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Abstract
Problem: Practitioners working with multiple-choice tests have long
utilized Item Response Theory (IRT) models to evaluate the performance
of test items for quality assurance. The use of similar applications for
performance tests, however, is often encumbered due to the challenges
encountered in working with complicated data sets in which local
calibrations alone provide a poor model fit.
Purpose: The purpose of this study was to investigate whether the item
calibration process for a performance test, computer-based case
simulations (CCS), taken from the United States Medical Licensing
Examination® (USMLE®) Step 3® examination may be improved through
explanatory IRT models. It was hypothesized that explanatory IRT may
help improve data modeling for performance assessment tests by allowing
important predictors to be added to a conventional IRT model, which are
limited to item predictors alone.
Methods: The responses of 767 examinees from a six-item CCS test were
modeled using the Partial Credit Model (PCM) and four explanatory
model extensions, each incorporating one predictor variable of interest.
Predictor variables were the examinees’ gender, the order in which
examinees encountered an individual item (item sequence), the time it
took each examinee to respond to each item (response time), and
examinees’ ability score on the multiple-choice part of the examination.
Results: Results demonstrate a superior model fit for the explanatory PCM
with examinee ability score from the multiple-choice portion of Step 3.
Explanatory IRT model extensions might prove useful in complex
performance assessment test settings where item calibrations are often
problematic due to short tests and small samples.
Recommendations: Findings of this study have great value in practice and
implications for researchers working with small or complicated response
data. Explanatory IRT methodology not only provides a way to improve
data modeling for performance assessment tests but also enhances the
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inferences made by allowing important person predictors to be
incorporated into a conventional IRT model.

Keywords: Explanatory Item Response Theory, Partial Credit Model, Item
Response Theory, Performance Tests, Item calibration, Ability estimation,
Small tests

Introduction

Over the past few decades, Item Response Theory (IRT) applications have
become a vital part of the scoring processes in many large-scale test settings. IRT
encompasses a family of nonlinear models that provide an estimate of the probability
of a correct response on a test item as a function of the characteristics of the item (e.g.,
difficulty, discrimination) and the ability level of test takers on the trait being
measured (e.g., Hambleton, Swaminathan & Rogers, 1991; McDonald, 1999; Skrondal
& Rabe-Hesketh, 2004). IRT models are particularly appealing in that if the IRT
model fits the data set, the resulting item and ability parameters can be assumed to
be sample independent (item and ability parameter invariance property).
Practitioners working with multiple-choice tests have long utilized IRT models to link
observable examinee performance on test items to an overall unobservable ability, as
wells as to evaluate performance of test items and test forms for quality assurance
(See Hambleton & Van der Linden, 1982, for an overview).

Applications of IRT models to performance tests, however, have long been
encumbered by the challenges encountered in modeling novel performance test data.
Historically, one issue was that the IRT models were developed for dichotomous
items (Spearman, 1904; Novick, 1966). This made them unsuited for performance
tests that often had items with ordinal categorical scales (to allow scoring partially
correct answers). However, extensions for polytomous items (Bock, 1972; Fitzpatrick,
Link, Yen, Burket, Ito, & Sykes, 1996; Samejima, 1969) soon emerged and solved this
particular issue. Another issue that remains to date is goodness of model fit.
Although performance tests with novel item formats are believed to be more suited
for measuring higher-level examinee abilities (Kane & Mitchell, 1996; Nitko, 1996),
they are also typically very difficult to model (e.g., Masters, 1982; Yen, 1983). One
reason is that performance tests are almost always drastically shorter than their
multiple-choice counterparts. This makes it very challenging for many performance
tests to satisfy the demand for large numbers of items for IRT models because it is
often very expensive to develop and administer performance tests that are as lengthy
as their multiple-choice counterparts. Another reason is the contextual effects
introduced by the novelty of test. The influence of various person and test design
variables is often amplified for performance tests, undermining the goodness of fit
for the estimated IRT models. To this end, the current study investigates whether an
alternative IRT modeling approach with added covariates from the generalized
linear and non-linear mixed modeling framework (Embretson, 1998; De Boeck &
Wilson, 2004; Wang, Wilson & Shih, 2006) can be used to help improve model
estimation for a novel performance tests, namely, for computer-based case
simulations (CCS).
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Purpose

