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Introduction

In this article we look at a simple geometry problem that also involves 
some reasoning about number combinations, and show how it was used 

in a Year 7 classroom. The problem is accessible to students with a wide 
range of abilities, and provides scope for stimulating extensive discussion 
and reasoning in the classroom, as well as an opportunity for students to 
think about how to work systematically. Pat, the first author and a class-
room teacher, used the problem with her students and we will present 
some of the strategies, solutions, and issues that they encountered and 
discussed. Helen, the second author who works with pre-service and in- 
service teachers, has used this problem with teachers and likes thinking 
about tasks that are good for fostering reasoning and problem solving.

Pat first encountered this problem during Helen’s presentation at a 
local mathematics teachers’ conference (and, unfortunately, Helen cannot 
remember where she first came across it). The wording of the original 
problem was to find as many triangles as possible with a perimeter of 20 
cm, where the side lengths have to be whole numbers. When Pat decided 
to use the activity with her Year 7 class she had the students working in 
pairs and adapted the task to make it more hands-on. She called the task 
the “Triangle Challenge” to appeal to the students’ competitive spirit and 
restated the problem in terms of building triangles out of matchsticks:

Make all of the possible triangles that can be made from 20 matchsticks. 
You must use all 20 matchsticks for each triangle. You must record 
which triangles you have made in some way. How will you know when 
you have all the possible triangles?

Pat’s students took to the task with gusto. It was not long before 
students were asking, “Can we break the matchsticks?” She gave a follow-
up instruction that no matchsticks could be broken and there were to be 
no gaps between the matchsticks. Some students had difficulties with the 
construction of the triangles, especially with ensuring the matchsticks 
were touching and that the sides were straight. Some students used rulers 
to help with straightening the sides, so this technique was shared with the 
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whole class. Helen wonders if this awkwardness with the materials may 
actually help students bridge the concrete and abstract characteristics of 
the shapes, since the students have to start thinking about whether or not 
the edges will really join up even though it is not entirely clear that they 
will because of the practical limitations of the matchsticks.

Observed student approaches

When Helen had first posed the problem, she had only seen her own 
solution (although she was confident the problem would be a good one for 
students), and so was curious as to what strategies that students might 
use when tackling the problem. Pat gave her students no hints at all as to 
how the triangles should be recorded, and told them to choose any method 
that suited them. A summary of how students tackled the challenge and 
recorded their triangles is presented in Table 1. There were a total of 24 
students, working in pairs, on this particular day.

Table 1: Students’ approaches to the 20 matchstick triangle challenge.

Approach taken
Number of pairs (out of 12) 
who demonstrated this 
approach

Recorded triangles by drawing to 
scale* (e.g., Figure 1) 2

Recorded triangles by sketching 
matchsticks* (e.g., Figure 2) 2

Recorded triangles by worded 
description (e.g., 2 across, 9 up, 9 
up*; Figure 2)

4

Recorded triangles with labelled 
sides, with the triangles not drawn 
to scale (e.g., Figure 3)

5

Did not draw triangles  
(e.g., used description only or a 
graphical record; Figures 4 and 5)

2

Worked in a systematic manner  
(e.g., increasing one side in turn by 
a fixed amount; Figure 5 partly)

2

Started with isosceles triangles  
(e.g., 2, 9, 9; Figures 3b and 5) 6

* students may have used this approach as well as another

After about 40 minutes, Pat stopped the triangle construction and 
recording stage and started a class discussion. The discussion also  
continued into the following day’s maths lesson.



11amt 71(1) 2015

Class discussion

Helen and Pat both believe that class discussion provides an opportu-
nity to make explicit and public the reasoning with which students have 
engaged in their problem solving process, and to stimulate further  
reasoning, conjecturing, hypothesising, and refutation. Pat started by 
asking questions about the actual construction of the triangles. Most 
students had enjoyed the construction process, but said it was difficult 
at times to keep the sides straight, while ensuring the matchsticks were 
touching and that the whole triangle was neat and complete.

