RESEARCH PAPERS

THE ROLES OF ARTIFICIAL INTELLIGENCE IN EDUCATION:
CURRENT PROGRESS AND FUTURE PROSPECTS

e David McArthur e Matthew Lewis e Miriam Bishay
RAND 1700 Main St. Santa Monica, CA 90407-2138

Summary

This report begins by summarizing current applications of
ideas from arfificial intelligence (Al) fo education. It then
uses that summary to project various future applications of
Al -- and advanced technology in general -- to education,
as well as highlighting problems that will confront the wide-
scale implementation of these technologies in the
classroom.

The earliest applications of Al in education developed
infelligent tutoring systems (ITS). For the most part, ITS, like
CAl systems before them, have aftempted to implement
fraditional methods of learning and teaching. Drill-and-
practice, and other variants in which students solve
relatively short problems chosen by the teacher, have a
proven pedigree in the classroom. Perhaps more
important, ITS using a drill-and-practice method have
generally aimed af well-defined and well-accepted goals
forlearning. These typically include factual knowledge and
procedural skills, like algebra symbol manipulation, that are
part of tfraditional school curicula, and that can be
measured by existing standardized tests. Working with
fraditional methods of teaching and leaming, and using
fraditional means of evaluating outcomes, the developers
of ITS have tried to show that ITS can significantly improve
the speed and quality of students leaming. And, 1o some
extent, they have been successful.

However alooming paradox undermines these successes.
The technologies that make it possible to automate
fraditional methods of teaching and leaming are also
helping to create new methods, and fo redefine valued
educational goals. For example, new technologies can
automate symbol-manipulation algebra and  spelling
correction, making these skills less important to learn, while
increasing the importance of "higher-order" skills required
fo do creative mathematics and writing. As a result,
attempts to use new technologies in education to further
fraditional learning goals or fraditional methods of
teaching makes less and less sense.

This situation poses tremendous difficulties to the
development of effective educational technology
applications. Traditional goals and methods for learning
are at least well understood and relatively well-defined. But
new methods -- for example learning through inquiry,
collaboration, or visualization -- and new goals for leaming
have not yet been agreed upon by the educational
community at large, let alone fully operationalized.
Crafting effective technologies for fixed leaming goals and
methods of feaching and learning is challenging enough.
But is even more demanding when the target you are
aiming afis moving.

Microworlds and interactive learing environments (ILES)
are one response to these changes in the educational
landscape. Generdlly, they are frying to implement an
inquiry-based method of teaching and learning, perhaps
helping to bring this method into the classroom on a large
scale for the first time. However, at the same time, ILEs are
involved in a shift of educational goals as well as methods.
lts not simply a matter of providing tools for new methods of
learning skills now faught in many classrooms. In some
cases, new educational goals focus on topics that are not
part of traditional curricula, such as boolean networks and
chaos, graph theory, and inquiry skills themselves. In other
cases the focus is on fraditional topics, like fractions or
polygons, but the intent is fo foster a deeper conceptual
understanding of ideas that are usually faught as simple
procedures.

The movement from ITS o ILEs, and to mixed-initiative
systems that represent a combination of both approaches,
illustrates a general pattemn in educational technology
today. Virtually all important computer-based applications
to education are not simply trying to teach traditional skills
more quickly, efficiently or less expensively. Rather, like ILEs,
they are participating in an attempt to change methods of
learning and teaching and fo redefine valued educational
godals and leamning outcomes.
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As a result, there is no reason to believe that the most
effective uses of Al (or advanced technology in general) in
education will happen quickly or without careful policy and
planning. In the short-term, technologies resembling many
TS -- that aim at well-defined leaming goals and that can
bbe moved into classrooms with a minimum of disruption --
will provide the most statistically significant improvements
in student outcomes. Policies that support research based
on their ability to generate such results in "horse race"
evaluations risk encouraging technology applications that
miss longer-term benefits.

On the other hand, policies which simply give researchers
free reign to develop software that focuses on new
methods of teaching and new leaming outcomes also run
considerable risks. The problems in developing these
systems and moving them intfo education on a broad
scale are not simply technical ones. Our experience
provides a case in point. When developing ITS for
mathematics education, 75% our effort was spent on
technical and research issues, but implementation
required most of our time when we infegrated ILEs into
schools. As technology continues o transform the goals for
student learning and to enlarge the range of methods for
teaching and learning, implementation will require
proportionally more effort.

In general, implementation tasks must develop new
curricula, assessment methods and instruments, feaching
practices and professional standards, and teacher
education. These tasks cannot all be effectively done by
any single group of researchers. Rather, we believe that
scaling up new technologies like ILEs will require a division of
labor -- different groups or projects working in @
coordinated fashion to put together the technology,
curricula, assessment tools, professional standards, and
teacher ftraining pieces of a package of broad
educational reform. However, today we see very little
evidence of such coordination. Research in these areas is
typically funded by disjoint government programs that
provide few incentives or mechanisms necessary to
engender needed cooperation. In the future it will be
important to consider new policies that improve the
communication between these groups. A variety of policy
options are worth examining, including larger consortium-
based projects that include expertise in software
development as well as teacher training and other key

stakeholder groups, smaller separate projects that work
together synergistically using new networking technologies,
and incentives that bring high-tech companies into better
cooperation with educational technology research and
classroom practice.
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Infroduction and Overview

Computer fechnologies are changing the practice of
research and business, and -- very slowly -- the content and
practice of education are beginning to follow suit. This
paper discusses how work in artificial inteligence (Al) is
contributing new approaches to education and learning.
The hallmark of Al applications in education is that they
affempt fo explicitly represent some of the reasoning skills
and knowledge of expert practitioners, and to exploit that
expertise for teaching and learmning. In business we see
growing evidence that information tfechnologies are
leading to substantial improvements in productivity by
automating routine activities (Zuboff, 1988). Similarly, it
seems that if we can impart basic cognitive skills of
teachers to computers we might delegate some teaching
to machines and thus improve educational outcomes.
However, this paper will chronicle several ways in which
such atheory vastly oversimplifies practice.

The main goal of this paper is 1o review past and present
tfrends in the applications of Al in education, and to project
from the successes and failures of those applications to
possible future applications. The paper is a personal
perspective in several senses. It selectively highlights a few
important issues but makes no attempt to survey all key
ideas in educational technology. Discussion is limited to
two main applications of Alin education: infelligent tutoring
systems and microworlds. Even more narrowly, the paper
will compare these two approaches primarily in terms of
their methods of learing and teaching -- the procedures,
principles, and techniques they embody to facilitate
leamning -- and their leaming outcomes or goals for leamning
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-- the particular kinds of knowledge and learning they help
students acquire, or try to help them acquire. The paper is
also a personal perspective because it illustrates many of
its main points with reference to our own research at RAND
over the past several years. We also discuss other research
o support general points, but many outstanding systems
and studies are mentioned only in passing or not at aill.

The organization of the paper is roughly chronological. The
first section discusses the application of Al ideas in
developing early intelligent tutoring systems, reviewing
both their successes and limitations. These limitations
motivate the relatively recent development of interactive
learning environments and microworlds, which are
discussed in the next main section. The paper concludes
with some general reflections on the current state-of-the-
art, and with some speculations on possible future
directions for Alin education.

Intelligent tutoring systems

This section discusses the development of intelligent
futoring systems for education over the last decade. We
begin by reviewing the fundamental ideas behind these
systems and illustrating them with reference to tutors we
have developed. While knowledgeable readers will find this
review familiar, it sets the stage for the following discussion
of successes and failures.

Anatomy of an Intelligent Tutoring System

The first (and sfill foremost) application of Al fo education
has been to build infelligent tutoring systems (ITS). (NOTE: In
this paper, | will use "ITS" as an abbreviation both for
"infelligent tutoring system" and the plural, ‘intelligent
futoring systems". "ITSs" just looks too strange.) ITS have been
under development at least since WEST (Burton and Brown,
1982) and SOPHIE (Brown, Burton and deKleer, 1982) nearly
twenty years ago. Many specific systems, their structure
and goals, have been discussed in depth by Sleeman and
Brown (1982), Wenger (1987), and Psotka, Massey, and
Mutter (1988), among others. Ohlsson (1986) and Schank
and Edelson (1990) have also contributed valuable critical
reviews of the direction of the field. Here we review only a
few key features of ITS.

[TS aftempt to capture a method of teaching and leamning
exemplified by a one-on-one human tutoring inferaction.
For researchers in Al this method of feaching was a natural
one to target first for several reasons. Drill-and-practice
versions of one-on-one tutoring are relatively well-
understood ways of communicatfing knowledge. This
method of leamning and teaching is widely accepted both
by the educational community and by our culture as a
whole. And it has achieved broad popularity for good
reason. One-on-one tutoring allows leaming to be highly
individualized, and consistently yields better outcomes
than other methods of teaching (Bloom, 1984). Although
many methods have been examined, no other has reliably
yielded "2 sigma" improvements -- usually over a full letter-
grade -- in student outcomes. Failure to attribute strong
outcome improvements to other methods of teaching
and learning may be partly a function of inadequate
techniques for evaluating novel learning outcomes, as we
elaborate below. However, regardless of evaluation
problems, it is clear that one-on-one tutoring remains a
"gold standard" of learning.

Although TS differ in a variety of ways, most have a
characteristic structure. Figure 1 sketches a generic ITS.
Superficially, ITS differ little from the CAl systems preceded
them. In general, both are characterized by a common
philosophy that includes high futor control, and short-
answer task format. In most CAl systems and ITS students
learn by working a series of relatively brief questions. In both
cases the system plays the exclusive role of the task expert,
confrolling the selection of tasks or problems, while the
student responsible for answering them. The system also
plays the role of the critic, and in most ITS the system rather
than the student decides when critical feedback will be
supplied. The main differences between TS and earlier CAl
systems do noft reflect differences in methods of tfeaching
and underpinning philosophies of learning. Rather, they
reflect engineering and psychological enhancements
that permit ITS to futor in a knowledge-based fashion. Unlike
previous CAl systems, ITS represent some of the knowledge
and reasoning of good one-on-one human tutors, and
consequently can coach in a much more detailed way
than CAl systems.
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ANATOMY OF AN INTELLIGENT TUTORING SYSTEM
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Figure 1: Components of a generic intelligent tutoring system

The heart of an ITS is its expert system. The expert system
embeds sufficient knowledge of a particular topic area to
provide "ideal" answers 1o questions, correct not only in the
final result but in each of the smaller intermediate
reasoning steps. The expert system thus allows the ITS to
demonstrate or model a correct way of solving the
problem. Often, like a human tutors, it can generate many
different answer paths or goal structures (McArthur, Stasz,
Hoftta, Peter, and Burdorf, 1988). The same detailed data
structures that expert systems generate in modeling expert
reasoning also permit TS to explain their reasoning at
arbitrarily detailed levels. For example, if a student needs
an explanation of why or how an algebra ITS did a step in
solving an equation, the system might first say that it used
the distributive rule. If the student requested more
justification, it could elaborate by describing the terms that
were distributed and the arithmetic "cleanup" steps that
followed. Explanations thus fumn expert systems from
opaque "black box" experts into inspectable "glass boxes"
(Foss, 1987).

TS coach as well as model expert problem-solving. In
particular, they can monitor the student as he or she solves
a problem and can determine if every step is right. Thus,
while questions were the atomic unit of discourse in CAl
systems, in ITS the basic unit is the individual reasoning step.
To support this detailed coaching, TS often create and
update a student model (see, among others Anderson,
Boyle, and Yost 1985; London and Clancey, 1982; Sleeman
and Smith, 1981). The student model reflects the correct
rules the ITS thinks the student knows -- ones that are also
found in the expert system or in the "ideal" student model
(Anderson, Boyle, and Reiser, 1985). Butf, since most
students are not ideal, the student model often contains
rules that are "ouggy"--invalid rules the ITS thinks the student
believes (Matz, 1982; Sleeman, 1982). The ITS watches
each step in the student's reasoning as he or she solves a
problem. Each time the student makes an error, the ITS will
diagnose the problem -- possibly updating the student
model -- then attempt to remediate it with very detailed
advice about how the expert system would do the step. This
process repeats at every step in the evolution of a
complete solution to a problem.
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One part of most ITS that receives relatively little mention is
the pedagogical component. While the expert system
contains rules and knowledge that drive an ITS subject-
specific performance, the pedagogical component is
supposed to contain similar rules that encode expertise
about tfutoring itself -- for example when to interrupt
stfudents and what kinds of information to provide them.
But, as we elaborate below, curent IS have litfle
pedagogical expertise.

An Intelligent Tutoring System for Basic Algebra

The algebra ITS we have developed over the past several
years illustrates many of the key features of intelligent
tutoring systems (McArthur, Stasz, Hotta, Peter, and Burdorf,
1988; McArthur, Lewis, Ormseth, Robyn, Stasz, and Voreck,
1989). Our algebra ITS helps students leamn freshman level
algebra, focusing on equation solving and symbol
manipulation. In different versions of the tutor the student
can solve problems using symbols, operations, or
commands. In the "Symbols" version, students input new
equations that lead toward a solution. Students can input

equations either by typing or by using electronic pencil. In
"Operations" the student issues requests like "add 30 to both
sides of the equation". And in "Commands" the student
specify very high level godls, like "collect" like terms. The
different versions allow the student to focus on different
levels in the rather complex hierarchy of reasoning skills that
characterize even simple algebra. Students practice one
level of decision-making, and the ITS takes care of other
levels that the student is not concentrating on at a given
fime. For example, if the student says "collect" the ITS will
figure out what "collect" means in terms of operations, then
also do the appropriate symbol manipulation.

In Figure 2 the student is using the operations version of the
algebra tutor. The operations the student chooses are
recorded in the right side window. The left side contains
various menus that allow the student and ITS to converse.
For example the student can move scroll display, can ask
for help, can ask the ITS to do a step and to explain what it
was doing, and can create their own problem or get easier
orharderones.

simplify Reduce terms to a simpler form, or do artithmetic
/o7 Devide both sides by ?
* 2 Multiply both sides by ?
+ ? Add ? fo both sides
? Subtract ? from both sides
distribute ? Expand a * or/ using the distributive rule
INEQUALITIES
2+7%x = 9 (-6+X) -4 (-6+X)
-2+7x=-54 +9x-4(-6 +X) -2+7>i=5[-6+x]
seroll Right 2+ 7x = 30 + 9x- 4x 24 7x=-30+ 5x
Scroll Left | T
Scroll Down
scroll Up -2+7><|:5><-30 -2+7i<+30:5x
-2+7x|+30:5x 28T7X:5X
(collect9(-6+x)-4 (-6 +x))
(distribute -6 +x)
My Answer Ok? 28+FX=5X 28':5)(-7)( (+ 30)
Help Next Step (simplify)
Explain Your Step W QT =-2x - 7%)
28 (collect x)
28 -2x 28-5x=-7x 2 | =x 02
o8 (Simplify)
Login =
Erase Input 2 X =X
Move Box

Homework Problem
Student Problem
Easier Problem
Harder Problem

| QUIT |

Auseful goal was to COLLECT the variables together.