The current study was undertaken to investigate whether the item calibration
process for the CCS examination could be improved using an explanatory IRT
model. The CCS is a part of the United States Medical Licensing Examination®
(USMLEP) Step 3 and was introduced in 1999, when the examination transitioned
from paper-and-pencil administration to computer-based administration. This
examination uses a small series of computer-based case simulations (CCS items) to
expose examinees to interactive patient-care simulations; for each simulation they
must initiate and manage patient care, while receiving patient status feedback and
managing the simulated time in which the case unfolds (Margolis, Clauser, & Harik,
2004; Clauser, Harik, & Clyman, 2000).

The explanatory IRT model application presented in this paper explores the
usefulness of four different predictor variables in improving the item calibration
process of the CCS examination: examinees’ gender, the order in which each
individual CCS item was presented during the examination (item sequence), the time
it took each examinee to respond to each item (response time), and examinees” ability
score on the multiple-choice part of Step 3. Although only the latter covariate was
hypothesized to be an important predictor of examinee performance on the CCS, as it
is the only construct-relevant covariate, the importance of the other variables were
also tested as potential predictors. The usefulness of item sequence and response
time were explored, relying on the recent literature that suggests their usefulness as
predictors of examinee performance (e.g., Ramineni, Harik, Margolis, Clauser,
Swanson & Dillon, 2007; Lu & Sireci, 2007; Leary & Dorans, 1985; Yen, 1980). The
importance of the gender variable was tested mainly to investigate whether CCS
items were easier for one of the gender subgroups.

A series of alternative explanatory IRT models were estimated using the Partial
Credit Model (PCM) and with one predictor variable at a time. This resulted in the
following models: (1) a base model (no covariates), (2) an explanatory model with
gender effect, (3) an explanatory model with item response time effects, (4) an
explanatory model with item sequence effects, and (5) an explanatory model with
examinees’ scores on the multiple-choice part of the Step 3 examination (MCT score).
Table 1 gives an overview of the estimated models. The PCM model with no
covariates was used as a base model to evaluate the hypothesized improvement in
model fit for each explanatory model with one added covariate. This “one covariate”
at a time approach was to ensure that, if and when observed, any improvement in
model fit is due to the added covariate alone.
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Table 1.
Estimated Models and Covariates

Covariates
Models I I Step 3 MCQ T
Gender tem ?esponse tem tep Q Test
times sequence Score
1.PCM
2. PCM with gender X
3. PCM with response times X
4. PCM with item sequence X
5. PCM with MCT score X
Method
Data

Study data included the responses of 767 examinees to a six-item CCS test, each
of which was administered in random order under standard testing conditions with
a maximum of 25 minutes of testing time per item. For this analysis, examinee
responses were coded using a 3-point category scale from 0 to 2, with 2 representing
maximum credit for a given CCS item.

Model Estimation

For dichotomous items, under the Rasch model (Rasch, 1960; Wright, 1997), the
probability of a positive response (or a correct answer) to item i for person j with
latent trait 0 is

P(Y/i =1] 6’/,[3,): %I;(@/ei))
p i ﬁi
)
where f;is the difficulty of item i. The probability of a person’s answering an item
correctly is, therefore, a function of the difference between the person’s ability and
the difficulty of the item. The person parameters are assumed to be independently

and normally distributed with a mean of zero and a variance of 2. In other words,
the person parameter is a random effect while the item parameter is a fixed effect.

The partial credit model (PCM, Masters, 1982) extends the Rasch model for
binary responses to pairs of adjacent categories in a sequence of ordered responses.
For an item on an m-point scale, there are m-1 step parameters to estimate. Step
parameters, S, refer to the value of 8; where the probabilities of responding in
category m and m-1 are equal. For an item with a 3-point scale, the probabilities of
responding to each of the categories are given by
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Figure 1 plots category response functions for an illustrative CCS item with a 3-
point scale with fi;=-1 and fi;=1. In the figure, it can be seen that the category

response functions for categories 0 and 1 intersect at f;; while the category response
functions for categories 1 and 2 intersect at Si.

