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Abstract 
 

Previous research has demonstrated the efficacy of two explanation-based approaches for increasing learning in 

educational games. The first involves asking students to explain their answers (self-explanation) and the second 

involves providing correct explanations (explanatory feedback). This study (1) compared self-explanation and 

explanatory feedback features embedded into a game designed to teach Newtonian dynamics and (2) 

investigated relationships between learning and individual differences. The results demonstrated significant 

learning gains for all conditions. There were no overall differences between conditions, but learning outcomes 

were better for the self-explanation condition after controlling for the highest level completed by each student. 

Analyses of individual differences indicated that certain threshold inhibitory control abilities may be necessary 

to benefit from the self-explanation in games. 
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Introduction 

 

Research on self-explanation by Chi and others has provided insight into the value of explanation for learning 

(e.g., Chi, Bassok, Lewis, Reimann, & Glaser 1989; Roy & Chi, 2005; Chi & VanLehn, in press). A recent 

review of research reports that self-explanation results in average learning gains of 20% to 44% compared to 

control conditions without self-explanation (Roy & Chi, 2005). This emphasis on explanation is mirrored in 

research on science education. Work by White and Frederickson (1998, 2000), for example, demonstrates the 

value of asking students to reflect on their learning during inquiry with physics simulations. Similarly, a 

growing body of research and scholarship on games and cognition emphasizes informal cycles of prediction, 

explanation, and refinement at the core of game-play processes (Salen & Zimmerman, 2004, Wright, 2006). We 

have found, however, that implementing self-explanation in educational games requires careful consideration of 

the specific affordances and constraints of digital games as a medium and careful evaluation of the relationships 

between individual abilities, gameplay, and learning outcomes. 

 

Two explanation-based approaches have proved effective for increasing learning in educational games: asking 

students to explain their answers (self-explanation) and providing students with an explanation (explanatory 

feedback). The present study includes two versions of self-explanation (partial and full) and one version of 

explanatory feedback. Given overall similarities observed between the partial and full self-explanation 

conditions, we collapse across the self-explanation conditions in our analyses. This study explores the following 

questions: 

 

 What are the relative advantages of self-explanation and explanatory feedback for middle school students 

playing a game covering challenging concepts in Newtonian dynamics? 

 How do students’ gameplay behaviors relate to game levels completed and learning outcomes?  

 How do students’ attentional control abilities relate to gameplay behaviors, game levels completed, 

motivation, and learning outcomes? 

 

                                                           
*
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The following section begins by introducing the digital game used in the study. Subsequently, we discuss 

background research on self-explanation and the rationale for an individual differences approach. The 

introduction closes with an overview of the present study.  

 

 

Background: Game Context  

 

The Fuzzy Chronicles
†
 is a game designed to support middle school students learning about Newtonian 

dynamics (i.e., Newtonian relationships describing motion physics learning). The Fuzzy Chronicles (Figure 1) 

and other early SURGE games are “conceptually-integrated games” (Clark & Martinez-Garza, 2012), in which 

the science to be learned is integrated directly into the game mechanics (Clark & Martinez-Garza, 2012). 

Specifically, interactions with game elements and the conditions for successful play are directly connected to 

concepts in Newtonian dynamics, rather than being introduced through embedded activities isolated from 

primary gameplay (i.e., during particular game phases or at locations in a game-world). The latter structure is 

typical of many virtual worlds designed for science learning
‡
. 

 

 

 
 

Figure 1. Key parts of a Fuzzy Chronicles level with labels (above) and a challenge level (below) 

 

                                                           
†
 This study employed an early version of The Fuzzy Chronicles. Newer versions of The Fuzzy Chronicles and 

other SURGE games may be played at www.surgeuniverse.com. 
‡
 From our research with the conceptual integration approach used in The Fuzzy Chronicles, we have more 

recently adopted an approach that we term “disciplinary integration” – see Clark, Sengupta, Brady, Martinez-

Garza, & Killingsworth (2015) for a full discussion of the rationale for conceptual integration, disciplinary 

integration, and the shift from one to the other in our research and designs. 
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In each level of The Fuzzy Chronicles, players must navigate a spaceship around obstacles to reach an exit 

portal by placing commands on a timeline specifying the magnitude and direction of forces that the ship should 

apply to achieve the desired path (see Figure 1). A grid is shown within the simulation space of the game 

(representing distance intervals of one meter). Certain levels also contain Fuzzies (masses of 1 kilogram) that 

the player may pick up, release, and throw (see Figure 1). The design emphasizes prediction instead of reaction 

through (a) challenges requiring fewer but higher-impact decisions and (b) requiring players to place force 

commands before viewing their effects. On each trial the student presses a “launch” lever to view the results of 

her plan. Students can then revise their plan and re-launch in a new trial. 

 

 

Background: Self-Explanation in Digital Games 

 

Well-designed games must encourage generative processing (Mayer & Johnson, 2010) to ensure that players 

make connections between gameplay and formal learning concepts. Unfortunately, few games provide direct 

supports for generative processing (such as structures for externalizing and reflecting on game-play). More 

often, articulation and reflection occur outside the game, through discussion among players or participation in 

online forums (Gee, 2007; Squire, 2005; Steinkuehler & Duncan, 2008). Self-explanation has been proposed as 

a possible device to encourage generative processing during educational gameplay. According to Roy and Chi 

(2005), the process of self-explanation can encourage four key forms of cognition, including: (1) recognizing 

what information is missing while generating inferences, (2) integrating the information taught within a lesson, 

(3) integrating information from long-term memory with new information, and (4) identifying as well as 

correcting information. Overall, self-explanation can encourage students to engage in meta-cognitive activities 

to monitor what they do and do not understand about the material.  

 

Self-explanation has been shown to produce average learning gains of 22% for learning from text, 44% for 

learning from diagrams, and 20% for learning from multimedia presentations (Roy & Chi, 2005). Despite these 

successes, implementing self-explanation in educational games has not shown such clear benefits. O’Neil et al. 

(2014) provide certain possible reasons for this, arguing that in addition to generative processing, self-

explanation prompts could also result in extraneous processing by slowing down and distracting the player. 

O’Neil et al. (2014) also raise the issue that students might respond quickly to avoid deeper processing during 

self-explanation segments of a game in order to return to the active gameplay quickly. 

 

A study by Moreno and Mayer (2005) demonstrates the need for careful attention to how self-explanation 

features are implemented in a game environment. The authors conducted a study examining how multiple 

features (including interactivity and self-explanation) affected learning from a simulation game, Design-a-Plant 

(Lester, Stone, & Stelling, 1999). In the first experiment, students selected answers to questions about the types 

of roots, stems, and leaves that allowed a plant to survive on a planet. One group of students engaged in self-

explanation (asked to provide an explanation for the answer to the plant question) and the other group did not. 

The authors observed no benefit of self-explanation.  

 

In a second experiment, Moreno and Mayer (2005) factorially manipulated interactivity and self-explanation 

features. The program provided answers to the questions in the non-interactive condition and students provided 

answers in the interactive condition. Critically, the authors found an interaction between interactivity and self-

explanation for far-transfer measures. Specifically for the non-interactive condition, far-transfer scores were 

higher for students who engaged in self-explanation. For students with the non-interactive game, far-transfer 

scores did not differ based on self-explanation. Generally, based on the first two experiments, the authors argued 

that certain levels of interactivity may already facilitate students’ organizing and integrating information at a 

high level – such that self-explanation does not support further processing. Notably, however, other forms of 

instruction have also shown limited the benefits of self-explanation because the instructional material 

sufficiently covers the focal topics (see Matthews and Rittle-Johnson, 2009). Thus, interactivity may be just one 

of several features of an instructional environment that can minimize the benefits of self-explanation.  

 

In the final experiment by Moreno and Mayer (2005), interactivity and self-explanation were again manipulated 

factorially. The authors also added a condition in which students choose their own answers, but then received 

the correct answer before engaging in self-explanation (interactivity+correct-reflection). This allowed the 

authors to separate the confounded effects of interactivity from the effects of reflecting on a potentially incorrect 

answer (when explaining one’s own answer). The authors observed an overall benefit of self-explanation. The 

authors also observed findings in the quality of students’ explanations, which can be explained by how quickly 

students were guided to the correct answer in each condition. Students gave the lowest proportion of incorrect 

explanations in the no-interactivity+correct-reflection condition, in which the program provided the correct 
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answer immediately. Incorrect explanations were more frequent in the interactivity+correct-reflection, in which 

the correct answer was provided only after students had potentially provided an incorrect answer. Incorrect 

explanations were the most frequent in the interactivity+self-reflection condition, in which students had an 

opportunity both to provide and then potentially reflect upon an incorrect answer. 

 

Altogether, the results of the Moreno and Mayer (2005) study suggest that self-explanation may not always 

benefit students in an interactive game environment, but further work is necessary to isolate the effects of self-

explanation (reflection) from the effects of whether students reflect upon correct or incorrect information. Given 

the advantages for reflecting on correct information, one way to simplify the self-explanation process that still 

provides feedback for students’ responses is to provide learners with a set of explanation options (“selected-

explanation”). Using a game-like environment for instruction on electrical circuits, Johnson and Mayer (2010) 

found that gains from having students generate their own explanations were equivalent to gains with a base 

version of the game (without self-explanation), but that having students select an explanation led to higher 

performance on a transfer level of the game (see also Mayer & Johnson, 2010). As noted by O’Neil et al. 