Pat then turned to specific questions about how students recorded their 
triangles. Two groups of students attempted to draw the triangles to scale, 
as shown in Figure 1. 

 

 

 

Scale diagram with 5 mm = 1 matchstick Use of grid paper to record a scale 
diagram. 1 grid box = 1 matchstick

Figure 1: Two approaches to recording the triangles with scale diagrams.

Two other groups sketched in the matchsticks, without any attempt 
at drawing to scale, as seen in Figure 2. Interestingly, the students drew 
‘heads’ on the matchsticks, even though they used coloured sticks  
without heads.

 

 
Figure 2: Triangles recorded with no use of scale.
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Five groups drew triangles with labelled sides, as seen in Figures 3a 
and 3b. In Figure 3a, the students attempted to represent aspects of each 
triangle’s shape (e.g., in their second diagram, it is obvious that it is an 
isosceles triangle), whereas the pair responsible for Figure 3b have made 
no size and shape distinctions for the collection of isosceles triangles. 
When Pat asked them about this, they said it was not necessary, that 
recording the side lengths was all that was needed to show which trian-
gles were possible. Here we can see the abstraction of properties from the 
concrete materials, with the students realising that the side lengths are 
sufficient to distinguish among the different possible triangles.

 

 
 
Figure 3a: Triangles with recorded sides and some indication of the variation in shape.

	  

 
Figure 3b: Triangles with recorded sides, with no indication of shape variation.	  

There were only two groups that did not draw the triangles which they 
created. In Figure 4, we can see that one group focused on recording one 
side length as the base, and the remaining sides as going ‘up’ from there. 
It is likely that, because of this focus on the base length, this group did not 
see that the first two triangles made and recorded were identical. 

 
 Figure 4: Recording the triangles without diagrams, using base length as point of reference.
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The work of the group shown in Figure 5 is particularly interesting:  
they used a bar-graph-like representation of the side lengths, with three 
‘bars’ showing the lengths of the sides. When Pat asked why they chose  
to represent their triangles in this form, they answered that it was to 
ensure that they did not repeat any triangles. In fact their third and sixth 
triangles are actually duplicates (with sides of 6, 7 and 7 matchsticks).  
It is worth thinking about how the recording method might be modified to 
avoid duplicates. This group showed a systematic approach, with the ‘base’ 
increasing by two matchsticks initially. They also started with isosceles 
triangles, which was a popular approach in half of all the groups. When 
Helen conducted this activity with some teachers, she found that they 
too, generally started with isosceles triangles. A useful question to raise 
with the problem solvers at this point is to ask whether or not it is possible 
to have an isosceles triangle with an odd number of matchsticks as  
its base length, and, if not, why.

 Pat was pleased with the variety of approaches taken constructing 
and recording the triangles. It was, however, interesting to note that the 
student pairs varied in the degree to which they had a systematic way  
of listing the possibilities. This will be addressed later.

 
Figure 5: Recording the side lengths using a graphical approach.
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Pat then asked the class if anyone made a triangle with sides of 1,  
1 and 18 matchsticks. They laughed and told her it would be impossible. 
They discussed why this was so and represented the matchsticks with 
scaled diagrams on the board. It was obvious that the two sides of length 
1, when attached to each end of a base of 18, could not touch to make 
a triangle. She then asked the students how long the longest side of a 
20-matchstick triangle could be. Several groups had made triangles of side 
lengths 1, 9 and 10, or 5, 5 and 10. No one claimed to make a triangle with 
anything longer than 10 matchsticks as the longest side.

So the discussion turned to whether or not it was possible to make a 
triangle with a side of 10 matchsticks. Pat drew scaled diagrams on the 
board of different sized triangles. It was obvious to the students that 11 
on the base would be too long, as the other two sides would not be able 
to touch. But with 10 as a base, there was still confusion. It took several 
diagrams as well as viewing a simulation (Math Warehouse, n.d.; another 
useful resource is Hotmath, n.d.) for the students to understand that two 
sides added together need to be longer than the third side for a triangle to 
be made. After further class discussion, with lots of examples, many of the 
students worked out that they really only needed to check that the sum of 
the two shorter sides of a triangle was longer than the other side. They did 
not need to check all three combinations of sides.

