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We describe the application of Hierarchical Linear Modelling (HLM) in a cluster-
randomised study to examine learning algebraic concepts and procedures in an
innovative, technology-rich environment in the US. HLM is applied to measure
the impact of such treatment on learning and on contextual variables. We provide
a detailed description of such methods, methodically analysing nested classroom
data with respect to various outcome measures through HLM.
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Introduction: overview of study

The SimCalc Program of Study aims to address various issues of long-term national

concern in the US: the problem of student motivation and alienation in the nation’s

high schools, especially urban high schools (National Research Council 2003), and

the widely acknowledged unfulfilled promise of technology in education, especially

mathematics education (Cuban 2001). We also address the need to retain more

students in mathematics beyond algebra, which increasingly means past high-stakes

state examinations, into fundamental courses such as pre-calculus and calculus, to

help prepare them for higher education and careers in STEM programmes. It has

been stated that the introduction of algebra in high schools in the US is too late and

should be done earlier to avoid such problems (Kaput, Carraher, and Blanton 2007).

Traditionally, Algebra 1 in US high schools focuses on the introduction of linear

functions, linearity, co-variation, rate, and systems of linear equations. It is

introduced in the Freshman year of high school (ages 14�15). The SimCalc project

has focused on addressing these topics under the broader theme of the mathematics

of change and variation, a core school mathematics strand that is representationally

demanding and that is studied at many levels by all students, from pre-algebra

through calculus (Kaput 1994).

SimCalc MathWorlds† combines two innovative technological ingredients to

address core mathematical ideas in deep and sustainable ways for mathematics

learners (Beatty and Geiger 2010). First, the software addresses content issues

through dynamic representations integrating simulations with editable graphs,

equations and tables; secondly, it uses wireless networks to enhance student

participation in the classroom. The algebra course focused on in this paper was
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developed at the Kaput Center; it fuses these two ingredients through new

curriculum materials that replace core mathematical units in high school algebra

courses and through non-traditional classroom arrangements. Activities in a

SimCalc learning environment are structured to create meaningful mathematical
variation across students’ activities, e.g. students can be assigned to a group that has

a number and have their own number within the group; both of these numbers can be

used as parameters in a linear equation.

We studied the impact on learning core algebra concepts and skills that were

aligned with Massachusetts state frameworks and deepened student understanding

by building skill sets that crossed algebraic topics and reasoning. We focused on the

concept of slope as rate, and not just slope of a function. In addition, we measured

the impact of such a technology-enhanced approach to learning algebra on other
important longitudinal factors, such as a student’s confidence in their mathematical

ability and their attitudes towards learning mathematics over time.

Our research program is the result of 15 years of prior work (Hegedus and

Roschelle, 2013) focused on the development and implementation of technology-

enhanced learning environments that have proved to be effective through quasi-

experimental research studies and randomised controlled trials at scale (Roschelle

et al. 2010). Here, we report on the results of an efficacy study conducted in

Massachusetts that continues to examine under what conditions such materials can
be effective in improving learning of core algebra concepts across a wide, diverse

population of students in school districts of varying achievement.

Research design

Our program of study was funded by the US Department of Education’s Institute of

Education Sciences to investigate the impact of SimCalc materials on a large sample

of classrooms that differ in various ways. In order to control for various confounding
and explanatory variables and to account for clustering at the classroom level, we

designed a cluster-randomised trial (where classes are randomly assigned SimCalc

materials or the existing algebra curriculum). As our sample was randomised at the

classroom level, we were interested in effects on classrooms and for individual

students. The desire to locate effects at both the classroom and student level led us to

adopt a multi-level approach using HLM. In this paper we review the findings of our

HLM analysis, providing a description of the process for researchers who may be

new to multilevel modelling. We will examine the construction and application of the
following models to analyse our data and address four research questions:

(1) The Empty or Open Model to determine the variance accounted for at each of

our two levels of interest � classroom level and student level. How much

variance exists between classes and within classes on our outcome measure, a

mathematics content post-test?

(2) The Random Intercepts Model to investigate the effect of a variable at the

student level. How much effect do student pre-test scores have on student post-

test scores at the end of the Freshman school year?