(2014), one potential issue is that self-explanation may result in extraneous processing. Students may not be able 

to explicitly state the correct reasons for giving a particular answer. Providing students with possible 

explanations as well as feedback can decrease incorrect thinking and reduce extraneous processing. 

Furthermore, from a design standpoint, it is far simpler to provide quick and effective feedback for selected-

explanation responses than for open-ended self-explanation. 

 

Three major recommendations that can be distilled from the literature to date on self-explanation and education 

games are: 1) students must be asked to reflect upon correct information, 2) self-explanation prompts must take 

into account the intrinsic processing demands of interacting with a game, 3) providing the students with 

selection-based self-explanation questions instead of open-ended responses may decrease intrinsic processing 

load and facilitate feedback. 

 

 

Background: Cognitive Abilities and Attentional Control 

 

Individual differences in cognitive abilities may have dramatic consequences for whether and how a student 

benefits from a given instructional practice. In numerous studies, individual differences in abilities have been 

shown to predict different learning outcomes for given instructional designs (e.g. Fuchs et al., 2014; Höffler & 

Leutner, 2011; Wiley, Sanchez, & Jaeger, 2014). Thus far, though close examinations of individual differences 

in strategies and behaviors have received some attention, relationships with measured cognitive abilities have 

received minimal attention within the literature on self-explanation or within educational games research. 

Including cognitive ability measures in the present study can help determine who benefits from self-explanation 

and clarify the relationships between cognitive processing and study outcomes.  

 

The current study focuses on inhibitory control as an individual difference. Inhibitory control is thought to be 

one important aspect of the set of diverse frontal lobe processes called executive functions (see Miyake et al., 

2000). We measure inhibitory control using the Attention Network Test (see Fan et al., 2002), which is thought 

to measure three ways in which people voluntarily control visual attention to resolve conflicting responses to 

information (inhibitory control), to select locations of meaningful information in the environment (attentional 

orienting), and to prepare attention for expected meaningful events and maintain the prepared state (attentional 

alerting). Inhibitory control (IC) reflects students’ abilities to inhibit responses to information that may 

otherwise interfere with performance. IC may reflect abilities to inhibit pre-potent (or “default”) responses and 

to ignore conflicting information. IC is thought to be one element of the larger set of cognitive processes called 

executive functions. Executive functions are responsible for regulating thought, action, and emotion based on 

one’s current goals (Blair & Razza, 2007; Miyake et al., 2000).  

 

Given that there is little available research from which to construct particular theories about the relationships 

between measures in the Attention Network Test (ANT), gameplay, and learning, our analyses of IC in the 

present study are exploratory. There is good reason, however, to expect that measures in the ANT (and 

specifically measures of IC) are meaningful for science learning, are relevant for learning from gameplay, and 

may be specifically relevant for learning from self-explanation. Best et al. (2009) propose that executive 

functions impact learning outcomes in science (and other domains) either directly or through more complex 

mental operations and classroom behaviors. Gropen and colleagues propose that as early as preschool, executive 

functions may be critically important to developing hypothesis testing and abstract reasoning processes 

supporting conceptual change in science education (Gropen, Clark-Chiarelli, Hosisington, & Ehrlich, 2011). In 

late elementary and middle school, IC predicts scores on English, mathematics, and science assessments (St. 
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Clair-Thompson & Gathercole, 2006) and overall semester grades (Visu-Petra et al., 2011). IC has also shown 

important relationships with fluid intelligence (Unsworth, Spillers, & Brewer, 2009), suggesting general 

relevance of these processes for academic achievement.  

 

Although we are unaware of any research directly linking self-explanation and IC, one possibility for how these 

constructs are linked is as follows. First, self-explanation may benefit learning through prompting students to 

engage in metacognition that they otherwise would not (e.g., McNamara & Magliano, 2009; Roy & Chi, 2005) – 

though there has been some difficulty measuring individuals’ abilities to engage in metacognition (see 

McNamara & Magliano, 2009). Second, metacognitive processes are likely to be supported by IC (Fernandez-

Duque, Baird, & Posner, 2000; Flemming & Dolan, 2012) – perhaps specifically because inhibition may 

facilitate students’ abilities to hold recently encountered content in working memory and to ignore current 

sensory information and focus on potentially relevant aspects of the current topic. Thus, it is reasonable to 

propose that individuals with better inhibitory control abilities (1) may be better at using self-explanation 

techniques and/or (2) may benefit more from engaging in self-explanation. 

 

Because relationships between cognitive abilities and gameplay have received scant attention in educational 

games research, possible relationships with gameplay are speculative. Nevertheless, we propose that inhibitory 

control may be relevant for productive play. Gropen et al. (2011) suggest that hypothesis testing and ignoring 

experiential defaults are important features of science learning that are supported by IC. We expect these 

benefits should also be relevant for developing abstract principles and rules that guide gameplay. Moreover, 

games often involve graphical elements that are visually appealing, but not central to the game mechanics or to 

the learning content. IC may help students ignore these elements and instead identify and compare strategically 

relevant patterns within or across game levels. In addition to IC potentially being important for gameplay, we 

suggest that the ability to rapidly scan and integrate multiple sources of information from different regions of 

the game interface is likely to promote successful play. Because ANT orienting scores reflect abilities to shift 

attention, higher orienting scores may predict higher game achievement because the students will be able to scan 

and integrate information more rapidly. 

 

 

Background: Gameplay-Based Individual Differences 

 

In addition to the relationship between our primary IC measure and gameplay, we expect that student gameplay 

strategies will impact game performance and learning. In a study with self-explanation in an educational game, 

Hsu, Tsai, and Wang (2012) divided students into high and low engagement groups
§
 based on the ratio of 

correct to incorrect (or “I don’t know”) responses to self-explanation prompts. The authors found that high 

engagement students scored significantly higher than low engagement students on their retention test. In this 

case, patterns of student behavior during self-explanation questions are interpreted to reflect a particular 

underlying state of the learner. Although an individual difference measure like this requires further validation to 

gain broader acceptance, we believe that games and in-game questioning provide a wealth of potential measures 

of student behavior that may reflect both strategies and other underlying states and traits of the learner. 

 

In addition to the ANT, the second individual difference measure we include in the present study is how many 

actions students perform per trial during gameplay. Actions here are changes to the timeline (e.g., adding or 

removing a force command). This measure may have some relationship to students’ trial-and-error behavior (as 

students who perform very few actions before each time they press launch to view the results of their actions are 

likely to be viewing the results to attempt to guide each move). Moreover, there may be certain parallels 

between a measure like this and measures of “gaming-the-system” that have been used to detect when students 

are attempting to avoid effort in intelligent tutoring systems (see Adams et al (2014); Baker, Corbett, Roll, & 

Koedinger, 2008). 

 

 

                                                           
§
 Generally, we advocate that researchers avoid dichotomizing a continuous variable. See Rucker, McShane, & 

Preacher (2015). 



167 
 

IJEMST (International Journal of Education in Mathematics, Science and Technology) 

 
Figure 2. After the introductory dialog in a warp mission, students encounter the critical navigation challenge 

component of the warp mission. 

 

 

 

  
Figure 3. After succeeding in the navigation challenge in a warp mission, students encounter the explanation 

phase of the warp mission. In the full self-explanation condition, the first of the three questions asks the student 

to articulate the solution to the navigation challenge in a concrete manner (top), the second question asks the 

student to characterize the solution with a more abstract/generalizable relationship (bottom left), and the third 

question asks the student to articulate an even further abstracted a rule of thumb (bottom right). 
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Rationale for the Present Study on Self-Explanation Prompts 

 

Adams and Clark (2014) examined an early prototype of the explanation functionality in The Fuzzy Chronicles 

using three conditions. Students in the self-explanation condition chose explanations before testing solutions, 

after incorrect solutions, and upon successfully completing stages (e.g., when asked why they needed to apply 

an impulse at the beginning of a level, students needed to choose “according to Newton’s 1st law the ship will 

not move unless an unbalanced force acts upon it”). Students in the explanatory feedback condition received tips 

instead of explanation prompts. Finally, students in the control condition received feedback only about whether 

or not they succeeded on the level. 

 

Though there were no overall differences between conditions, participants in the control group performed 

significantly better on Newton’s second law questions compared to the self-explanation group. This was most 

likely due to students in the control group completing more levels as well as reaching levels that included more 

advanced concepts, but analyses were not presented that included level completions as a predictor/covariate to 

explicitly evaluate the relationship between level completions and learning outcomes. This highlights the 

importance of analyses that incorporate gameplay variables (such as level completions) into analyses of learning 

outcomes. Instructional techniques such as self-explanation prompts may affect gameplay and may affect 

learning indirectly through gameplay. The present study analyzes such relationships in greater depth. The study 

by Adams and Clark (2014) also suggested two major ways to improve upon the level design and self-

explanation functionality embedded in The Fuzzy Chronicles.  

