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Abstract 

This paper introduces evolutionary algorithms with its applications in multi-objective 
optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed 
with their advantages and disadvantages. We also discuss constrained multiobjective 
evolutionary algorithms and their applications in various areas. 
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Introduction 

The term evolutionary algorithm (EA) stands for a class of stochastic optimization methods that 
simulate the process of natural evolution. The origins of EAs can be traced back to the late 
1950s, and since the 1970’s several evolutionary methodologies have been proposed, mainly 
genetic algorithms, evolutionary programming, and evolution strategies. All of these approaches 
operate on a set of candidate solutions. Using strong simplifications, this set is subsequently 
modified by the two basic principles of evolution: selection and variation. Selection represents 
the competition for resources among living beings. Some are better than others and more likely 
to survive and to reproduce their genetic information. In evolutionary algorithms, natural 
selection is simulated by a stochastic selection process.  

Each solution is given a chance to reproduce a certain number of times, dependent on their 
quality. Thereby, quality is assessed by evaluating the individuals and assigning them scalar 
fitness values. The other principle, variation, imitates natural capability of creating “new” living 
beings by means of recombination and mutation. Although the underlying principles are simple, 
these algorithms have proven themselves as a general, robust and powerful search mechanism. 
Moreover, EAs seem to be especially suited to multi-objective optimization because they are 
able to capture multiple pareto-optimal solutions in a single simulation run and may exploit 
similarities of solutions by recombination.  

The application of evolutionary algorithms (EAs) in multi-objective optimization is currently 
receiving growing interest from researchers with various backgrounds. Most research in this 
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area has understandably concentrated on the selection stage of EAs, due to the need to integrate 
vectorial performance measures with the inherently scalar way in which EAs reward individual 
performance, i.e., number of offspring. The first pioneering studies on evolutionary 
multiobjective optimization appeared in the mid-1980s (Fourman, 1985; Schaffer, 1984; 
Schaffer, 1985). After that a few different MOEA implementations were proposed in the years 
1991–1994 (Fonseca & Fleming, 1993; Hajela & Lin, 1992; Horn et al., 1994; Srinivas & Deb, 
1994; Kursawe, 1990). Later, these approaches (and variations of them) were successfully 
applied to various multiobjective optimization problems (Cunha et al., 1999; Fonseca & 
Fleming, 1998; Ishibuchi & Murata, 1997; Parks & Miller, 1998). 

The question is which EA implementations are suited to which sort of problem and what are the 
specific advantages and drawbacks, respectively, of different techniques. 

• In contrast to SOPs, there is no single criterion to assess the quality of a trade-off front; 
quality measures are difficult to define. This might be the reason for the lack of studies 
in that area. Up to now, there has been no sufficient, commonly accepted definition of 
quantitative performance metrics for multiobjective optimizers. 

• There is no accepted set of well-defined test problems in the community. This makes it 
difficult to evaluate new algorithms in comparison with existing ones. 

• The various MOEAs incorporate different concepts, e.g., elitism and niching that are in 
principle independent of the fitness assignment method used. However, it is not clear 
what the benefits of these concepts are. For instance, the question of whether elitism can 
improve multi-objective search in general is still an open problem. 

The above issues sketch the scope of the present work and result in the following research 
goals: 

1. Comparison and investigation of prevailing approaches. 

2.  Improvement of existing MOEAs, possible development of a new, alternative 
evolutionary method. 

3. Application of the most promising technique to real-world problems in the domain of 
system design. 

The first aspect aims at finding advantages and disadvantages of the different approaches and 
yielding a better understanding of the effects and the differences of the various methods. This 
involves the careful definition of quantitative performance measures which ideally allow for 
different quality criteria. The last goal is important for identifying those problem features which 
cause the most difficulty for MOEAs to converge to the pareto-optimal front. The comparison 
also includes the examination of further factors of evolutionary search such as populations size 
and elitism.  

As a result, these investigations may either contribute to the problem of sampling the search 
space more efficiently by improving existing methods or lead to the development of a new 
evolutionary approach. Usually, these applications are by far too complex to be handled by 
exact optimization algorithms. 

This paper reviews current evolutionary approaches to multi-objective optimization discussing 
their similarities and differences. It also tries to identify some of the main issues raised by multi-
objective optimization in the context of evolutionary search, and how the methods discussed 
address them. From the discussion, directions for future work, in multi-objective evolutionary 
algorithms are identified. 

 

Evolutionary Approaches to Multi-objective Optimization 

The family of solutions of a multiobjective optimization problem is composed of all those 
elements of the search space which are such that the components of the corresponding objective 
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vectors cannot be all simultaneously improved. This is known as the concept of Pareto 
optimality. 

