
American Journal of Business Education – March 2010 Volume 3, Number 3

35

Are Academic Programs Adequate

For The Software Profession?
Alexis Koster, San Diego State University, USA

ABSTRACT

According to the Bureau of Labor Statistics, close to 1.8 million people, or 77% of all computer

professionals, were working in the design, development, deployment, maintenance, and

management of software in 2006. The ACM model curriculum for the BS in computer science

proposes that about 42% of the core body of knowledge be dedicated to software engineering,

including programming. An examination of the curriculum of a typical computer science

department shows that, excluding programming courses, no courses specific to software

engineering are required for the BS, although several are available as elective courses.

Academics typically resist the demands of the industry, in part because some of them are for

specific software tools, design methods, or programming languages whose use does not last.

Under market pressure, more required software engineering courses may slowly be included in

the curriculum. The usual solution is for businesses to offer their software professionals needed

courses in software engineering.

Keywords: Software engineering, software professionals, programming languages, Java, computer science

curriculum, MIS curriculum

THE JOB MARKET FOR SOFTWARE PROFESSIONALS

he Bureau of Labor Statistics (BLS), an agency of the Department of Labor, reports the following

number of US jobs for the various software professionals in 2006 [4]:

Software Engineers 857,000

Computer Systems Analysts 504,000

Computer Programmers 435,000

It also reports 542,000 jobs for various computer scientists, allocated among networks and communication

analysts, database administrators, researchers, and other computer specialists. The functions of various computer

specialists may require in part work on software, whereas work on software is the essential part of the functions of

the first three categories.

For software engineers, the BLS expects a 38% increase in the number of jobs through the year 2016. For

computer systems analysts, a 28% growth is predicted the same period. For computer programmers, the BLS

predicts a 4% decline, due to foreign outsourcing as well as to a number of technological factors. For the computer

scientists, there will be a 37% growth.

One may question the BLS distinction between software engineers, computer systems analysts, and

computer programmers. Quoting the BLS definition, ”computer software engineers begin by analyzing user’s

needs, and then design, test, and develop software to meet those needs.” They may also write programs, “but this is

usually the responsibility of computer programmers.” This shows that there is often an overlap between some of

the functions of software engineers and of computer programmers

Similarly, the BLS indicates, among various functions of systems analysts, that they “consult … users to

define the goals of the systems. They prepare specifications … for computer programmers to follow.” This

T

American Journal of Business Education – March 2010 Volume 3, Number 3

36

description could also be applied to software engineers. A distinction between software engineers and systems

analysts appears to be that systems analysts may be involved in the full analysis and design of computer information

systems (hardware, software, overall architecture) whereas the software engineers are involved only in software.

Finally, one can assume that the BLS statistics are based on data the Bureau collects from businesses and

organizations. Since there is no standard definition of the three categories of jobs, businesses and organizations

provide jobs data on the basis of their own understanding of those terms and on the basis of the job titles they use.

In the remainder of this paper, the phrase “software professional” is used to refer to those three categories.

In most of those work categories, a bachelor’s degree is required. But an associate degree is sometimes

acceptable, particularly for computer programmers. The BLS indicates that more than 80% of the software

engineers and 68% of the computer programmers hold a bachelor degree or a graduate degree. The majors for most

of those degrees are computer science and management information systems. Other fields are also found, such as

mathematics. Systems analysts working in specialized areas of business sometimes hold a degree related to those

specializations such as finance, but management information systems appears to be the major much in demand for

business.

THE ACADEMIC VIEWPOINT

The main two fields of education for software professionals are computer science (CS) and management

information systems (MIS). Not surprisingly, employers often complain that job applicants and new hires are not

well prepared to work for them. Similarly, people working in the software field report on topics that would have

helped them in their current job [13].

There are two aspects to those problems. On one hand, the software field has seen a large number of

various programming languages, tools, and methodologies that were popular for a short period of time, and then

disappeared, sometimes as fast as they appeared. On the other hand, if we look at the topics that computer science

and management information systems programs teach, they often offer some very specialized topics that most

software professionals are unlikely to ever need, and could be replaced by more useful topics.

Programming languages provide a striking example of both types of problems: languages used in industry

and not offered in many curricula; and languages offered in curricula, but not used in industry. Cobol falls in the

former category. Although it was one of the languages most often used in business applications for almost 40 years,

it was rarely taught in computer science departments (but it used to be taught in MIS departments). Dijkstra, one of

the most respected computer scientists of his time, wrote of Cobol that “its teaching should … be regarded as a

criminal offense.” [6]

On the other hand, computer science departments, for their first programming languages, have taught

languages that are not used in industry: for example from Algol [3]in the sixties to the Turing programming

language [9] more recently. The proponents of such languages for the CS curriculum justify their choice on the

argument that these languages are well designed and, as such, are good vehicles for the teaching of sound

programming. However, as indicated by Robert Floyd, “programming languages typically encourage the use of

some paradigms and discourage others” [8]. Therefore, it is better for students to learn programming languages that

they will use at work. Java satisfies both sides: it has become the main language for developing web-based

applications as well as systems software; it is also a well-designed object-oriented language adopted by most CS and

MIS departments as their introductory programming language.