(3) The Means as Outcomes Model to test the impact of a classroom contextual

variable on learning. Can group membership in an honors class predict a

significantly higher post-test score?
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(4) The Random Slopes Model to look at the impact of level 2 variables on level 1

variables. For students in honors classes, is treatment group a predictor for post-

test score when controlling for pre-test score? Is the variance in slopes across

groups (classes) significantly related to the experimental group of the students

when controlling for the pre-test?

A power analysis prior to the study confirmed the sample size and numbers of

classrooms (clusters) necessary for this study. Our research program made use of

various cluster-randomised trials over a 4-year longitudinal study. We completed two

pilot studies in Years 1 and 2, which guided our Algebra 1 and 2 curriculum and

instrument development. We conducted two main studies in Year 2 (Algebra 1) and

Year 3 (Algebra 2) following our pilot studies, and a replication study in Year 4

(Algebra 2). This report focuses on the data collection from our Year 2 Algebra 1

main study.

Sample

From a total sample size of 60 eligible classes, 28 classrooms were selected to

participate in the study by randomly selecting a pair (ensuring each pair was from

one school), randomly assigning one of the pair red or black, and with 14 pairs

selected, flipping a coin to assign whether red was Treatment or Control (and hence

black the other condition).

Approximately 92% (568 students of 615 students listed on the class rosters) of

our entire student sample agreed to participate in the study. In terms of attrition,

approximately 2.3% (13/568) of the student sample transferred out of the

participating classroom or transferred out of the school, and we could not collect

complete data for approximately 5.5% (31/568) of our participants because their

teacher left the study for medical reasons. Our final sample (Treatment �257;

Control �195 students) includes only students who took a pre-test and a

corresponding post-test. The pre-test and post-test were identical. This restricted

sample is used in the analyses in this paper. We compared this restricted sample with

our initial sample, and found no significant differences on their pre-test scores.

Treatment teachers implemented an 8�12 week SimCalc Algebra 1 replacement

curriculum consisting of 12 units in conjunction with the SimCalc MathWorlds†

software1. The variation in implementation length was due to differences in school

schedules � some schools’ class periods lasted 90 minutes while others were only 50

minutes. The pre-test was administered prior to the intervention at various times in

each school due to differences in schedules and at similar times in the control

classrooms when the relevant content was being covered. The post-test was

administered at the conclusion of the unit/relevant content, which was towards the

end of the Freshman year.

The study included rural, urban and suburban schools of varying proficiency

levels (from high to low) and ethnic diversity. There were no significant differences

for participating teachers in terms of gender (Treatment �42.86% female, Con-

trol �50% female), holding a mathematics teaching licence (Treatment �100%,

Control �87%), or years of teaching experience (average for Treatment �10.65 yrs,

average for Control �6.87 yrs).
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Design of instrument

The Algebra 1 content test focused on linear functions, co-variation, slope as rate

versus slope as m in y �mx�b, simultaneous equations, and systems of linear

functions. The test instrument was constructed following the principled assessment

design approach (Mislevy et al. 2003). In this approach, we identified the specific

knowledge or skills to be tested, and then articulated an evidence model that

specified the kinds of tasks (problem solving, application, open-ended, multiple-
choice) that were likely to reveal whether students had mastered the target knowledge

base and skill set. Next, we created specific problems. The evidence model was

refined through piloting and procedures to ensure the technical quality of

assessments. Specific details on the instrument construction and validation can be

found in our technical report series at http://www.kaputcenter.umassd.edu/products/

technical_reports/

Items in the content test were focused on core algebraic concepts and skills,

including: graphical interpretation, rate and proportion, computational/procedural
operations and making connections across representations.