A more formal definition of pareto-optimality is as follows:  

Consider without any loss of generality, the minimization of n components kf , k =1,2,...n  of a 
vector function f of a vector variable x  in a universeU , where f x( ) = f1 x( ), f2 x( ),... fn x( )( ) . 

Then a decision vector Uxu ∈ , is said to be pareto-optimal if and only if ∃ Uxv ∈ for which 
v = f xv( ) = v1,v2...vn( )  dominates u = f xu( ) = u1,u2...un( )  

The set of all pareto-optimal decision vectors is called the pareto-optimal efficient or admissible 
set of the problem. The corresponding set of objective vectors is called the non-dominated set. 
The notion of pareto-optimality is only a first step towards the practical solution of a 
multiobjective problem, which usually involves the choice a single compromise solution from 
the non-dominated set according to some preference information. 

Evolutionary algorithms seem particularly suitable to solve multi-objective optimization 
problems, because they deal simultaneously with a set of possible solutions, the so-called 
population. This allows to find several members of the pareto optimal set in a single run of the 
algorithm instead of having to perform a series of separate runs as in the case of traditional 
mathematical programming techniques. Additionally, evolutionary algorithms are less 
susceptible to the shape or continuity of the pareto front as they deal easily with discontinuous 
or concave pareto fronts, whereas these two issues are of real concern for mathematical 
programming techniques. MOEA are very attractive MOP solution techniques because they 
address both search and multi-objective decision making. Additionally they have the ability to 
search partially ordered spaces for several alternative trade-offs. They find a wide range of non-
dominated solutions close to the true pareto-optimal solutions. 

A MOEA defining characteristic is the set of multiple objectives being simultaneously. 
Otherwise task decomposition clearly shows little structural difference between the MOEA and 
its single objective EA counterparts.  

 

General EA Tasks 

1. Initialize population 

2. Fitness evaluation (vector/ fitness transformation) 

3. Recombination 

4. Mutation 

5. Selection 

 

Non- Elitist Multi-objective Evolutionary Algorithms 

Non-Elitist Multi-Objective Evolutionary Algorithms (MOEA) are algorithms which do not use 
any elite-preserving operator. Some important Non-Elitist MOEA includes the following: 

 

1. Vector Evaluated Genetic Algorithm (VEGA) 

This is the simplest possible multi-objective GA and is a straight forward extension of single-
objective GA for multi-objective optimization. Schaffer implemented this first multi-objective 
GA to find a set of non-dominated solutions (Schaffer, 1984).  This GA evaluated an objective 
vector, with each element of the vector representing each objective function and emphasizes 
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solutions which are good for individual objective functions. To find intermediate trade-off 
solutions, Schaffer allowed cross-over between any two solutions in the entire population. Also 
a VEGA has the same computational complexity as that of single-objective GAs. The main 
advantage of a VEGA is that it uses a simple idea and is easy to implement. Only minor changes 
are required to be made in a simple GA to convert it to a multi-objective GA and this does not 
incur any additional computational complexity. But here, as each solution in a VEGA is 
evaluated only with one objective function, thus every solution is not tested for other objective 
functions, all of which are also important in the context of multi-objective optimization.  

 

2. Vector-Optimized Evolution Strategy 

In this approach, the basic self-adaptive evolution strategy for single-objective optimization is 
modified to handle multi-objective optimization problems. This algorithm performs a 
domination check to retain non-dominated solutions and a niching mechanism to eliminate 
crowded solutions. The simulation results were shown on a single problem and no further work 
has been pursued, hence this is not used by current researchers (Kursawe, 1990).   

 

3. Weight Based Genetic Algorithm 

The key issue in WBGAs is to maintain diversity in the weight vectors among the population 
members. In WBGAs the diversity in the weight vectors is maintained in two ways. In the first 
approach, a niching method is used only on the substring representing the weight vector, while 
in the second approach, carefully chosen subpopulations are evaluated for different pre-defined 
weight vectors, an approach similar to that of the VEGA. Since a WBGA uses a single-objective 
GA, not much change is needed to convert a simple GA implementation into a WBGA one. 
Moreover, the complexity of the algorithm is smaller than other multi-objective evolutionary 
algorithms. As the WBGA uses a proportionate selection procedure on the shared fitness values, 
for mixed type of objective functions (some are to be minimized and some are to be maximized), 
complications may arise in trying to construct a fitness function. WBGA may also face 
difficulties in finding pareto-optimal solutions in problems having non-convex pareto-optimal 
region (Hajela et al., 1993).   

