoint when dealing with “authentic 
contexts” (Australian Curriculum, Assessment 
and Reporting Authority [ACARA], 2013a, pp. 
37, 67). 

The importance of the distinction between 
reporting information in raw numbers or 
percentages is not explicitly mentioned in the 
Australian Curriculum: Mathematics (ACARA, 
2013b, p. 42).1 Although the document 
specifically mentions making “connections 
between equivalent fractions, decimals and 
percentages” [ACMNA131] in Year 6, there is 
no mention of the fundamental relationship 
between percentage and the raw numbers 

1   �The activities in this study reinforced the 
Chance descriptors for Year 4 (ACARA, 2013b, 
p. 33) including ordering chances of events, and 
identifying events that cannot happen at the same 
time and events that do not affect each other. They 
also required the recognition of variation in results 
as suggested in the General Capability of Numeracy 
Learning (ACARA, 2013a, p. 46).
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represented in a part–whole fashion. Such 
understanding, however, is fundamental to 
the problem-solving that is the focus of the 
curriculum in Years 6 to 9. The purpose of this 
article is to raise awareness of the opportunities 
to distinguish between the use of raw numbers 
and percentages when comparisons are being 
made in contexts other than the media. It begins 
with the authors’ experiences in the classroom, 
which motivated a search in the literature, 
followed by a suggestion for a follow-up activity.

Context: Exploring probability

As part of a research project on beginning 
inference with Year 4 students, students 
undertook an exploration of the chances of 
getting a head when a normal coin is tossed, 
the expectation of the number of heads in 10 
tosses, and the percentage of heads in larger 
and larger numbers of tosses. The purpose of 
the investigation was to experience variation 
and expectation (Watson, 2005) when they arose 
in the chance context, as a foundation for later 
work drawing informal inferences. Students 
had an expectation of obtaining half heads in a 
number of trials (‘theoretical’ chance of 1

2) but 
experienced much variation from this expectation 
as they carried out small numbers of tosses. After 
conducting some trials ‘by hand’, the software 
TinkerPlots (Konold & Miller, 2011) was used to 
simulate larger and larger numbers of tosses. 
Students recorded their outcomes in tables with 
the number of heads and the percentage of 
heads for each number of tosses in side-by-side 
columns. They were then asked to calculate the 
range of percentage outcomes for simulations 
of size 10, 100 and 1000. Except for one pair of 
students, all groups found a decreasing range 
as the number of trials increased. Students were 
able to write summaries of this observation in 
their workbooks.

A few students, who finished early, were 
asked to plot their results on number lines 
to demonstrate the reduction in range. This 
request resulted in some surprises for the 
authors, such as the student who drew number 
lines for the actual numbers of heads each time. 
Although realising that the scales for the lines 
would be different for 100 and 1000 trials to 
fit on the paper, the result made the outcomes 
look similar, giving an inappropriate impression 

of the reduction in variation (similar to Figure 
1). The first step for the student was confusion 
and then the realisation that numbers reporting 
frequencies do not tell the story: 517 – 463 = 54 
is much bigger than 57 – 43 = 14 — but the 
variation is supposed to be smaller! It is the part 
of the whole that is important, not the actual 
numbers. The student’s second attempt (see 
Figure 2) showed the appropriate percentages 
but the scales were different. When asked why 
the plot did not agree with the reduction in the 
range, the student had an ‘aha’ moment about 
the scale on the plots and proudly produced 
the equivalent of Figure 3.

Figure 1. Number of heads in 100 tosses and 1000 tosses.

Figure 2. Percentage of heads in 100 tosses and 1000 tosses.

Figure 3. Percentage of heads in 100 tosses and 1000 tosses on 
the same scale.

Existing work on percentages

The experience with this student and several 
others led the authors to seek evidence in the 
research literature on the understanding of the 
basic relationship of frequency and percentage, 
and the power of percentages to provide a 
linear order. Of particular interest to us is not 
the reporting of students’ attempts to complete 
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computation tasks related to percentage, but 
the consideration of what percentage actually 
is as a representation when encountered in a 
descriptive context.

There has been much written for teachers 
on proportional reasoning, but much less 
specifically on percentage. The focus of writing 
in the area of percentage, however, appears to 
be on solving problems rather than appreciating 
the basic power of percentage to tell part–
whole stories. Hawera and Taylor (2011), for 
example, consider working out the original 
mass of a product if the new version of the 
product is 20% larger, using a strategy similar 
to that suggested by Dole (2004). Watson and 
Beswick (2009) look in detail at the calculation 
of percentages but also use the percentages to 
order data on salt content of foods on a linear 
scale, with a similar purpose to the use shown in 
Figure 3 displaying variation.

A very useful source for background on 
the power of percentages to convey part–
whole situations is the extensive literature 
review of Parker and Leinhardt (1995). In 
considering students’ difficulties in learning 
about percentage, they explored a number 
of ways in which the concept can be applied. 
Of relevance here is Parker and Leinhardt’s 
consideration of percentage as a number, 
commencing with the number-like extensive 
aspect of quantity, perhaps as a certain quantity 
out of 100. In this sense, percentages can 
be ordered linearly for ease of comparison. 
Percentages can also be added if the context is 
right and if they represent portions of the same 
whole (e.g., some probability tasks). Ordering 
is an important feature in the example we have 

offered due to the need to display the range of 
variation. 