CONDITIONS: There is more than one x on one side of
=2+ 7x=9(-6+x) -4(-6+x).

GOAL:
OPERATION:

Were combined tomake (9 -4) (-6 +x).

To carry out this goal the variables 9(-6 + x) -4(-6 + x) .

Figure 2: An intelligent tutor for basic algebra

I-manager’s Journal of Educational Technology, Vol. 1 ¢ No. 4 ¢ January 2005

46




RESEARCH PAPERS

When the student creates steps in a solution he or she can
develop multiple different solution paths that appear as
different branches in a solution free. Solution trees "reify" the
stfudent's reasoning process by showing connections
between steps (Collins and Brown, 1987). Such reification
allows the student to easily compare different solution
approaches, or to confrast a "buggy" approach with a
correct one. In this case, for example, the student's first
(leftmost) attempt began by distributing and the second
attempt uses the more elegant approach, by first
collecting. This approach was suggested by the computer
after a request for help from the student (the command
that began this branch is in inverse video in the commands
window to the right, indicating this step was done by the
machine). Af the point shown in the Figure, the student has
asked the ITS to explain how and why it did the step.
Explanations appear in the bofftom window. The student
can request explanations atf increasing levels of detail. Like
other TS, the algebra tutor's main strength is that it permits
coaching af an arbitrarily fine grain size. As Anderson has
pointed out (Ohlsson, 1986), it would be difficult -- perhaps
impossible -- for a human tutor to provide any more
detailed feedback on the logic of algebraic symbol
manipulation.

We have experimented with two very different
pedagogical components in our algebra tutor. In the
version we have been discussing, the pedagogical policy
permits high students control. The student decides when to
ask for help, when to request the expert to do and explain,
when questions should be tougher and easier. Another
version of the system is at the other end of the pedagogical
spectrum. It is completely tutor controlled; the tutor, not the
student, decides what questions to give, and when to help
the student.

Successes of Intelligent Tutoring Systems

Most ITS are still being used on a very small scale, and only
a few have been tested widely. Of these, just a handful
claim to improve students' outcomes in the classroom
using standardized tests. Successful ITS have been mainly
restricted fo areas of mathematics and science, where it is
both easier to build ITS and easier to measure learning
outcome improvements. Perhaps the most thoroughly
tested IS are Anderson's Geometry and Lisp tutors

(Anderson, Boyle, and Yost, 1985; Anderson and Skwarecki,
1986; Schofield, Evans-Rhodes and Huber, 1990).
Anderson claims "2 sigma" improvements using his
Geometry and Lisp tutors; thus, for these limited topics, he
may be approaching Bloom's gold standard. SHERLOCK, a
tutor for electronic troubleshooting, has resulted in similarly
dramatic performance improvements (Lesgold, Lajoie,
Bunzo and Eggan, 1993; Lesgold, Eggan, Katz, and Rao, in
press).

Our algebra ITS has been tested on several occasions using
infroductory algebra classes at a local high school
(McArthur and Stasz, 1990; Robyn, Stasz, Ormseth and
McArthur, 1989). In each fielding, one or more classes used
the IS and comparison classes leaming the same
curiculum, did not. Our evaluations have primarily
focussed on the role of the tutor in improving traditional
algebra leamning outcomes. Specifically, we were
interested in measuring improvements in solving symbolic
equations, and on seeing whether students could benefit
by reasoning separately about goals, operations, and
symbols. Our best results indicate that students using the
algebra tutor scored almost a letter-grade higher than
comparison students (see Robyn, Stasz, McArthur, Ormseth
and Llewis (1992) for a more detailed discussion of
curriculum and results).

However, these kinds of narrow results do not tell the whole
story. In addition fo enhancing students' outcomes in
fraditional algebra symbol manipulation, several
evaluations of our algebra tutor have attempted to see if
the tutor could improve skills not measured by most
standardized tests. For example, might students using the
algebra ITS improve their ability to model realistic situations
with equations, as well as skills for manipulating and solving
equations? Could they improve other "higher-order" skills,
like planning, debugging (fixing errorful solutions) and goal
setting? As we reportin more detail elsewhere (Robyn, Stasz,
McArthur, Ormseth and Lewis, 1992), there is qualified
evidence that our algebra ITS can lead to such outcomes.
However, these benefits come at a cost. To improve these
skills we had to extensively restructure the standard algebra
curricula in which our TS was embedded. For these pilot
fests, crafting the software took less time than developing
the non-computer materials and providing teacher
fraining.
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We see in these results an important general pattern. By
adopting one-on-one ftutoring, TS have aspired to
implement a very familiar, well-understood, and accepted
method of feaching and leaming. At the same time, most
TS have aimed at equally familiar leaming goals or
outcomes. These typically comprise procedural skills, like
algebra symbol manipulation, that are part of traditional
school curicula. Such outcomes are relatively easily
measured by the standardized tests that are used in most
school curricula. Consequently, it is relatively
straightforward to determine the success or failure of ITS in
objective and broadly accepted ways. On the other hand,
to the extent that ITS -- or any technology -- aftempts to
tfarget more novel leaming outcomes, it becomes both
more difficult fo measure success, and more demanding
to implement the technology in traditional classroom
seftings.

Reasons for ITS successes

There has been surprisingly little reflection in the literature on
the reasons why ITS have succeeded, and on why their
successes have been limited. This kind causal analysis is
important for several reasons. First, as Schofield's (Schofield,
Evans-Rhodes and Huber, 1990) analysis of Anderson's
Geometry tutor underscores, the actual reasons for
success may not the ones initially expected. The ability of
an ITS, for example, to finely tune instruction may be less
important than the fact that it permits feachers to spend
more time with slower students or that it increases student
motivation. Second, a given ITS, or any other
demonstration system, has limited value if not tied fo some
general observations or principles. Ohlsson (1991) has
persuasively argued that the real importance of any
futoring system is a function of the principles of leaming
which it illuminates. Any system, viewed as a software
product, is likely to have a brief life-span and will directly
impact few learners. However, principles of learning,
validated through demonstration systems, add to the
enduring knowledge of leaming and feaching that can
guide the construction of new generations of systems. They
become part of an incrementally growing base of
scientific and design knowledge. We disagree with
Onhlsson's view that the only important principles on which
[TS can impact are those that underpin cognitive theories

of leamning. For one thing, feaching principles and general
inferface design ideas are equally important, and may not
be reduceable in any systematic way to learning
principles. But we agree that a key contribution of [TS lie in
the general fruths they uncover or exemplify. From this
perspective, then, we believe several features or principles
are responsible for the (admittedly limited) success that ITS
Now enjoy.

Micro-tutoring.

Probably the greatest strength of ITS are their ability to
generate highly detailed feedback about problem solving
-- o micro-tutor. They can coach and model problem
solving down to "atomic" levels of reasoning. Micro-tutoring
is the main tfeaching principle ITS embody that distinguish
them from earlier generations of CAl. The converse
learning principle argues that learners need rich, variable
granularity feedback (Anderson, Boyle, Farrell and Reiser,
1987). When leamers accomplish a task they use their skills
along with external fools 1o generate reasoning and visible
performance. Although leaming can happen with nominal
feedback, generally richer feedback yields more accurate
diagnosis of errors, thus faster learing. The need for rich
feedback is especially important when tasks are authentic
and skills are embedded. Because so many skills may be
used in the process of generating an answer or step, it may
be difficult for students to locate their errors among many
acceptable actions (often refered tfo as the ‘"credit
assignment" problem) and to draw a general inference
from the errors (the "repair' problem), without detailed
feedback.

Tutor control of learning.

Although some TS, such the student-controlled version of
our algebra tutor, permit limited student choice, for the
most part interactions with TS are tightly controlled by the
software. In most cases, the ITS selects the next task or
problem, decides when the student needs support and
feedbackin problem solving, and determines the nature of
the information the students receive. Students may tailor
information; for example they may request more detailed
explanations. Butf their lafitude is usually highly
circumscribed. The principle of high tutor control reflects an
implicit belief that a competent tutor is usually in a better
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position to make decisions about what experiences and
information students need to learn effectively than the
students themselves. Of course, this assumes, af a
minimum, that the tutor knows the content the students
want to learn, and also knows the students' specific
knowledge state -- what they know, and what knowledge
they lack -- at any given time. The expert systems and
student models of TS attempt to provide this expertise and
o thus meet the demands of high tutor control of leaming.

Impasse-driven coaching.

A related feature of ITS is that they are stimulated to action
by student difficulties or impasses. In the tutor-controlled
version of our algebra tutor, for instance, feedback and
help is friggered by an algebraic error. By organizing
learning around small shor-answer tasks, and by choosing
tasks that are demanding for students, ITS affempt to
maximize opportunities for impasses. But, like many ITS, our
futor's decision-making in response o impasses is quite
"thin". Inferventions are immediate reactions to errors
alone. For example, they are not conditioned by a plan to
set up the leamning experience beforehand or to help
students define godals or plans. However, whether ITS reason
extensively or noft, virtually all reasoning attempts to
recognize student impasses and overcome them. The
learning principle that corresponds to teaching principle of
impasse-driven coaching is fo provide immediate
feedback (Anderson, Boyle, Farrell and Reiser, 1987). Most
TS, implicitly or explicitly, are built on the premise that a
good leamning system will provide detailed feedback as
sooNn as animpasse is detected.

ITS fit well into classrooms.

To the extent that TS appear to contribute to effective
learning outcomes, they substantiate the principles of
micro-tutoring, high futor control, impasse-driven
coaching and providing rich and immediate feedback.
However, although ITS are successful in part because they
are consistent with various theoretical principles of leaming
and teaching, practical reasons may be equally
important, if not more so. The simple fact is that ITS actually
fit quite well info existing classrooms, easily filling the shoes
of earlier CAl programs and integrated learning systems
that have enjoyed atf least modest success.

ITS are congruent with existing classroom practice in at
least two senses. First, they generally aim at leaming goals
or outcomes that are already embedded in fraditional
curricula -- algebra symbol manipulation, programming,
and geometry, for example. Second, they adopt a
popular method of tfeaching and leaming. Most
classrooms still combine lecture with drill-and-practice. As
a conseqguence, teachers have little trouble finding an
effective role for ITS like our algebra tutor. They can usually
be plugged into existing curricula with minimal change to
course plans; for example, they often simply replace
pencil-and-paper homework or drill-and-practice
seatwork.

It is important to note that not all software fits into
classrooms so easily. As we elaborate below, many
recently developed computer environments are more
aligned than ITS with emerging standards for mathematics
curricula which advocate new methods of teaching and
leaming and emphasize new goals for student learning
(e.g., National Council of Teachers of Mathematics, 1989).
Yet, regardless of their popularity in research, these
environments do not always work well in traditional
classrooms. Later sections will have more to say about the
demands of implementing various kinds of systems in the
classroom.

Limitations of Intelligent Tutoring Systems

While ITS have been somewhat successful on a small scale,
several problems must be overcome before they have
widespread impact. Various authors (e.g., Wenger, 1987;
Psotka, Massey, and Mutter, 1988) have discussed a wide
range of limitations. Many of these challenges can be
predictably factored by TS component -- limitations
associated with the expert system, student model,
pedagogical component, and interface. In this section we
touch relatively briefly on just a few shorfcomings that we
believe are most fundamental and which may not be
overcome simply through incremental improvements to
various ITS components. In the next section we discuss how
researchers applying Al 1o education are responding o
these challenges.

Limitations in learning outcomes

Educational technologies can aim at a wide variety of
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learing goals or outcomes, from helping students learn
skills in traditional subjects and curricula, to making new
fopics accessible to younger students, fo facilitating deep
conceptual understanding, to fostering metacognitive
skills like debugging. Most ITS have focused on subjects
taught in typical primary- and high-school level courses. In
this context, probably the most significant limitation of ITS is
that, to date, they can be developed only for a few topic
areas. Effective ITS require virtual omniscience -- a relatively
complete mastery of the subject area they are to tutor,
including an understanding of likely student
misconceptions. Thus, the most successful ITS have been
developed for simple "closed worlds" and procedural skills
like solving short problems in mathematics, science, and
logic. These are the easiest topics for which to build
complete expert systems simply because cognitive
science provides elaborate task analyses of competence
in these areas. Such complete knowledge of a subject,
and possible errors in knowledge, is also important for
developing detailed student models.

Conversely, ITS have not yet been successful developed for
less well-understood or well-defined subjects. These
include a wide range of topics in history and social
sciences, where natural language understanding would
appear to be prerequisite for any effective ITS. But they also
include areas in science and mathematics, such as those
emphasized by NCTM (National Council of Teachers of
Mathematics, 1989). For example, cognitive science
cannot yet provide a complete task analysis of expertise in
posing novel problems (Brown and Wallter, 1990), designing
good experiments, or creatively applying the scientific
method. Similarly, while ITS can help students practice the
symbolic manipulation of equations, they cannot tutor the
effective application of these representations in modeling
real-world situations. As a result, it is current impossible to
develop an omniscient expert system for these topic areas,
let alone modeling student misconceptions. And, without
an effective expert system, an ITS loses its educational
leverage.

Subject competence limitations of ITS can be interpreted
weakly or strongly. A weak interpretation agrees that
effective TS are currently limited to tfopic areas which are
relatively simple, and perhaps of minor importance in

emerging curricula. But a weak interpretation also argues
that eventually ITS will be built for many of these more
interesting topics, perhaps relying on new breakthroughs in
the representation of knowledge provided by artificial
inteligence and cognitive science research. On this
interpretation, the subject limitations of ITS are little more
than areflection of the youth of the field.

On the other hand, a sftrong interpretation of the
competence limits of TS argues that it may never be
possible to develop ITS for interesting topic areas. One of
the reasons that rote calculation and algebraic symbol
manipulation are no longer highly valued parts of math
curricula, for example, is that these computations can be
automated. Since they can be done by machine, so the
argument goes, they lose value as curriculum topics, while
new skills (that perhaps presuppose these simpler ones)
become increasingly important. In math, for example,
schools are slowly reducing the time spent leaming
multiplication tables, while reluctantly increasing exposure
o "higher-order" skills involved in finding and understanding
abstract mathematical pattemns (Steen, 1990).

The strong interpretation of the competence limits of ITS
thus does not deny that new research in arificial
intelligence will bring more fopic areas in range for ITS.
Rather it suggests that the very act of automating new kinds
of reasoning will devalue them as curriculum topics. On this
argument, the developers of ITS are caught in a "catfch 22"
they can never escape. As ITS improve, the leaming
outcomes they can engender will expand accordingly;
but the value of these outcomes will decline at the same
fime.

Limited teaching and pedagogical expertise

A second important limitation of TS pertains to their
restricted knowledge of teaching. As we noted, most ITS
have very impoverished pedagogical components. Such
components often comprise a collection of rules that just
seem to work reasonably well in practice. There is no
scientific encyclopedia of good tutoring heuristics to
consult, let alone a principled theory of one-on-one
tutoring from which specific heuristics might follow.
Cognitive science has not yet progressed to the point
where it can offer good task analyses of pedagogical
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expertise the way it has articulated the reasoning in "closed
worlds" like symbol manipulation algebra (Matz, 1982),
arithmetic (Brown and Burton, 1978), and chess (Newell
and Simon, 1972). In short, the pedagogical component
of [TSis an "expert system" that we cannot yet build.