Analytical framework

HLM analyses are most useful for nested data such as students within classes,
students within schools, etc. We conducted cluster-randomised trials, so nesting was

important and needed to be accounted for in the analysis. Our research questions

focus on measuring ability to learn in differently achieving classrooms. This

structures the analytical framework. In our study, the unit of analysis was the

student and the unit of randomisation was the classroom (the cluster). If the

outcome variable, Y, is, say, students’ aggregate post-test scores, this outcome has an

individual and a group aspect to it (it might differ across classes). Similarly, the

independent variable X, say, a student’s pre-test score, has a group aspect to it. In our
datasets, the nesting structure (where the groups are classes of individual students) is

meaningful, and it is unfounded to assume that the group structure is completely

represented by the explanatory variables. Nesting can be represented by several

mathematical equations that interact with each other and, through substitution, can

be written as one mixed model. For example:

Level 1:

Yij ¼ b0j þ b1j � Xij þ Rij

Level 2:

b0j ¼ c00 þ c01 � Zj þ U0j

b1j ¼ c10 þ c11 � Zj þ U1j

represents a 2-level model, where level 1 accounts for individual or micro-unit
variation and level 2 for group or macro-unit. Between-group variability can be

modelled by letting the intercepts and slopes vary between groups; for instance, some

classrooms have higher scores on the post-test than other classrooms. The outcome

variable, Yij, is a student score on a post-test where i is the index for each student (i�
1 . . .nj) and j is the index for each classroom, j�1 . . .N (note we use capital N for
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groups). For individual i in group j there are two variables, the dependent variable, Y,

and an explanatory variable X, denoted by Xij. There is also an explanatory variable

at the group level Z, denoted by Zj. Note the subscript for Z is just j since there is no

variation by student (level 1); throughout, the first subscript (if any) refers to variation
at level 1, the second subscript refers to variation at level 2, and a zero corresponds to

no variation at that level. So our level 1 equation has group-dependent intercepts

described by the level 2 equation b0j�g00�g01 * Zj�U0j and group-dependent slopes

described by the level 2 equations b1j�g10�g11 * Zj�U1j. If there were two level 1

predictors, then we would have another equation for b2j, and so on.

Finally, g00 is the grand mean for X, U0j is the random effect (or unexplained

variability) at the group level, and Rij the random effect at the individual level. g01 is

a regression coefficient describing the effect of group level predictors (Z), and g10

describes the main effects of individual level predictors (X). g11 is a cross-interaction

effect, to which we return later. When the level 2 equations are substituted into the

level 1 equation, we get the full model:

Yij ¼ c00 þ c01 � Zj þ c10 � Xijþc11�Zj�XijþU1j�XijþU0jþRij

We have rearranged the terms to illustrate the fixed effects part of the model (first 4

terms) and the random effects part of the model (last 3 terms). The aim of HLM is to

explore whether such explanatory variables (when nested) can significantly predict

the dependent variable, and how much variance can be accounted for by the random
effects. Our results will be tabulated by such effects. Including random effects allows

there to be unexplained between-group variability that can be explained by group

level variables. This approach has benefits over ANCOVA (especially with small

group sizes B50) as the model assumes independent and identically distributed

group and individual effects, i.e., U0j�(0, t00) and Rij�(0, s2). Unexplained group

effects are controlled by similar mechanisms across all groups, and operate

independently between groups (Snjiders and Bosker 1999). We discuss tests for

these assumptions later.
We focus only on 2-level models in this paper where our micro-units are students

(scores on our pre-test) and macro-units are classrooms of students with an average

class size (cluster size) of 17 students. Dependency of observations on the micro-units

within the macro-units is of primary interest. For example, success of a student

within a particular class may derive from interactions with other students sharing the

same class environment, or from the effect of sharing the same teacher, or from

numerous other classroom level conditions.

Results

We now present the results for our four research questions, using progressively more

complex modelling. We present each analysis in the context of our student
performance data in algebra classrooms using a threefold structure: (1) Theoretical

model from HLM; (2) Application of the model to our dataset; and (3) Results and

interpretation.

Research Question 1 (Empty Model): How much variance exists between classes

and within classes on our outcome measure, a mathematics content post-test?
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Model: This question can be addressed using the Empty model, which is the

simplest form of HLM, and can also described as a 1-way random effects ANOVA.

Contrast this with a full 2-level model (described above):

Yij¼ c00þU0jþRij

Here, the dependent variable g00 is the population grand mean, U0j is a random effect

at the group level (macro-unit), and Rij is a random effect at the individual level

(micro-unit). The macro-unit has a true mean g00� U0j and each micro-unit i with

this macro-unit j deviates from this mean by Rij. From this model, a parameter called

the intraclass correlation coefficient (ICC) can be calculated by comparing the level 1
(s2) and level 2 (t00) variances:

q ¼
Var U0j

� �

Var U0j

� �
þ Var Rij

� � ¼ s00

s00 þ r2

Application: The ICC can be interpreted in two ways: (1) The proportion of total

variability due to the group level; or (2) The correlation between two randomly

drawn micro-units from one randomly drawn macro-unit. Note g00 should be close

to, but not the same as, the raw arithmetic mean due to weighting of various groups.

