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Patterns are commonly used in middle years mathematics classrooms 
to teach students about functions and modelling with tables, graphs, 

and equations. Grade 6 students are expected to, “continue and create 
sequences involving whole numbers, fractions and decimals,” and “describe 
the rule used to create the sequence.” (Australian Curriculum, Assessment 
and Reporting Authority (ACARA), 2012). Modelling functions, such as 
pattern problems, and making links between models in analysing patterns 
of change is an essential part of middle years mathematics (Lloyd, Herbel-
Eisenmann & Star, 2011). 

My students’ approach to pattern problems often entailed extending the 
pattern and collecting data, which they organised in a table. They used the 
table to graph their data and used common differences, guess and check, or 
other strategies to find an equation to model the problem. While this proce-
dure ‘worked’ for many students, others struggled with generating an equa-
tion from the data in their table. Many students who were able to generate 
an equation struggled to explain what the individual parts of the equation 
meant, how they were related to the original problem, what the variables 
represented, or the relationships between the table and equation. These 
students exhibited Kieran’s (2007) finding that students use of tables in 
generalisation activities often lead to a disconnect between numerical and 
geometric relationships “shortcircuit[ing] all the richness of the process of 
generalization” (p. 725). 

To address these issues, I had my students generate tables in such a 
way that the variant and invariant quantities were evident and related to 
the posed task. In doing so, the process of generating an equation to model 
the situation became clearer and more meaningful for the students as they 
made connections between the numerical and geometric relationships. In 

(a)	How many squares are in the 200th figure?

(b)	How many squares are in the nth figure?

Figure 1. Typical geometric growth problem.
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this paper, I provide a typical geometric growth pattern encountered in 
middle years mathematics to illustrate this method, see Figure 1. 

My students normally approached such problems by extending the 
pattern, counting the number of squares in each figure, and recording the 
data in a table. They then looked for patterns in the data to find the number 
of squares in the 200th and nth figures. However, this approach may intro-
duce the unintended and potentially problematic issue of focusing students 
attention on data for individual figures and recursive patterns of change 
with little attention on explicit patterns of change, including variant and 
invariant quantities, or how the data was related to the original figures. 
For instance, my students tended to examine the data in the table, such 
as examining common differences, without considering how these changes 
were related to the original pattern. I also found that once my students 
generated their table they tended to ignore the original figures, relying solely 
on the numerical data in the table.

In order to help students make connections between the figures, table 
of data, and subsequent equation, I used a strategy that forced them to 
consider the change in the pattern from one figure to the next and incorpo-
rate it in their table entries in order to make connections between the figures, 
table, equation, and the recursive and explicit patterns. As the students 
began exploring the problem, they entered 5 in their table for the number 
of squares in the first figure, as they normally did. However, when they 
entered the number of squares in the second figure, they had to consider 
and include how the number of squares changed from the first to the second 
figure. In this case, the second figure had three more squares than the first 
figure, shown as the blue squares in Figure 2.

Figure 1 Figure 2 Figure 3

Figure 2. Making the geometric growth problem more explicit.

Instead of recording eight squares in the table for the second figure, we 
incorporated the fact that the second figure had three more squares than 
the first figure. Therefore, the entry in the table for the number of squares 
for the second figure was 5 + 3, the five squares in the first figure plus the 
three additional squares in the second figure. From the second to the third 
figure, we added another three squares, the light blue squares in the third 
figure. Likewise, for the third figure, we added three squares, +3, to the 
number of squares in second figure, 5 + 3. Therefore, the number of squares 
for the third figure was entered in the table as 5 + 3 + 3. Students extended 
this recursive pattern to generate the number of squares in the next two 
figures, see Table 1.
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Table 1. Alternative table of values.

Figure Number of squares

1 5

2 5 + 3

3 5 + 3 + 3

4 5 + 3 + 3 +3

5 5 + 3 + 3 + 3 + 3

Using this strategy focused students’ attention on what the values in the 
table were referencing in the context of the problem, including the change 
from figure to figure. However, students recognised that extending the table 
in this way would quickly become an inefficient way of recording the number 
of squares. I asked them if there would be a more concise way to write the 
expressions for the number of squares in each figure. Students recognised 
that they could use multiplication to rewrite the number of squares in a 
more concise form. For example, they rewrote the number of squares in 
the fifth figure as 5 + 4(3); the number of squares for the fourth figure as  
5 + 3(3), and the number of squares for figure 3 as 5 + 2(3). We extend-
ed this pattern to rewrite the number of squares for the second figure as  
5 + 1(3), one group of three squares added to the original figure, and the 
number of squares for the first figure as 5 + 0(3), no groups of three yet 
added, see Table 2. 