Just as leaming outcome and subject limitations have
weak and strong interpretations, pedagogical limitations
can also be viewed narrowly or broadly. The narrow
inferpretation, implied above, argues that to improve the
pedagogical capabilities of an ITS we need to enhance
the rule-base that fells it when and how to coach students.
On this interpretation, the basic structure of tutorial
inferaction -- a method of tfeaching that emphasizes one-
on-one futoring, and the more detailed principles of micro-
tutoring and impasse-driven coaching -- remains intact. Al
that is needed is to enrich the pedagogical knowledge
base. In short, a weak interpretation suggests that we simply
need to do a better job of implementing the method of
teaching and learning that ITS are already pursuing.

A strong interpretation of ITS pedagogical limitations
argues the problem is not merely that the prevailing one-
on-one tutoring method is incompletely developed.
Rather, this inferpretation suggests a more fundamental
problem -- that ITS are constrained to a single method of
teaching and learning while fruly expert tutors can adopt
different methods. However good ITS are at micro-tutoring,
they are stil limited to a drill-and-practice style of
inferaction. More generally, they lack the ability to tutor
flexibly; to adopt different teaching methods when
appropriate, and to permit students to use different
learning styles. By contrast, competent one-on-one human
futors may shift methods depending on the needs of
students and on other contextual factors. A session may
begin in an apprenticeship mode, then shift into drill-anad-
practice, and finally into less constrained, student-
centered inquiry. This "meta level' reasoning about
appropriate tfeaching and learning methods is well beyond
today'sITS.

The drill-and-practice method of teaching embedded in
TS appears to be more suitable for tuning existing
knowledge than for conceptual leaming of substantial
pieces of new knowledge (Ohlsson, 1991). This limitation, in
part, reflects limitations in the cognitive science that

underpins [TS. Psychological theory has accumulated a
good understanding of how to remediate small "bugs" in
knowledge. For example, BUGGY provides a detailed
model of the microgenesis of misconceptions in arithmetic
(Brown and Burton, 1978); and Anderson's ACT* shows how
new knowledge can be built incrementally from existing
rules through operations like composition, generalization,
and specialization (Anderson, 1983). This research provides
a solid foundation for ITS that help student make minor
adjustments in knowledge. But cognitive science does not
have a comparable understanding of the initial learning of
large chunks of knowledge, and consequently, we lack a
rigorous theoretical basis that would guide the design of
learning systems for acquiring conceptual knowledge.

Current trends in the application of Al in Education

In the last several years, applications of Al in education
have diversified; approaches are more fractured, and the
field is certainly not as unified as five years ago when ITS
dominated Al research in education. These new trends
exemplify different responses to the difficulties
encountered in developing and testing the first generation
of [TS. Very broadly, while some recent research aftempts to
improve the one-on-one tutoring method of teaching
associated with TS, other work is investigating different
methods of teaching and leaming. This research s
rethinking important principles of learning and teaching
that should underpin education in general and the design
of educational fechnology in particular. At the same time,
new work is attempting to expand the range of learning
goals and outcomes associated with Al-based systems for
educatfion. In some cases this means developing
educational software for a more diverse set of subjects, but
in other cases the targeted knowledge has less to do with
the subjects leamned than with the quality or depth of
learning.

In this section we give an overview of several current trends.
As in previous sections, our intent is not an exhaustive review
of current research and results; instead, we are interested in
characterizing the main thrusts.

Continued Development of ITS

A substantial amount of work continues within the TS
framework. Different groups are attempting fo improve the
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various components of ITS, to develop applications in
increasingly complex subjects, and to make ITS more cost-
effective 1o develop by providing "shells" and other system-
building tools that institutionalize the basic structure of ITS. In
doing so, this research largely holds fixed the drill-and-
practice method of teaching, while attempting to
enhance leaming outcomes or goals either by improving
the quality of tutoring of subjects already within range of ITS,
or by expanding the range of subjects ITS can tutor.

New subject areas.

While many early ITS focused mainly on simple topics in
high school mathematics, recently ITS have been
developed for more advanced topics in mathematics (Du
and McCalla, 1991) and science (Lester and Porter, 1991).
ITS have also grown beyond mathematics and other more
formal subjects to include topics in history, language and
social science. Bruneau, Chambreuil, Chambreul,
Chanier, Dulin, Lotin and Nehemie (1991) describe the
design of a tutor for reading; Frederiksen, Donin, DeCary
and Edmond (1991) are developing a tutor for second
language leaming; and Feifer (1989) has developed a
tutor that not only helps students learn to read but also
focuses on inference and knowledge-structuring
strateqgies. Similarly, ITS have diversified beyond public
school curicula to topics in fraining and vocational
education. For example, new ITS for electronics,
maintenance, and troubleshooting (Cooper, 1991;
Frederiksen, White, Collins and Eggan, 1988; and Kurland
and Tenny, 1988) have built on the seminal work on SOPHIE
(Brown, Burfon and dekKleer, 1982).

Enriched expert systems, student models, and pedagogy.

In addition fo extending ITS o new subjects, ITS have also
been enriched along several dimensions, improving the
way their expert systems reason (e.g., Clancey, 1987), how
they develop and use student models (e.g., Burns, Gray,
and Radlinkski, 1991), as well as how they fashion tutorial
interventions. For example, although pedagogical
components remain impoverished, some ITS are now
capable of relatively subtle reasoning when managing
student impasses. In earlier ITS the response to student
impasses was usually a simple function of the impasse
itself; thus, a student making the same error ten times would

always receive the same feedback each time (Ohlsson,
1986). Now several ITS are capable of tutorial planning
(MacMillian, Emme and Berkowitz, 1988; Woolf, 1991).
These plans take several factors info account in generating
feedback, in some cases including the students' past
history of successes and errors. Planning is also beginning
to play several other roles in [TS. In the past, virtually all the
intelligence of an ITS was focussed on remediating the
current impasse. Not only were ITS unable to take broader
confext info account in generating feedback, but they
were equally unprepared to modify the sequence of tasks
or problems given to the student in response to past
performance. However recent planning techniques now
pemit some TS to reason extensively about the features
new tasks should have (McArthur, Stasz, Hotta, Peter and
Burdorf 1988).

Improved interfaces, bandwidth, and visual
representations.

Some researchers are attempting to improve the
performance of ITS by keeping the same underlying ITS and
exploiting better, more ‘"user-friendly", graphical user
inferfaces (GUIs). Simpler communication between
student and tutor, higher bandwidth dialogue, and visual
explanations that are easy to understand as well as
entertaining, may enhance learning outcomes
substantially (Bonar, 1991). One example of an effective
use of GUIsis GIL, a graphical version of Anderson's Lisp tutor
(Reiser, Beekelaar, Tyle and Merril, 1991). GIL has been
experimentally compared to the original version of the
futor, which includes no graphical front end. The results
showed, perhaps not surprisingly, that the graphical
inferface contributed significantly to improvements in
student outcomes.

Indeed, in the short-term it is very likely that better interface
design will contribute more to improved effectiveness of ITS
than will enrichments in the expertise underlying their
reasoning. This is not to say that knowledge is unimportant
fo tutoring. However, TS have arisen from Al and cognitive
science, and so they have focused primarly on the
importance of teachers' knowledge of subjects and
students in crafting systems. Effective interfaces may be as
crucial for learning and teaching as high quality
knowledge bases because they focus on other key
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learning variables, including the roles of motivation, broad
communication channels, and multiple different
representations. Moreover, effective interfaces are easier
o build than intelligent expert systems. As we elaborate in
the next section, making ITS smarter is simply much tougher
than making them clearer, more concrete, and more
accessible.

Basic Research in Teaching, Learning, and
Knowledge Representation

One reason that progress in developing ITS has slowed is
that it depends on a groundwork of research in artificial
infelligence and cognitive science. Cognitive science has
supplied task analyses of various skills that permit ITS
developers to implement detailed cognitive models. And
arificial intelligence, primarily in the form of expert systems
and production rule architectures, provides convenient
vehicles for representing knowledge and the processes
which apply it. As long as ITS could borrow from this
underpinning research, progress in constructing 1S was
relatively rapid. Development has been further facilitated
as Al programmers (e.g., Forbus, 1991) and ITS researchers
themselves (e.g., Anderson and Pelletier, 1991) create new
languages, tools, and shells that simplify the construction of
[TS expert systems and student models.

Cognitive science continues to provide better and more
detailed cognitive models and task analyses for ever more
sophisticated kinds of reasoning and problem solving. This
research has advanced from beginnings where only well-
defined and closed worlds like logic, puzzles, games, and
algebra were understood (e.g., Newell and Simon, 1972).
Today, for example, we have information processing
models of problem solving in knowledge-rich subjects like
medicine (e.g., Clancey, 1987), physics (e.g.. Larkin, 1980),
and electronics troubleshooting (e.g., Frederiksen, White,
Collinsand Eggan, 1988).

But this foundational research only extends so far. In spite of
recent advances, many fopic areas that educators regard
as increasingly important still lie at least in part beyond
current psychological theory. In fact, the gap between the
knowledge and skills we understand at a detailed cognitive
level and those we believe students should leamn may be
widening. For example, in mathematics curricula, simple

procedural skills to solve equations and more complex
procedural skills of differential and integral calculus, used
1o occupy substantial roles in K12 curricula. However, as we
noted, new standards have shiffed emphasis to a
somewhat ill-defined collection of "higher-order" problem
solving skills. At present, cognitive science cannot offer
rigorous task analyses of these skills. And without that
research base, it is not possible 10 develop expert systems
and student modeling facilities required by an effective ITS.

Having reached a point where ITS can no longer simply
borrow from an existing foundation of research in cognitive
science, educational demands are now becoming a
stimulus for new basic research in cognitive science and
arificial intelligence. Pedagogical expertise represents a
good case in point. As mentioned, the pedagogical
components of TS are often impoverished, hampered by
the absence of arigorous task analysis of even rudimentary
one-on-one tutoring methods. Over the past few years, this
gap has stimulated studies that are now beginning to
provide more detailed information processing models of
human pedagogical expertise (e.g., Leinhardt, 1989;
McArthur, Stasz and Zmuidzinas, 1990; Merrill, Reiser,
Ranney and Taffon, 1992; Putnam, 1987). By expanding
the cognitive science research base, this work may provide
a new foundation for improved pedagogical components
inthe next generation of ITS.

Expert systems technology, borrowed from arfificial
infelligence, has similar limits. At least since Clancey's
pioneering work using MYCIN as a foundation for tutoring in
GUIDON (Clancey, 1987), it has been recognized that
expert systems do not capture all the knowledge of an
expert practitioner, Expert systems have been built for
performance, not for teaching or explanation. For
example, MYCIN can make medical inferences if it is
supplied with the rules relevant to its narrow diagnostic task.
All the deeper understanding of "first principles" and rich
medical concepts can be compiled out of the
knowledge-base with no loss of inference accuracy; in fact
such compilation enhances inference speed
dramatically. But, from an educational perspective,
representing this deeper knowledge of first principles is
more important than the surface rules. In diagnosis, as in
any similarly complex cognitive skill, the ability to memorize
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and apply a set of procedural rules is less educationally
valuable than understanding the meaning and genesis of
diagnostic decisions. In general, tutors built on the
foundation of a traditional expert system tend possess
relatively "thin" subject knowledge and are therefore
capable of imparting only a shallow understanding of
topics to students. This is as true of our algebra tutor as it was
of Clancey's GUIDON. For example, students leaming with
our algebra tutor can expect to become proficient af
manipulating symbolic equations, but they cannot expect
to learn how equations can model real-world situations.

Just as various ITS shorfcomings have stimulated new
basic research in cognitive science, they have also
begun to lead to improved representations of
knowledge in artificial intelligence. Clancey (1987), for
example, recognized that MYCIN's representations of
knowledge needed 1o be fundamentally restructured
to make them useful for effective tutoring. As Clancey
explains:

"In building GUIDON we thought we were simply being
"applications engineers" by making use of MYCIN's
explanation facility in a tutorial setting. It was surprising ... to
find out how little the original MYCIN explanation facility
could accomplish for a student... The study of GUIDON's
shorftcomings has lead to a radical change in our
conception of MYCIN's rules, and supplies a new
epistemological framework for building expert systems".
(Clancey, 1987; pp. 168)

Research in qualitative physics (e.g., deKleer and Brown,
1984; Forbus, 1984) has also provided rich functional
representations of processes and mechanisms. While
much work in qualitative physics proceeded independent
of ITS development, qudlitative models were initially
intended fo provide rich explanations to learners -- a critical
rolein TS as well.

New Methods of Learning and Teaching

As ITS have tackled new subjects and extended their
capabilities in different ways, they have come to share less
with the generic ITS sketched in Figure 1, and with one
another. Some systems attempt to deepen subject
understanding through new representations and expert
systems, while others attempt to exploit effective interfaces

to overcome shallowness in knowledge and fo weaken the
assumption that an ITS must be virtually omnipotent.
Nevertheless, ITS generally share a common view. They
embody a one-on-one tutoring method of leaming,
underpinned by principles of high tutor control, impasse-
driven coaching that is individualized fo students' needs as
the tutor sees them, and rich, fine-grained, immediate
feedback.

Overthe past few years a new collection of systems -- some
embedding ideas from Al and some not -- have
challenged this method of teaching and leaming and the
principles upon which it rests. These systems are even less of
akindthan ITS, in part because they are not associated with
a single competing method of teaching. Rather,
collectively they are aftempting to explore an increasingly
wide range of methods of teaching and learning, and are
pursuing a similarly broadened set of learning goals or
oufcomes.

One method of leaming that has been most fully explored
over the last five years we will refer to as inquiry-based,
although it has also been described variously as student-
centered, constructionist (Papert, 1980; Papert and Harel,
1991), constructivist (Davis, 1991), and discovery-based
(Ausubel, 1961; Bruner, 1961). Systems that implement
inquiry-based leaming are structurally and conceptually
much more diverse than ITS. For lack of a better name, we
will refer to these systems collectively as inferactive leaming
environments (ILEs). Although diverse, they share several
principles that contrast them in fundamental ways to the
views implicit in ITS. Broadly, the principles that tie ILEs
togetherinclude:

e Consfruction not instruction. Students leam most
effectively by constructing their own knowledge, not by
being told through lecture, nor through organized drill-
and-practice.

e Sfudent control not tutor control. It follows that students
must have significant, if not exclusive control of the
leaming interaction. At most, the tutor is viewed as a
Quide, nota god.

e |ndividualization determined by the student not the
futor. ILEs agree with ITS that individualized feedback
and information are key to leamning. However, they
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differ on where personalized information should
originate. While the ftutfor is responsible for tailoring
feedback in ITS, in ILEs students generally receive
unigue feedback and information as a function of their
interaction with the environment built into the system.
Although the precise mechanisms of individualization
differ substantially among ILEs, individualization is under
atleast partial control of the student.