 

4. Multi-objective Genetic Algorithm 

Fonseca and Fleming first introduced a multi-objective GA (MOGA) which used the non-
dominated classification of a GA population (Fonseca & Fleming, 1993). This explicitly caters 
to emphasize non-dominated solutions and simultaneously maintains diversity in the non-
dominated solutions. The MOGA differs from a standard tripartite GA in the way fitness is 
assigned to each solution in the population. The rest of the algorithm is the same as in classical 
GA. Since niching is performed in the objective space, the MOGA can be easily applied to other 
optimization problems. This algorithm may be sensitive to the shape of the pareto optimal front 
and to the density of solutions in the search space. 

 

5. Non-Dominated Sorting Genetic Algorithm 

In non-dominated sorting GA, the dual objectives in a multi-optimization algorithm are 
maintained by using a fitness assignment scheme which prefers non-dominated solutions and by 
using a sharing strategy which preserves diversity among solutions of each non-dominated front. 
The computational complexity of the fitness assignment procedure is mainly governed by the 
non-dominated sorting procedure and the sharing function implementation. The main advantage 
of an NSGA is the assignment of fitness according to non-dominated sets. An NSGA progresses 
towards the pareto-optimal region frontwise (Srinivas & Deb, 1994). 
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6. Predator-Prey Evolution Strategy 

This strategy does not use a domination check to assign fitness to a solution but uses the concept 
of predator-prey model. The main advantages of this method are its simplicity and that it does 
not emphasize non-dominated solutions directly. The disadvantage of this strategy is that no 
explicit operator is used to maintain a spread of solutions in the obtained non-dominated set. 
Instead, each predator is assigned the task of eliminating the worst neighboring solution with 
respect to a different objective. Also there is no special care taken to maintain the intermediate 
solutions (Laumanns et al., 1998) 

 

7. Distributed Sharing GA 

In this approach, the distributed island model is used to maintain diversity among non-
dominated solutions. The GA population is divided into a number of subpopulations and 
independent genetic operations are performed to each island. Subpopulations from all islands 
are collected together and the non-dominated solutions are recorded (Hiroyasu et al., 1999). 

 

8. Distributed Reinforcement Learning Approach 

Maraino and Morales suggested a distributed reinforcement learning approach, where a family 
of agents is assigned to different objective functions (Mariano & Morales, 2000).  Each agent 
proposes a solution to optimize its objective function. All such solutions are combined and a 
non-dominated compromised set of solutions are identified. Each non-dominated solution is 
rewarded. In the context of solving continuous search space problems, an agent considers 
solutions in a particular search direction from its current location. The solution is evaluated by 
the agent’s corresponding objective function. The rewarding mechanism provides a direction for 
the algorithm to move towards the pareto-optimal region and the non-domination check 
maintains a diverse set of solutions, while simultaneous creation of multiple solutions by a 
directional search method helps to find new solutions in the search space. 

 

9. Nash GA 

This GA is motivated by a game theoretic approach in which one player is allowed to get 
associated with each objective function and it tries to optimize its objective function while 
keeping other objective functions unchanged. In a periodic sequence of operations, the Nash GA 
is terminated when no more improvement is recorded. At this steady-state scenario, the resulting 
solution is a Nash-Equilibrium solution and is a candidate pareto-optimal solution. Although the 
investigators claim better convergence properties of this GA compared to the NSGA, it is clear 
that an explicit niche-performing operator must be used to maintain multiple pareto-optimal 
solutions (Sefrioui & Periaux, 2000).   

 

Elitist Multi-objective Evolutionary Algorithms 

These are evolutionary algorithms which use elite preserving operator. Elite preservation or 
emphasizing currently elite solutions is an important operator in an EA. An elite preserving 
operator favors the elites of a population by giving them an opportunity to be directly carried 
over to the next generation. Elitism can be implemented to different degrees in an MOEA. The 
presence of elitism should improve the performance of a multi-objective EA, but care must be 
taken to control the effective degree introduced in the progress. Now we present some 
algorithms that attempt to achieve a controlled elitism in multi-objective evolutionary 
optimization: 
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1. Rudolph’s Elitist Multi-Objective Evolutionary Algorithms 

Rudolph suggested a multi-objective evolutionary algorithm which required the introduction of 
a diversity preservation mechanism (Rudolph, 2001) This algorithm with a positive variation 
kernel of its search operators allows convergence to the pareto-optimal front in a finite number 
of trials in finite search space problems. The positiveness of the variation kernel makes sure that 
the probability of creating any offspring from an arbitrary set of parent solutions in a finite 
number of trials is one. Thus in any population, if no pareto-optimal solution exists, the 
positiveness of the variation kernel of the combined search operators ensures that one such 
member will be created in a finite number of trials. With the elite preserving strategy of the 
above algorithm, this member cannot ever be deleted from the population. The main 
disadvantage of this algorithm is that it does not ensure any diversity among the obtained 
solutions.  

