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Prediction. People engage in prediction everyday. Even though accurate values 
are unknown, we are not just making wild guesses when we predict. We base 

predictions on information we already have. If we want to predict who will win the 
Australian Open, we consider players’ past records in other tennis matches and 
additional contextual information we know (like recent injuries). To predict how 
much time it will take to drive to the airport, we weigh up our previous experi-
ences going to the airport, the anticipated traffic for that time of day, the distance 
to the airport and then possibly add some margin depending on the variability we 
might expect from heavy traffic or unexpected road works—and whether it would 
be disastrous to arrive late. We do not expect our predictions to be exact or even 
always correct, but we try and maximise the likelihood that they are. 

Statistics is one of the most widely used topics for everyday life in the school 
mathematics curriculum. Unfortunately, the statistics that we teach focuses on 
calculations and procedures before students have a chance to see it as a useful 
and powerful tool. Researchers have found that a dominant view of statistics is as 
an assortment of tools (calculations and graphs), with few seeing it as a means to 
understand a complex world (Rolka & Bulmer, 2005).

In this article, informal statistical inference is introduced as an approach to 
teaching statistics. This idea has now been researched from primary school 
through university classrooms around the world (Arnold, Pfannkuch, Wild, 
Regan, & Budgett, 2011; English, 2011; Garfield & Zieffler, 2012; Makar, in press). 
Informal statistical inference can help students better appreciate the usefulness 
of statistics for both everyday life and future careers. In the next section, infor-
mal statistical inference will be introduced and how it differs from the way we 
usually teach statistics. Next, a unit from a middle school classroom will be used 
to illustrate how the class were learning statistics while making informal infer-
ences. Finally, some ideas will be provided for turning a regular statistics lesson 
into one that lets your students make inferences.

Describing data and inferring beyond data

Prediction and estimation are at the core of statistics. Statistical inference is one 
of the big ideas in statistics, but formal applications of inference (hypothesis 
testing, parameter estimation) are highly complex and usually not taught until 
university. Even university students, professionals and researchers find formal 
statistical inference very challenging to understand and apply appropriately 
(Erickson, 2006). 
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Much of the classical content that we teach in school statistics now is descrip-
tive statistics. As the name implies, descriptive statistics includes tools for describ-
ing data distributions—like averages or range—and ways of representing data, 
like histograms and box plots. But the power of statistics lies in the ability to go 
beyond the data we have to make inferences: predictions and estimates about 
data we do not have. It involves acknowledging the likelihood that comes with the 
uncertainty of inference (Burrill & Biehler, 2011). An informal statistical inference 
is a claim (a conclusion such as a prediction, estimate or generalisation) with 
three characteristics:
•	 it is aimed at an event beyond the data;
•	 it is based on data as evidence; and
•	 it is expressed with uncertainty (Makar & Rubin, 2009).

In other words, an informal statistical inference uses data to make a predic-
tion or conclusion about an uncertain event. An inference must be stated with 
uncertainty because the exact answer is not known for sure, but can only be esti-
mated. Because inference is where the power of statistics lies, teaching statistics 
with inference gives students an early and familiar experience with statistics as a 
powerful tool for investigating the world. Let us look at a middle school classroom 
that was teaching students about making inferences from data about flight.

Investigating loopy airplanes

The unit described here comes from a suburban state school with students 
enrolled representing a wide range of performance levels, including a number of 
students who required substantial learning support. In this classroom, investiga-
tions like this were run as guided inquiries (Makar, 2012), which blended direct 
teaching with opportunities for students to investigate ideas in small groups. The 
students were not streamed for mathematics, but inquiry units were designed to 
allow all levels to engage with the inquiry question and have access to powerful 
statistical ideas. 

The teacher used whole class discussions and questioning to 
seek students’ ideas, regularly refocused them on the inquiry 
question and then capitalised on opportunities to teach or review 
statistical concepts as they were needed. She gave students 
time in small groups to plan ways to put the ideas into practice 
(which were then shared with the class), and circulated to listen 
to groups and provide support when needed (Allmond, Wells & 
Makar, 2010). 

Testing a hunch

The teacher posed the question to the class to investigate: What is the best design 
for a loopy airplane? A loopy airplane is an aircraft created from a straw and  
two strips of paper (Figure 1). After the teacher worked with them to negotiate 
what a ‘best’ design might mean, the students used data to investigate and make 
inferences about the designs of loopy airplanes based on how far they flew. The 
first task was to get a feel for the context. The teacher asked them each to make a 
loopy airplane with one small loop (made from a 1 cm × 5 cm strip of paper) and 
one large loop (1 cm × 8 cm strip). While practicing, the class discussed how some-
times the plane flew farther with the small loop in front and sometimes with the 
larger loop first. To test whether it mattered which loop was in front, the students 
flew their planes twice each way, measured the distances and collated the data 
(Figure 2).

Figure 1. Two loopy 
airplanes.