Table 2. More concise alternative table of values.

Figure Number of squares

1 5 + 0(3)

2 5 + 1(3)

3 5 + 2(3)

4 5 + 3(3)

5 5 + 4(3)

This table revealed two invariant quantities: the number of squares in 
the original figure (5), and the number of squares added to any figure to get 
the next figure (3), and the variant quantity of the number of groups of three 
added to the original figure. However, not all of my students had recognised 
this pattern or how this pattern related to the original figures. To assist 
students in making this connection, I asked what each of these variant and 
invariant quantities meant in the context of the original problem. Students 
recognised that the 5 was the number of squares in the first figure and 
the 3 was the number of squares added to any figure to get the number of 
squares in the next figure. I then asked what the 4(3) meant for the number 
of squares in the fifth figure. They explained that the 4(3) showed that we 
had added four groups of 3 squares to the number of squares in the first 
figure (5) to get the number of squares in the fifth figure. 

Before determining the number of squares in the 200th and nth figure, I 
wanted them to make one more connection from the table. While they recog-
nised that the number of groups of three squares that had been added was 
the only invariant quantity in the expressions for the number of squares 
for each figure, not all students connected this quantity with the figure 
number. Many of these students were still focusing on the recursive pattern 
of adding one set of three squares to a figure to get the next figure and 

5amt 69(1) 2013



needed help connecting this recursive pattern to an explicit pattern. What I 
wanted them to notice was how these variant quantities were related to the 
figure numbers, the independent variables. In other words, I wanted them 
to move from a recursive view of adding one more group of three squares for 
each subsequent figure to an explicit relationship between the expression 
for the number of squares and the figure number. 

Using what students had discovered about how the pattern grew, I asked 
how they could determine how many groups of three squares had been 
added to the original figure for any other figure number. After discussing 
this, the students concluded that the number of groups of three squares 
added to the original figure was one less then the figure number because 
they did not begin adding these groups of three squares until the second 
figure number because we had not yet added any groups of three for the 
first figure. The first time we added a group of three was in the second figure 
(i.e., we had added one group of three squares to find the number of squares 
in the second figure, two groups of three squares for the third figure, and 
so on). As one student stated, “For the first figure we have not added any 
groups of three squares yet, or we could say that we have added zero groups 
of three squares.” Another student extended on this idea when they stated, 

“We always start with the five squares in the first figure and then just keep 
adding three squares starting with the second figure.” This student had 
begun to attend to the invariant quantities, squares in Figure 1 and the 
addition of three squares, and the variant quantity, groups of three squares 
added. From this discussion and their understanding of the growth of the 
pattern, students recognised that the number of groups of three squares 
added was always one less than the figure number. Therefore we rewrote the 
number of groups of three squares added as the figure number minus one, 
to reflect their finding, see Table 3.

Table 3. More concise alternative table of values.

Figure Number of squares

1 5 + (1 – 1)(3)

2 5 + (2 – 1)(3)

3 5 + (3 – 1)(3)

4 5 + (4 – 1)(3)

5 5 + (5 – 1)(3)

Students were then ready to determine how many squares were in the 
200th figure, 5 + (200 – 1)3 and explain what this meant in the context of the 
original problem. They could also generalise the results for the nth figure, 
5 + (n –1)3 and explain how the parts of the equation related to the original 
problem. Besides providing students with a strategy for exploring patterns 
that made connections between the context, table, and equation, this strat-
egy also made the variant and invariant quantities in the data explicit, all 
crucial concepts for later success in mathematics. Students continued to 
employ this strategy often discussing “the numbers that change” and “the 
numbers that stay the same,” providing a foundation for their understand-
ing of variable.
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Conclusion

Providing students with opportunities to make connections across tables, 
graphs, equations, and contexts is a critical aspect of the teaching and learn-
ing of mathematics (Lloyd, et al., 2011). The National Council of Teachers of 
Mathematics (NCTM) suggests that middle years students study of patterns 
and relationships focus on linear functions (NCTM, 2000, p. 223). However, 
students should also have similar experiences with nonlinear functions 
(NCTM, 2000). Providing students with opportunities to make connections 
among these models and using strategies such as those described here, 
enables them to explore and understand the range of functional relation-
ships they will encounter throughout the remainder of their mathematical 
experiences. 
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