Results and interpretation: Table 1 outlines the relevant output from HLM6 software

(http://www.ssicentral.com/hlm/) for data collected in our study. The ICC can be

calculated from this output as .515. This demonstrates a large proportion of variance

due to the group, hence nesting individuals in classes is relevant and HLM should be
used. Normal levels for r are between .05 and .2.

Research Question 2 (The Random Intercepts Model): How much effect do student

pre-test scores have on student post-test scores at the end of the Freshman school year?

Model: The Random Intercepts (or Random Coefficients) model is a simple form

of HLM, as it does not involve random slopes (see later). Here, we introduce one

explanatory variable X at level 1:

Level 1:

Yij ¼ b0j þ b1j � Xij þ Rij

Level 2:

b0j ¼ c00 þ U0j

b1j ¼ c10

Table 1. Fixed effects and random effects.

Fixed Effect Parameter Coefficient SE t P

Intercept g00 9.551 .731 13.058 pB.001

Random Effect Parameter Variance component df x2

Level 2 variance t00�Var(U0j) 14.509 28 524.247 pB.001

Level 1 variance s2�Var(Rij) 13.662

Deviance �2541.797
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The simple model has four parameters, regression coefficients g00 and g10 and

variance components U0j and Rij, so the model includes unexplained variability at

both levels. g00 is the intercept for the average group and g10 is an unstandardised

within-class regression coefficient, or slope of the X variable, which as a constant is

fixed across all groups (hence this is a random intercepts model). It describes the

relationship between X and Y; increasing one unit of X leads to an average increase

of Y by b1j.

Application: With such variables, our model tests the question of whether pre-test

scores (X) predict post-test scores (Y) accounting for groups (classes).

Results and interpretation: The results (Table 2) indicate that the intercept and

slope for our content test at the end of the school year are significantly different from

0. The model is Y �10.104�.667 * (PRETEST). For every one-point increase on the

pre-test, we could expect an increase of almost .67 points on the post-test for the end-

of-school year content test. The Chi-squared test indicates that there is significant

between-group (class) variance in the intercept parameter across groups (classes).

This indicates that there is a significant amount of variance in pre-test scores between

groups (classes).

Comparing the output for the random effects with the Empty Model will

illustrate lower variance components for t00 and s2. This is because the between-

group differences are partially explained and include the effect of X. A new ICC can

be calculated using the same formula as above, but this is referred to as the residual

ICC because it controls for X (see Table 2 for variance values). For our dataset

r(YjX) �2.646/(9.677�2.646)�.215. This is lower than the raw ICC since the

residual variances are lower. This is because the classes (groups) differ by average

pre-test score, so this level-1 student variable (Xij) also explains part of the

differences between the groups.

What happens if t00�0? We briefly consider the difference between HLM and

Ordinary Least Squares (OLS) regression methods for the same set of data to

support our approach for using multi-level analysis based on our research design of

cluster-randomised trials. OLS is a method for estimating the unknown parameters

in a linear regression model. As t00 tends to zero, there is less between-group variance

and hence less call for nesting data and an HLM analysis. When t00�0 the HLM6

software produces OLS estimates for regression coefficients and standard errors (see

Table 3). This output illustrates that the OLS coefficients overestimate the effect in

contrast to the random intercepts model (10.482 in contrast to 10.104), but more

importantly under-estimate the standard error (0.249 in contrast to 0.345). Hence,

Table 2. Fixed effects and random effects for simple HLM.

Fixed Effect Parameter Coefficient SE t p

Intercept g00 10.104 .345 29.302 pB.001

Slope g10 .667 .060 11.190 pB.001

Random Effect Parameter Variance component df x2

Level 2 variance t00 2.646 28 146.923 pB.001

Level 1 variance s2 9.677

Deviance �2358.441
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standard OLS techniques aggregate classroom effect and do not distinguish the effect

of clustering.