 

Adams and Clark (2014) first suggest that students struggled with the level designs included in their study. The 

sequence of game levels appeared to build difficult concepts too quickly for the middle school students, and 

many levels introduced game entities (e.g., asteroids or shields) that were not directly relevant for learning and, 

thus, increased extraneous processing. Adding the processing demands of self-explanation to already difficult 

level designs may have occupied resources that might have otherwise supported generative processing. The 

processing demands of the initial level designs may have also disrupted students’ experience of flow 

(Csikszentmihalyi, 1991) while gaming. During a state of flow participants are completely absorbed in an 

activity, which can be defined by characteristics such as concentration, time distortion, and sense of control 

(Kiili, 2005). To address these issues, game levels were simplified to help students focus on the key concepts 

and on related game mechanics. 

 

The Adams and Clark (2014) study also suggests that the explanation functionality discouraged students from 

separating levels into smaller chunks to manage cognitive demands. Students often chose to build, test, and 

refine their solutions for only the initial section of a path before adding actions for subsequent sections of the 

path. The explanation functionality discouraged this strategy because questions were posed each time a student 

ran the simulation to view the results of an interim solution (adding an additional cost to repeated attempts). 

Thus it became apparent that the explanation functionality might better be placed after a student had identified a 

working solution rather than disrupting the solution process. 

 

Beyond allowing students to manage cognitive demands through solving levels in smaller chunks, placing 

explanation functionality after students identify working solutions has other potential benefits. Research with 

cognitive tutors has shown that students will be more likely to engage in minimal processing and “game the 

system” if they perceive the tutor to be unhelpful (Baker et al., 2008). Postponing self-explanation until after a 

correct solution is likely to decrease perceiving the self-explanation functionality as unhelpful (as it will no 

longer interfere with level solutions). Perhaps most critically, postponing self-explanation also focuses students 

on the correct solution, which may be necessary for effective self-explanation (see Moreno and Mayer, 2005). 

These lessons from Adams and Clark (2014) underscore the challenges in redesigning and applying the findings 

of research from one learning context to another, particularly to contexts as rich as digital games. We adopted 

the following prescriptions in reprogramming explanation functionality in The Fuzzy Chronicles.  

 

 First, explanation activities should occur after students correctly complete the level that they will be 

explaining.  

 Second, the explanation functionality should be tied more closely to events in specific level segments so 

that (a) the students can more easily connect the explanations to the gameplay and (b) the students will be 

more likely to view the explanations as relevant and useful. 

 Third, explanation activities and the game-play context in which they occur should be changed slightly each 

time they are encountered for a given physics relationship to incentivize understanding rather than simple 

memorization.  

 Fourth, the explanation functionality should feel more a part of dialog with the game characters.  
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These four recommendations for The Fuzzy Chronicles were achieved by the following concrete changes to the 

game. First, we moved the explanation functionality into a new type of game level, which we call “warp 

missions.” A trial in a warp level begins with some dialog where a game character asks the student for help. 

Warp levels then present a basic navigation challenge about the focal physics relationship, similar to the 

navigation challenge in a basic level (Figure 2). Students first need to solve the navigation challenge, and the 

warp level tracks how many attempts the student makes before solving it. In the full self-explanation condition, 

the student then encounters three explanation questions. The first question is very concrete and closely tied to 

the navigation challenge the student has just completed, the second question abstracts the solution to a slightly 

more generalizable form, and the third question frames the physics relationship in the most generalizable form 

(Figure 3). After selecting an explanation for each question (correct or incorrect), the game character provides 

feedback about the explanation. If the explanation was correct, the game character provides additional 

information, and the dialog moves to the next phase. If the explanation was not correct, the game character asks 

the student to reconsider the explanation. 

 

After completing each trial of the warp mission, the game calculates a score for the student for that trial based 

on the number of attempts required in the navigation challenge and the number of attempts for each explanation 

question. The game computes an overall score for that warp mission based on the scores on the most recent 

trials for that mission for that student. Students need to earn a mission score above a certain threshold to unlock 

levels beyond the warp mission. If the student wishes or needs to play the warp mission again, the warp mission 

randomly selects a slightly new configuration of the navigation challenge and explanation answers so that 

students are encouraged to focus on the underlying concepts rather than merely applying a solution that was 

memorized on previous trials. 

 

 
Figure 4. In the explanatory feedback condition, students are simply provided with the rule abstracting the 

physics relationship. This contains the same information from the self-explanation conditions (the third question 

of the full condition / the question from the shortened condition). 

 

 

Comparison Conditions for the Current Study 

 

The current study was structured to include a full self-explanation condition, a partial self-explanation condition, 

and an explanatory feedback condition. In the partial self-explanation condition, the explanation phase was 

abbreviated to include only the third self-explanation question focusing on the most generalizable statement of 

the physics relationship (Figure 3). In the explanatory feedback condition, the generalizable rule about the 

physics relationship is simply provided to the student (Figure 4). The scoring mechanisms for trials were 

accordingly adjusted such that the partial explanation condition was weighted evenly across navigation and 

explanation while the explanatory feedback condition score was based solely on the navigation phase. Because 

preliminary analyses revealed that the partial and full self-explanation conditions had similar effects on 

gameplay and learning and had similar relationships with individual difference variables, we collapsed across 
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the self-explanation conditions to simply compare self-explanation to explanatory feedback. We return to 

discuss the lack of differences between the full and partial self-explanation conditions in the general discussion. 

 

 

Research Questions and Hypotheses for the Current Study 

 

The current study compares embedded self-explanation to embedded explanatory feedback in an educational 

game. Though the study by Moreno and Mayer (2005) suggested that self-explanation will not be effective if 

interactivity is high, we expect that adopting a selected self-explanation method (like Johnson and Mayer, 2010) 

along with ensuring that students engage in self-explanation only after correctly completing a level will lead to 

an advantage for self-explanation over explanatory feedback. 

 

 Hypothesis 1. Students in the self-explanation condition will have better learning outcomes than 

students in the explanatory feedback condition. 

 

Because our game design allows students to progress freely through missions and all students are limited to a 

fixed number of days of play time, this will inevitably lead students to encounter different amounts of game 

content. Moreover, because new concepts are introduced throughout the level progression, students who 

complete more levels will actually encounter concepts that other students may never reach. Given these 

properties of our intervention, we formed the following two hypotheses. 

 

 Hypothesis 2. Students who have higher pre-test scores will complete more levels. 

 Hypothesis 3. Students who complete more levels will have higher post-test scores. 

 

In addition to our interest in the effects of explanation functionality, we investigate how individual differences 

in the number of actions per trial
**

 students take during gameplay affect learning and game play outcomes. As 

mentioned, we believe that students’ gameplay behavior – which may be influenced by strategies, motivation, 

and other factors – will impact game and learning outcomes. Notably, the number of actions produced per trial 

is most likely to reflect prior knowledge. A player who is highly knowledgeable may produce more actions in a 

shorter time because she is aware of the correct solution. This relationship is not guaranteed, however, and 

player strategies may not track with intuitions. We investigate this metric in detail below (and discuss possible 

interpretations in the analyses and discussion). We propose that actions per trial will influence level 

completions, but will not be directly related to learning outcomes. 

 

 Hypothesis 4. Students who produce more actions per trial in standard levels of the game will complete 

more levels in the game. 

 

In addition to our interest in the effects of explanation functionality, we investigate how students’ attentional 

control abilities impact gameplay, game outcomes, and learning outcomes. To measure students’ abilities to 

direct attention, we included the child-friendly Attention Network Test (Rueda et al., 2004). As discussed above, 

we expect inhibitory control (measured in the ANT) may be relevant for learning science, gameplay, and 

perhaps learning from self-explanation. There are several possibilities for how attentional control might 

influence gameplay or learning from self-explanation. Thus, rather than form specific hypotheses, we put 

forward the following general hypothesis. 

 

 Hypothesis 5. The relationships between ANT scores, gameplay, and learning will differ between the 

conditions. 

 

 

Methods 

 
Subjects 

 

170 students from a middle school in the Southeastern United States participated in this study. The school 

served a racially diverse, primarily lower middle class population (71% of students qualified for free or reduced 

                                                           
**

 Notably, we include only actions per trial taken on incorrect trials because we wanted to determine how 

students moved toward a correct solution. This also avoids trials in which students simply knew the solution and 

immediately implemented it. 
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lunch). 47 students in our sample were enrolled in an English Language Learning (ELL) program. 1 student was 

removed from the study because he created two accounts and began playing the game over from the beginning 

during the study. Data were not analyzed from students (N = 49) who failed to complete one or more measures 

due primarily to absences. Additionally, data were not analyzed from students who failed to complete more than 

4 levels of the game (N = 25) because our conditions were identical before the 4
th

 level. This left 96 students’ 

data for analysis (54 males and 42 females). 