® Rich feedback generated by the student's inferaction
with the learning environment not the tutor. AQain, ILEs
agree that fine-grained feedback is critical fo leaming.
But they suggest that this rich information should arise as
a function of the student's choices and actions in the
learning environment, rather than as discourse
generated by the tutor.

The principles that underpin an inquiry-based method of
learning and feaching lead o designs for learning systems
that differ substantfially from ITS. Very broadly, the
infelligence invested in ILEs is distributed across a range of
tools rather than centralized in a tutor. These computer
tools often include interactive video or other graphical
representations, and they permit students investigate and
lean tfopics largely free of external control. While this
freedom derives from principled arguments about how
effective leaming happens, it also has practical benefits.
ILEs are not as knowledge-intensive as ITS. They often
benefit from some explicit representation of the topics that
student's investigate, but they need not be omniscient;
they do not (in some cases cannot) "know all the right
answers". Further, since ILEs do not attempt to tutor, they are
freed of obligations to model students' cognition and to
make complex pedagogical decisions.

On the other hand, ILEs face their own challenges. If
students are given "power tools" that magnify their ability to
discover interesting ideas (Pea, 1987), what prevents them
from using this power to flounder in a vast sea of
uninteresting issues? How will they know what kinds of
knowledge to construct? How will we judge such
constructions? In the next section we discuss in detail one
particular kind of ILE -- microworlds -- looking how they

confront some of the challenges that face ILEs. The final
sections of the paper compare the approaches of ITS and
ILEs, both looking at current accomplishments, and, more
importantly, at future prospects.

Mathematical Microworlds

As in the previous section, we begin our discussion
microworlds with a simple review of the basic concepts
and examples from our research. This provides a
foundation for an analysis of their successes and failures.

Methods of Leaming and Leaming Goalsin Microworlds

Microworlds both move from tutors to tools and from a dirill-
and-practice method of teaching to an inquiry-based
method of learning. Microworlds also represent a shift in the
desired outcomes of learning. Many microworlds,
including ours, have two distinct kinds of goals for student
leaming. First, as with ITS, it is usually important for students to
learn subject-specific knowledge. More precisely, students
often attempt to characterize the patterns of relationships
among objects and properties that define the world. In
SMITHTOWN (Shute and Glaser, 1990), for example,
students might learn about the law of supply and demand
by studying changes in costs of commaodities as various
factors influence supply or demand. Second, either
implicitly or explicitly, many microworlds encourage
stfudents to learn inquiry skills themselves. These are
relatively generic skills that students must know to conduct
inquiries concerning virtually any topic. There is no rigorous
task analysis of inquiry comparable to more "well-defined"
skills, like factoring quadratics or performing an integration.
However, following Lakatos (1976) and Steen (1988), we
have compiled what we believe is a consensus view of
inquiry activities, sumnmarized in Table 1. These inquiry skills
have been championed in the past (e.g., Polya 1962) and
more recently (e.g., Schoenfeld, 1985; National Council of
Teachers of Mathematics, 1989). Proponents see these
inquiry skills as infrinsically valuable "higher-order" thinking
abilities (Resnick, 1987). Thus, in microworlds inquiry is
viewed both as a method of learning specific subject
areas, and as atopic of learning.
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SKkill Description

Proposing anissue. An issue is not a specific problem that has an answer, or an hypothesis that is right or wrong.
Rather, like Brown and Walter’s (??) “Situation”, an issue is a localized area of inquiry with
features that can be taken as given, or challenged and modified. For example, in our
Polygons microworld, an issue might to be look at the relationship of area and number of

sides, as perimeteris held constant.

Proposing a specific problem. A problem defines the specific focus of inquiry at a given fime. For example, a problem

might be to find a function that expresses area in terms of other polygon properties.

In our microworlds, hypotheses can be quantitative or qualitative. In Polygons a qualitative
hypothesis might be that area increases non-linearly as the number of sides goes up and
perimeteris held constant.

Generating conjectures or hypotheses.

Gathering observations that bear on an issue or | Forexample, generating a set of polygons by systematically increasing the number of sides
hypothesis. while holding perimeter (or another scale parameter) fixed.

Confirming/disconfirming hypotheses. Determining if the data collected is consistent or inconsistent with predictions derived from

an hypothesis, or if it does not bear on the hypothesis at all.

Refining hypotheses. This may mean repairing an hypothesis that has been disconfirmed, or forging a more
detailed hypothesis fromm a vaguer, qualitative one. For example, once the student has
confirmed a qualitative replationship between area and the number of sides, he or she

may attempt to develop a specific function relating these properties.

Decomposing a hypothesis info “smaller” hypotheses that are already proved. Formal proof
is a special case of explanation. But informal explanations are also encouraged, as when a
student relates the equation for interior angle of polygons to the simpler for exterior angle.

Explaining or proving a hypothesis.

Table 1: | nquiry Skills

Overview of our Microworlds done most of our testing in a lab setting with first- and
second-year high school students, and junior-high
students. In this paper, we will discuss the Polygons and
Graph Theory microworlds only briefly (see McArthur and
Lewis, 1991, and McArthur and Lewis, 1991b, for more
information). We will begin by describing the structure of the
worlds themselves -- the fools comyprising the worlds and
the objects students manipulate using these tools. Later we
will give an overview of the kinds of knowledge students
have acquired using our microworlds, including both their
understanding of topics in polygons and graph theory, and
of inquiry leaming skills themselves. Finally, we will address
the tfeaching and leaming limitations of these worlds, and
of ILEsin generall.

The mathematical microworlds we are developing
illustrate features that characterize many microworlds. Our
microworlds are self-contained sofftware environments in
which students can create different kinds of mathematical
objects (e.g., polygons) that have different properties or
features (e.g., polygon properties include N, (the number
of sides) >a (apothem angle), and so on). The students
then pursue inquiries to find and understand the patterns of
relationships among those object properties. To manage
their inquiries, the microworlds offer various tools to
represent and manipulate objects. These representations
allow properties and objects to be viewed from multiple
mathematical perspectives.

The Polygons Microworld
We have developed several microworlds for vo

mathematical inquiry. Each shares a common core of
software. In allworlds, the system is used by students (usually
in pairs) with a mentor present to coach the students and
occasionally to provide seed topics orissues. The role of the
mentor fades over time as students become comfortable
with the software and acquire better inquiry skills. We have

In Figure 3 students are using Polygons to investigate the
relationship of N and R (radius), as P (perimeter) is held
constant. How is R changing (up or down) as N increases,
and how fast? Students begin such investigations
empirically, by generating several polygons (objects) and
viewing them with different tools to find patterns. Objects
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are created in two way. First students can input values for
certain properties in an "object table", aninstance of which
can be seen in the upper-left comer of Figure 3. When two
values are input the system computes all other values that
logically follow, using equation solving and constraint
propagation tools, borrowed from our the algebra tutor
software. For example, if the student inputs an N of 8, then

polygons are created they appear on the large pictures
window and can be manipulated in several ways -- they
can be moved, queried and connected into different
representations, as we describe below.

In the course of the inquiry shown in Figure 3, the students
have used various tools for computing and representing
information, including calculators, graphs and tables that
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Figure 3: The Polygons microworld

>X (exterior angle; 45 degrees), >I (interior angle; 135
degrees), and >A (apothem angle; 22.5 degrees) are
computed automatically. If N and some scale parameter
(e.g.. P) are both given, then all other values are
determined and displayed. The second way to create
polygons is to issue commands that will make many at a
fime, using the commands window in the upper right. When

show the relationship between N and R (in this case) from
various perspectives. In Figure 3, the students have made a
table that contains all the polygons, but represents only
some of their properties. Tables and graphs are object-
oriented -- each point or entry is an object, and a table or
graph can be viewed as a filter or perspective on its
objects. The object-oriented nature of the tables allows them
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o be easily manipulated. Both fables and graphs can be
moved and resized; tables can be sorted by any variable;
and graphs can be "zoomed" to view a subset of objects.

By Figure 4 students have created an hypothesis about N
and R and added it to the conjectures window (see the
upper-right area of Figure 4). Our hope is that the
investigation of one issue will frigger interest in new ones. In
Figure 4 the student has suggested a new conjecture
related to the one just completed: Since R decreases as N
increases because the "points" of polygons are being
'rounded off" (as the polygons approach a circle), the
apothem (A) should increase to the same asymptote -- in
otherwords, A should be equal to R as N increases to infinity.
Testing this conjecture is straightforward, as shown in Figure
5. The student does not need to gather new data. Rather,
the existing polygons simply need be viewed from a
different perspective. The student creates this perspective

Bl & Lomron Lizndow

by generating a new graph for the properties N and A, and
then "connecting" the graph of N vs. R to the graph of N vs.
A. When one representation is connected to another, all
the objects represented in the first are added to the
second. In this case, then, the new graph immediately
shows the relationship between N and A, and the student
sees that her conjecture about N and Ais confirmed.

Connection is a powerful tool. Each of our microworlds
permit flexible connection among different
representations. Any two data representations can be
connected, including pictures; for example, you can point
at a picture of a polygon and connect into it to a table. In
addition, connection is incremental; after two
representations are connected anything new appearing in
one will appear in the other. Conversely, students can
disconnect as well as connect representations.
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Figure 4: Connecting representations and making hypotheses in Polygons
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The Graph Theory Microworld

Graph Theory is @ more recent microworld through which
students can explore the mathematics of linear graphs in
discrete mathematics. This world is interesting for several
reasons. Graph theory is an increasingly important area of
discrete mathematics, and in recent years it has proven a
valuable tool in gaming, modeling, and scheduling. NCTM
standards (National Council of Teachers of Mathematics,
1989) advocate a place for graph theory and other areas
of discrete mathematics in new curicula designs.
However, few curicula available today include these
topics, and the abstract character of many basic results in
graph theory may make this a difficult topic for most high-
school students. On the other hand, the visual nature of
graphs suggests that a computer-based microworld might
concretize these abstractions and empower students to
explore graphs in productive ways. We are interested in
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whether very young students acquire concepts in graph
theory, and in seeing how microworlds support this
leamning. Thus, in Graph Theory, more than in Polygons, we
are exploring new goals for student leaming as well as
implementing new methods of teaching and leaming.

Analogous to Polygons, most inquiries in graph theory
affempt to relate different graph properties, or fo explain
one set of properties in terms of others. In Polygons students
work with properties like radius, apothem, and areas; in
Graph Theory properties include elementary ones like
vertices, edges, degree, degree sequence, and more
aggregate properties like whether a graph is Eulerian,
Hamiltonian, or planar. (NOTE: The degree of a vertex is the
count of the number of edges incident to the edge; the
degree sequence of a graph is a list of the degrees of all
vertices in the graph; a graph is Eulerian only if all edges
can be traced without refracing any; a graph is

Figure 4: The Graph Theory microworld
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Hamiltonian only if all vertices can be fraced without
retracing any; and a graph is planar only if the graph can
be drawn using edges that do not cross.) As Figure 5 shows,
students conducting graph theory inquiries use a variety of
tools. They create and edit graphs using a mouse to add
and delete both vertices and edges. Paths on graphs can
also be fraced and unfraced interactively, or the student
can request that the microworld find paths between any
set of vertices. New graphs can be created by copying old
ones and then editing the copy, rather than by making the
new graph from scratch each time. Alternatively, graphs
can be created by combining existing graphs or their
complements. Graph libraries are also available for
students to examine, and library graphs as well as student-
generated ones can be used fo suggest, confirm, or
disconfirm student hypotheses.

The Graph Theory microworld shares many of the
representations and features that characterize Polygons.
Graphs, like polygons, are objects, and can be
represented as pictures, as points in Cartesian graphs, or as
rows in tables. The different representations offer different
ways to view patterns of relationships among properties. For
example, tables can reveal the relationship between
number-of-sides and area in Polygons, and they are also
useful to show how the number of edges and sum of
degrees are related in Graph Theory. Connection between
objects and representations in Graph Theory operates
much as it does in Polygons. Pictures of graphs can be
connected info tables or Cartesian graphs; tables and
Cartesian graphs can be connected together; and
representations can be disconnected. Graph Theory has
one representation that has no analog in Polygons. Each
graph has an associated list which includes the number of
vertices, edges, and degree sequence of the graph. When
graphs are created pictorially the system automatically
updates these values, and changes are reflected on the
black "title bar" at the top of each graph, as Figure 5 shows.
As the Figure also shows, when graph pictures are
"iconified" the icon identifies them by their vertex, edge,
and degree sequence count. In effect, the graph picture
and this list of key properties are distinct but tightly
connected representations. The connection of these two
representations, and the simple ability of Graph Theory 1o
update the numerical properties as pictures are edited
and modified, prove to be a simple but very powerful
mechanism facilitating productive student inquiries.

Successes of Microworlds

In this section we briefly review the successes of ILEs in
general, and of our microworlds in particular. Although
many researchers are developing microworlds, there is still
very little data to report. Most descriptions of microworlds
discuss what an unfinished system will look like when it is
completed. Of those that report a complete system, most
describe how outcome data will be gathered in the future.
And of those that present anecdotal data, most say how
the system will be more rigorously tested at a later date.
Only a handful of studies address the key questions
conceming the inquiry-based methods of tfeaching
underlying ILEs, and the goals for student leaming tfowards
which ILEs aim: Can students leamn new and valuable
concepts or topics through inquiry? Do students leamn
topic-specific skills effectively using microworlds or ILES?
Can they learn more effectively -- more rapidly or more
deeply -- through inquiry than through instruction? What
kinds of concepts or skills do inquiry microworlds
encourage sfudents to learn that cannot be easily
acquired through ITS or through instruction or drill-and-
practice methods of teaching and learning? And, do
students inquiry skills themselves improve through the use of
microworlds?

A series of studies by Shute, Glazer, and their colleagues
represent the most ambitious attempt 1o date to answer
some of these questions (Raghavan, Schultz, Glaser, and
Schauble, 1989; Shute and Bonar, 1988; Shute, and Glaser,
1990; Shute, Glaser, and Raghavan, 1988). Of the three
microworlds they have developed -- REFRACT (opfics),
VOLTAVILLE (electricity), and SMITHTOWN (macro-
economics) -- the lafter has been more extensively
developed and tfested. They found that students using
SMITHTOWN acquired a better understanding of basic
concepts in economics than did students receiving
comparable classroom instruction (Shute and Glaoser,
1990). However, they also point out that improvements
were not uniform. In particular, some students
demonstrated better strategies for inquiry and experiment
planning, and their acquisition of economics concepts
was, not surprisingly, also better. These differences in
leaning strategies and topic-specific acquisition were
relafed to general measures of intelligence. Swanson
(1990) notes a similar interaction of apfitudes and
instructional methods. She found that inquiry-based
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learing was less effective than direct lecture for less able
students, while more capable students learned well using
student-controlled inquiry. A conjecture worth further
testing is that learning through inquiry is both rewarding and
demanding. Bright students may be able to acquire
knowledge more deeply and rapidly, but to do so they will
require scientific inquiry skills that themselves need fraining.