Research Question 3 (Means as Outcomes Model): Can group membership in an

honors class predict a significantly higher post-test score?

Model. Here we introduce one explanatory variable Z at level 2:

Level 1:

Yij¼ b0jRij

Level 2:

b0j ¼ c00 þ c01 � Zj þ U0j

In this application we do not have a level 1 explanatory variable, but we introduce

a level 2 explanatory variable to aggregate the effect at the group level. So Zj is a level

2 predictor with g01 as a between-group regression coefficient. Hence this is

traditionally called a Means as Outcomes model.

Application: Classes within each school varied by school-defined class level �
there were honors classes and non-honors classes within each school. We chose to

investigate whether there was a significant difference between groups when predicting
post-test outcomes using a Means as Outcomes model. Yij is the post-test score for

an individual i in class j, and g01 * (HONORS) is a dichotomous variable that

identifies students as either being in an honors class (1) or in a non-honors class (0).

Results and interpretation: Since the code for non-honors students is 0 and the

code for honors students is 1, the coefficient of 8.65 indicates the average score of a

non-honors student (see Table 4). The coefficient for the honors classes is the slope of

the line from zero (non-honors) to one (honors). This slope is significant (pB.001)

and suggests a predicted advantage for honors students of more than five points on
the post-test.

Research Question 4 (The Random Slopes Model): For students in honors classes,

is treatment group a predictor for post-test score when controlling for pre-test score? Is

Table 3. Estimators for OLS and HLM.

Least Squares Estimates of fixed effects (OLS) Random Intercepts

g00 10.482 g00 10.104

SE .249 SE .345

g10 .829 g10 .667

SE .045 SE .060

Table 4. Honors classes predicting post-test results.

Fixed Effect Parameter Coefficient SE t p

Intercept g00 8.65 0.69 12.56 pB.001

Intercept g01 5.18 1.53 3.38 pB.001

Random Effect Parameter Variance component df x2 p

Level 2 variance t00 10.84 27 355.81 pB.001

Level 1 variance s2 13.66
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the variance in slopes across groups (classes) significantly related to the experimental

group of the students when controlling for the pre-test?

Model: This is the most commonly used general HLM for 2-level models where

several explanatory variables are added at level 2, including random effects.

Level 1:
Yij ¼ b0j þ b1j � Xij þ Rij

Level 2:

b0j ¼ c00 þ c01 � Zj þ U0j

b1j ¼ c10 þ c11 � Zj þ U1j

This model involves more level 2 random effects, i.e., t1�var(U1j) and t01�
covariance (U0j, Uij), and these need careful examination. It is customary to add

level 2 explanatory variables in both the intercept and slope equations, but we

express caution here. More explanatory variables can be added in each equation, but

a good rule of thumb is to think of the intercept equation as an initial/entry stage for
an intervention/experiment, so that any added variables should theoretically be

considered as dependent variables of such a state at that time. Similarly, the slope

equation, b1j, should be considered as a growth coefficient, and so level 2 explanatory

variables should be added that are theoretically considered as potential contributors

to change/growth over the course of the intervention. When there are q level 1

predictors, there will be an equivalent number of level 2 slope equations, denoted bpj

where p �1 . . .q.

Application2:

Level 1:

POSTTESTð Þij¼ b0jþb1j� PRETESTð ÞijþRij

Level 2:

b0j¼ c00þc01� TREATð Þjþc02� TREAT � HONORSð ÞjþU0j

b1j¼ c10þc11� TREAT � HONORSð Þj

TREAT refers to the experimental group (0: Control; 1: SimCalc). We first ran a
random slopes model with TREAT and HONORS as explanatory variables at level

2. The main effect of TREAT was not significant (p�.853) but the main effect of

HONORS was significant (p�.003) Because of this, we wanted to force an

interaction between TREAT and HONORS (i.e., Z �TREAT*HONORS) to see

if this could account for such significance in the HONORS group.