 

 

The Fuzzy Chronicles Game Design 

 

Game design. The game controls and game play mechanics are described in the introduction, above. The game 

contained 3 types of levels: standard levels, warp levels, and boss levels. Students first played 3-4 standard 

levels that gave the student a chance to play and explore a physics relationship (e.g., between the amount of 

force applied and the magnitude of a change in velocity). After the standard levels, students entered a warp level 

(discussed in depth above). Students then entered one or more challenge levels (or “boss levels”) where they 

needed to apply the relationships in a more challenging combination. After completing the boss levels, the game 

repeats the full cycle again with another concept. The game contained three core cycles with extra cycles to 

challenge students who completed quickly. 

 

Game conditions. There were three game conditions: explanatory feedback, partial self-explanation, and full 

self-explanation (described above). Classrooms were randomly assigned to conditions. As mentioned above, our 

analyses are collapsed into comparisons between the self-explanation and the explanatory feedback condition. 

 

 

 
Figure 5. Example “near-transfer” problem from the physics assessment administered before and after 

gameplay. 

 

Physics assessment. The assessment included 18 total questions. It is important to note that the pre-post 

questions focus explicitly on solving challenges that are near transfer from the navigation challenges (i.e., 

solving similar challenges in a non-game context) and not on restating or explicitly articulating the generalizable 

relationships that are the focus of the explanation functionality. More specifically, the test questions do not 

focus on rote memorization or restatement of the explanation content. Instead, the relationship of the 

explanation functionality to the test questions is indirect in the sense that focusing on deeper systemic 

understanding during explanation phases should support more effective solutions to test questions. Questions 

were presented in a paper packet with one question and a set of answers per page. The first 6 questions were 

“near-transfer” items that included graphical representations of objects, forces, and a “dot trace” representation 

to visualize paths and accelerations (see Figure 5). Each item had 4 possible answers that also had graphical 

representations (see Figure 5).  

 

The next 6 questions were text-based “far-transfer” items that presented a scenario and had 4 possible text-based 

responses. These questions presented scenarios and students had to predict the outcome or indicate how an 

effect could be achieved. The final 6 questions were text-based “explanation” items that were being piloted in 
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this study but are not analyzed further. These items included general principles as warrants in the answer 

choices (e.g., “The object continues moving at the same speed. The motion is unchanged because the forces are 

balanced.”). 

 

The Attention Network Test. We adapted the child-friendly version of the ANT (Rueda et al., 2004) for middle 

school classroom use. On each trial (after a 1500ms ITI), a fixation cross was presented (400 to 1600ms). One 

of four cue types was then presented (100ms): no cue, a central cue (appearing at the same location as fixation), 

a double cue (appearing in both possible target locations), or a spatial cue (appearing at the upcoming target 

location). Cues (asterisks) were about the same area as the target (1.7˚). After a 400ms blank, the target (small 

fish) was presented either 1.9˚ above or below the prior fixation location. The target was presented either alone 

(neutral trials) or flanked by distractors (2 fish left and 2 fish right). Participants responded to the direction the 

central fish was facing (left or right). For left-facing targets, the ‘z’ key was the correct response. For right-

facing targets, the ‘?’ key was correct. On incongruent trials, distractors faced the opposite direction. On 

congruent trials, all fish faced the same direction.  

 

Feedback was provided as follows. For a correct response: “+10 pts.” For an incorrect response: “oops.” For a 

delayed response (>1700ms): “too slow.” After 4 practice trials that required a correct answer, participants 

completed 144 trials split into three 48-trial blocks with elective breaks between blocks up to 1 minute. Total 

points were visible during breaks. Three “network scores” were calculated from the results of the ANT that 

measure the contribution of three distinct forms of attentional control – though interactions have been observed 

by several groups (e.g., Callejas, Lupianez, Funes, & Tudela, 2005; Fan et al., 2002). First, the executive score 

was calculated for each student as the mean reaction time (RT) for all incongruent trials minus the mean RT for 

all congruent trials. The executive score is thought to reflect inhibitory control abilities, with smaller scores 

suggesting smaller differences between distracting and non-distracting trials (or greater inhibitory control). 

 

Second, the orienting score was calculated as the mean RT for central cue trials minus the mean RT for spatial 

cue trials. The orienting score is thought to index students’ abilities to use spatial information to aid attentional 

selection. An increase in the orienting score means that students are relatively faster at responding when a 

spatial cue is presented as compared to when only a central ready signal is presented. We interpret larger 

orienting scores to reflect a greater benefit of using spatial cues to select information. Finally, the alerting score 

was calculated as the mean RT for no cue trials minus the mean RT for double cue trials. The alerting score may 

reflect abilities to sustain readiness to attend to information over a variable interval (from fixation) as compared 

to when given a clear short-term alerting cue. Students have to wait only a short fixed interval for the target after 

the alerting. With no alerting cue, the onset of the target is ambiguous and at a longer interval from fixation. We 

interpret larger alerting scores to reflect a greater dependence on temporal cues. 

 

Motivation questionnaire. The questionnaire included 4 Likert scale items with responses from 1 to 5. 

Responses were labeled as: “Strongly Agree,” “Agree,” “Neutral,” “Disagree,” and “Strongly Disagree.” The 

items included were as follows:  

 

1. I liked playing this game. 

2. This game was difficult for me to play. 

3. I worked hard to understand how to play the game and complete missions. 

4. I would like to play this game, or more games like it, again in the future. 

 

 

Analyses 

 

Removing ELL students. Given an unequal distribution across the three game conditions (with only 1 ELL 

student in the explanatory feedback condition), differences in game levels and pre-test scores, and potentially 

different relationships with individual difference measures (which may reflect differences in reading ability), we 

chose to analyze data from non-ELL students only (N=85).  

 

ANOVA analysis of the ANT. Data from the Attention Network Test were analyzed in an initial ANOVA (see 

Fan et al., 2002; Rueda et al., 2004). These results are presented in an abbreviated form as they are not of 

interest to most readers. Analyses of reaction times showed a significant main effect of cue type (no cue > 

central > double > spatial), a significant main effect of compatibility (incompatible > compatible > neutral), and 

a significant interaction between these factors. Analyses of accuracy showed a significant main effect of 

compatibility only (compatible > neutral > incompatible). ANT network scores and reaction times from neutral 

trials (with no distractors and no cues) were used as predictors in the models below. 
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Scoring the motivation questionnaire. To analyze motivation questionnaire data, scores were first reverse coded 

for ease of interpretation (1=Strongly Disagree, 5=Strongly Agree). Preliminary factor analysis confirmed our 

expectation that two items: item 1 “I liked playing this game” and item 4 “I would like to play this game, or 

more games like it, again in the future” assessed a common “interest” factor (though the effort item also loaded 

on this factor). Reliability analysis for the two interest items was very high, α = .84. The two items were 

averaged to form a single “interest” rating used in analyses below. 

 

Regression, moderation, and mediation analyses. Regression analyses below present unstandardized 

coefficients for slopes as using the symbol b and standardized coefficients as . Other than dummy-coded 

variables, predictors were mean-centered in regression analyses to permit meaningful interpretations of 

regression coefficients (Hayes, 2013). All mediation analyses below were conducted using the PROCESS 

macros (Hayes, 2013). Unlike other approaches, the bias-corrected bootstrap approach to mediation analyses 

implemented in the PROCESS macros does not suffer from being underpowered or from normality constraints 

(for discussions of these issues see Hayes, 2013; Preacher & Hayes, 2008).  

 

In certain cases below, the Johnson-Neyman technique was applied to examine regions of significance for a 

particular interaction. The Johnson-Neyman (JN) technique allows one to make a non-arbitrary choice for 

identifying regions of a given variable within which another effect is significant (see Hayes, 2013). The JN 

technique derives the values of a continuous moderator (e.g., ANT executive scores) for which a t value, 

calculated from the ratio of a conditional effect to its standard error (e.g., the ratio of the effect of game 

condition on level completions to the standard error of this effect), is exactly equal to the critical value (in our 

case α = .05).  

 

Individual differences analyses. In the present experiment, we did not attempt to construct a detailed a priori 

model of how components of the ANT would affect performance across our game conditions. Although our 

analyses of individual differences are exploratory, we believe, as suggested by several authors (e.g., Cronbach 

1957; Hayes, 2013), there can be great value in a degree of exploration within the model-building process. 

For individual differences analyses, none of the mean values of predictors differed significantly between the 

game conditions. In regression analyses, all VIF values were generally below 2 (excepting moderation analyses 

and where mentioned). Many of the results, however, must be treated with caution given that level completion 

counts were not normally distributed and given the fairly small sample size for certain analyses. 

 

Extreme univariate outliers for ANT neutral reaction times (N=2) and executive scores (N=1) were removed. 

The final sample contained 79 students (40 male and 39 female), with an equivalent distribution of males and 

females across conditions, χ
2
(1) = 1.07, p = .30. The effects for learning gains observed in the initial analyses 

(with the full sample) remained significant for the restricted sample in the individual differences analyses. For 

the individual differences analyses, we also collapsed near- and far-transfer physics measures into a single pre-

test and post-test measure.  

 

 

Results and Discussion 
 

Learning Gains between Game Conditions 

 

A repeated-measures ANOVA was conducted with test administration (pre- vs. post-test) as a within-subjects 

variable and game condition (explanatory feedback vs. self-explanation games) as a between-subjects variable. 