Parker and Leinhardt further examined 
percentage as an intensive quantity, one 
showing a relationship; of importance here, it 
is a part–whole relationship, perhaps embodied 
as a fraction or ratio. Lastly, they described 
percentage as a statistic, with the purpose of 
either reporting a relationship between known 
pieces of data or computing a functional 
expression such as taxes or discounts. It is the 
number-like qualities of ordering and showing 
a part–whole relationship of percentage as a 
statistic that are again a feature in the present 
example. In the remainder of this article, we 
describe another probability activity where this 
notion of percentage plays a key role. 

Further exploration of percentage in a 
probability context

The issue related to percentage that initiated 
this exploration was based in a statistical 
investigation of creating simulations to confirm 
(or otherwise) a theoretical probability model. 
As one increases the number of simulations, 
one expects the outcomes to approach more 
closely the expected probability. Expressed 
another way: as the sample size increases, one 
expects the variation to decrease between the 
relative frequency of the outcomes and the 
theoretical value. 

As an example, Figure 4 shows three 
simulations for tossing a regular six-sided die, 
where one would expect equal numbers for each 
of the six outcomes (a uniform distribution). 

Figure 4. Numbers of outcomes for 30, 300 and 3000 simulations of 6-sided die tosses.
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Figure 5. Percentages of outcomes for 30, 300 and 3000 simulations of six-sided die tosses.

On the left are outcomes for 30 tosses of the 
die; in the centre are outcomes for 300 tosses; 
and on the right, outcomes for 3000 tosses. 
Each of these outcomes, 1 to 6, is labelled 
with the number of times it occurs. Variation 
can hence be seen between the numbers 
of outcomes for 3 and 4, over the three 
simulations: |n(3) – n(4)| = 4 for 30 trials; |n(3) 
– n(4)| = 12 for 300 trials; and |n(3) – n(4)| = 
26 for 3000 trials. Looking at the stacked dots, 
it does appear that they are approaching each 
other in height, but the numerical differences 
are getting further apart.

This can be very confusing for students 
who are likely to claim by looking at the 
numbers that the variation is increasing not 
decreasing. What is, of course, missing from 
the analysis is the transition from a frequency-
count way of comparing the outcomes to a 
relative frequency that acknowledges the part–
whole relationship between the individual 
outcomes and the total number of trials. This 
relationship is encased in a percentage, as 
shown for the same three data sets in Figure 
5. The power of percentage in this context is 
its ability to provide a relative measure that 
can be compared with others, in this context 
to show results of the simulations approaching 
a theoretical value, in this case a difference of 
zero. For example for 30 trials, |%(3) – %(4)| 
= 13%; for 300 trials, |%(3) – %(4)| = 4%; and 
for 3000 trials, |%(3) – %(4)| = 1%.

The conceptual dilemma in this situation 
seems to be the transition to seeing the whole in 
a part-whole relationship as being as important 
as the part. When presented with the results 
as in Figure 5 with the percentage for each 

outcome, the hope is that students will see 
the value of the part–whole representation 
and what it means for the purpose of the 
investigation. Although playing a proportional 
role in representing the relative frequencies, 
the percentages also play an additive role in 
being able to rank the differences linearly 
to observe them approaching the theoretical 
value of 0 based on the probability model. In 
this case, many plots are possible showing the 
decreasing variation as the number of tosses 
increases. Similar to what occurred in Figure 
3, the differences of the percentages of threes 
and fours, for repeated sample sizes of 30, 300, 
and 3000 are shown in Figure 6. Alternatively, 
the results for any one of the six outcomes can 
be followed to approach 17% (approximating 
1
6). Different groups in a class could be given 
one of the six numbers to trace and plot. The 
class could then compare the results.

Figure 6. Difference in the percentages of threes and fours in 10 
simulations of 30, 300 and 3000 tosses of a die.
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Conclusion

The problem that gave rise to this discussion 
was the display of decreasing variation 
with increasing sample size in a statistical 
investigation. Using percentage meaningfully 
was an essential ingredient of success. This led to 
thinking of ways to use probability investigations 
to enhance both the part–whole and additive 
features of percentage. The question then arises 
as to whether other mathematics educators 
have explored this transition and the usefulness 
of percentage itself as comparable measure. 
More examples would be useful for teachers.

Returning to the question at the beginning 
of this paper, being a critical quantitative 
literacy thinker (ACARA, 2013a, p. 67) requires 
questioning of each presentation of either 
raw numbers or percentages. It is likely that 
one representation does not tell the entire 
story without information on the population 
total from which a frequency or a percentage 
is reported. Kluger (2006), in writing about 
people’s understanding and assessment of risk, 
claimed two of the issues were (1) difficulties in 
people’s intuitions in interpreting percentages 
and (2) deliberate stating of numerical values 
rather than percentages by those who want to 
increase perception of hazard (p. 45). Watson 
(2007) explored further the issue of reporting 
frequencies and rates with examples related to 
deaths of elephants and to fatal shark attacks. 
Developing the understanding explored in 
this article may assist students in asking critical 
questions of reports in many contexts.
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