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Consider this: 

An experimental treatment for mildly to moderately depressed patients is tested by 

taking two groups of 15 to the Caribbean. One group swims 4 hours per day for 4 

weeks (the control group) and the other group swims for 4 hours per day for 4 weeks 

with dolphins (the treatment). Ten out of 15 of the dolphin group improve, whereas 

3 out of 15 of the swimming only group improve (Rossman, 2008). 

What could you claim from this experiment and for what population? How certain 

would you be? Why? What types of things are you thinking about to inform your 

decision? What would you like to know more about? What are the big statistical 

ideas in this problem?

This was one of the problems that Grade 10 mathematics 
students were challenged to consider as a part of an action 
research project, where two teachers trialled a statistics and 
probability unit specially developed by the second author. A 
key intent of the five week unit was to help students develop 
conceptual and technical tools to be able to make informal 

inferences (statistical judgments) about whether claims 
based on one sample could be generalised to larger 
populations, and about whether differences in data 
sets were significant or whether the differences might 
have occurred by chance (a random event). Through 
using the TinkerPlots program (Konold & Miller, 2011) 
students could collect samples and create simulations 
that would enable them to develop visual and intuitive 
understandings alongside statistical interpretations. 

The lead teacher was keen to expose her students to 
technical tools that might expand their notion of what 
mathematical inquiry is and liked the way that the unit 
combined ideas of probability and statistics, concerned 
that the normal way of teaching probability was around 
gaming contexts.

Randomness,
sample size,

imagination and  
metacognition

making judgments 
about differences 

in data sets

Informal inference
•	based on evidence 

•	can be generalised to a 
larger population 

•	 gives an estimate of 
certainty.

Random phenomenon 
A phenomenon is called random 
if the outcome of a single 
repetition is uncertain but there is 
nonetheless a regular distribution 
of relative frequencies in a large 
number of repetitions. 

Simple random sample 
A simple random sample of size 
n consists of n units from the 
population chosen in such a way 
that every set of n units has an 
equal chance to be the sample 
actually selected.
(Definitions from Moore and McCabe, 
Introduction to the Practice of Statistics,1993)
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A key challenge of the project was building an understanding of the concept of 
randomness within the activities in such a way that students could draw mean-
ingful conclusions about populations from small samples. The conversations that 
the two teachers and the two researchers had with students problematised the 
existing understandings of what randomness was—it highlighted the range of 
different meanings and contexts, and how and when they are used. As a result 
they became active inquirers into concepts around randomness, realising that 
in building student capacity for inference it was crucial explicitly to develop and 
distinguish different ideas around randomness. 

Based on the activities used with the students, one aim of this article is to 
tease out some of the aspects of randomness that emerged as a result of this 
project that might be useful for other teachers. A metacognitive frame for think-
ing about informal inference is introduced, which takes into account the thinking 
that students were actually engaged in during the unit of work. It was realised 
how important the role of imaginative thinking is in helping students to engage 
with the context, imagine alternative hypotheses, imagine the probability space, 
imagine their data in new ways and imagine whole populations.

Swimming with dolphins

Take a moment to imagine the issues in the dolphin problem. Does it help to 
imagine being there in the Caribbean swimming with dolphins? What might be 
the reasons that swimming with dolphins is a positive experience (special experi-
ence, bonding, dolphins are friendly) and why might it be negative (scary, not 
in control)? Does it help to imagine how the scientists may have designed the 
experiment? Did they select the 30 people randomly from an entire population 
of depressed people, or did they invite people to participate? Would a randomly 
selected sample be representative? How would we know it was representative? 
Would inviting people to participate tend to select people who like dolphins and 
therefore the experiment would be difficult to generalise to a larger population? 
How was the control group of 15 people selected out of the 30 people? Was it done 
randomly and why might this give a fairer test? What constitutes an improve-
ment? How long was the improvement sustained after the tests? 

Chance devices Measurement contexts

Single random outcome

Expect an unpredictable outcome:

•	 Toss of a coin. Could be either head or tail.

•	 Roll of dice. Could be 1, 2, 3, 4, 5, or 6.

Random sample size of 1 from a population

Expect an unpredictable outcome. 

Unknown likelihood to be representative of the 
population.

Small random sample of outcomes 

Expect variation in outcomes from the probability 
model. Repeating these samples will show high varia-
tion between the samples.

Toss a coin 10 times. Might have 7 heads and 3 tails. 
Repeating this five times might have the following 
results: 6/10H, 4/10H, 7/10H, 5/10H, 4/10H.

Small random sample 

Expect that small samples are likely to vary from 
the population. Comparing different small samples 
of the same sample size, each randomly selected 
from a population, will show variation among them.