Our near-transfer and far-transfer questions were treated as separate measures. The multivariate test showed a 

significant main effect of test administration, λ = .676, F(2, 82) = 19.653, p < .0001, η
2
= .324, but the 

multivariate effect of game condition was not significant, λ = .952, F(2, 82) = 2.074, p = .132, η
2 

= .048, and 

neither was interaction between game condition and test administration, λ = .978, F(2, 82) = .939, p = .395, η
2
= 

.022. Subsequent univariate tests showed that the effect of test administration was significant only for near-

transfer questions, F(1, 83) = 38.440, p < .0001, η
2
= .317, with students performing better on near-transfer post-

test questions (M = 53.73%, SD = 23.34) than on pre-test questions (M = 35.29%, SD = 20.48). The effect for 

far-transfer questions did not approach significance, F(1, 83) = 2.250, p = .137, η
2
= .026. Finally, none of the 

univariate effects of game condition or interactions between test administration and game condition approached 

significance.  

 

Overall, students across conditions demonstrated significant pre-post learning gains. Univariate analyses by 

question type indicated that only gains on near-transfer questions were significant, but that these gains were 
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fairly robust. Comparisons between conditions suggested that students in the self-explanation game conditions 

did not outperform students in the explanatory feedback game.  

 

 

Motivation Variables between Game Conditions 

 

For the explanatory feedback condition, motivation survey ratings were as follows (means with SDs in 

parenthesis): interest: 2.79 (0.96), effort: 2.12 (.91), difficulty: 2.82 (.87). For the self-explanation condition, 

ratings were as follows: interest: 2.81 (1.01), effort: 2.06 (.84), difficulty: 2.88 (1.09). Independent samples t-

tests showed no significant differences between the conditions for any rating
††

. 

 

 

Game Play Variables between Explanation Conditions 

 

For the explanatory feedback condition, students completed a total of 14.21 (SD=3.68) levels on average and 

produced an average of .156 (SD=.082) actions per trial. For the self-explanation condition, students completed 

a total of 13.25 (SD=3.92) levels on average and produced an average of .162 (SD=.081) actions per trial. 

Independent samples t-tests showed no significant differences between the conditions for either measure. We 

chose to look at these specific aspects of gameplay in the subsequent analyses on individual differences because 

(a) level completions are a good index of the total amount of content students encountered and overall success 

with the game and (b) and average actions per trial give a simple measure of the size of the planned chunks 

students were testing on each trial.  

 

 

Knowledge Treatment Effect Adjusted for Levels Completed 

 

Regression models were constructed to analyze differences in learning outcomes between game conditions 

while controlling for pre-test performance and the highest level students completed. Separate models were 

constructed for near- and far-transfer questions. Game condition was included as a dummy coded predictor 

(explanatory feedback game = 0, self-explanation game = 1). For each model, moderation analyses indicated 

that the predictors had similar effects on post-test scores across game conditions. For the model of near-transfer 

question post-test performance, game condition was a significant predictor of post-test scores, with students 

scoring higher in the self-explanation condition than in the explanatory feedback condition, b = 11.129, SEb = 

4.518, p = .016, 95% CI (2.141, 20.118). For the model of far-transfer question post-test performance, game 

condition was not a significant predictor, b = -.465, SEb = 5.149, p = .928, 95% CI (-10.711, 9.780). Higher pre-

test scores and greater levels completed both predicted significantly higher near- and far-transfer post-test 

scores, but the relevant statistics are omitted for brevity. The overall models were significant for near-transfer 

post-test scores, F(3, 84) = 10.253, p < .0001, R
2
 = .275, and far-transfer post-test scores, F(3, 84) = 6.471, p < 

.001, R
2
 = .193. 

 

Students were exposed to different amounts of learning material depending upon their success with the game. 

Though analyses of game play variables suggested that there were no overall differences in the number of levels 

completed between game conditions, game conditions may have affected students with different abilities 

differently. That is, even without an overall difference in levels completed, condition differences may exist for 

particular sub-groups that may mask overall differences in learning outcomes between conditions. The results 

obtained suggest after controlling for differences in level completions, a small, but significant advantage for the 

self-explanation game was observed specifically for near-transfer items.  

 

 

Analysis of Relationships between the ANT, Gameplay, and Learning Outcomes 

 

Regression analysis with physics pre-test scores. Analyses were first conducted with collapsed physics pre-test 

score (averaged across near- and far-transfer items) as a dependent variable. ANT network scores (executive, 

orienting, and alerting) and ANT neutral RT (reaction time) were included as predictors in each full model. To 

ensure the equivalence of predictors across self-explanation and explanatory feedback groups, moderation 

analyses were conducted with each of the relevant predictors. None of the interaction terms predicted significant 

variance in pre-test scores. Additionally, game condition was not a significant predictor of pre-test performance, 

                                                           
††

 After controlling for pre-test scores and/or highest level completed there were also no significant differences 

in motivation ratings between conditions. 
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b = -.852, SEb = 3.856, p = .826, 95% CI (-8.531, 6.828), so the model of pre-test scores was collapsed across 

conditions. 

 

Regression analyses showed that none of the ANT network scores or neutral RT predicted significant variance 

in pre-test scores. Additionally, the overall model including all predictors did not reach significance, F(4, 77) = 

.548, p = .701, R
2
 = .028. The results suggest that none of the predictors of interest accounted for significant 

variance in pre-test scores. These results are superficially unimportant to the research question, but analyzing 

relationships with pre-test scores is meaningful for (1) relating findings to the broader literature on academic 

achievement and (2) interpreting further relationships between abilities, game play, and learning within the same 

study.  

 

Regression analysis for mean actions per trial. ANT network scores, ANT neutral RT, physics pre-test score, 

and game condition were included as predictors. Initially interaction terms were included. Because none of the 

interaction terms from initial moderation analyses predicted significant variance in pre-test scores, these terms 

were removed. Additionally, game condition was not a significant predictor of mean actions per trial, b = -.125, 

SEb = .785, p = .875, 95% CI (-1.708, 1.458), so the model was collapsed across conditions. Regression analyses 

showed a significant effect of physics pre-test score, with higher pre-test scores predicting more actions per trial, 

b = .096, SEb = .023, p < .001, 95% CI (.049, .142). None of the other predictors explained significant variance 

in the number of actions students took per trial. The overall model was significant, F(5, 76) = 3.387, p = .008, R
2
 

= .182. The above analysis shows that only higher combined physics pre-test scores predicted more actions per 

trial across game types. Generally, the results suggest that our actions per trial measure are not directed by the 

cognitive abilities we measured in the ANT. The relationship with pre-test scores suggests that students with 

more prior knowledge tend to make more actions per trial.  

 

Regression analysis with highest level completed. ANT network scores, ANT neutral RT, physics pre-test score, 

actions per trial, and game condition were included as predictors. Initially, interaction terms were included. 

Because none of the interaction terms from initial moderation analyses predicted significant variance in pre-test 

scores, these terms were removed. Additionally, game condition was not a significant predictor of highest level 

completed, b = -1.022, SEb = .705, p = .152, 95% CI (-2.427, .383), so the model was collapsed across 

conditions.  

 

Regression analyses showed a significant effect of average actions per trial, with more actions per trial 

predicting more level completions, b = .710, SEb = .103, p < .0001, 95% CI (.505, .915). None of the other 

predictors explained significant variance in the number levels students completed. The overall model was 

significant, F(6, 75) = 9.161, p < .0001, R
2
 = .423. The above analysis shows that of the predictors entered only 

the mean number of actions students completed per trial predicted more level completions across game types. 

These results were surprising as we expected a relationship between pre-test scores and level completions. We 

return to this point in the general discussion. 

 

Regression analysis with physics post-test scores. For predictors included in the full model, see Table 1. 

Moderation analyses showed a significant interaction between condition and ANT executive score, b = -.312, 

SEb = .123, p = .013, 95% CI (-.557, -.068). Analyses treating condition as a moderator showed that executive 

scores did not predict differences in post-test scores for the explanatory feedback game, b = .094, SEb = .086, p = 

.276, 95% CI (-.077, .266), but that lower executive scores predicted significantly higher post-test scores for the 

self-explanation game, b = -.218, SEb = .085, p = .013, 95% CI (-.388, -.048). The JN technique showed that 

students with ANT executive scores below 46.72ms were predicted to have higher post-test scores in the self-

explanation game (see Figure 6). A regression model including the above interaction term showed first that 

students who scored higher at pre-test scored higher at post-test (see Table 1). The overall model was 

significant, F(9, 72) = 6.508, p < .0001, R
2
 = .449. 
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Figure 6. Partial regression plots of the relationship between combined post-test score and ANT Executive Score 

for the explanatory feedback condition (top) and the self-explanation condition (bottom). The region of 

significance (in which performance was better for the self-explanation condition than for the explanatory 

feedback condition) is highlighted on the left of each plot. 