 

2. Elitist Non-Dominated Sorting Genetic Algorithm 

Deb suggested an elitist non-dominated sorting GA (termed NSGA- II) which uses an explicit 
diversity-preserving mechanism (Deb, 2000). The overall complexity of the NSGA- II is at most
O(MN 2 ) . The diversity among non-dominated solutions is introduced by using the crowding 
comparison procedure which is used with the tournament selection and during the population 
reduction phase. Since solutions compete with their crowding distances, no extra niching 
parameter is required here. In the absence of the crowded comparison operator, this algorithm 
also exhibits a convergence proof to the pareto-optimal solution set similar to that in Rudolph’s 
algorithm, but the population size would grow with the generation counter. The elitism 
mechanism does not allow an already found pareto-optimal solution to be deleted. This 
algorithm loses its convergence property when the crowded comparison is used to restrict the 
population size. In latter generations when more than N members belong to the first non-
dominated set in the combined parent-offspring population, some closely packed pareto-optimal 
solutions may give their places to other non-dominated yet non-pareto-optimal solutions. 
Although these latter solutions may get dominated by other pareto-optimal solutions in a later 
generation, the algorithm can resort into this cycle of generating pareto-optimal and non pareto-
optimal solutions before finally converging to a well distributed set of pareto-optimal solutions.  

 

3. Strength Pareto Evolutionary Algorithm (SPEA) 

Zitzler and Thiele (1998) proposed Strength Pareto Evolutionary Algorithm (SPEA) which 
introduced elitism by explicitly maintaining an external population P .  This population stores a 
fixed number of the non-dominated solutions that are found until the beginning of a simulation. 
At every generation, newly found non-dominated solutions are compared with the existing 
external population and the resulting non-dominated solutions are preserved. The SPEA not 
only preserves the elites but also uses these elites to participate in the genetic operations along 
with the current population in the hope of influencing the population to steer towards good 
regions in the search space. In the SPEA, clustering ensures that a better spread is achieved 
among the obtained non-dominated solutions. This clustering algorithm is parameter-less, 
thereby making it attractive to use. The fitness assignment procedure in the SPEA is more or 
less similar to that of Fonseca and Fleming’s (1993) MOGA and is easy to calculate. In SPEA, 
if a large external population is used, the selection pressure for the elites will be large and the 
SPEA may not be able to converge to the pareto-optimal front. On the other hand, if a small 
external population is used, the effect of elitism will be lost. Moreover, in the SPEA fitness 
assignment, an external solution, which dominates more solutions, get a worse fitness. This 
assignment is justified when all dominated solutions are concentrated near the dominating 
solution. 
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4. Pareto-Archived Evolution Strategy (PAES) 

PAES uses an evolution strategy and its main crux lies in the way that a winner is chosen in the 
midst of multiple objectives. The PAES has a direct control on the diversity that can be 
achieved in the pareto-optimal solutions. The PAES performs better when compared to other 
methods in handling problems having a search space with non-uniformly dense solutions. The 
disadvantage of PAES is that change of the depth parameter changes the number of hypercube 
exponentially, thereby making it difficult to arbitrarily control the spread of solutions. In order 
to give the PAES a global perspective the concept of multi-membered ES is introduced. Since 
offspring are not compared against each other and only compared with the archive, this method 
does not guarantee that the best non-dominated solutions among the offspring are emphasized 
enough (Knowles, & Corne, 2000). 

 

5. Multi-objective Messy Genetic Algorithm (MOMGA) 

This is the extension of the original messy GA in which the use of m different template strings 
in an era is suggested (Veldhuizen, 1999). In the level-1, MOMGA each partial string is filled 
from m template strings chosen randomly before the era has begun. Each filled string is 
evaluated with a different objective function. The objective vector obtained in this process is 
used in the selection operator. At the end of an era, the best solution corresponding to each 
objective function is identified and is assigned as the template string corresponding to that 
objective function. A concurrent MOMGA was also proposed by suggesting parallel 
applications of the MOMGA with different initial random templates. At the completion of all 
MOMGAs, the obtained external sets of non-dominated solutions are all combined together and 
the best non-dominated set is reported as the obtained non-dominated set of solutions of the 
CMOMGA. Although the solutions obtained by this procedure do not indicate the robustness 
associated with an independent run of an MOMGA, this parallel approach may be desirable in 
practical problem solving. A study using a probabilistically complete initialization of MOMGA 
population to reduce the computational burden is an improvement over the past studies (Zydallis 
et al., 2001). 