Following this exploration, the students wanted to know why they were 
able to physically make some triangles with one side length of 10 match-
sticks. This led to a discussion about the process of making the triangles. 
They noted that the matchsticks might not have been exactly the same 
length, that there may have been gaps or slight overlaps when constructing 
the triangles, that the sides might not have been completely straight, or  
that the sides may not have touched at the vertices.

When Helen conducted this activity with some teachers, she raised the 
question of whether or not we should regard three-sided shapes such as 
those with sides 1, 9, 10 and 5, 5, 10 as triangles. Pat’s students had felt 
uncertain about these shapes, and Helen’s teachers felt a bit uncomfort-
able with them too, in part because the materials were misleading, but also 
because, in some sense, the edges do join up, although the resulting shape 
looks like a line segment. When Helen asked the teachers for the definition 
of a triangle they said that a triangle is a shape that comprises three sides 
that join up, a definition likely to be given by students as well. When asked 
whether or not a 1, 9, 10 shape fits this definition Helen’s teachers were 
forced to concede that it does, but then they wanted to refine their definition 
of triangle (usually beyond the definition that they have used all their lives 
up to this point!). Helen encouraged them to stay with the “three joined-up 
straight sides” definition, and then to think about the 1, 9, 10 shape a little 
more. She asked further questions about this shape, such as whether or 
not it satisfies “the sum of the angles is 180˚” (it does), and got them to work 
out its area using 1

2
 × base × height, which actually yields an appropriate 

answer of 0 (and, for more advanced students it is possible to explore the 
1
2

 × a × b × sin C formula for area as well). What is intriguing, in conclusion, 
is that the 1, 9, 10 shape does not yield any surprising contradictory results 
if we think about it as a triangle and consider triangle properties. 

In fact, the only tricky part concerns the sum of the sides. As Pat’s class 
discovered, if you want to have a triangle that does not end up looking just 
like a straight line segment (as the 1, 9, 10 triangle does) then you need 
the sides to satisfy the property that the sum of any two sides is greater 
than the length of the third side. This is known as the ‘triangle inequality’. 
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However, the most general mathematical version of the triangle inequality 
states that the sum of the two sides need only be greater than or equal to 
the third, and thus allows the 1, 9, 10 shape to be included as a triangle.  
We might call such triangles ‘degenerate triangles’: they are triangles, but 
taken to extremes and with extreme properties! Helen believes that all of 
these issues can be discussed with students, leading to a good discussion 
of how to properly define shapes, and the important role of definitions in 
mathematics more generally. It also gives students an opportunity to explore 
the implications of these definitions on the properties of these objects.

The final discussion in Pat’s class was about whether or not the students 
had found all of the possible triangles. She mentioned the words “work-
ing systematically”. None of the students understood what she meant, but 
when she gave student examples of attempting to work in some sort of order, 
several of the students said they did try to do that. She then showed them 
how to draw a table to record the results. It did not matter which was the 
first, second or third side, because the triangles could be rotated or flipped. 
This is another really powerful discussion to have with students, leading 
to the conclusion that if you want to be systematic you can just record the 
sides in order from smallest to biggest. This would help in locating dupli-
cates. Pat’s class developed a table together on the board (see Table 2).  
They started with the shortest possible values for the base, and began with 
isosceles triangles where possible, then decreasing the second side by 1 
while increasing the third side by 1 each time. Students realised quickly  
that once one side reached 10, they needed to start the process again with  
a new base size.

The students easily understood that once they reached 6, 6, 8, the next  
one would be 6, 5, 9, which was already there (as 5, 6, 9). This meant they 
had reached the end of the table, and any other possibilities would just be 
duplicates. They were surprised that there were only eight triangles possible 
with 20 matchsticks. The students who drew the graphical representations 
of the possible side lengths (Figure 5) managed to make and record seven of 
the eight possible triangles. Another group managed to record six triangles 
and four groups recorded five triangles. 
 