Harel and Papert (1990) have reported comparable
successes in the instructional software design project (ISDP).
Students learned about fractions using computers and
LOGO in the context of a relatively rich and unstructured
learning environment that might be loosely regarded as a
microworld. Harel and Papert claim that students working in
ISDP acquired more knowledge about fractions than
students who were taught in a lecture format. Unfortunately,
their study cannot be used to directly compare inquiry to
instruction methods of leaming, since students using ISDP
had an unfair advantage over control students -- they
learned using ISDP and received instruction while the
control students received only instruction.

However, this limitation probably does not greatly concern
Harel and Papert, since they do not appear to be very
inferested in comparing how different methods of
teaching promote learning of traditional subject-specific
knowledge. In addition to fostering a procedural
understanding of fractions, they have two more novel
outcomes in mind: (i) helping students acquire a deeper
understanding of the concept of fractions and how
fractions relate to objects in the real-world; and (i)
supporting the development of important metacognitive
(inquiry) skills.

To measure learning of fraditional fraction skills Harel and
Papert naturally borrowed existing diagnostic tests. But to
assess how well ISDP accomplished its more novel leaming
goals, they used "thick descriptions" of students interactions
with ISDP, since no standardized instruments can currently
measure these kinds of outcomes. Thick descriptions are
rich qualitative analyses of students behaviors, plans, and
infentions (Geertz, 1973). Using these techniques, Harel
and Papert found, among other things, that by moving
between multiple representations in ISDP students
acquired deep knowledge of rational numbers, that
students in ISDP leamed LOGO better than comparison
students, and that ISDP students developed good
metacognitive skills.

Like Harel and Papert, our initial work has attempted more
to characterize the outcomes of learning through inquiry
rather than to compare inquiry and instruction. We agree
that outcomes like deeper conceptual understanding and
improved metacognitive skills are important, and we are
frying to operationalize these ill-defined ideas by
describing specific inquiry learning processes and
products at a detailed information processing level. Here
we will only briefly summarize our observations; more
extensive discussions can be found in other papers (e.9.,
Lewis, McArthur, Bishay and Chou, 1992; McArthur and
Lewis, 1991; McArthur and Lewis, 1991b; Lewis, Bishay and
McArthur, 1993, 1993b).

Learning expected concepts.

Using both Polygons and Graph Theory students were able
to generate and resolve (often with substantial mentoring)
a wide range of inquiries. In many cases inquiries began as
unspecific and qualitative. For example, in Figure 3 and 4
students first focused on conjectures that considered how
R changes (up or down?) as N increases. In later sessions
these initial results often laid the foundation for more
specific quantitative inquiries, such as developing a
function thatrelates >1to N (>1 = 180 - 360/N). Over several
sessions, then, students learned many of the standard
results and theorems that can be found in fexts on the
geometry of polygons or graph theory.

Learning unexpected concepts.

Since students were usually given relatively free reign in
directing inquiries, we hoped that some issues and
hypotheses would arise which we had not foreseen. We did
indeed find that inquiries often took unanticipated turns. For
example, one student developed a series of increasingly
general hypotheses about Eulerion graphs (What
characteristics of a graph make it possible to begin at any
vertex and trace all edges of the graph, returning to the
original vertex without fracing any edge more than once?).
At one point the student was affempting o verify that
graphs with just one vertex of odd degree could not be so
fraced. (NOTE: The degree of a vertex is the count of edges
coming info the vertex; hence a vertex of odd degree has
an odd number of incident edges.) In doing this she
noticed that none of the graphs she had created, nor any
in the graph libraries, had just one vertex of odd degree.
This datum was sufficiently inferesting to cause her to
suspend the investigation of Eulierian cycles and define a
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new issue to investigate the lack of graphs with just one
vertex of odd degree. This inquiry ended with the student
discovering and explaining the handshaking lemma for
simple graphs. (NOTE: The handshaking lemma states that
in any graph the sum of all vertex degrees must be equal to
twice the number of edges, hence must be even.) While
this issue was both interesting and important, it was certainly
not one that the mentor had anficipated ever broaching.

Some inquiries were even more surprising. In one session
with Polygons, for example, the student quickly established
an equation relating N and the apothem angle (>A): >A =
180/N. To establish this rule the student successfully used
the strategy of multiplying (>A*N always yields a constant
value). In his next inquiry, he tried to apply this strategy, or a
similar one, to describe the relationship between N and >1.
Attempts 1o generate a constant by multiplication (N*>1),
or division (N/>1) were not successful. However, when the
student tried >I/>A he found it yielded N-2, leading to the
equation >I/>A+2 = N. This equation was not part of the
mentor's informal agenda of fopics; indeed, it came as a
complete novelty o the mentor as well as the student. The
discovery is one of the infinite number of theocrems that
never find their way into textbooks, but which any student
can discover, name, and own -- in our sessions, for
example, the above result became known as "Jody's
Theorem". Such discoveries allowed students to
understand that they can create their own mathematics,
notjustlearn what others have found.

Opportunistic learning of concepts outside the
microworlds.

The above examples underscore the opportfunistic nature
of inquiries in Polygons and Graph Theory. Both worlds
proved sufficiently dense in interesting issues that, in
addition to unanticipated ideas within geometry and
graph theory, some concepts complete outside both
areas occasionally took center stage. For example, in
Polygons students investigated the concept of limits,
different types of variables or scales, the distinction
pbetween independent and dependent variables, the
nofion of a mathematical basis, and constraints that
bound the application of equations when modeling real-
world situations. We generally encouraged the students to
pursue these issues if they seem inclined. In contrast, the
microworlds developed by Shute and Glaser maintain
relatively well-defined and pre-defined objectives for
studentleamning.

Learning generic and metacognitive concepts.

Working with the microworlds also permitted students to
acquire some rather broad insights info the nature of
mathematical knowledge and problem-solving. As we just
mentioned, students began to understand that they could
make their own mathematics, rather than leamn about
theorems discovered by others. They also leamed several
other general lessons. For example, as students built
quantitative hypotheses on previously confirmed
quadlitative ones they slowly abandoned the notion that
mathematics comprises a series of separate problems to
solve. Thereafter, they often revisited previous hypotheses --
sometimes several sessions later -- and incrementally
refined them or built new ones from them. In short, the
students were able to use the microworlds o learn various
topic-specific (geometry or graph theory) ideas. But as
important as each individual idea was the broader
understanding of how these ideas interconnect and build
on one another.

Comparing ITS and ILEs

Depending on your perspective, today's ILEs and
microworlds may look more successful than TS, less
successful than them, or their successes may be
incomparable. How you judge them depends on the
outcomes you value in student learning and what you
count as evidence that important learning goals have
been reached. ILEs enjoy modest success in sofar as they
offer at least anecdotal evidence supporting some of the
broad claims for inquiry-based learning methods in the
literature (see Bruner (1961), and Ausubel (1961) for
discussions of some of the purported advantages of
learning through discovery in theory and practice). ILEs that
empower students to create their own mathematics can
help them acquire traditional subject-specific knowledge;
for example, students can discover the theorems like the
handshaking lemma that we see in any text on graph
theory. There is also some evidence that well-crafted
microworlds can make this subject-specific knowledge
accessible fo younger students -- graph theory is rarely
learned by middle-school students, for example -- and
perhaps can improve the rate at which concepts are
learned, at least by above-average students. Microworlds
and ILEs may help students acquire a deeper
understanding of concepts; or at least an understanding
that is different from that typically communicated in texts.
And rich exploratory environments may expose students to
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unanticipated ancillary concepts, like limits. In addition,
students using ILEs may improve some inquiry skills or
related metacognitive skills which they rarely have a
chance tfo practice in more teacher-controlled curricula.
Finally results like "Jody's Theorem" indicate ILEs can
positively influence affect, motivation, and the perceived
"ownership" students feel towards mathematical ideas and
practice.

However, to our knowledge no microworld has
demonstrated "2 sigma" improvements in student
outcomes on standardized tests that some TS can boast. In
generdal, ILEs have not demonstrated yet they can yield the
improvements in student learning that are associated with
one-on-one futoring. But, other than Shute and Glazer's
work (1990), we see litfle inferest in such "horse race"
evaluations. Instead, there has been a realization that
many important learmning outcomes are not central goals
of educational software, and most ILEs thus attempt to
articulate these new goals and design software to facilitate
learning implied by these godals. Since they differ on goals
for student leaming, then, direct comparison of ILEs and ITS
is difficult if not impossible.

For similar reasons, comparison of learning outcomes with
ILEs to outcomes without ILEs are as difficult as comparison
of ILEs and ITS. "Before-and-after" evaluations of ILEs require
control classrooms that can provide baseline data on how
effectively the leamning goals ILEs target are usually
accomplished. Ideally, control and experimental classes
would differ just one way -- keeping the leaming goals of
the classes and the methods of teaching constant, the
experimental class would use the ILE and the control class
would not. Only under these ftightly controlled
circumstances could you confidently conclude that ILEs
caused improvements in learning outcomes. Buf such
control classrooms may not exist, since most ILEs do not fry
to improve the effectiveness with which established
educational goals are accomplished, nor do they
advocate traditional methods of teaching. In later sections
we shall address these evaluation problems in more detail.

Reasons for ILE and microworld successes

It is important to account for the successes microworlds
and ILEs enjoy (or the successes they may have in the
future) for the same reasons ITS should be subjected to
such analysis. Each microworld is no more enduring than
an ITS. Its enduring contributions lie in the general principles

it suggests, confirms, and disconfirms. However, several
challenges face any assessment of the reasons for ILEs' real
and potential successes. As just discussed, there s little
data from which to generdlize, and the data that is
available is ambiguous at best. Clear consensus has yet to
emerge about what students are learning or should be
learning, so it may be premature 1o speculate in any detail
on why ILEs and microworlds enhance that learning. With
these qualifications in mind, in this section we aftempt a
brief and somewhat speculative account of some reasons
ILEs may enhance learning, in the future if not today.

Many plausible reasons that ILEs may contribute fo leamning
are supported as much by theoretical arguments as data.
For example, we earlier suggested that ILEs are often
justified by a constructionist (versus instructionist) view of
learning, and by a generally high regard for the value of
student confrolled learning and feedback. These
arguments have been elaborated elsewhere (see e.Q.,
Bruner 1961; Harel and Papert, 1990; Papert and Harel,
1991). Below we take a slightly different perspective,
focusing on a few reasons for success that our microworlds
underscore.

Knowledge used for delegation and role sharing,
not tutoring.

Lke ITS, ILEs often embed considerable intelligence,
although it is less obvious, distributed in different ways, and
used for different purposes. For example, in Polygons and
Graph Theory, knowledge is embedded in several tools,
including the constraint equations (Polygons] and
collections of predicates, functions, and deductive
inferencing capability (Graph Theory). Essentially, these are
parts of an expert system for these subjects which have
been broken out info distinct components. In some cases
the tools are not used by the student directly, but provide
the powerful automatic capabilities. For example, the
constraint  propagation functions of Polygons allow
students to create any possible regular convex polygon.
This gives students greater flexibility and control of object
creation. It also allows students to investigate a much wider
space of issues than pencil and paper would permit. In
Graph Theory various predicates can be invoked as fests
by the student. For example, students can just ask if a graph
is Eulerian; they do not have to apply this time-consuming
and error-prone procedure by hand. This is useful if main
goal of leamning is to discover and understand patftemns in
mathematical objects rather than to rehearse procedures.
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In general these intelligent embedded tools permit some
less important computation or supporting cognition to be
delegatedthe software. ILEs and microworlds thus implicitly
or explicitly divide the cognitive skills in an area of inquiry
info various packages. Some packages, like procedural
expertise involved in solving equations and testing graphs
for Eulerian cycles, are regarded as less important for
students fo learmn -- or students are simply assumed to have
mastered them. However these skills often need o be
invoked when conducting any inquiry that practices
"higher level" skills that today are viewed as more valuable
to learn. For example, although fracing Eulerian cycles is a
routine procedural skill, fo to reason at a "high level" about
what makes a graph Eulerian you need to be able to
generate such cycles. This creates an apparent paradox.
In any rich inquiry, how can you arrange for students fo
focus on the important skills when relatively unimportant
ones must also be applied and may require much of the
cognitive effort? This is a long-standing dilemma in
pedagogy.

In traditional mathematics texts and curicula, this
dilemma is often solved by carefully crafting a series of
problems that are stripped of all but one important
concept. For example, we often see a collection of
problems to practice the distributive law that differ only in
the numbers they use; then a similar set to practice
substitution, and so on.

ILEs and microworlds offer a different answer. Instead of
requiring that students negotiate relatively stripped and
carefully ordered problems to ensure that the students
practice key skils and minimize fime spent on less
important ones, ILEs generally permit the student to choose
any problem or inquiry he or she wishes, however complex.
The student's practice is focused not by crafting a series of
problems but by automating many of the less important or
clerical skills, delegating them to the software. In this way,
the student is free to focus on planning inquiries, or testing
conjectures, rather than spending most of his or her time
filing in fables or drawing polygons and graphs. ILEs and
microworlds thus focus students' learning implicitly by what
they choose o delegate and what they leave up to the
student, rather than explicitly by generating carefully
sequenced problems.

Delegation as a technique to enhance student leaming
has several potential benefits, although few have been
explored systematically in research. Like carefully

developed sequences of problems, delegation
implements the principle of providing infensive and
focused practice on to-be-learned skills. However, unlike
stripped problem sequences, delegation can provide
focused practice that is also situated or contextualized.
In mathematics texts, problems are stripped to a few
concepts to facilitate intense practice on one of two ideas.
But in stripping down problems, they are typically robbed of
related concepts that are often connected with them in
more redlistic or authentic problem contexts. Through
delegation students are able to work immediately on
problems orissues that embed several kinds of concepts or
tasks. They may practice only one or two concepts at a
time, but these concepts are always situated in a context
with other tasks; ones that are delegated to the microworld
orILE itself.

Extending students' learning capabilities through
cognitive amplifiers.

Viewed from a slightly different perspective, delegation has
an additional potential value. In microworlds and other ILEs
the system is expert in relatively rudimentary skills and can
be delegated tasks that require them. Because the
students are thus freed of these elementary tasks -- the
ones that typically ITS aftempt to tutor -- ILEs effectively
permit students to investigate new, possiobly more highly
valued, fopics in mathematics. For example, in Polygons
students may create and confirm their own theorems
rather than apply published formulas 1o compute area or
perimeter; and using Graph Theory they can actually
understand some basic results in discrete mathematics
rather than work through specific traveling salesman
puzzles. In general, microworlds can be viewed as inquiry
partners, and the division of labor permits the machine do
utility procedures while enabling students to leamn more
complex ideas that would otherwise lbe conceptually
beyond them. In this sense, ILEs can be viewed as cognitive
amplifiers or magnifiers.