 

6. Non-dominated sorting in Annealing GA (NSAGA) 

This non-dominated sorting in annealing GA (NSAGA) uses a simulated annealing-like 
temperature reduction concept along with the Metropolis criterion. The first-stage probability 
calculation is along the lines of finding the transition probability of creating the offspring 
population from the parent population. The second probability calculation is based on the 
Metropolis criterion, which uses an energy function related to the number of non-dominated 
solutions in a population. In an elitist sense, an offspring population is accepted only when the 
probability of creating such a population and accepting it with the Metropolis criterion with an 
updated temperature concept is adequate. Clearly the goal of this work is to modify the NSGA 
procedure with a simulated annealing-like acceptance criterion, so that a proof of convergence 
can be achieved. 

 

7. Multi-objective Micro-GA 

This Multi-objective Micro-GA maintains two populations. The GA population is operated in a 
similar way to that of the single-objective micro-GA, whereas the elite population stores the 
non-dominated solutions obtained by the GA. The elite archive is updated with new solutions in 
a similar way to that achieved in the PAES. The search space is divided into a number of grid 
cells. Depending on the crowding in each grid with non-dominated solutions, a new solution is 
accepted or rejected in the archive (Coello & Toscano, 2000).   
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8. Elitist MOEA with Coevolutionary Sharing (ERMOCS) 

This multi-objective GA (ERMOCS) is based on Goldberg and Wang’s coevolutionary sharing 
concept (Goldberg & Wang, 1998; Neef et al., 1999). For maintaining diversity among non-
dominated solutions, the coevolutionary shared niching (CSN) method is used. The elite 
preservation is introduced by using a pre-selection scheme where a better offspring replaces a 
worse parent solution in the recombination procedure. In the coevolutionary model, the 
customer and businessman populations interact in the same way as in the CSN model, except an 
additional imprint operator is used for emphasizing non-dominated solutions. After both 
customer and businessman populations are updated, each businessman is compared with a 
random set of customers. If any customer dominates the competing businessman and the latter is 
at least a critical distance away from other businessmen, it replaces the competing businessman. 
In this way non-dominated solutions from the customer population get filtered and find their 
place in the businessman population. On a scheduling problem, ERMOCS is able to find well-
distributed customer as well as businessman populations after a few generations.  

 

Constrained Multi-objective Evolutionary Algorithms 

In most practical search and optimization problems, constraints are evident. Often the 
constraints are many in numbers and are nonlinear. Now we deal with several multi-objective 
evolutionary algorithms which have been particularly suggested for handling constraints.  

 

1. Penalty Function Approach 

In the penalty function approach, the constraint violation in an infeasible solution is added to 
each objective function. Thereafter, the penalized objective function values are optimized. For 
relatively large penalty terms (compared to objective function values), this method practically 
compares infeasible solutions based on their constraint violations. Again for the same reason, a 
feasible solution will practically dominate an infeasible solution. Both of these characteristics 
together allow the population members to become feasible from infeasible solutions and, 
thereafter, allow solutions to converge closer to the true pareto-optimal solutions.   

 

2. Jimenez-Verdegay-Gomez-Skarmeta’s Method 

This work suggested a careful consideration of feasible and infeasible solutions and the use of 
niching to maintain diversity in the obtained pareto-optimal solutions. This algorithm uses the 
binary tournament selection in its core. Here feasible and infeasible solutions are carefully 
evaluated by ensuring that no infeasible solution gets a better fitness than any feasible solution 
(Jimenez et al., 1999). Only inequality constraints of the lesser-than-equal-to type are 
considered in their study, whereas any other constraints can also be handled by using the 
procedure. The disadvantage of this algorithm is that by preserving diversity among infeasible 
solutions explicitly, the progress towards the feasible region may be sacrificed. Also there exist 
a couple of additional parameters which a user must set right. In order to make the non-
domination check less stochastic, a large comparison check is needed. Furthermore, the 
algorithm does not explicitly check the domination of participating solutions in a tournament. 

 

3. Constrained Tournament Method 

Here the definition of domination is modified. Before comparing two solutions for domination, 
they are checked for their feasibility. If one solution is feasible and the other is not, the feasible 
solution dominates the other. If two solutions are infeasible, the solution with the smaller 
normalized constraint violation dominates the other. On the other hand, if both solutions are 
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feasible, the usual domination principle is applied. The advantage of this method is that in 
addition to the constraint violation computations, this strategy does not require any extra 
computational burden. The constraint domination principle is generic and can be used with any 
other MOEAs. Since it forces an infeasible solution to be always dominated by a feasible 
solution, no other constraint handling strategy is needed.  