Large random sample of outcomes 

Expect a pattern to appear reflecting the underlying 
probability model.

•	 1000 coin tosses. Expect percentage of heads to be 
close to 50% (theoretical probability).

•	 1000 dice throws. Expect relative frequency of each 
number to be close to 1/6 (theoretical probability).

Large sample size randomly selected

Expect close agreement with the population. 
Comparing different large random samples will 
show little variation among them.
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Now look at the data: Sixty-seven per cent of people improved when swimming 
with dolphins and 20% of people improved just swimming. This seems to indicate 
that swimming with dolphins does make a difference. But could this result have 
happened by chance? Perhaps it was an extreme random event. The sample is 
very small—only 15 people in each group. In small samples would we expect more 
extreme events? How could we test whether this is the case for these data? 

How many different ways have we considered randomness in this problem? 
What student experience and understanding of randomness are we assuming? 

It is useful to consider randomness in two key mathematical contexts: random-
ness as used in chance devices (where it is theoretically possible to generate infi-
nite populations from single trials), and randomness in measurement contexts 
(where there is a finite population of fixed yet undetermined values that sampling 
aims to discern). How does randomness behave in these different contexts and 
can understanding randomness in one context help to understand it in the other?

Randomness and the long term

A key idea for chance devices is that in the long term (for large 
samples) we will see an emerging pattern of outcomes that reflects 
the underlying theoretical probability model. This is a model that 
can be deduced through imagining all of the possibilities in the 
probability space. Research suggests that as a result of playing 
games few students are likely to believe that in the long term 
random generation ensures fairness (Watson & Moritz, 2003). In the short term 
(or for small samples) there is an unpredictability and it is possible that extreme 
values occur. The result may not appear fair or representative at all. Compare 30 
rolls of a die versus 3000 based on random generation of data in TinkerPlots in 
Figure 1. 

The unusual outcome on 
the left of Figure 1 might lead 
us to believe it was caused as 
a result of a specific interven-
tion (i.e., using a loaded die), 
when in fact it might just be 
a “usual” characteristic of 
randomness—the generation 
of an extreme event. Research 
suggests that students have 

difficulty in discerning between caused and random extreme events generated 
by chance devices (Chiesi & Primi, 2009). Young students for example, seeing 5 
heads in a row might be likely to predict another Head, thinking 
it is a caused pattern, whereas older students might predict a 
Tail because they expect the results to even out, not recognising 
that each toss is an independent event. A typical assumption by 
students is that a large sample of random events will be repli-
cated in a small sample (Watson & Moritz, 2000). It is difficult for 
many to imagine how the sample size might affect the number of 
extreme events that we see. 

Comparison of sample sizes in chance devices

Using simulation we can compare a range of sample sizes to generate random 
data. We toss a coin 10 times to represent a sample size of 10, and compare that 
with 30, 50 and 100 tosses, to represent larger sample sizes (see Figure 2). For 

In the action research 
project students initially 
used ‘random’ as a 
slang word meaning 
‘unexpected’. ‘It is 
random’ meant it  
could be anything.

Students expected 
to see the frequency 
distribution of the die 
to even out in the long 
term, but were surprised 
by how many rolls of 
the die it took.

Figure 1. Outcomes from rolling a die 30 times or 3000 times.
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each one we do this for 1000 trials to get a sense of what the pattern will look 
like in the long term. The plots show the frequency of outcomes for heads. The 
students were interested in seeing how often heads occurred more than 60% of 
the time in each set of samples—these outcomes represented an ‘extreme’ event. 
As the sample size got larger the percentage of extreme events reduced. 

Comparison of sample size for fixed populations

The previous simulation is a very visual demonstration about how sample size in 
the context of chance devices affects the generation of extreme events. We would 
expect a similar trend comparing a range of sample sizes of large finite popula-
tions—the smaller the sample size the greater the chance of extreme events. 

In the following situation we have a known population of 677 
data points. Each data point represents a person who came on 
the First Fleet and the value of the crime for which he or she was 
transported (see Figure 3; data from Watson et al., 2011). We can 
put these data into a random sampler and then select samples 
of 10 data values and compare their variation and medians with 
the actual population measures. For a small sample size taken 
over several trials we see much variation in the medians of the 
individual samples (Figure 4). Considered together, 100 of the 
sample medians have their own median of 26.2 (Figure 5). As 
the sample size increases to 30 data values, the cluster of medi-
ans has less variation (Figure 6) and the median of the medians 
(29.5) is closer to the population median of 29 (Figure 3).

Discussion questions: To what extent might notions of random sampling being 
fair and representative hold for samples of 10 versus 30? On what are you basing 
your judgments? What are implications for sampling unknown populations?

Figure 3. Population from First Fleet with data on Value of Crime in Shillings (one outlier removed).