P(in =2|9,,ﬁ,-m)=

Ability

Figure 1. Category Response Functions for an illustrative CCS item with a three-
point scale

The Partial Credit Model with random effects

The linear random effects PCM with a person covariate Z;; is given by

1

P(Yﬂ :0|Zj[m9j’ﬁ[m): 1+exp(Zj”9j —ﬁ[)+ exp(ZZﬂsz - Ba —[3[2)
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©)
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1+ exp(Z].“O/. -4, )+ exp(2Zﬁ29]. - B - [31.2)

The PCM and the explanatory PCMs were estimated using the PROC NLMIXED
routine of the Statistical Analysis System (SAS version 9.1.3). For the analysis we
used a quasi-Newton-Raphson optimization technique and a non-adaptive Gauss-
Hermite approximation with 10 quadrature points for each dimension (the SAS code
used in calculations is given at the end of this paper as an appendix). Goodness of
model fit was evaluated using the -2 log likelihood, the Akaike information criterion
(AIC) (Akaike, 1974) and the Bayesian information criterion (BIC; Schwarz, 1978), with
lower values indicating better fit.

P(Yﬁ =2 Zﬁmez"ﬂim)z

Results

The results summarized in Table 2 show that by adding the MCT score of
examinees to the model as a random effect, the PCM model fit was improved,
producing the lowest -2 log likelihood, AIC, and BIC. There was no improvement
over the base PCM for the remaining explanatory models with gender, item
sequence, or item response time as a covariate. Table 3 lists category threshold and
variance parameter estimates produced by these models. As revealed by the
observed improvement in the corresponding model fit statistics, MCT score was the
only significant predictor (0.50) among the four considered. Item sequence, response
times, and gender effects were all approximately zero (0.01, smaller than 0.001, and
0.04, respectively).

Table 2.
Model Fit Comparisons
Number of -2 Log

Model Parameters Likelihood AIC BIC
PCM 13 8909 8935 8996
PCM with gender 14 8908 8936 9002
PCM with response times 14 8896 8924 8989
PCM with item sequence 14 8906 8934 8999
PCM with MCT score 14 8862 8889 8955

* Models with multiple predictors were not feasible for this data set since only the
MCT score was useful as a predictor among the four considered.
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Table 3.

Parameter Estimates

Parameter Models
PCM PCM with PCM wi.th PCM withitem  PCM with
gender response times sequence MCT score
blen -0.74 -0.72 -1.06 -0.66 -1.06
b2catt -0.74 -0.72 -1.03 -0.66 -0.17
b3catt -1.35 -1.33 -1.62 -1.28 -0.78
bdcan -0.33 -0.31 -0.59 -0.25 0.24
b5catt -0.47 -0.45 -0.78 -0.40 0.10
bbcatt -0.97 -0.95 -1.25 -0.90 -0.40
bl -0.86 -0.84 -1.16 -0.79 -0.29
b2cat2 -1.14 -1.12 -1.41 -1.07 -0.57
b3cat2 0.31 0.32 0.05 0.37 0.87
bdca2 -0.61 -0.59 -0.85 -0.54 -0.04
b5cat2 -0.71 -0.69 -1.00 -0.64 -0.14
bbcat2 0.51 0.52 0.25 0.58 1.07

Effect of the

predictor
variable - 0.04 0.00 0.01 0.50
o2 0.21 0.21 0.23 0.21 0.17

* Standard Error of the estimates ranged between 0.08 and 0.16.

Figure 2 and Figure 3 plot category response functions for the six CCS items
using threshold parameters estimated by the base PCM and the best fitting
explanatory PCM with MCT Score predictor, respectively. Comparing the graphical
displays of probabilities computed for each response category given in Figure 1 with
Figure 2 reveals that aiding the base PCM model with MCT score greatly improves
the functional form of CCS items.