 

4. Ray-Tai-Seow’s Method 

Ray, Tai, and Seow (2001) suggested a more elaborate constraint handling technique, where the 
constraint violations of all constraints are not simply added together; instead, a non-domination 
check of the constraint violations is made. Here, three different non-dominated sorting 
procedures are used. In addition to a non-dominated sorting of the objective functions, a couple 
of non-dominated sortings using the constraint violation values and a combined set of objective 
function and constraint violation values are needed to construct the new population. This 
algorithm handles infeasible solutions with more care than any other of the constrained handling 
techniques and diversity is maintained in the population. But the disadvantage is that in a later 
generation, when all population members are feasible and belong to a sub-optimal non-
dominated front, the algorithm stagnates. Also during the crossover operation, three offspring 
are created. The first one is created by using a uniform crossover with an equal probability of 
choosing one variable value from each parent. The other two solutions are created by using a 
blend crossover, which uses a uniform probability distribution over a range that depends on a 
number of threshold parameter values. The difficulty arises in choosing parameter values related 
to each of these operators. Another difficulty arises because five solutions are accepted after 
each crossover operation. This process will cause the population to soon lose its diversity. Three 
non-dominated ranking and head-count computations make the algorithm more computationally 
expensive than the other algorithms. 

 

Salient issues of Multi-objective Evolutionary Algorithms 

With the success of MOEAs in different problem domains, many new techniques have been 
suggested. This demands a proper method of assessing the performance of a newly suggested 
algorithm. Since an MOEA is supposed to perform the tasks of converging close to the true 
pareto-optimal front and maintaining a diverse set of non-dominated solutions, an algorithm 
must be assessed with respect to both of these tasks. Ironically, it is difficult to have one 
performance metric to evaluate both of the above issues adequately.  

For evaluating a new algorithm, there is also a need to test it with problems possessing known 
complexities of the search space and with a known pareto-optimal set. Knowledge of the exact 
locations of the pareto-optimal solutions is helpful in investigating the search abilities of an 
algorithm. With the development of a number of MOEAs over the past few years, there have 
been some studies in comparing them systematically. Those MOEAs which properly 
implemented elite preservation, emphasized non-dominated solutions, and maintained diversity 
among non-dominated solutions, all performed well. In several studies it was clear that elite 
preservation is an important operation in converging as well as sustaining a good diverse set of 
non-dominated solutions. 

An important aspect of maintaining diversity among non-dominated solutions is the space in 
which the diversity is required. The diversity preserving operator must treat the proximity of the 
solutions in the decision variable space. On the other hand, if the diversity in the objective space 
is more important, the proximity must be measured in the objective space. It is important to 
keep in mind that the proximity in one space may not mean that a proximity in the other space 
would be automatically obtained. This has been found to be particularly true in certain nonlinear 
and complex problems. 
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The concept of multi-objective optimization can also be used to solve other kinds of 
optimization problems in an efficient way. For example, a constrained single objective 
optimization problem can be considered as being a multi-objective optimization problem of 
optimizing the objective function and minimizing all constraint violations. The principle of 
finding multiple optimal solutions can also be extended to other similar problems, such as goal 
programming. Because of the lack of an optimization algorithm which can find multiple optimal 
solutions simultaneously, goal programming approaches traditionally use relative weights of 
objectives and resort to finding one solution corresponding to one weight vector at a time. Also 
an interesting aspect is that as the number of objectives increase, a large proportion of a 
randomly chosen population becomes non-dominated. When this happens, introduction of 
elitism becomes tricky. This is because a large number of population members are candidate 
elite solutions, therefore not allowing many solutions to be accepted in any generation. 
Moreover, there are ways to choose an adequate population size such that a reasonable 
proportion of the population members belongs to the dominated fronts for initially introducing 
variability in the population.  

In MOEAs, convergence to the pareto-optimal front and simultaneous maintenance of a good 
distribution are both important. Although there exist a number of MOEAs with theoretical 
convergence properties to the true pareto-optimal front, they do not guarantee maintaining any 
spread of solutions. More studies to develop MOEAs with properties of convergence as well as 
spread of solutions remain as an imminent challenge to the researchers of MOEAs.  

 

Applications of Multi-objective Evolutionary Algorithms 

Here we discuss concisely some real life application examples of multi-objective evolutionary 
algorithms. These application examples are conducted in the context of real-life problems. 
Some important applications are in computational finance, economics, engineering design, 
encryption and code breaking etc. Each example shows different particularities of the MOEA 
design, implementation and usage.  