Resnick's (1991) microworlds built on *LOGO provide an
excellent illustration of this principle. *LOGO is a distributed
version of the LOGO programming language that permits
learers to write rules governing the behavior of thousands
of inferacting computer "creatures" -- for example ants
searching for food or cars in a fraffic jam. Students then
Observe the group behaviors that emerge when these
populations are run in a simulated world, exploiting parallel
supercomputers that associate each creature with a
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distinct processor. In this partnership, then, *LOGO knows
everything about the creatures at a local level, however
the microworld knows nothing of the global pattemns of
group behaviors that emerge. The microworld generates
these behaviors, but it is the student's goal to characterize
the emergent features and to try to relate them to local
behavioral rules. On the other hand, while students are
asked to characterized emergent behaviors, generating
the behaviors is beyond any unaided human. Thus
delegating simulations to *LOGO creates more than just a
partnership that allows students to learmn new ideas that
were previously difficult for them. The partnership permits
learners to gain insights into phenomena that are
impossible to understand without such tools. Indeed,
similar computer-based environments are also essential
fools for mathematicians and scientists who seek to
understand non-linear and chaotic systems (Gleik, 1987).
Chaos as afield of study could not exist without computers.
Here, then, is an example of how microworlds can open up
goals for student leaming that are not merely new fo high-
school curricula, but new to curricula at any level.

Decoupling ILE expertise from student learning.

The knowledge embedded in ILEs thus confrasts with in an
inferesting way with the expertise in I1S. While the expert
systems in [TS represent the knowledge that students will
learn, many ILEs take as much care in representing the skills
that will be delegated to the system and that will therefore
not be the main focus of student learning. Of course, ILEs
and microworlds must also be crafted to elicit and support
the knowledge students will learn. For example, in Polygons
students focus on developing hypotheses and refining
them, and the software provides tools through which
hypotheses can be expressed. Nevertheless, most of the
programming complexity in our microworlds concerns
tasks delegated fo the software, not tasks and knowledge
delegatedto the student.

In general ILEs and microworlds are freed of a heavy
demand that burdens ITS -- to represent much, if not alll, of
the knowledge of the "ideal" student. It is critical for ILEs and
microworlds to represent much supporting knowledge,
and to supply tools that students can use to construct their
own knowledge. But the central premise our ILEs is that
good leaming environments need not be expert in the skills
they are frying to help students learn. Since ILEs embed less
knowledge than ITS, it has been easier to develop relatively
successful ILEs in subjects and topics for which ITS cannot

yet be built. Further, as we just noted, some of the learning
outcomes associated with ILEs have not even been
effectively operationalized. If we cannot assess these skills
we certainly are not in a position to develop ITS that can
model and coachthem.

This generdlization does not apply to all ILEs. Several
systems described as microworlds do embed extensive
knowledge of the subject which students are to learn, and
some knowledge of discovery or inquiry itself. For example,
SMITHTOWN (Shute and Glaser, 1990) represents both
economic concepts and rules for scientific inquiry, and
attempts to remediate misconceptions in students' inquiry
skills. Similarly, White and Frederiksen (1986) describe an ILE
for electronics which relies on a carefully crafted
progression of qualitative models, meant to mirror
successive stages in students' understanding of circuits.
However, unlike other ILEs we have reviewed, including our
own, these systems have relatively well defined goals for
student learning and may manage leaming more like an
[TS than like an inquiry-oriented ILE. Indeed, such systems
represent an interesting mixture of ILEs and ITS, albout which
we shall have more to say later.

Limitations of Microworlds

In spite of their promise and current popularity, computer-
based microworlds and ILEs enjoy few large-scale
successes to date. Microworlds that support student-
centered learning through inquiry are certainly consistent
with many calls for curriculum reform. However, these ideas
and systems are not in classrooms on a large scale. Here
we will discuss three distinct challenges facing ILEs. We
begin with cognitive challenges -- the inherent
complexities of leaming through inquiry that future ILEs
should attempt to address. But two other limitations cannot
be solved by purely technical means. Evaluation
challenges facing ILEs concermn the learning outcomes
and goals they aspire to. As we have noted, it is very difficult
to operationalize many of these goals and to measure their
learning outcomes using standardized ftfests. And
implementation limitations involve the multiple
complexities of realizing an inquiry method of learning in
classrooms on abroad scale.

Cognitive problems: Large search spaces and thrashing

One of the main complaints voiced against leaming
through inquiry is that it is an inefficient way to acquire
knowledge. This crificism is certainly not new with ILEs and
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microworlds. For example, Ausubel (1961), among others,
criticized unguided discovery learning by pointing out how
much of subjects' behavior appeared irrelevant to the
leaming goals of such studies. He claimed that there are
faster ways of learning specific skills, at least when the skills
can be clearly defined. A more modern description of this
inefficiency is that relatively unguided inquiry challenges
students by placing them in a large search space (Newell
and Simon, 1972; McArthur and Lewis, 1991, 1991b) in
which only a relatively few choices represent useful
directions for investigation.

Microworlds and ILEs do address the problems of
inefficiency in some respects. Many of the tools that
comprise such environments can be viewed as ways of
speeding up the processes of inquiry. For example, when
students using Graph Theory delegate the festing of
Eulerian cycles to the system, or expect the system to find
paths meeting certain conditions, they both accelerate
inquiry and reduce the chances of unprofitable
procedural errors. In effect, delegation provides students
with cognitive amplifiers that will help students overcome
many inefficiencies in searching large spaces of issues,
problems, hypotheses, and data.

Nevertheless, ILEs also potentially add to the problems of
large search spaces and inefficient learning at the same
fime as they provide tools to help ameliorate them. If
students can search spaces faster using ILEs, they also
have bigger spaces to search. For example, in Polygons by
giving a value for any single scale and angle variable -- for
example, N (number of sides) and P (perimeter) -- students
can create virtually any regular polygon. Working in a
pencil-and-paper microworld, they would be much more
constrained in the data they could generate. Thus students
using Polygons can generate data more rapidly than
student using pencil and paper. But they also have o plan
their data gathering more carefully, since they are more
ways here to gather data inappropriate 1o an issue or
hypothesis.

We have begun to analyze several kinds of search
inefficiencies our students demonstrated in Polygons and
Graph Theory. Some problems relate to weaknesses in
students' experiment planning skills. For example, when
investigating what kind of polygon maximizes area for a
given perimeter, one student began generating polygons
with area held constant and N varying. Yet this type of
mistake was relatively rare. More common were problems

in managing different tasks or issues. For instance, a pair of
students using Graph Theory might begin by attempting to
investigate the properties common to all frees, then,
without completing thisissue, find an interesting patternina
graph that had cycles. (NOTE:A free is a connected acyclic
graph -- a graph with no cycles where all vertices are
connected, directly or indirectly.) This would then be the
seed of a new issue and the first issue would never be
resumed. In turn, the second issue might suffer the same
fate. We refer to this pattern of search behavior as
"thrashing". Elsewhere we describe in detail the topography
of "thrashing", "data-dominated", and "hackerly" reasoning
and other search problems (Lewis, McArthur, Bishay and
Chou, 1992; McArthurand Lewis, 1991; McArthurand Lewis,
1991b).

We expect this analysis search skills and problems will have
several benefits. First, it has been argued that many
apparent inefficiencies in inquiry learning mask subtle but
valuable leamning benefits (Papert 1980, 1993). Part of this
debate may be a definitional problem -- as we have
noted, what constitute desirable outcomes of learning
through inquiry remain unclear. However, we believe that
various inefficiencies associated with inquiry leaming can
be operationalized, and we can thus look for some of the
potentially hidden dividends of apparently inefficient
inquiry. Second, this detailed analysis will provide a basis for
designing new microworld tools and supports that can help
students overcome often very predictable problems in
theirinquiry and search skills, while not taking initiative away
from the leamers. We regard this as probably the central
issue for improving ILEs in the future, and as a key fechnical
challenge to making inquiry a viable method of learning.

Evaluation problems: Determining and measuring
learning outcomes

One of the major limitations of ILEs that we noted briefly has
little to do with software difficulties or with problems in
student leamning through inquiry. It is the problem of
defining the goals for leaming or leaming outcomes that
the ILEs aspire to, operationdlizihg these outcomes in
objective instruments, and applying these instruments to
assess the efficacy of the microworlds in promoting their
leaning goals. A few ILEs, notably SMITHTOWN, are
attempting to improve students' performance on well-
defined and clearly operationalized skills and knowledge.
However, as we have noted, other ILEs have multiple goals
for learning, and less clearly defined ones. In generadl, in
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spite of abroad interest in inquiry-based leamning, today we
have no clear consensus on what kinds of skills we want ILEs
to engender, let alone objective standardized instruments
to measure these skills.

In some cases, (e.9., leamning graph theory) we lack
effective instruments simply because these skills are not
part of existing curricula. Presumably, it will be
straightforward to develop tests that measure this
knowledge. But other skills will pose substantial challenges.
Some knowledge (e.g., learning creative inquiry skills or
understanding that new mathematics can be discovered,
not just faught) may be inherently "fuzzy" and very difficult fo
measure with traditional multiple-choice or short-answer
tests., Otherimportant new outcomes may be well-defined
products -- for example, the novel theorems our students
discovered using Polygons. Yet, since this learing is
opportunistic, these outcomes will also not be uncovered
by standardized tests which typically assess a fixed set of
learning goals. In general, quantifying and evaluating such
outcomes is very much at the formative stage.

Thus, today ILE developers face several interrelated
challenges. They are creating computer-based
environments that implement an inquiry-based method of
teaching and learning, at the same time as they are trying
to demonstrate that such methods, effectively
implemented, can lead to highly desirable student
learning outcomes. However, only in a few cases are these
desirable outcomes well-defined and comparable to
outcomes towards which ITS aspire and which are topics in
most curricula today. Therefore, developers of ILEs often
need to operationalize important learning outcomes and
to devise new instruments for assessing the successes or
failures of their systems. Since they cannot borrow
standardized tests, they essentially must play the dual roles
of curriculum developer and evaluation expert, as well as
system builder.

Even if we can develop relatively valid and reliable
measures of important skills learned through inquiry, it may
be difficult to pin down in any detail the role of ILEs in
leaning. As mentioned, ITS can often be placed in
classrooms with little disruption of ongoing practice,
facilitating relatively controlled comparisons of outcomes
with and without the ITS. (NOTE: However, see Schofield,
Evans-Rhodes and Huber (1990) for one in-depth analysis
of an ITS which reveals that the system tfriggered several
enduring changes in classroom practice. These changes,

as much as the [TS itself, may be responsible for outcome
improvements. Causal attributions are often complex
even in the simplest and most confrolled tests of
educational software. Nevertheless, the changes reported
represent relatively small modifications that leave the
basic structure of the classroom, and roles of teachers and
students, relatively intact. ILEs, if successful, may demand
more fundamental changes.) Moreover, some [1S permit
an even finer grained analysis the effects of individual
sofftware modules within the system. In "ablation" studies
one component of an [TS (e.g., student modeling, some
inferface feature, or various pedagogical rules) can be
disabled and student leaming with the ablated [TS
compared to learning with the complete system. Using
ablation students, TS developers can, for example,
determine what role student modeling plays in leamning. It
may even be possible to use such results to speculate
about such modeling in human tutoring -- since human
tutor ablation studies are probably impossible!

On the other hand, when ILEs are tested in classrooms or in
labs, the software itself is never the only change. Because
most ILEs affempt to change leaming outcomes and to
implement methods of tfeaching and learning that are
novel to classrooms, they often demand fundamental
classroom restructuring. As Harel and Papert (1990) have
noted, microworlds are usualy embedded in larger
framework of changes or reform that can include new
curricula, novel means of evaluation (e.Q., projects versus
tests), different teachers roles, and an altered rhythm of
work. Thus, ILEs are rarely subjected to experiments that
would systematically alter one variable at a time to unveil
the causes of improvements in learning outcomes. As a
result, it is difficult to make a strong case for the particular
roles that ILEs alone play in improving student leaming
outcomes and to defend the importance of inquiry-based
methods of teaching and learning they embody.

Implementation problems: Demands on the
classroom and teachers

The fact that the new methods of feaching and learming
associated with ILEs usually usher a broad set of changes
into the structure of classrooms and curricula implies
implementation problems as well as evaluation problems.
Indeed we suspect the practical problems of
implementation may dominate cognitive and evaluation
difficulties in determining whether ILEs in particular, and
inquiry-based learning in general, will enjoy any wide-scale
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success in classrooms. Some research has already begun
to document how microworlds and ILEs will change the
classroom culture. Harel and Papert (1990) describe
extensive changes o the physical layout of classrooms, the
culture of leaming, and the fransition of teachers from
instructors to guides. And Schofield, Evans-Rhodes and
Huber (1990) documented how Anderson's Geometry tutor
caused shiffs in feachers' attention to different types of
students, infeachers' classroom roles, as well as in the effort
and involvement of students.

Our own experience is consistent with these results.
Traditional ITS, like our algebra tutor, have required little
implementation effort, and almost no new curriculum
development. Thus, roughly 75% of our time in fielding ITS
has been spent developing the software, and only 25% of
our time involved classroom implementation. On the other
hand, in fielding Polygons, Graph Theory, the fime required
1o develop software and implement it in the classroom was
roughly reversed. Software development ook 25% of our
time, while implementation and curriculum development
required about 75% of our effort. Our student-centered
courses in  mathematical modeling (Robyn, Stasz,
McArthur, Ormseth and Lewis, 1992) and statistics
(McArthur, Robyn, Lewis and Bishay, 1992) also reflect this
division of labor. In both projects, the cost of
implementation dominated the cost of technology
development (Berman and MclLauglin, 1978).

In the future, this allocation of labor is likely to be the rule, not
the exception. Our courses are not exceptionally novel. In
fact, they are consistent with new NCTM curiculum
standards (National Council of Teachers of Mathematics,
1989), in content and organization. To the extent that these
emerging standards take hold, many courses will mirror the
structure and content of our courses in a few years. NCTM's
and professional standards (National Council of Teachers
of Mathematics, 1991) do anticipate some of the
difficulties that teachers will face when trying to organize
curricula around inquiry and discovery. Nevertheless,
understanding the roles teachers will need to play, and
getting these roles info widespread practice, remains a big
challenge.

The challenge becomes more acute and important when
we redlize how much at odds new methods of inquiry-
based leaming are with current and past classroom
practice. While ILEs have recently become increasingly

popular in research and in the lab, the principles upon
which they are based are not new. As Lawrence (1970)
notes, perhaps as far back as Plato scholars have hinted at
the value of discovery in improving retention (Spencer and
Senecaq), deepening understanding (Rousseau and Kant),
and enhancing motivation (Wyse). Early this century,
Dewey's progressive education movement resurected
and refined these views, advocating active, constructive,
and student-centered learning. The progressive
movement flourished briefly, but by the end of the
depression its impact in schools was clearly marginal. The
next cycle of inferest in inquiry-based leaming was largely
friggered by Sputnik, and the perceived threat of Soviet
scientific supremacy. Bruner (1961), among others,
elogquently championed the importance of leaming
through discovery, and offered some empirical evidence
of its efficacy. However, the new movement had equally
eloquent crifics (e.g., Ausubel, 1961), and by the end of
Learning by Discovery conference in 1966, it had already
begun to unravel in empirical and definitional
disagreements.