Many undergraduate programs in CS and MIS adhere to some extent to the model curricula developed by

the Association for Computing Machinery, the Association for Information Systems and the IEEE Computer Society

[1]. A new report for the CS curriculum was published in 2008 [2]. It defines 13 broad areas of core knowledge and

indicates the minimum time that should be spent on those areas. The areas that seem directly relevant to the

software profession include Programming Fundamentals (16%), Net-Centric Computing (5%), Programming

Languages (7%), Information Management (4%), Software Engineering (10%), for a total of 42%. As expected, this

American Journal of Business Education – March 2010 Volume 3, Number 3

37

body of core knowledge includes theoretical areas, such as Algorithms and Complexity (10%), Discrete Structures

(15%), Artificial Intelligence (3.5%), as well as areas related to hardware and computer architecture (18%).

Ultimately, the BS curricula of specific CS departments are based on a combination of many factors:

faculty preferences, influence of graduate curricula, traditional specializations, resources, requirements imposed by

the university, and other scheduling constraints. The Computer Science Department at San Diego State University

is a typical department. Its BS requires 10 specific courses in computer science (a normal course is taught 45 hours

during a semester). Five of them are directly related to software design and development: two courses on

programming, using Java, one on data structures, one of programming languages theory, and one on systems

programming. Moreover, students are required to take 3 more electives in computer science, chosen from a fairly

long list.

We note that the required courses are more about programming than software engineering. A student

interested in software engineering could take the three required electives among purely software engineering courses

(Software Engineering, Component-Based Software Engineering, and Software Measurement) and advanced

programming courses.

Yet, several topics, which are important to software professionals, are not taught at all in this program.

Those topics apply mostly to large software systems, but some of them are also relevant to small software systems.

They include [5, 7, 12]: structuring of large systems; process of software building; software testing; software

deployment; software maintenance; and interaction of software designers/developers with customers

For example, software testing is not mentioned in the SDSU catalog description of software engineering

courses, although some instructors may discuss it. The 2008 ACM model curriculum indicates that about 10% of a

course on software engineering should be dedicated to software testing. Given the critical need for software testing

as well as its complexity [10, 11], this seems too little.

DISCUSSION AND CONCLUSIONS

A comparison of the undergraduate computer science and management information systems curricula

offered by American colleges with the needs of the software profession show that some of those needs are not

satisfied. Under the job market pressure, there have been efforts to add more required or elective software

engineering courses to the BS curriculum. This is not necessarily easy because software is competing with an ever-

growing number of computer science topics. Also, as discussed earlier, academics are reluctant to add to the

curriculum topics, software design methods, and programming languages that may be short-lived. Until universities

are able to satisfy better the needs of the software industry, software organizations will continue to enhance the skills

of their workforce by providing their software professionals in-house or outside courses and seminars.

AUTHOR INFORMATION

Dr. Koster has been on the Faculty of San Diego State University's Information and Decision Systems Department

since 1983. His research interests include software design, database systems and most recently -- music file-sharing,

on which he has published many papers. He holds a Ph.D. from the University of North Carolina at Chapel Hill.

REFERENCES

1. ACM, AIS, and IEEE-CS. Computing Curricula 2005- The Overview Report.

2. ACM and IEE-CS. Computer Science Curriculum 2008: An Interim Revision of CS 2001.

3. Backus, John. “The syntax and semantics of the proposed international algebraic language of the Zurich,

ACM-GRAMM conference.” Proceedings of the ICIP Conference, Paris, June 1959

4. Bureau of Labor Statistics. Occupational Outlook Handbook, 2008-2009 edition. www.bls.gov/oco

5. Brown, William, Hays McCormick and Scott Thomas. AntiPatterns and Patterns in Software

Configuration Management. Wiley, 1999.

6. Dijkstra, Edsger . “How do we tell truths that may hurt?”, SIGPLAN Notices 17(5), May 1982

American Journal of Business Education – March 2010 Volume 3, Number 3

38

7. Heydon,. Allan, Roy Levin, Timothy Mann and Yuan Yu. Software Configuration Management Using

Vesta. Springer, 2006.

8. Floyd, Robert. “The Paradigms of Programming.” Communications of the ACM, 22 (8), August 1979

9. Holt, Richard and James Cordy. “The Turing Programming Language.” Communications of the ACM,

31(12), December 1988

10. Kao, David and Ken Koster. “State Coverage: A Structural Test Adequacy Criterion for Behavior

Checking.” Proceedings of the 6
th

 joint meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering, Dubrovnk, Croatia, September

2007

11. Koster, Ken. “A State Coverage Tool for JUnit.” 30th International Conference on Software Engineering,

Leipzig, Germany, May 2008

12. Miller, Roy. Managing Software for Growth. Addison-Wesley, 2004.

13. Plice Robert and Bruce Reinig. “Aligning the Information Systems Curriculum with the Needs of Industry

and Graduates .” The Journal of Computer Information Systems, 48(1), 2007