 

1. Financial Time Series 

Niched Pareto Genetic Algorithm has been used to find patterns in financial time series such 
that predictions can be made regarding the behavior of a certain stock (Horn, Nafploitis & 
Goldberg, 1994). The methodology has also been used for the identification of significant 
technical analysis patterns in financial time series (Ruspini & Zwir, 1999). Two objectives are 
considered i.e. quality of fitness and its extent. Fitness measures the extent to which the time 
series values correspond to a financial uptrend, downtrend or head and shoulders interval. 

 

2. Forecasting Stock Prices 

Although long term forecasting is not possible for the stock market, it is normally possible to 
perform short term forecasting with heuristics. The use of genetic programming in this area has 
become increasingly popular, since GP can be used for symbolic regression, emulating the tasks 
traditionally performed by ANNs. 

 

3. Stock Ranking 

The aim of this problem is to classify stocks as strong or weak performers based on technical 
indicators and then use this information to select stocks for investment and for making 
recommendations to customers. Many MOEAs has been reported in this application area. 
Mullei and Beling (1998) used a GA with a linear combination of weights to select rules for a 
classifier system based on profitability.  
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4. Risk Return Analysis 

It is slightly different from risk-return trade up which is made in investment portfolio. Credit 
portfolios handled by banks operate under different rules and therefore they are not modeled 
using the original Markowitz approach. Schlottmann and Seese (2002) used an approach similar 
to the NSGA-II for solving portfolio selection problems relevant to real-world banking (Deb, 
Pratap, Agrawal & Meyarivan, 2002). In the problem studied by the authors, a bank has a fixed 
supervisory capital budget. There is an upper limit for investments into a portfolio consisting of 
a subset of assets (e.g., loans to be given to different customers of the bank), each of which is 
subject to the risk of the default (capital risk). So, in this case, besides having an expected rate 
of return (as in the original Markowitz problem), each asset also has an expected default 
probability and a net exposure within a fixed risk horizon. The resulting problem has a discrete 
constrained search space with many local optima and two conflicting objective functions. 
Unlike the original NSGA-II, the authors adopted an external archive containing the non-
dominated solutions found along the search. For validating the approach, the authors adopted 
data from the Credit- Metrics Technical Document. 

 

5. Economic Modelling 

Mardle uses a GA with a weighted goal programming approach to optimize a fishery bio-
economic model (Mardle et al., 2000). Bio-economic models have been developed for a number 
of fisheries as a means of estimating the optimal level of exploitation of the resource and for 
assessing the effectiveness of the different management plans available. 

 

6. Model Discovery  

This is an interesting area in econometrics in which non-parametric models are assumed and one 
tries to use an evolutionary algorithm to derive a model for a certain type of problem (e.g., 
forecasting nonlinear time series). Normally, artificial neural networks (ANNs) have been used 
for the model itself, but several researchers have used evolutionary algorithms to find the most 
appropriate ANN that models the problem of interest. 

 

7. Data Mining  

The use of data mining techniques for learning complex patterns is a very promising research 
area in economics and finance. For example, the mining of financial time-series for finding 
patterns that can provide trading decision models is a very promising topic (Chen, 2002). 

 

8. Investment Portfolio Optimization 

One of the most promising fields of application is investment portfolio optimization. It can vary 
from simple portfolios held by individuals to huge portfolios managed by professional investors. 
The portfolio contains stocks, bank investments, real estate holdings, bonds, treasury bills etc. 
The motto of it is to find an optimal set to invest on, as well as the optimal investment for each 
asset. This optimal selection and weighting is a multi-objective problem where total profit of 
investment has to be maximized and total risk is to be minimized. There are also different 
constraints, depending on the type of problem to be solved. For example, the weights normally 
have lower bounds, upper bounds and many other constraints. This is the so-called optimal 
investment portfolio that one wishes to obtain by using optimization techniques. This problem is 
traditionally studied using the Markowitz portfolio selection model (Markowitz, 1952) 
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9. Risk Management  

The study of risk and the reaction of an agent is a very interesting research area. Some 
researchers have studied, the formation process of risk preferences in financial problems (Chen, 
2002) 

 

10. Coevolution  

The use of co-evolutionary approaches for certain problems in economics and finance (e.g. for 
studying artificial foreign exchange markets) is a very interesting topic that certainly deserves 
attention. Co-evolutionary MOEAs are still not too common, but their potential use in financial 
areas may boost the interest of researchers in paying more attention to them. Many other 
possible areas include, the study of consumers patterns, credit scoring, economic growth and 
auction games. 