Table 2. The list of all possible 20-matchstick triangles. (‘Degenerate triangles’ are struck through.)

Side 1 (“base”) Side 2 Side 3

1 9 10

2 9 9

2 8 10

3 8 9

3 7 10

4 8 8

4 7 9

4 6 10

5 7 8

5 6 9

5 5 10

6 7 7

6 6 8
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The fact that there are only eight possible triangles using 20 match-
sticks intrigued Helen in the process of preparing this article. She started 
to explore an extension problem that could be presented easily to students 
who had followed Pat’s suggestion of exploring other values for the total 
number of matchsticks being used. Helen’s extension problem asks you 
to imagine that you are trying to make triangles out of matchsticks, and 
they have to have a whole number of matchsticks on each side. You are no 
longer restricted to having 20 matches in total; you can have as many or 
as few as you like. Can you work out what triangles are possible? Can you 
characterise all of them? Written more succinctly:

Find and describe all the triangles that can be made with whole 
number side lengths.

Answering this fully is likely to be a significant challenge for younger 
high school classes, but should be accessible to them if they have done the 
initial work on the 20 matchstick problem and perhaps a few other fixed 
values, and have used these examples to develop a sound understanding 
of the triangle inequality relationship.

Common errors

Returning to the work of Pat’s class on the original 20 matchsticks prob-
lem, there were some underlying reasons for the fact that students initially 
could not list all the possibilities. Several pairs of students made duplicate 
triangles, which were just rotations of others previously made. Another 
common error observed was the recorded triangles did not have three 
sides adding up to 20 matchsticks. This may have been because not all 
the matchsticks were used, or just that they were recorded incorrectly. 
The groups which attempted to draw triangles to scale did make errors in 
measuring; in particular, the group which used one square grid equalling 
one matchstick assumed that the diagonal of the square was equal to the 
length of the square. This is not totally surprising as these students had 
had no exposure to Pythagoras’ Theorem at this stage.

Conclusion

Given more time, Pat would have liked to explore working with a different 
number of matchsticks. Would the students attempt to work systematically? 
How would they record their results? It would also have been interesting to 
extend some students with an introduction to Pythagoras’ Theorem.

It should be noted that, several weeks later, the students in Pat’s  
class sat a triangles test. One of the questions was “Can you make a  
triangle with sides 3 cm, 6 cm and 10 cm? Explain your answer.” Of the 
26 students in the class, 18 of them were able to say that this triangle 
would be impossible, and give a reasonable explanation as to why. 

It is interesting to note that the triangle inequality is not mentioned in 
the Australian Curriculum: Mathematics (ACARA, 2014). This is a shame, 
because it is applied frequently, even if most people are doing so only 
instinctively: whenever someone walks diagonally across a rectangular 
or quadrilateral-shaped grassed area instead of walking around they are 
using the fact that the diagonal will be shorter than the sum of the two 
sides that they are avoiding. The triangle inequality also acts as a nice 
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check for solutions to cosine rule problems that require the finding of the 
third side of a triangle given two sides and an angle: when the third side 
is calculated it must be shorter than the sum of the other two given sides 
(which of course is also true in the specific case of right-angled triangles, 
where the hypotenuse is shorter than the sum of the legs). Groth (2005) 
suggests another activity using spaghetti that allows students to build 
understanding of this key theorem.

The 20 matchstick problem—which is readily stated, and which can  
be tackled with physical manipulatives—provides easy access to the 
triangle inequality, with the advantage that students are able to discover 
its principles for themselves and get a feel for why it must be true. It is 
also a rich problem-solving task. The significant reasoning that must be 
produced in order to check which triangles are valid, and to enumerate  
all the possibilities, is within reach of young high school students, as  
Pat’s class has shown. This problem provides students with the valuable 
opportunity to undertake initial exploration to understand the situation 
and then progress to working systematically, with careful argument and 
justification, to ensure that all cases are considered. Such activities will 
build students’ problem solving and reasoning skills, as key proficiencies.
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