Results and interpretation: The test associated with g01 is the main effect for the

treatment group (see Table 5), which is not significant. However, the main effect for

the interaction between TREAT and HONORS is significant, g02�1.89, p�.044.
This indicates that the post-test scores for SimCalc honors students are significantly

greater than those for Control students, and than those for non-honors students at

the class level. Additionally, we see in g10 that there is a significant difference between

groups (classes) on the post-test when controlling for pre-test scores. The TREAT *

HONORS interaction, however, is not mediating a cross-level interaction between
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students within a class and classes when controlling for the pre-test, as indicated by

g11,. Neither is the interaction moderating a relationship from pre to post test scores

within classrooms, i.e., the pre to post test relationships within honors level
classrooms is not found to be significant.

Checking model assumptions

As in any statistical modelling, there are assumptions underlying the theoretical model,

which should be verified in order for all subsequent claims to be ratified. In HLM, these

focus on checking whether the level 1 and 2 residuals are normal and have constant

variance, i.e., U0j�(0, t00) and Rij�(0, s2). We have verified four assumptions that

need to be met for HLM. The first is to check for linearity at all levels. We built 2-level

models and therefore needed to check for linearity at level 1 � the student level � and at

level 2 � the class level. Using statistical software, we ran a linear regression to check the
value of R2 for our predictors onto outcome measures. The R2 value with post-test as

our dependent variable was greater than 0.5 and less than 0.7.

The second assumption pertains to normality of residuals at each level. We checked

the residuals for normality using the Kolmogorov-Smirnov test and the Shapiro-Wilk

test. We also plotted a Q-Q plot of the level 1 residuals; the plot was approximately

linear, suggesting there is not a significant departure from a normal distribution. For

the level 2 residuals, we plotted a Q-Q plot of the Mahalanobis distances; the plot

resembled a 45-degree line, indicating that random effects are normally distributed.
The third assumption is homogeneity of level 1 variance assumption. This

assumption asserts that the residual variance of the outcome � after adjusting for the

level 1 covariate � is the same for all groups, in our case, classes. The HLM6 software

can output a Chi-square test for homogeneity of variance. We also computed a

skewness z-score and a kurtosis z-score for our level 1 residuals.

The fourth assumption pertains to independence, and can be met through an

analysis of the correlation between the level 1 and level 2 residuals in which there was

no correlation. Additionally, independence assumes observations in the highest level
are independent of each other. Using the residual files saved from the HLM6

software, we plotted a scatter plot of the level 1 residuals against the fitted value for

each level 1 unit, which are the values predicted based on the level 2 model. There

was no strong relation here.

Table 5. Fixed effects and random effects for full HLM.

Fixed Effect Parameter Coefficient SE t p

Intercept g00 10.01 0.43 23.69 pB.001

TREAT g01 �0.18 0.70 �0.25 p�.803

TREAT * HONOR g02 1.89 0.90 2.11 p�.044

Slope g10 0.67 0.06 10.91 pB.001

TREAT * HONOR g11 �0.06 0.19 �0.32 p�.748

Random Effect Variance Component df x2 p

Level 2 variance t00 2.75 26 139.338 pB.001

Level 1 variance s2 9.67

Deviance �2353.259
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Conclusions

In this paper, we have demonstrated the impact of a SimCalc intervention under a

cluster-randomised trial in algebra classrooms in the US, and have illustrated how

multi-level analytical methods can be used to disaggregate datasets and examine the

effect of contextual variables. The various models outlined in this paper have

exemplified techniques to examine such approaches. We have also attempted to

describe under what conditions certain performance measures are associated with

individual and group-wise or contextual variables related to a SimCalc intervention.
We hope that such a delicate treatment, through progressively and methodically

adding contextual and explanatory variables to nested models, can help to describe

both the variation we observe in students’ learning of important algebraic concepts

and the analytical methods used to assess such claims. We propose that such models

can help researchers, examining impact at varying degrees of scale, unpack their

results and look more carefully at several contextual variables within school settings.
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Notes

1. Download SimCalc curriculum and software at http://www.kaputcenter.umassd.edu/
products/software/smwcomp/download/

2. In our models, all individual student level data were centred at the grand mean of all pre-
tests vs. the group (class) level. Care should be taken in deciding which form of centring (if
any) should be applied, and how to interpret the results. The reason for choosing grand
versus group mean centring relates to research design and sample (see Lüdtke et al. 2009;
Sloane 2008).
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