 

11. Air Operations Mission Planning 

Air operations mission planning is a complex task, growing ever more complex as the number, 
variety, and interactivity of air assets increases. Mission planners are responsible for generating 
as close to optimal taskings of air assets to missions under severe time constraints. This function 
can be aided by decision-support tools to help to ease the search process through automation. 
Several applications of multi-objective evolutionary algorithms for discovering suitable plans in 
the air operations domain, including dynamic targeting for air strike assets, intelligence, 
surveillance, and reconnaissance (ISR) asset mission planning, and unmanned aerial systems 
(UAS) planning have been presented (Rosenberg, Richards, Langton, Tenenbaum & Stouch , 
2008). 

 

12. Survival Analysis 

A multi-objective evolutionary algorithm for the extraction of models for survival analysis has 
been proposed and evaluated. To use multi-objective evolutionary algorithms for survival 
analysis has several advantages. They can cope with feature interactions, noisy data, and are 
capable of optimizing several objectives. This approach is capable of producing accurate models, 
even for problems that violate some of the assumptions made by classical approaches (Setzkorn, 
Taktak & Damato, 2006). 

 

13. Engineering Design 

Getting the most out of a range of materials to optimize the structural and operational design of 
buildings, factories, machines, etc. is a rapidly expanding application of GAs. These are being 
created for such uses as optimizing the design of heat exchangers, robot gripping arms, satellite 
booms, building trusses, flywheels, turbines, and just about any other computer-assisted 
engineering design application. There is work to combine GAs optimizing particular aspects of 
engineering problems to work together, and some of these can not only solve design problems, 
but also project them forward to analyze weaknesses and possible point failures in the future so 
these can be avoided. 

 

14. Trip Traffic and Shipment Routing 

New applications of a GA known as the "Traveling Salesman Problem" can be used to plan the 
most efficient routes and scheduling for travel planners, traffic routers and even shipping 
companies. The GA gives shortest routes for traveling, timing to avoid traffic tie-ups and rush 



ALM International Journal, Volume 8(1), pp 31-45 
 
 

Volume 8(1) – April 2013 43 

hours, most efficient use of transport for shipping and including pickup loads and deliveries 
along the way. The program model all this in the background and improve productivity, while 
the human agents do other things.  

 

15. Encryption and Code Breaking  

On the security front, GAs can be used both to create encryption for sensitive data as well as to 
break those codes. Encrypting data, protecting copyrights and breaking competitors codes have 
been important in the computer world ever since there have been computers, so the competition 
is intense. Every time someone adds more complexity to their encryption algorithms, someone 
else comes up with a GA that can break the code. It is hoped that one day soon we will have 
quantum computers that will be able to generate completely indecipherable codes. 

 

16. Optimizing Chemical Kinetic Analysis 

GAs are proving very useful toward optimizing designs in transportation, aerospace propulsion 
and electrical generation. By being able to predict ahead of time the chemical kinetics of fuels 
and the efficiency of engines, more optimal mixtures and designs can be made available quicker 
to industry and the public. Some computer modeling applications in this area also simulate the 
effectiveness of lubricants and can pinpoint optimized operational vectors, and may lead to 
greatly increased efficiency all around well before traditional fuels run out. 

 

17. Reservoir System Optimization 

This study presents a novel approach for solving multiobjective reservoir system optimization 
problems using Differential Evolution (DE). The proposed methodology for Multi-objective 
Differential Evolution (MODE) combines pareto dominance criteria with DE for nondomination 
selection and crowded distance comparison operator for promoting solution diversity, and 
incorporates elitism in its evolution to improve the performance of the algorithm. The 
optimization involves minimization of flood risk, maximization of hydropower production, and 
minimization of irrigation deficits while properly evaluating other constraints. The MODE 
resulted in many Pareto optimal solutions in a single run, by specifying the reservoir releases 
and storage policy for each solution. The interdependence among the decision variables is better 
exploited using MODE. It is also found that the performance of MODE is better than NSGA-II 
for the reservoir system optimization problem. Thus, the obtained results suggest that the 
MODE approach is robust, and converging to the true Pareto optimal front with a good solution 
spread and coverage (Reddy & Kumar, 2007). 

 

Summary 

This paper gives a brief overview of multi-objective evolutionary algorithms. This paper 
describes need of multi-objective evolutionary algorithms, development of non-elitist and elitist 
multi-objective evolutionary algorithms, constrained multi-objective evolutionary algorithms 
with their salient issues. This paper also discusses the application of multi-objective 
evolutionary algorithms in several areas such as finance, engineering, economics, chemistry, 
transportation etc. 
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