35amt 69(4) 2013



The teacher knew that even without any 
calculations, the students could make an infer-
ence from this data. They would not just be 
describing the data from these specific flights, 
they would be drawing a general conclusion 
that went beyond this data about the flight of 
the loopy planes (in general). From the graph in 
Figure 2, the teacher asked them whether they 
could make any conclusions about whether 
loopy planes likely fly farther when the small 
loop or the big loop was in front. They would 
not be able to state their inference in absolute 
terms (she used the word ‘likely’ to articulate 

this) because they could not say for sure what would happen for new flights. Their 
inference stated a claim (loopy planes likely fly farther if the small loop is in front) 
that went beyond the data (about flights of the loopy planes in general, not just 
a description of these flights). In discussing their observations, they were fairly 
confident that if they flew the loopy planes again, the data would probably lead 
them to the same conclusion.

Altering the design

In the next lesson, the teacher asked them to test the influence of other possible 
variables and design new planes by altering the length of the loop (short, medium 
or long), the width of the loop (narrow, medium or wide) and the placement of the 
loops (on the ends, in the middle or split—one middle, one end). Because there 
were 27 combinations (3 lengths × 3 widths × 3 placements), she had each student 
make and fly their own unique plane (Figure 3). 

There was a lot of variability in its flight, even with the same ‘thrower’, so after 
a teacher-led discussion, they realised it would be better to collect data from 
more than one throw of each 
plane. They collected data on 
five flights for each plane and 
averaged them to get a better 
estimate of each loopy plane’s 
‘typical’ distance flown. The 
teacher helped them to estab-
lish protocols for measuring 
and flying the planes to try 
and reduce potential sources 
of variability and error.

Analysing the data

Next, the teacher had students enter the data for each plane into Tinkerplots. 
Students used their analysis (Figure 4) as evidence to predict the best aircraft 
design based on the three variables they investigated:
•	 	best wing width;
•	 	best wing size (length of strip); and
•	 	best wing location.

From the graphs of the average flight for each plane, they noticed that wings 
that were thin or placed in a split location were quite unpredictable (high vari-
ability). They concluded that:
•	 	thin wings tended to fly farther than medium or wide wings (Figure 4, top);

Figure 2. Data from flight distances (in metres) of 
the loopy planes with small loop first (upper dots) 

or large loop first (lower dots).  
Graph created in TinkerPlots (Konold & Miller, 

2005); student names removed.

Figure 3. Variations on designs for loopy planes (left)  
and measuring how far they flew (right).
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•	 	short-strip wings (smallest) 
tended to fly farther than 
medium or long-strip wings 
(Figure 4, middle); and 

•	 	split wings (despite their 
unpredictability) tended 
to fly farther than wings 
placed in the middle or 
ends of the straw (Figure 4, 
bottom).

Drawing a conclusion

Their conclusion therefore 
was that the best design for 
a loopy airplane was likely 
the one with thin wings made 
with short strips of paper and 
placed in split position on the 
straw, and would typically fly 
around 2 metres since the 
median flight for each of these 
categories (thin, short strip, split wing position) was around 2 metres. In their 
whole class reflection at the end of the unit, they recognised that this conclusion 
was not certain, as it was based only on the data they had collected. In fact, they 
found it interesting that the individual loopy plane that flew the farthest (3.9 
metres) did not have this design! 

While students used descriptive statistics in this unit (calculated averages, 
graphed data as dot plots, compared variability in distributions) as evidence for 
their inferences, the focus was not on describing the data, it was on using the 
data to make an inference, or prediction, about which loopy plane design would fly 
the furthest. They also discussed ideas informally that would not be taught until 
later years. For example, they debated whether means or medians would be more 
appropriate because of the variability of the data; and because of the variability 
in flights, they also thought that collecting more data might make them more 
confident in their conclusions. 

One might argue that the students’ flight investigation and analysis had some 
shortcomings from a professional standpoint. However, the statistical ideas they 
applied were negotiated throughout the unit using the data as evidence, allowing 
them to gain an informal understanding of several big ideas in statistics (vari-
ability, measures of centre, distribution, sample size, fair testing and inference) 
(Watson, 2006) at a level appropriate for their age. The concepts that they were 
exposed to in these lessons could then be built on in later years. In the meantime, 
they came away from the unit with a sense of the utility of statistics for solving 
problems of interest to them and a basic understanding of important statistical 
ideas (Ainley & Pratt, 2010).

Teaching statistics through informal inference

The statistics topics that we teach at school were selected as concepts that would 
be needed in later years for formal statistical inference, but simple enough so that 
children would be capable of learning them. This is a ‘top-down’ view of curricu-
lum design: choosing the topics and concepts to be learned in school statistics 
based on simplified versions of what is later needed by professionals (Konold, 

Figure 4. Data from flights (in metres) of 27 different loopy airplanes: 
Comparing width (top), length (middle) and location of loops 

(bottom) for each aircraft.
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2007). However, Konold has argued that when we give students the opportunity to 
work with and analyse data in meaningful ways, they have surprised us with what 
they are able to understand. From these observations, researchers have studied 
ways of designing student learning environments through a ‘bottom-up’ approach 
that “takes into account not only where we want students to end up, but also 
where they are coming from” (p. 270). Informal statistical inference is one of these 
concepts. It engages students in statistical ideas that they will need to learn, but 
takes into account their everyday experiences with prediction and inference. As 
argued by Seymour Papert (2006, p. 585), “Instead of making children learn the 
math they hate let’s make a mathematics they will love”. This is critical if we are 
to reverse the trend of declining enrolments in mathematics (McPhan et al., 2008). 