 

Pre-test scores were best predictors of post-test scores. Surprisingly, highest level completed did not predict 

post-test scores. We examine this further in mediation models below. Most interestingly, IC predicted higher 

post-test scores specifically for the self-explanation game. This finding suggests that students with better IC 

(lower ANT executive scores) were at an advantage in learning from the self-explanation game, but that IC had 

a minimal influence on learning in the explanatory feedback game. Using the JN technique, the results showed 
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that students with executive scores below 46.72ms (40% of the sample) had better overall learning outcomes for 

the self-explanation game. In terms of overall learning outcomes, this suggests that a certain threshold level of 

IC ability is necessary for students to benefit from our self-explanation condition. 

 

Table 1. Regression analyses for dependent variable: mean combined post-test score. 

Predictor b (SEb)  p 95% CI 

Physics Pre-Test Score .490 (.126) .389 *** (.238, .743) 

ANT Executive Score .094 (.086) .144 .276 (-.077, .266) 

ANT Orienting Score .018 (.048) .034 .709 (-.078, .114) 

ANT Alerting Score .005 (.057) .008 .933 (-.109, .119) 

ANT Neutral RT .007 (.027) .025 .795 (-.047, .061) 

Actions per trial 1.261 (.702) .223 .077 (-.138, 2.660) 

Highest Level Completed .866 (.620) .163 .167 (-.370, 2.102) 

Condition 5.613 (3.785) .133 .142 (-1.933, 13.159) 

Condition X ANT Executive -.312 (.123) -.326 .013* (-.557, -.068) 

* p < .05, *** p < .001. b denotes the unstandardized regression slope coefficient and  denotes the standardized 

coefficient. 

 

 

Exploratory Analyses 

 

The analyses above investigate (1) the effects of individual differences (cognitive abilities and gameplay) on our 

primary outcome variables and (2) moderation effects of how condition affects each of these relationships 

between primary outcome variables and individual differences. As suggested in the introduction, however, 

relationships between variables may be mediated such that indirect effects, through influencing another variable, 

are significant. Additionally, especially when variables are highly correlated, suppression effects may occur in 

which a significant relationship is masked. We feel the need to highlight the exploratory nature of these analyses 

because these analyses do not directly follow from our hypotheses, but instead are meant to elucidate findings 

above. Further analyses might lead several of these results to be combined into a structural equation model that 

describes the relationships between the various variables more completely. These analyses are meant only to 

explore certain possible relationships within the OLS path analysis framework implemented in the PROCESS 

macros.  

 

Suppression of highest level completed effect on physics post-test scores. Because mean actions per trial were a 

highly significant predictor of the highest level students completed, we were interested in whether the actions 

per trial variable may be suppressing the effect of highest level completed on physics post-test scores. The 

regression model for post-test scores above (including the interaction term) was rerun without the actions per 

trial predictor. This analysis revealed a significant effect of pre-test score and a significant interaction between 

ANT executive score and game condition, as outlined above. Additionally, the effect of highest level completed 

was significant, with higher level completions predicting higher post-test scores, b = 1.548, SEb = .498, p = .003, 

95% CI (.556, 2.539). Notably, because these variables suppress one another, the effect of actions per trial is 

also significant if highest level completed is removed from the model.  

 

Although either predictor can be used to explain variance in post-test scores, we believe that the relationship 

between highest level completed and post-test score is likely more meaningful than the relationship between 

actions per trial and post-test score. Because the effect of level completions on post-test scores is significant 

even when controlling for pre-test score, this suggests that the effect is unlikely merely to reflect prior 

knowledge. One possibility is that completing more levels and producing more actions per trial reflect how 

easily students can apply abstract principles to the game (and perhaps achieve better learning from game 

content). Another possibility is that both mean actions per trial and highest level completed reflect students’ 

fluency with using the game interface and this fluency frees up cognitive resources for students to devote to 

learning. 

 

The effect of question response accuracy in the self-explanation game. In the self-explanation condition, self-

explanation was implemented by students responding to questions in warp missions. Given earlier findings, such 

as that by Moreno and Mayer (2005), we wanted to investigate the effect of students’ responses to these 

questions more carefully. First, a regression model was constructed with self-explanation response accuracy as 

the dependent variable. ANT network scores, ANT neutral RT, and physics pre-test score were entered as 

predictors. None of the predictors were significant. The effect of physics pre-test scores was marginal, b = .002, 

SEb = .001, p = .065, 95% CI (.000, .004).  
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Second, a regression model for physics post-test scores was estimated for the self-explanation condition alone. 

The model included pre-test scores, ANT network scores, ANT neutral RT, highest level completed, mean 

actions per trial, and mean self-explanation response accuracy. The model showed significant effects of pre-test 

score and ANT executive score as expected from the earlier results. Additionally, there was a significant effect 

of self-explanation response accuracy, b = 65.180, SEb = 20.813, p = .003, 95% CI (23.148, 107.213). Given the 

suppression effect noted above and observed VIF values greater than 2, we also conducted the analysis without 

including mean actions per trial. Interestingly, the effect of self-explanation response accuracy remained 

significant, b = 69.416, SEb = 19.775, p = .001, 95% CI (29.509, 109.322), but the effect of highest level 

completed did not reach significance, b = 1.037, SEb = .609, p = .096, 95% CI (29.509, 109.322). Highest level 

completed and self-explanation response accuracy were significantly correlated, r = .413, p = .003.  

 

Finally, a parallel multiple mediation model was constructed using OLS path analysis and with combined 

physics post-test scores as a dependent variable. The model included a direct path between physics pre-test score 

and post-test score and indirect paths that connected pre-test score to each potential mediator (mean actions per 

trial, highest level completed, and mean self-explanation response accuracy) and then to post-test score (see 

Figure 7). The analysis controlled for the effects of other measured variables (ANT network scores) and was 

based on 10,000 bootstrap samples.  

 

 
Figure 7. Visual representation of the parallel multiple mediation model evaluated for potential mediators 

between combined physics pre-test score and post-test score. 

 

The direct effect of physics pre-test score on post-test scores (c’ in Figure 7) remained significant after 

accounting for the indirect paths through our potential mediators (c’ = .330, p = .036). Additionally, the analysis 

showed that the bias-corrected bootstrap confidence intervals for the specific indirect effect of mean actions per 

trial (a1*b1) as a mediator contained zero (-.119, .300) and so did the confidence interval for the specific indirect 

effect (a2*b2) of highest level completed (-.023, .198). The confidence interval for the specific indirect effect of 

self-explanation response accuracy (a3*b3), however, did not contain zero (.014, .311), suggesting a partial 

mediation effect. The confidence interval for the total indirect effect on self-explanation questions also did not 

contain zero (.026, .462). Finally, as is clear from earlier analyses, the total effect of pre-test score (i.e., the 

effect without including mediators model) was significant (c = .560, p < .001). Given the suppression effects 

observed above, these analyses were repeated with just one of the mean actions per trial or highest level 

completed variables and the results were unchanged.  

 

Altogether, the results suggest an important role for correct responses to self-explanation questions in driving 

learning. Pre-test performance was marginally relevant for how well students performed on in-game self-

explanation questions and was relevant for post-test performance. Additionally, (a) accuracy of self-explanation 

responses was a significant predictor of post-test scores after controlling for pre-test scores and (b) the indirect 

effect of pre-test knowledge on responses to in-game self-explanation questions accounted for how well students 

performed on post-test questions. We return to discuss the role of self-explanation responses further in the 

general discussion. 

 

The effect of inhibitory control for the self-explanation game. A parallel multiple mediation model was 

constructed using OLS path analysis with combined physics post-test scores as a dependent variable. The model 

included a direct path between ANT executive score and post-test score and indirect paths that connected ANT 

executive score to each potential mediator (mean actions per trial, highest level completed, pre-test score, and 
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self-explanation response accuracy) and then to post-test score (see Figure 8). The analysis controlled for the 

effects of other measured variables and was based on 10,000 bootstrap samples. 

 

 
Figure 8. Visual representation of the parallel multiple mediation model evaluated for potential mediators 

between ANT executive score and combined physics post-test score. 

 

The direct effect remained significant (c’ = -.172, p = .040) and the total effect was also significant (c = -.298, p 

= .005). Each of the bias-corrected bootstrap confidence intervals for the specific indirect effects contained zero: 

for mean actions per trial (a1*b1): (-.133, .045), highest level completed (a1*b1): (-.146, .020), pre-test score 

(a3*b3): (-.164, .017), and self-explanation response accuracy (a4*b4): (-.206, .020). The confidence interval for 

the total indirect effect on self-explanation questions also contained zero (-.333, .013). Given the suppression 

effects observed above, these analyses were repeated with just one of the mean actions per trial or highest level 

completed variables and the results were unchanged. 

 

The above analyses are important first because they indicate that the direct effect of IC on learning outcomes in 

the self-explanation game cannot be accounted for by indirect effects through mean actions per trial, level 

completions, self-explanation response accuracy, or pre-test scores. Altogether, we interpret these and prior 

findings to suggest that IC directly affects how students learn from the self-explanation game but does not affect 

the gameplay variables we analyzed.  