Figure 2. Number of heads in 1000 trials of 10, 30, 
50 or 100 tosses of a coin (shaded area shows 
more than 60% heads).

Some of the students predicted the larger 
sample would have the more extreme 
values, a few thought no difference, and 
a few nominated the small sample. Those 
who initially predicted that more extreme 
values would be found in the larger sample 
were convinced after generating their 
own sample comparisons that the smaller 
sample created more extreme events.

Some of the students 
had problems in 
comparing different 
samples with the 
population and making 
a judgment on how 
similar or different they 
were. Part of the reason 
for this is that outliers 
changed the X axis for 
each plot so students 
had to manipulate 
the graphs to get 
comparative scales.
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Random re-allocation of data
Can we use the above ideas to help us think about the dolphin data taken from 
a small sample of an unknown population? We want to be able to discern if the 
results mean that the improvement in depression is a caused by swimming with 
dolphins for our small sample and then be able to generalise to a larger population. 

To help us do that we need to imagine that the reverse is true. Despite the 
logical contextual reasons that swimming with dolphins causes improvement and 
our expectation that it might be true, we are going to imagine that the dolphin 
experimental results are merely due to a random extreme event. 

Consider each data value as representing one person with information about 
what group he or she is in (dolphin or control) and his or her result (improved or 
not improved). This can be represented by the two-way table in Figure 7. We have 
13 people who improved (10 from the dolphin group) and 17 people who did not 
(5 people from the dolphin group). Now what if the treatment had no effect? We 
would expect the results of improved/not improved to be randomly spread across 

Figure 4. Three random samples of size 10 with medians marked.

Figure 5. A plot of the medians from 100 random samples of size 10.

Figure 6. Three random samples of size 30 from First Fleet and medians from 100 such samples.
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the two groups. We can estimate this possibility using a TinkerPlots simulation 
where we put our results into a random generator and then re-assign the results 
to the two groups (dolphin or control). Details for carrying out the re-allocation 
with TinkerPlots are found in Watson (2013).1 

We might find that when randomly re-assigned there are only 6 people who 
‘improve’ by swimming with dolphins, then 4 for the next trial, then 8. When we do 
this for 100 trials we can look at the randomly generated frequency distribution of 
people who ‘improved’ by swimming with dolphins (Figure 8).

The random simulation created a spread in values for improvement after 
swimming with dolphins, and only 1% showed the result that 10 or more people 
‘improved’ when they swam with dolphins. We therefore get a numerical value 
that suggests the likelihood that the result of 
the actual experiment was random. We can say, 

“If we randomly re-allocate the data again and 
again only about 1% of the time is the randomly 
generated result the same or more extreme than 
our experimental result.” This gives us high 
confidence in the actual experimental results 
for this sample. From this we can take the next 
step to generalise to a larger population. 

In the unit, students also used this process 
when comparing two different frequency distri-
butions, e.g., the number of meaningful words 
memorised versus the number of meaningless 
words memorised—two data sets that they had 
experimentally generated themselves. This activ-
ity was based on suggestions of Shaughnessy, 
Chance and Kranendonk (2009).

Generalisation

The aim of the random re-allocation process is to help students have more confi-
dence and discernment in generalising from a sample to a larger population due to 
having a numerical likelihood of it being a random occurrence for a given number 
of trials. In this step, however, students also need to draw in aspects about the 
experimental design that they have considered earlier: how certain is it that exper-
imental bias has been mitigated, how was the small sample selected from the 
population, what population might this be reasonably generalised to? When these 

1	 This process of random re-allocation is a visually intuitive yet numerically based alternative to a 
t-test approach that some students will meet in later years. It is the technique recommended by 
Cobb (2007).

Figure 7. The dolphin experiment two way  
table with 10 out of 15 people improving  

after swimming with dolphins.

Figure 8. 100 resamples reporting the positive outcomes for 
improvement after swimming  

with dolphins.

Most students initially found it difficult 
to imagine that the results of the dolphin 
treatment could be due to chance, rather 
than caused by the treatment. They were 
captured by the conviction that the 
treatment was logically effective and 
therefore true. 

At the beginning many had difficulty 
in understanding what random re-
allocation was, how it worked and why 
they were doing it. Some would get the 
idea, only to lose it later, then regain 
it. It was conceptually difficult and 
needed considerable teacher support.  
With several examples, however, most 
students developed a visual/intuitive sense 
of the likelihood that a result could have 
been a caused versus a random event. 
It was important to give some examples 
where the difference was less obvious.
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factors are considered then students should be able to provide an overall level of 
confidence in being able to generalise the outcome to a larger population. 