From an historical perspective, then, interest in inquiry-
based leamning has been cyclic. The recent calls for an
increased emphasis on discovery and inquiry in leaming
represent at least the third time this century these ideas
have moved info the educational research limelight.
Among others, Cuban (1986) and Cohen (1988) have
chronicled the history of these cycles. Cuban notes that,
while the popularity of these ideas in the classroom has
waxed and waned, the frend-line still remains firmly away
from inquiry-based leaming and towards instruction-based
pedagogy. The obvious question is whether this cycle of
inferest will again subside with little lasting effect on
classroom practice. Technologies like ILEs represent the
only new factor in the equation; the hope is that they can
catalize an enduring change in the trend-line of
pedagogy. But Cohen cautions that the dominant view in
education, and in our culture in general, continues to be
"teaching is telling and leaming is listening" (Cohen, 1988).
Unless that fundamental view changes, ILEs and
microworlds will remain a marginal tool in leaming,
relegated tfo lab studies and a few well-publicized
demonstration schools. On the other hand, ITS, which may
not look as attractive as ILEs in theory or in the lab, may fit
much better with existing classroom practice and with
prevailing attitudes about leaming and teaching.
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Conclusions and speculations about future roles of Al
in education

This section will summarize and draw together various ideas
scaftered through preceding parts of the paper. In doing
so we will also extrapolate from current frends, and from the
noted strengths and weaknesses of ITS and ILEs, fo project
some possible future roles for arfificial inteligence and
knowledge-based systems in education.

Increasing diversity of applications of Al in education

ITS and ILEs are often discussed as if they were the only two
distinct approaches to developing knowledge-based
systems for education. On the surface, this paper --
discussing first ITS then ILEs -- perpetuates that image.
However, on a more careful reading, it should be apparent
that a field which began with two relatively clearly
opposing positions has now begun to fracture into a
multitude of related systems and approaches. Instead of
two points of view on the application of arfificial
intelligence to education, it is more accurate today to see
the field as a confinuum, with omniscient, tutor-controlled
[TS on one end, and completely student-controlled ILEs on
the other.

The confinuum represents a variety of different ways of
dedling with the problems and weaknesses of the two
opposing approaches, outlined in the previous sections. In
general, the weaknesses of one approach can often be
creatively confronted by borrowing some of the strengths
from the opposite extreme, in effect creating a range of
systems. Such systems may blend various kinds of tutor-
and student-controlled activities. Consequently they are
beginning to resemble one another in structure and
design, although they often claim distinct conceptual
lineages -- for example "constructionist" versus
"instructionist" theoretical foundations -- associated with the
extreme end points (Papert and Harel, 1991).

At the ITS end of the continuum, one major problem is that
a thoroughgoing intelligent tutor must be highly
knowledgeable about the subject it tutors. For every
problem it poses to the student, or every request for
information and help from the student, the system s
expected to know the 'right' answer. This demand for
omniscience limits ITS fo tutoring subjects for which we have
relatively complete cognitive task analyses, including not
only an understanding of the competence of the "ideal"

student, but also the misunderstandings of the novice.
However, there are few interesting subjects, from an
educational perspective, for which such complete task
analyses are available. Indeed, as we have suggested,
subjects for which such analyses are possible may
become uninteresting to teach simply because they have
been fully analyzed and hence can be completely
delegatedto machines.

In response to this dilemma, many researchers have
begun to consider ways of weakening the assumption of
omniscience, to permit the development of at least
partially intelligent tutors for subjects or skills that are
regarded as more valuable. For instance, although we
classified SMITHTOWN (Shute and Glaser, 1990) as an ILE, it
actually combines some features of [TS and ILEs. It embeds
a rudimentary expert system for scientific inquiry skills,
represents some of common misconceptions about
planning scientific experiments, and it can model students'
scientific skills at least o the point of recognizing examples
of good planning and common planning "bugs". For
example, if a student insisted on changing the value of
several variables at once, instead of manipulating one
dependent variable at a time, SMITHTOWN will coach this
tactical eror. Clearly SMITHTOWN does not pretend to
embed a complete cognitive analysis of scientific inquiry
skills. Rather, the expert system is relatively skeletal, and the
catalogue of student misconceptions is equally
incomplete. Nevertheless, this "semi infelligent" tutoring
system can be very useful in helping students manage their
inquiries. In this sense, SMITHTOWN represents a way of
moving the principles of ITS info new topics of learing --
here, leaming about inquiry itself -- that have high
educationalvalue.

At the ILE end of the continuum, a central technical
problem is the challenge of large search spaces. We have
noted various apparent inefficiencies associated with
student-controlled navigations through large collections of
issues. While acknowledging that some of this thrashing
and floundering may yield hitherto undocuments benefits,
it is also important to consider techniques for gently
curtailing unprofitable inquiries and guiding them in more
useful directions. Implicitly or explicitly, most ILEs provide
guidance in one form or another. For example, in Polygons
and Graph Theory, menus of object properties -- areq,
number-of-sides and perimeter, for example -- will
encourage students to examine relationships between
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these variables, and will discourage investigation of other
variables or ideas not mentioned af all. By reducing the set
of variables explicity mentioned in the menus, the
microworlds can easily control the "dimensionality" of the
students' search space (see McArthur and Lewis, 1991,
1991b for a detailed discussion of other passive
techniques to help manage search, and of the more
aggressive approaches briefly noted below).

However, some ILEs are now considering more active ways
of guiding students' inquiries. We have used our analysis of
students' problems with search and thrashing in Polygons
and Graph Theory 1o design a collection of heuristic rules
that will intervene and make suggestions about how to
redirect an inquiry, if the microworlds detect patterns of
reasoning that appear particularly unprofitable.  For
example, (as in SMITHTOWN) if the student insists on
changing several variables at once, the microworld will
question this behavior, although it will not prevent such
decisions. Or, if the student switches from one inquiry to
another without completing the first, the microworld will
mention the transition, although it will not demand that the
student return and finish the first issue.

Mixed-initiative systems and locally intelligent agents

There are several points to make about these examples.
First, the rules by no means represent a global cognitive
model of inquiry in our microworlds. Rather, they are locally
intelligent agents that impose islands of tutor-control in a
relatively large expanse of student-confrolled inquiry
activities. The local interventions are carefully chosen so
that student initiative is not interrupted unless there is very
strong evidence that the student is thrashing in unprofitable
ways. Second, the student is free to disregard the advice
offered by the local agents. For this reason it is not critical
that the local agents have a complete or fully accurate
cognitive model of the student's misconception. If students
believe the tutor has made an inappropriate suggestion,
they can simply proceed with their plan. Finally, although
local, rules embedded in the agents are still principled.
While they do not represent a complete cognitive theory of
expertise in inquiry, they are founded on a solid empirical
base of observations of students using our microworlds,
buttressed by commonsense. For example, although we
do not yet possess a complete task analysis of scientific
inquiry, most of us would agree that manipulating one
variable at atime is good experiment planning.

Depending on the size of the islands of tutor control, an
ILE that has been supplemented with locally intelligent
agents begins to resemble a semi-intelligent tutoring
system whose expert system is more global than local,
but less than omniscient. Thus, as ILEs and ITS adapt to
solve some of the cenfral competence problems that
plague them, we will see in the future the emergence of
mixed-initiative tutors, blending student- and tutor-
control of learning interactions in a wide variety of ways.
The literature already shows evidence of this frend. We
described White and Frederiksen's (1986) system for
learning about electronic circuits as an ILE, but as they
point out, progressions of qualitative models can be used
in a variety of different learning regimes, ranging from
very unstructured and student-controlled, fo highly
structured and tutor-controlled. Similarly, Fischer
discusses active help systems (Fischer, Lemke and
Schwab, 1985) and critiquing systems (Fischer, Lemke
and McCall, 1990). Like ILEs in general, both active help
and critiquing system are predicated on high student-
control of learning. But, on occasion, they will use their
expertise to unobftrusively volunteer information to
learners and to critique suboptimal solutions. Elsom-Cook
(1990) also describes a collection of guided discovery-
tutoring systems that possess varying degrees of student-
and tutor-initiative.

Expanding methods of teaching and goails for learning

In general, there are many creative approaches fo
developing flexible mixed-initiative systems. This area of
research and system-building is relafively new, and it is
probably premature to attempt to foresee all the diverse
ways knowledge can be used in mixed-initiative intelligent
systems for leamning. Indeed it may be misleading to view
mixed-initiafive systems as differing just along a single
continuum of student-tutor control. More generally, we
expect a central future concermn of Al applications will be to
create mixed initiative systems that define and implement
a wide range of methods of learning and teaching.
Educational technology is now largely limited to the few
methods of leaming and teaching we have discussed in
this paper. However, in addition to drill-and-practice and
inquiry, there are many other ways to leamn. Some new
methods are just beginning to be examined in the
educational technology literature. We list only a few below,
to underscore their variety:
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Case-based learning. Schank and his colleagues
(Schank and Edelson, 1990; Feifer and Soclof, 1991)
have implemented several case-based learning
systems in which students acquire expertise (e.g., in
military history or tfelephone communication skills) by
accessing cases from a rich library of past
experiences. The cases selected must bear on a
current situation to be resolved. Thus, instead of
leamning abstract rules to apply to situations, students
exploit the analogies found in familiar cases to
synthesize their own decision rules.

Learning through coaxing and reflection. How smart
does a companion have 1o be o help you learn? ITS
take the position that good one-on-one coaching
demands deep knowledge of both the subject and
student. Yet most of us have had the experience of
improving the clarity of our ideas through discussions
with friends who do not understand what we are
doing but who can ask gquestions that cause us to
restructure our thoughts. Kass (Kass, 1990; Kass and
Guralnick, 1991) has recently developed systems
that explore the efficacy of such coaxing and
reflecting inlearning.

Simulation-based learning. Perhaps the most
effective tfraining device yet developed is the flight
simulator. It provides large amounts of inexpensive
fime-on-task to perfect skills that are too costly, slow,
and dangerous to acquire using real aircraft. Building
on fthis insight, researchers are now developing
simulation-based learning environments for a wide
range subjects from biology (Schank and Edelson,
1990) o social skills (Bevis and Kass, 1991).

Visualization. Tools for visuadlization exploit the
computer's ability to render complex patterns
succinctly in graphical representations (OSTR, 1992).
Visualization often permits learners and professionals
to get broad pictures of data, to "generate intuitions”,
and o suggest hypotheses for further testing. In some
cases visualization may even substitute for symbolic
reasoning and proof, not merely supplement it (Davis
and Hersh, 1980). In these areas, then, visualization
tools are providing new perceptual methods to more
simply accomplish activities that, previously, required
much subtle symbolic reasoning. But in other cases,
visualization technologies are opening up

completely new fields of study and defining new
goals for curricula as well as providing new methods
of learning. Chaos (Gleik, 1987) and fractals (Peitgen,
Jurgens and Saupe, 1991) are two of the most
dramatic examples of fields that simply did not exist
before computer graphics provided the means to
understand non-linear processes in a visual fashion.

On-demand learning. Fischer (1991) has developed
prototype systems and a conceptual framework for
leaming on demand. He argues that this method of
learning and teaching situates leamning in a work
context, instead of relegating it to a separate phase,
and makes learning relevant to the task at hand. He
also suggests that learning on demand or "just in
fime" learning will be increasingly important -- future
workers will need to continually improve their skills.

Apprenticeship. Collins, Brown, and Newman's (1988)
seminal paper has stimulated the development of
new computer-based environments that provide
some of the desirable features of traditional
apprenticeship (see e.g., Lave, 1988) as a model of
leamning and teaching. Many of these new ideas and
systems move apprenticeship mentoring activities --
modeling, coaching, and fading -- from training
physical skills, like tailoring, to cognitive skills, like
writing, reading, or mathematics.

Collaboration. Computer-based technologies for
collaboration are providing new cooperative
methods for work and learning. Applications of
artificial intelligence in education typically support
processes of individual learning, not just because
these processes are effective, but because most
research on learning in Al and cognitive science has
focused on individual cognition. However, powerful
network-based technologies are now making
possible novel methods of group problem solving
and leaming. Networks permit cooperative work
within classrooms, across classrooms (Scardamalia
and Bereiter, 1993), and even across countries
(Hunter, 1993). Collectively, they pose a serious
challenge to the "solo" methods of learning and
teaching institutionalized in today's classrooms.

These examples demonstrate how Al, and information

technologies in general, are beginning to expand the
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available methods of learning and teaching in af least two
ways. First, they may rejuvenate venerable learning and
teaching methods like apprenticeship and one-on-one
futoring. Some of these methods are already relatively well
understood and highly regarded but have not found their
waly into classrooms on alarge scale, in part because they
are labor-intensive. For example, although one-on-one
futoring leads to impressive student outcomes, at this time
giving each student his or her own tutor would be
prohibitively expensive. New technologies may provide the
key to lowering the cost of implementing these familiar
methods.

Second, the same fechnologies that breath life into
fraditional teaching techniques also can provide a
foundation for completely new methods of acquirng
knowledge. Visualization and collaboration, in particular,
have been adjuncts to leaming in the past, not primary
methods of acquiring knowledge. Forexample, adiagramin
geometry may orient the student in conducting a symbolic
proof (or it may mislead her). But today proofs themselves
may be visual. In other words, through new computer
technologies visual images that once aided reasoning and
leaming are now becoming ways to reason and leam.

The transforming impact of new methods of learning
and goals for learning

In the past, educators have looked to educational
tfechnology as a possible way to increase productivity of
students and teachers in relatively straightforward ways; for
example, to increase student learning rates, or to
streamline teacher's routine practices. Past fechnologies,
including most CAl systems, and most [TS, have implicitly
offered education a set of tools to do better what they
already do. They do not aim at new goals for student
learning, nor do they expect outcomes to be achieved
through new learning methods. In this respect, they imply
relatively modest changes to the delivery of education.

Some future applications of educational technology --
even Al based applications -- may follow this familiar route.
But we argue that most successful educational fechnology
in the future must be part of a larger technology revolution.
In the workplace, new information technologies, like
visualization and collaboration tools are redefining how
professionals do their jobs and what those jobs are. The
needs of the workplace, in turn, are placing demands for
new skills on education and training institutions. At the same

fime, new information technologies provide novel means
for meeting new workplace demands. Drill-and-practice
and lecture methods of teaching have noft institutionalized
in classrooms because they are optimal methods of
communicatfing information and acquiring knowledge.
Such fraditional classsroom methods have  survived
primarily because they are reasonable vehicles for
learning given the highly limited resources available to
schools. As fechnologies in the workplace -- and our culture
in general -- begin to reshape valued educational goals,
they will also redefine the available resources for
education. In the terms we have used above, they will
pemit us to consider a wide range of new methods of
teaching and leaming, and perhaps also to realize old
methods -- like individualized tutoring -- that we have
always believed to be valuable, but that hitherto have
beentoo costly to implement on a wide scale. In summary,
then, the long-tferm role of Al (and computer-based
technology in general) in education will not be to support
fraditional teaching and learning practices, but to
challenge and even threaten them by suggesting new
things to learn and offering new ways to acquire them. For
this reason it is misleading to view Al or technology in
general as a means of saving education. At best, these
forces will fransform schools and classrooms, not improve
them in any simple sense.