 

 

Regression Analysis with Motivation Ratings 

 

The same predictors were included as in the analyses for highest level completed above. Highest level 

completed was also included as a predictor. Separate analyses were conducted for each motivation rating. For 

interest ratings, moderation analyses showed no significant differences in the effects of these predictors across 

conditions. Additionally, the effect of condition was not significant, b = .127, SEb = .222, p = .569, 95% CI (-

.316, .571), so this predictor was not included. Physics pre-test score was a significant predictor, with students 

that had higher initial physics assessment scores providing higher interest ratings, b = .021, SEb = .006, p = .002, 

95% CI (.008, .033). Students with higher level completions also provided significantly higher interest ratings, b 

= .062, SEb = .027, p = .024, 95% CI (.009, .116).  

 

For effort ratings, moderation analyses showed no significant differences in the effects of these predictors across 

conditions. Additionally, the effect of condition was not significant, b = -.096, SEb = .200, p = .633, 95% CI (-

.495, .303), so this predictor was not included. Physics pre-test score was the only significant predictor, with 

students that had higher initial physics assessment scores providing higher effort ratings, b = .016, SEb = .006, p 

= .010, 95% CI (.004, .028). Finally, for difficulty ratings, there were no significant moderation effects and none 

of the predictors were significant. Altogether, we found that students with higher pre-test scores had higher 

ratings of interest and effort. Additionally, students with more level completions provided higher interest 

ratings.  
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General Discussion 
 

Overview of Findings for Experimental Hypotheses 

 

Here we provide an overview of the findings relevant to each of our earlier experimental hypotheses. Some 

findings are discussed in greater detail following the overview. Although evaluating these hypotheses is 

valuable, we believe the most interesting findings are the results of analyses of individual differences discussed 

after this section. 

 

 Hypothesis 1 was not generally confirmed. Nevertheless, there was an advantage of self-explanation 

over explanatory feedback for near-transfer items after controlling for level completions.  

 Hypothesis 2 was not confirmed. Higher physics pre-test scores did not significantly predict more level 

completions. 

 Hypothesis 3 was partly confirmed. More level completions predicted higher physics post-test scores 

but only when a suppressive predictor (actions per trial) was removed. 

 Hypothesis 4 was confirmed. Students who made more actions per trial during standard gameplay 

completed more levels. 

 Hypothesis 5 was confirmed. The relationships between abilities, gameplay, and learning differed 

between the conditions. Most importantly, inhibitory control predicted learning from the self-

explanation game, but not from the explanatory feedback game. 

 

 

The Effects of Self-Explanation on Learning Outcomes 

 

Because we observed no differences between our full self-explanation and partial self-explanation conditions, 

we collapsed across the self-explanation conditions to examine differences between self-explanation and 

explanatory feedback overall. Though our full and partial self-explanation designs did not differ, others have 

observed differences based on different self-explanation designs (see O’Neil et al., 2014). One possible 

explanation is that our full self-explanation condition simply did not promote more reflection than did the partial 

condition. Alternatively, the benefits of prompted self-explanation may diminish with each question presented.  

 

There were also no overall differences in learning gains between the self-explanation and explanatory feedback 

conditions. Once we controlled for the total number of levels completed, however, students had better near-

transfer post-test scores in the self-explanation condition. Because new levels introduced new learning content 

in our study, this suggests that individual differences in students’ gameplay may have masked an overall 

condition difference. Generally, this result highlights the importance of considering student gameplay behavior 

and strategies when investigating learning from games. Our approach of identifying quantifiable metrics of play 

and examining regression models is certainly not the only useful approach – for example, qualitative 

classifications of play may reveal even deeper relationships with learning outcomes. Regardless, when 

conducting a study with traditional pre/post assessment we urge researchers not just to examine learning 

outcomes and play separately, but to investigate deeper connections between them.  

 

In addition to overall condition differences, we observed important results specifically for the self-explanation 

game. First, pre-test knowledge contributed marginally to accuracy in answering in-game questions. Second, 

accuracy in answering in-game questions was a significant predictor of post-test scores (and level completions 

were reduced to marginal significance). In line with the findings of Moreno and Mayer (2005), the present 

results suggest an important role for correct responses to self-explanation questions. The results might even be 

taken to suggest equal or greater importance for accurate responses to self-explanation questions than for level 

completions. Notably, however, progress on levels and accuracy on responses to in-game self-explanation 

questions were correlated and were thoroughly interwoven in our game, which makes this finding less 

straightforward. 

 

Finally, though significant variance was still attributable to a direct relationship between pre- and post-test 

scores, mediation analyses showed that the indirect relationship (from pre-test scores, to in-game question 

scores, to post-test scores) was significant, but other indirect effects (through level completions or actions per 

trial) were not. More specifically, how students applied their prior knowledge to answering in-game questions 

explained some of their improvement at post-test even after accounting for the direct effect of prior knowledge 
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on post-test scores. The results suggest, however, that the most notable indirect relationship between pre-test 

scores and post-test scores was through influencing students’ accuracy on in-game self-explanation questions. 

 

 

Relationships between the ANT, Self-Explanation, Gameplay, and Learning 

 

Lower executive scores (higher IC) predicted higher post-test scores for the self-explanation game, but there 

was no relationship between these variables for the explanatory feedback game. Mediation analyses suggested 

that there was no evidence that level completions, actions per trial, or accuracy in responding to self-explanation 

questions mediated the direct effect of IC on post-test scores. Finally, analyses of regions of significance using 

the Johnson-Neyman technique showed that students below a particular executive score (medium-to-high IC) 

had better post-test outcomes with the self-explanation game. Also, notably, there were no regions in the 

distribution of ANT executive scores (IC) for which students had better learning outcomes with the explanatory 

feedback game. The simplest interpretation of these findings is that though no students seem to benefit from our 

explanatory feedback manipulation over our self-explanation manipulation, students need to be above a certain 

threshold for IC abilities in order to take advantage of self-explanation.  

 

Specifically, we identify three potential benefits of self-explanation based on suggestions by Roy and Chi 

(2005) that may be moderated by IC. First, IC may be necessary for integrating information across gameplay 

episodes and for easily relating these episodes to self-explanation activities. Second, IC may help students 

engage in metacognition during self-explanation activities so that they actively identify and correct potentially 

incorrect hypotheses that were formed during gameplay. Third, students with better IC may actively maintain 

potentially relevant information from self-explanation activities in working memory to facilitate subsequent 

gameplay. As mentioned in the introduction, prior research suggests that self-explanation may promote 

metacognition and reflection (e.g., McNamara & Magliano, 2009), and students’ abilities to engage in 

metacognition and reflection may be connected to their inhibitory control abilities (Fernandez-Duque et al., 

2000; Flemming & Dolan, 2012). Thus, IC may be necessary to obtain certain benefits claimed for self-

explanation. 

 

It is possible that our findings with IC are broadly applicable to self-explanation (beyond just educational 

games). IC may have value for predicting who will benefit from self-explanation in any intervention because a 

certain level of inhibitory control ability may be necessary to engage in relevant metacognition and abstraction. 

An alternative possibility is that isolated measures of IC correlate with other aspects of executive function or 

even working memory (see Miyake et al., 2000), and these correlated variables are actually what is relevant for 

predicting success with self-explanation. One useful way to investigate these possibilities would be to conduct a 

non-game-based self-explanation study that compares structural equation models based on several measures of 

inhibitory control and of potential alternative explanatory constructs (e.g., working memory).  

 

Alternatively, it is possible that our findings are applicable only to self-explanation within games (or even 

within our particular game). Differences in IC may not be relevant to learning from the self-explanation process 

itself, but instead may be relevant to how self-explanation affects gameplay and thinking during gameplay. 

Gropen et al. (2011) suggest that IC may be relevant for students to suppress experiential interpretations of 

experiences in the sciences and for students to employ analytic and abstract explanations. Thus, self-explanation 

may provide conceptual scaffolds that can be used to reach a deeper understanding of gameplay, but this 

reflection may be applied successfully only if students have sufficient abilities for inhibitory control. Under this 

interpretation, IC may be especially relevant for self-explanation in games because it determines how well 

students can connect gameplay to self-explanation activities. This relationship could also contribute to why self-

explanation has shown inconsistent results in studies with educational games (Adams and Clark, 2014; Johnson 

and Mayer, 2010; Moreno and Mayer, 2005; O’Neil et al., 2014). 

 

 

Gameplay Metrics in the Fuzzy Chronicles  

 

The two gameplay metrics we adopted in this study were the mean number of levels a student completed and the 

mean number of actions a student produced per trial during gameplay. As we expected, greater numbers of 

actions per trial predicted greater level completions and greater level completions predicted higher post-test 

scores (after removing actions per trial from the analysis of post-test scores). Our metric of the number of 

actions produced per trial was highly correlated with the number of levels students completed. This may suggest 

that students who understood how to solve puzzles in the game placed more actions on each trial because they 
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were better able to predict how multiple actions would influence the ship’s motion. Placing more actions per 

trial may have, in turn, led students to complete levels more quickly.  