Metacognition, imagination and making explicit the 
thinking processes

The action research project highlighted how important it is to help students create 
concept maps for the thinking they are doing. It would help if the class devel-
oped a glossary and map of the terminology that they were using, particularly 
notions about randomness, samples and populations. It would be helpful during 
the course of the unit to spell out the different slang meanings versus statistical 
meanings, the problems with the meanings as they come up in new conceptual 
contexts, and questions around these. 

It is important to make explicit the sort of thinking that is involved in making 
effective inferences and discerning judgments. When teachers are drawing on rich 
contexts in mathematics they may find themselves participating in more general 
discussions where understanding the context is as important as understanding 
the mathematics and for the students the lines between the two contexts become 
blurred. Initially some students drew on other forms of thinking such as scientific 
thinking in critiquing the experimental design and general reasoning in looking 
for why an experiment might work, with more focus on the context than on a 
statistical evaluation of the data. They often felt one dimension of evaluation was 
enough and did not bring the different types of evaluation together. 

In reflecting on the student responses for the dolphin problem it was clear that 
many of them drew on valuable forms of thinking that need to be made explicit 
as part of an overall process of making informal inferences. Figure 9 attempts to 
capture the type of thinking different students were engaged in during the unit 
and within this context provide a framework for making informal inferences. At 
every stage of the inference process imagination is required in thinking about the 
questions posed. Without the questions and imagination to think about alterna-
tives, the process becomes a textbook exercise.

It is important to have metacognitive conversations with students to encourage 
them to reflect on their thinking and what they are drawing on in coming up with 
judgments. As they describe the “sources” of their thinking these can be captured, 
valued, discussed, refined and mapped in a similar way to what is shown in Figure 
9 in creating a metacognitive frame for the unit. This then creates visible thinking 
tools that students can use along with specific statistical thinking such as using 
the concepts of variation, distribution, expectation, randomness, and informal 
inference. A key part is helping students overcome limitations in thinking about 
mathematics being only associated with formulae and calculations, rather, that it 
requires imagination and flexibility in thinking. 

Conclusion

There is considerable research on the difficulties students have in conceptualising 
individual concepts of probability and statistics (see for example, Bryant & Nunes, 
2012; Jones, 2005). The unit of work developed for this action research project 
was specifically designed to address some of these in order to help students create 
visual and intuitive understandings of the issues of sampling, randomness and 
populations. The interweaving of concepts, combined with the technical skills, 
was challenging for the teachers, students and researchers. 

To create meaningful and deep learning experiences for students requires 
considerable teacher knowledge and skill, being able to weave together concepts 
with context and metacognitive thinking. In particular, it takes skill in helping 
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students to draw out from 
diverse activities the central 
and connecting themes. At 
the end of the program the 
lead teacher said she had 
previously never thought of 
designing a unit around a key 
idea such as randomness or 
inference. Being able to use 
such big conceptual ideas as 
a theme for a unit provided a 
very valuable and interesting 
experience, certainly deepen-
ing her own experience of the 
nuances within the ideas and 
how to build more connective 
conceptual experiences for the 
students. 

For students who go on to 
study formal statistics, the 
hope is that the experiences 
with informal inference in 
memorable contexts such 
as the dolphin problem will 
provide a foundation for appre-
ciating and understanding the 
formal statistics associated 
with t-tests and p-values. For 
those who do not go on to 
study formal statistics, it is 
hoped that they have gained 
an appreciation of randomness 
and its usefulness in decision-
making, moving beyond seeing 
random only as haphazard.
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Making statistical judgements  
about differences in data sets

CONTEXT
1.	Hypothesis

Prediction of the generalisation for a wider population based on 
an experiment to discern different treatments.

2.	What are logical reasons that the hypothesis may or 
may not be true?

3.	Experimental validity
•	What are the likely biases that could distort the results?
•	What strategies can mitigate bias?  

(e.g., random selection, control group)
•	How representative is this sample of the more general 

population?
•	How would you describe this sample size and its adequacy for 

generalisation?

STATISTICAL INFERENCE
4.	Description of the evidence

•	Distribution, central tendancy, differences.
•	Is there an indication that the difference is significant for these 

data?

5.	Could this have happened by chance?
•	How frequently would a random generation of these numbers 

create this experimental result if repeated 100 times in a 
simulation using random re-allocation of data?

•	Based on this, how certain are you that this is caused result, 
rather than a random one?

6.	Generalisability of the experiment
•	What is your claim?
•	What is the population that you could generalise this claim to?
•	What is the certainty of your claim based on the experimental 

validity and the random re-allocation of data simulation?

7.	Implications and recommendations
•	Is this result significant enough to recommend any action?
•	How might these data be used?
•	What questions are still remaining?

Figure 9. Metacognitive frame for making informal inferences for the 
dolphin context.
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