Moving new technologies into education

However, just as new methods of learning and teaching
pose a threat to traditional classrooms, current
educational practices pose many challenges to them.
Many past technologies, including most CAl systems and
ITS have implicitly offered education a set of tools o do
better what they already do. They do not aim at new goals
for student learning, not do they expect outcomes 1o be
achieved through new leaming methods. In this respect,
they imply relatively modest changes to the delivery of
education. Yet, taken as a whole, even these technologies
have not substantially improved educational outcomes.
But new technologies -- including ILEs, mixed-initiative
systems, as well as other approaches like visualization and
collaborative tools -- do not promise to "fine tune" the
practices of today's classroom; they offer new goals and
practices for leaming and teaching. Given the resistance
of education to even relatively modest change, what
hope do we have to move these new ideas into education
on abroad scale?
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Division of labor in implementing new learning goals
and methods of teaching

Certainly moving new technologies into the classroom will
require more than the scientific research and engineering
required to develop potentially valuable educational
applications and the funding necessary to make them
available to all schools. We have noted that when using our
[TS in classrooms 75% our effort was spent on technical and
research issues, but implementation required most of our
fime when we integrated ILEs -- and the new goals and
methods for leaming they imply -- info schools. As
technology continues fo fransform the goals for student
learning and to enlarge the range of methods for teaching
and leamning, implementation will require proportionally
more effort. In general, implementation tasks must
develop:

e New curricula. Curricula will need to focus on new
goals for learning and teaching, and must include
materials and ideas for both teachers and students.
These materials must help prepare both students and
teachers for their roles in the new methods of feaching
and learning we wish fo institutionalize.

e New methods and insfruments for assessment. If we
change the goals of leaming and teaching, it will be
critical o evolve ways of measuring the new skills and
outcomes we now value. As mentioned, foday many
important new learning outcomes remain relatively ill-
defined. But if we wish these goals and outcomes to
be widely accepted, it wil be crucial that the
instruments we provide be objective, reliable, valid,
and cost-effective to apply.

e New feaching practices and professional standards.
If teachers are to move from lecture and drill-and-
practice methods of teaching to new methods like
inquiry- or project-based learning, general standards
will need to be established for these new methods,
along with rich collections of specific teaching
practices, strategies, and tactics.

e TJeacher educatfion. New goals and methods for
tfeaching and leamning imply extensive changes in
teacher education and in the content and practices
of schools of education. Today, most schools of
education are barely equipped to provide teachers

with simple skills for presenting lectures and managing
student drill-and-practice. But new teachers will
require much more extensive support to successfully
manage classes structured around new methods of
leamning like inquiry, or apprenticeship.

For the most part, researchers and educators developing
applications of artificial inteligence and advanced
technologies in education are involved in "proof of
principle" studies. The intent behind prototype systems like
our microworlds, for example, is fo show that the
appropriate use of new technologies can lead to valued
educational outcomes. But as these systems begin to aim
more af new methods of teaching and learning, and new
godals for leamning, we inevitably become involved in many
of the complex activities enumerated above. To field our
microworlds and new curricula for computer-based
statistics (McArthur, Robyn, Lewis, and Bishay, 1992), for
example, we developed new curricula and tests, and we
provided extensive teacher training. Similarly, Harel (Harel
and Papert, 1990) clearly spent more time understanding
and shaping the roles of teachers and students, and
evaluating what students had leamed, than developing
the LOGO tools themselves.

In the future, when working on a small scale it will remain
feasible to develop new technology profotypes, define
new goals and methods for learning, and develop new
curricula and evaluation techniques, all as part of a single
ambitious project. But we believe that scaling up these
successes broadly will require a division of labor -- different
groups or projects working in a coordinated fashion to put
together the technology, curricula, assessment tools,
professional standards, and teacher training pieces of a
package of broad educational reform.

How ftightly coupled do these different activities or
projects need to be? We cannot answer this question
definitively, but several general comments are worth
making. A pragmatic optimist's approach suggests that
eventually all the pieces will fit together properly without
the benefits of policies that attempt to aggressively
promote coordination. In educational technology
discussions, this belief enjoys considerable popularity
today. For example, Collins (1991) acknowledges the
failure of past technologies, including film, radio, and TV,
tfo penetrate education. But he argues that the new
generation of computer technologies are fundamentally
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different. He suggests that, because communication
technologies are transforming work, and indeed the
entire culture outside education, schools will eventually
appropriate these tools, first for purposes they value, and
later for goals that are becoming socially valuable. Even
Cuban (1993) has partially recanted his pessimistic view
of the potential of educational technology. This view
does not deny that many distinct activities are necessary
for successful for successful reform. But it suggests that
the pieces may be spawned and organized by a
powerful "technology push" without planning or explicit
coordination.

We are similarly optimistic about the potential value of
new technologies for education. However, we believe
that a tighter coordination between different groups of
researchers and educators involved in developing
technologies, evaluating them, designing new curricula,
and providing teacher fraining, could have severadl
benefits. In the past, such coordination has been rather
loose. Researchers who develop education technology
prototypes often have relatively little background in
curriculum change and educational reform. Their work is
usually funded by programs that are distinct from
programs for teacher training and enhancement or
curriculum development. They are usually more aware of
what new technologies make possible in education than
what education might like to have today. On the other
hand, curriculum reform efforts, for example, often
proceed with relatively little knowledge of how new
technologies might change their goals and methods.

This relatively loose coordination has lead to various missed
opportunities. Inquiry learning, for example, has long been
held in high regard by infellectual communities and
technologists. But communities of teachers and
administrators have operated largely independent of
these views, perhaps in part because they have
understood how chaotic these methods of teaching might
be if imposed on fraditional classroom cultures. More
recently, NCTM (National Council of Teachers of
Mathematics, 1991) has proposed new curiculum and
professional development standards for mathematics that
do make some significant changes to classroom practice
and content. Still, a prevailing opinion of many educational
technology researchers is that these new standards ignore
opportunities for curriculum restructuring that new
technologies uniquely afford.

A final example of missed opportunities comes from the
our own research community, which spends most of its
fime developing "proof-of-principle" software prototypes.
These projects have produced may exciting ideas for new
educational fools, but almost all of these stop at very smaill-
scale demonstrations. Only a few of these ideas are ever
turned into products that find their way into classrooms; the
rest are left on the shelf. Mechanisms like the National
Diffusion Network (NDN) have been designed o act as a
clearing-house for successful software, o encourage its
dissemination to classrooms. But NDN by itself is sufficient
only if the software fits easily into existing classrooms, and is
consistent with fraditional goals and methods of teaching.
The problem, as we have repeatedly stressed, is that the
mMost promising new ideas and software systems transform
goals and methods of teaching. Simply providing a
clearing-house for these tools will not solve the host of
challenges that confront successful implementation of
innovations of this magnitude.

The feature common to these missed opportunities is a
failure of communication among the different
stakeholders and role players in the development and
deployment of educational technologies. In the future it will
be important to consider new policies that improve the
communication and coordination between these groups.
A variety of policy options are worth examining, including
larger consortium-based projects that combine software
developers, teacher education institutions, and other key
stakeholder groups; smaller separate projects that work
together synergistically using new networking technologies;
and incentives that bring high-tech companies into better
cooperation with educational technology research and
classroom practice. Policies to improve coordination of
educational fechnology research, development, and
deployment have always been important, Today they are
essential. The opportunities for technology-driven change
in education are more promising now than ever before. But
the requirements for effective educational change -- to
implement new goals for leaming and new methods of
leamning and teaching rather than to fine-tune existing
goals and methods -- are huge barriers that stand in the
way of these promises.

Constructionism versus Instructionism and Al in Education

In the previous sections, we have discussed future mixed-
initiative systems. We have viewed them from several
perspectives, mentioning the technical challenges
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confronting the development of intelligent and flexible
systems, the need to operationalize new goals or
outcomes for learning, and the challenges in
implementing diverse new methods of teaching and
learning on a broad scale. We close with a final
perspective. The diverse mixed-initiative systems we see
arising in the future also impact various theorefical
debates about leaning and knowledge. In this final
section we briefly fouch on one such debate,

Increasingly, we see in the literature strong theoretical
distinctions between the ideas underpinning ITS and ILEs.
On the one hand, a constructivist or "constructionist" view
of learning and knowing (Papert and Harel, 1991) is used
to argue for the student-centered style of pedagogy
exemplified by ILEs. According to this view, knowledge
must be built by the learner, piece by piece, and ILEs --
when supported by peers and mentors in a culture of
learning -- are seen as ideal tools for empowering such
self-guided construction. On the other hand, ITS are seen
as justified by an "instructionist" approach to learning,
and consistent with a "commodity" view of knowledge in
which the tutor's goal is to fransfer to the student some
relatively static package of information about a topic. On
this view, if we can analyze the knowledge we wish to
fransfer to the student into constituent parts, then the
most efficient way to transfer this knowledge to students
should be to carefully tutor it piece by piece. While these
views of knowledge and learning may indeed be distinct,
it is unclear to us whether they should be tightly
associated with the distinction between ILEs and ITS,
especially considering that the boundary between ILEs
and [TS is becoming less precise.

In the heated debate between leaming by construction
versus instruction, it is easy to overlook that the
disagreement has an empirical base. Specifically, the
central disagreement concemns who is in the best position
to make key decisions needed to promote leaming. Is a
knowledgeable teacher (automated or otherwise)
essential to choose appropriate tasks, to provide rich and
individualized feedback, and fo situate learning in
authentic tasks? Or can students -- working with tools that
act as intelligent cognitive amplifiers and in a supportive
context that includes peers and mentors -- make these
decisions themselves? Can students in rich but passive
environments generate better feedback for learning than
a tutor might provide? Are students typically in a better

position to know what information they need for learning
than ateacher?

To answer these questions, several research strategies are
feasible. One pragmatic approach is to push the
extreme alternatives as far as they will go. For ITS, this
means seeing how many of the functions of human tutors
can be usefully automated and assessing the quality of
student leamning they engender. Can we develop
computer-based agents that are able to suggest
intferesting tasks at the edge of a students' skills? Can
similar agents coach students and provide adequate
feedback? For which subjects and topics of learning is it
possible 1o develop such agents? And, what quality of
learning do such highly tutor-controlled environments
yield? Do they encourage a shallow procedural
understanding of skills? Or can they help students learn a
more valuable deeper understanding of concepts?

By the same token, pushing the ILE alternative as far as it
will go means developing increasingly effective
empowering tools and technologies for learning,
embedding them in congenial leaming environments,
and demonstrating the efficacy of largely self-guided or
inquiry-based learning. How dramatically can such ILEs
magnify self-directed learning skills? How crucial for
learning is the support of peers, mentors, and the broader
culture of learning? And, what quality of learning do such
highly student-controlled environments vyield? Do
students get stuck in conceptual "local maxima", and do
they acquire ideas inefficiently because their searches
too often wander? Or do they develop a deeper
conceptual understanding of ideas and of inquiry itself?

Today, popular opinion in the educational research
community (although certainly not in classroom
practice) favors the constructive side of the debate.
Constructivism enjoys this position in spite of the fact that
none of the empirical questions sketched above has
been answered definitively in favor either side. The best
we can do now is guess at how future research will resolve
the disagreements.

What are the likely answers to these questions? Recent
research in human futoring (Leinhardt, 1989; McArthur,
Stasz and Zmuidzinas, 1990), and the increasing
popularity of mixed-initiative tutoring systems both
suggest that the best learning environments neither will
be completely controlled by students nor by tutors. Most
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effective learning environments include a mix of direct
teaching, more passive support for learning, tfogether
with substantial student choice. For example, in our
stfudies of inquiry-based ftutoring by humans (Lewis,
McArthur, Stasz, and Zmuidzinas, 1990; Lewis, Bishay,
McArthur and Chou, 1992) even teachers experienced in
orchestrating student-centered inquiries often
inferpolated bouts of lecture and tutor-directed
coaching. Similarly, much work developing ILEs and
mixed-initiative systems implicitly or explicitly recognizes
the need for active support of learning (e.g., Brown and
Duguid, 1993; Roschelle (in press). However, active roles
in learning are typically associated with mentors, co-
workers and peers, who engage learners in rich
dialogues. In these environments, the role of technology
is largely to provide a useful collection of tools that can
amplify, enhance, or even fransform the nature of these
dialogues where learning takes place.

But as mixed-initiative systems begin to mature, there is
no reason that fechnologies cannot take on more
ambitious roles. An omniscient and highly-controlling ITS
may be inappropriate model for the use of technology in
many effective learning environments. However, as we
have noted, this is no longer the only alternative to
relatively passive ILEs. Instead, in the future we can
expect to see mixed-initiative systems that include not
only tools which amplify the students' inquiry but also
locally intelligent agents which provide many of the
active supports now supplied by peers and mentors.
Today, for example, we encourage students learning
statistics to ask members of their project team to critique
experimental designs. Tomorrow, that feam can include
a local computer-based expert that has useful (out not
complete) knowledge of experimental design.

until we answer the empirical questions outlined above, it
is unclear precisely which roles locally intelligent
computer-based agents should play in learning, and
how dominant they will be. Of course, to some extent the
appropriate active tutoring role of such agents will
depend on the subjects to be leamned, on the
background experience of students, and on their
learning styles. If we believe it is still valuable for students
tfo learn symbol manipulation skills in algebra, for
example, an environment heavily populated with
guiding agents -- approximating an ITS -- may be the
most effective way to learn. If students are leaming

inquiry skills themselves, or how to "brainstorm" in groups,
then locally infelligent agents may play very modest
roles. Similarly, a novice student may lean best in
environments that include agents which can intensively
model and coach formative skills (Collins and Brown,
1987). As the student acquires expertise these agents will
probably "fade", permitting much more student initiative.

In some cases, then, locally inteligent agents may
profitably play substantial teaching roles, but in many
cases the roles of intelligent agents will be modest.
However, we would like these roles to be modest
because we believe that such roles will lead to the best
student outcomes, not simply because we are
technically unable to develop agents that are locally
smart enough. We would like to limit the role of intelligent
agents in education by principled choice, not by
practical necessity. Today, we believe that most of what is
wrong in applications of Al in education, including TS, is
that they are technically limited as models of human
pedagogical expertise, not that they are wrong in
principle.

Details aside, the main point is that ideas from artificial
inteligence and knowledge-based systems neither
support instructionist" or "constructionist" views of
teaching and leaming wholeheartedly; rather, they can
and will be used to implement a diverse set of methods
of learning and teaching, perhaps aiming at different
kinds of learning outcomes. Certainly, well-designed
locally intelligent agents may on occasion strongly
confrol a leaming interaction -- much as Socrates did in
his dialogue with the slave in Plato's Meno. But it is a naive
caricature to assume that future applications of Al in
education will be subject to the same limitations that
befell first-generation ITS. Future mixed-initiative
applications will not necessarily teach just through drill-
and-practice or lecture. They will not "program" students
to behave like a rigid procedure, nor will they necessarily
assume that each task has only one "right answer". As Al
expands o provide models of subtle reasoning skills, new
systems will not be limited to tutoring routine procedural
skills. Similarly, locally intelligent systems, like good human
tutors, will learn to confront the challenges of teaching
without "knowing everything" about the topics students
learn. And although locally intelligent agents for learning
will certainly fransform the roles of teachers (and peers) in
the classroom, they will not pretend to replace them.
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