 

In addition to these expected findings, we observed certain unexpected results. We were surprised that pre-test 

scores did not predict level completions. This suggests that the differences in prior knowledge between students 

in our sample did not substantially contribute to how many levels they were able to complete. Interestingly, 

however, pre-test scores did predict the number of actions per trial that students produced. Given the 

relationship between pre-test scores and actions per trial and the relationship between actions per trial and level 

completions, one might expect that the number of actions per trial was masking (or mediating) the effect of pre-

test scores on level completions, but follow-up analyses suggested that this was not the case. The results might 

suggest that students with higher pre-test scores tended to test larger potential solution chunks at a time and 

perhaps chunks that were better grounded in prior knowledge. These students, however, may have also spent 

more time thinking between levels or reading text in levels that led to the absence of a relationship between pre-

test scores and level completions. Any proposal to explain these findings is merely speculative. The results 

suggest that gameplay metrics can provide additional insight into relationships with cognitive abilities and with 

learning outcomes. Developing a more complete picture of how these components relate to one another in future 

studies, however, may require more sophisticated game metrics, more subtle analyses of relationships between 

various gameplay metrics, and supplementing quantitative metrics with qualitative analyses of play. 

 

 

Limitations and Considerations 
 

Benefits and Difficulties of Using Motivation and Engagement Measures 

 

Our analyses of our measures of motivation generally suggest that higher prior knowledge leads to greater 

interest and perceived expenditure of effort. Completing more levels also led to higher levels of interest. This 

may reflect that as students complete more levels, they experience increases in self-efficacy that lead to greater 

interest in the game. Importantly, in the analyses above we collect motivation/engagement measures at the end 

of our study, treating our post-intervention measures of game motivation as outcomes of play. This is a common 

practice in educational games research, but bears further scrutiny. Given our measures were collected at the end 

of the study, it would be problematic to incorporate the measures as potential mediators mediation models, but 

incorporating the measures as predictors in regression models also raises obvious questions about causal 

relationships that complicate interpretation. An alternative approach is to measure motivation at the outset of a 

study (after a brief exposure to a game) using an instrument such as the questionnaire on current motivation that 

has been used to measure contextualized achievement motivation with non-game learning materials (Rheinberg, 

Vollmeyer, & Burns, 2001; Freund, Kuhn, & Hollig, 2011).  

 

Beyond the issue of when one collects measures, there is also an inherent complexity in interpreting 

relationships between motivation/engagement and other measured variables. This particular complexity is 

revealed through our finding that higher pre-test scores predict higher game interest ratings. First, it is worth 

noting that our ratings cannot differentiate between possible contributions of topic interest in physics, topic 

interest in video games generally, and situational interest in the specific gameplay experience (see Krapp, Hidi, 

& Renninger, 1992 for a discussion of situational and topic interest). Second, the relationship between interest 

and pre-test scores can have several interpretations. One interpretation of our observed interest-knowledge 

relationship is that pre-test scores reflect prior knowledge that allows students to make sense of game content 

and to interpret game experiences in a meaningful way. This interpretation relates to the idea that relevance is 

generally important for supporting motivation to learn (see Pintrich, 2003). Alternatively, our results may reflect 

a restricted segment of a wider inverted U shape relationship between game interest and prior knowledge (see 

Tobias, 1994 for a discussion) as our sample was not likely to include any students with high prior knowledge. 

 

Another alternative to the “relevance explanation,” above, is that pre-test scores may not have impacted 

students’ interest, but instead interest ratings merely reflect students’ estimates of their improvement on the 

post-test (and thus of how much they learned). Finally, it is possible that the causal direction of the relationship 

is reversed. Game interest/effort may reflect broader domain interest/effort; and students’ interest in the subject 

area might support greater effort on the pre-test. Despite the difficulties in measuring and analyzing 

relationships with motivation, this is an important direction for educational games research – especially 

considering the often-delivered, but seldom-investigated, claim that games are valuable learning tools because 

they support motivation and engagement. It is also worth noting that our measures of interest and other variables 

were not especially sophisticated in the present study and we generally urge researchers to adopt previously 

validated instruments to measure motivational constructs. 
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Spurious Relationships and the Problem with “Prior Knowledge” 

 

In individual differences analyses, it is always important to consider that a significant relationship with an 

outcome of interest can always reflect a spurious relationship in which another correlated but unmeasured 

variable is actually the causally-relevant predictor. Pre-test scores receive very little scrutiny in this regard. 

Many researchers are (and should be) interested in assessing students’ initial domain knowledge. Performance 

on a pre-test, however, reflects more than simply domain knowledge. Jonassen and Gabrowksi (1993) define 

prior knowledge as the “knowledge, skills, or ability that students bring to the learning process” (p. 417), but 

often pre-test scores are implicitly taken to reflect prior knowledge in the restricted sense of domain knowledge 

(for other issues relating to prior knowledge, see Dochy, Segers, & Buehl, 1999).  

 

Certainly some variance in a student’s score on an assessment will reflect domain knowledge, but students like 

those in our study have yet to receive relevant formal instruction. In such cases, we find it more reasonable to 

assume that better pre-test scores reflect students’ naïve intuitions (e.g., beliefs about the physical world, 

diSessa, 1993), generic strategies for making sense of problems, specific knowledge from other areas that 

informs their reasoning, and even individual differences in relevant cognitive and motivational variables. 

Furthermore, even for adults who may have been exposed to relevant formal instruction, pre-test scores may still 

reflect other individual differences such as spatial abilities. We urge researchers to include multiple individual 

difference measures along with pre-test scores to help isolate the contribution of domain knowledge and other 

abilities (that may support performance on a pre-test) to explaining treatment interactions.  

 

 

From Abilities to Theoretically-Grounded Aptitude Complexes 

 

In the present study, our discussions of individual differences have focused on constructs we call abilities. We 

name inhibitory control and orienting as abilities, and one could consider many other individual differences in 

cognition to be abilities as long as they have some predictive value for learning or performance, but there are 

two important points to consider when investigating cognitive abilities. The first consideration is the established 

theoretical basis for the particular ability construct and the second is the complexity of the contextualized effects 

of abilities within real-world learning.  

 

Regarding the first point, there is a long history of cognitive research that continues to strive for identifying and 

characterizing basic cognitive processes (e.g., working memory, inhibitory control) or basic domain-relevant 

skills (e.g., phonemic awareness) that contribute to higher-order action and thought. When selecting a cognitive 

ability of interest, it is beneficial to consider basic processes for several reasons. First, one has access to an 

abundance of existing research on these processes to guide predictions during model building and to guide 

interpretation when reporting results. Second, if these processes are indeed basic components of more-complex 

acts of cognition, then this serves to organize research around a common set of abilities and may mitigate 

concerns over spurious relationships to some degree (as, at the very least, it is unlikely that some more basic 

process accounts for a relationship between one’s ability measure and other outcome variables). Finally, we 

think measures of basic cognitive abilities are more promising than measures such as general intelligence 

because cognitive ability measures support specific theories about the relevant cognition underlying learning 

and performance. 

 

The second point regarding investigations of cognitive abilities is that abilities are contextualized. This point 

was repeatedly made by Richard Snow (e.g., Snow, 1994) in his various discussions of what he called “aptitude 

complexes.” Snow did not envision student performance on a given task as simply an outcome of individual 

cognitive abilities and the instructional design, but instead he saw performance as a multi-factor relationship 

among variables such as cognitive abilities, motivational factors, tasks, teachers, and prior knowledge (see also 

Roeser et al., 2002 for an informative discussion and review). For example, cognition and motivation may have 

interdependent effects. An individual’s cognitive abilities may impact learning only if the individual is 

sufficiently motivated to learn. Additionally, even if a student is highly motivated, cognitive deficits may hinder 

a student’s success. Though there is likely some reciprocity between motivation and cognition (as students with 

greater cognitive abilities are likely to develop greater self-efficacy), the relationship is undoubtedly more 

complex. In addition to relationships among student characteristics, there are also relationships among aptitudes 

and prior knowledge – as suggested by a study of spatial abilities and physics assessment performance that 

suggests the relevance of spatial abilities for assessment performance diminishes with increasing knowledge 

(Kozhevnikov and Thornton, 2006). 
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Conclusions 
 

Generally, we found that self-explanation games promoted better near-transfer learning outcomes than an 

explanatory feedback game after controlling for the number of levels that students completed. Moreover, 

accuracy in responding to self-explanation questions was an important predictor of learning in the self-

explanation game. Finally, we found that students’ inhibitory control abilities were relevant for learning from 

our self-explanation game, but not for learning from our explanatory feedback game. Together, these results 

suggest that self-explanation can benefit learning beyond explanatory feedback in educational games, but 

researchers must consider how learning is influenced by individual abilities and gameplay behavior.  

 

More generally, this research underscores the value of considering the relationships between abilities, gameplay, 

and learning when evaluating the effects of an educational game design. When an educational game design 

presents numerous new concepts to students, more level completions in the game are likely to produce better 

learning outcomes, but game behavior and individual abilities (1) may differentially impact learning and play 

outcomes between different game designs and (2) may impact learning both directly and indirectly through their 

effects on level completions or other gameplay variables. Moderation and mediation analyses are two valuable 

methods for building more sophisticated models of the learning process in educational games. Moreover, these 

methods can help build a framework for differentiated game interventions that avoids the simplifying 

assumption that the treatment with the greatest mean learning outcome is necessarily the best for every student. 
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