In the flight example above, students experienced all three characteristics of 
statistical inference (Makar & Rubin, 2009). At the end of their investigation, they 
drew a conclusion (claim) that:
•	 was aimed at the design and flight distance of loopy airplanes in general (an 

event beyond just the data they collected);
•	 was based on their analysis of flight data (data as evidence); and
•	 used the words “likely” and “typically” in their conclusion to recognise that they 

could not be certain of their answer since it was only based on the data they 
collected (expressed with uncertainty).

Making statistical questions inferential

To give students an opportunity to make inferences, many of the current ques-
tions asked in statistics lessons could be easily amended by adding an additional 
question about an unknown context. Knowledge of the context may require an 
adjustment. Several examples have been listed in Table 1.

In each of these examples, students would be asked to make an inferential 
statement that:
•	 applied to a more general situation beyond the data they had available;
•	 required them to use the data they had (and calculations or graphs that helped 

to analyse or interpret their data) as evidence for their inference; and
•	 stated their inference with some uncertainty.

You would encourage students to recognise, for example, that the most common 
lengths of names in the community would not be exactly the same as their class, 
so they may want to use a range of values in their estimate (rather than a single 

Table 1. Making descriptive questions more inferential. Assume data were provided.

Descriptive version Inferential addition

What are the most common lengths of the names of 
students in our class?

Add: What do you predict would be the most 
common lengths of names in our community?

What proportion of students in our class like 
pepperoni pizza?

Add: What would you estimate to be the proportion 
of students in the class next door who like pepperoni 
pizza? 

A shower timer is considered accurate if it is within 
10% of its 4-minute target. Calculate the number of 
shower timers in the list below that are accurate.

Add: What proportion of shower timers would you 
expect to be accurate coming from the same factory?

Graph the data for 10 jump lengths of an origami 
frog. 

Add: How far does an origami frog jump (in general)?

Find the average fuel consumption for twenty 2013 
models of small cars driven at 80km/hour.

Add: What do you anticipate the average fuel 
consumption to be for 2014 models of small cars 
driven at the same speed? [Students may choose to 
lower the fuel consumption in recognition of possible 
technological improvements.]
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value) and express their answer with some uncertainty. These simple adjustments 
also encourage students to consider the data as a whole when making predictions, 
rather than focus on individual points. The focus on data as an aggregate is a 
key concept—and difficulty—for learners in statistics (Konold & Pollatsek, 2002; 
Watson, 2006). In addition, making inferences allows students to bring in their 
own contextual knowledge in ways that are relevant. 

Building informal inference into statistical inquiry

You can build inference into ordinary statistics questions (as in Table 1) or you 
can give students more inferential experiences by engaging them in statistical 
inquiry. The flight unit described earlier is one such example. Below is a list of 
statistical inquiry questions that have come out of middle school classrooms in 
Australia (see also Allmond et al., 2010; Fielding-Wells, 2010; 2013).
• Do we eat healthy cereal for breakfast?
• Do shower timers really last for four minutes?
• How long does it take to walk 10 000 steps?
• How long does it take to read a book?
• How much do we typically grow in primary school?
• Are athletes getting faster over time?
• What are the characteristics of a good handball player?
• What songs should we play for the school disco?
• Is it better to make or buy take away chinese food?
• Does Barbie have human proportions?
• What is your reaction time?
• How far does an origami frog jump?
• What fraction of the newspaper is ads?

In statistical inquiry, students go through the whole statistical investigation
cycle of posing a question, planning their investigation, collecting and analysing 
data and drawing a conclusion (MacGillivray & Pereira-Mendoza, 2011; Wild & 
Pfannkuch, 1999). They also build critical and creative thinking, scepticism, curi-
osity, argumentation, collaboration and ways to manage ambiguities that cannot 
be captured by textbook-type problems.

Conclusion

Statistics is different than mathematics in that conclusions do not necessarily 
follow deductively. Statistics is purpose-built for addressing uncertainty and vari-
ability. However, the skills, techniques and procedures often taught in school do not 
take advantage of the power of statistics in engaging with uncertain and unknown 
situations. With the introduction of the Australian Curriculum: Mathematics, there 
is an opportunity to reflect on and change the way we teach statistics at all levels. 
The overall content descriptors in probability and statistics call for students to be 
able to “recognise and analyse data and draw inferences” (ACARA, 2013). There is 
a renewed focus on problem-solving and reasoning that are at the heart of infor-
mal statistical inference. By developing students’ experiences in making informal 
statistical inferences, students not only build and apply the statistical concepts 
that are in the curriculum, but also statistical ways of thinking and first-hand 
appreciation for the relevance of statistics for the predictions, estimates and data-
based conclusions they already make in their everyday life. So rather than teach 
only statistics, add just a dash or a whole bucket of prediction by including infor-
mal inference in your lessons.
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