Discussion

Explanatory IRT models incorporating item or person covariates are increasingly
used in many test settings to learn more about predictors of examinee performance
(e.g., Fischer, 1983; De Boeck & Wilson, 2004; Embretson, 1984; Embretson, 1997) and
to help improve item calibration and scoring procedures (e.g., Fox, 2005; Harting,
Frey, Nold & Klieme, 2012; Zinderman, 1991). The premise of the current paper is
that they may also be useful in the context of authentic performance assessment tests
with small tests. This paper demonstrates that explanatory PCMs with meaningful
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predictors might prove useful in calibrating complex performance tests similar to the
USMLE CCS, which otherwise could not be calibrated.

For the CCS application presented in this paper, the meaningfulness of four
individual predictor variables was tested: examinees’ gender, the order in which
each individual CCS was presented during the examination (item sequence), the time
it took each examinee to respond to each case (response time) and examinees’ ability
score on the multiple-choice part of Step 3. While only the latter predictor variable
was found to be of statistical and practical significance, the results nicely illustrate
how an explanatory approach can be used to investigate the usefulness of individual
predictor variables in model estimation. Although it was not feasible for the present
application, as only one of the covariates was found to be of statistical importance, it
is recommended that researchers explore multivariate model extensions to further
assess if a more complex model with multiple predictors may further improve model
fit.

The findings of this study have great value for researchers and practitioners
working with small performance tests and complex response data in which local
calibrations alone provide a poor model fit. Explanatory model extensions of PCM
not only provide a way to improve data modeling for short performance assessment
tests but also open other possibilities by allowing various person predictors to be
added to conventional item response models, which are limited to item predictors
alone. Future research should investigate the influence of other item and person
predictors on CCS performance to determine if any can lead to a stronger model fit,
more stable parameter estimates, or a more precise measure of CCS proficiency. One
predictor of future interest, for example, could be the examinees’ postgraduate
medical training (Dillon, Henzel & Walsh, 1997; Feinberg, 2012). Examinees who are
exposed to a broad range of training during their residency or clinical experience
might perform better on the MC items of Step 3 as compared to examinees who have
a narrow training focus (Sawhill, Dillon, Ripkey, Hawkins, & Swanson, 2003).
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Figure 2. Item Characteristics Curves for the six CCS items estimated by the base
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Aciklayict Madde Tepki Kuraminin Interaktif Bir Bilgisayar Simiilasyon
Testine Uygulanmasi

Ataf:
Kahraman, N. (2014). An explanatory item response theory approach for a computer-
based case simulation test, Eurasian Journal of Educational Research, 54, 117-134.

Ozet

Problem: Test gelistirme ve gelistirilen testlerin gtivenirlik ve gecerligini arastrmada
sikca kullanilan Madde Tepki Modelleri ¢oktan se¢meli testlerde uzun zamandir
madde ve test kalitesini kontrol amaciyla kullanilmaktadir. Bu modellerin aymn
amacla uygulamali testlerde kullanimi ise bircok zorluk ile karsilasmustir. Bu
zorluklardan ilki ilk gelistirilen Madde Tepki Modellerinin sadece ikili puanlanan
test maddeleri icin uygun olmasiydi. Oysa uygulamali test maddeleri ¢ogunlukla
kismi puanlama gerektirecek sekilde gelistirilir. Kismi puanlamaya uygun Madde
Tepki Modellerinin gelistirilmesiyle bu sorun kisa zaman icerisinde ¢oztimlendi. Bir
diger zorluk ki hala gtincelligini korumaktadir, uygulamali test verilerinin Madde
Tepki Modelleri ile modellenmeye daha az uygun oluslaridir. Bir baska deyisle,
uygulamal1 testlerde kullanildiginda Madde Tepki Modelleri uygulamalar:
guvenirligi cok iyi olmayan madde ve kisi istatistikleri ile sonuglanabilmektedir.
Bunun iki 6nemli nedeni uygulamal testlerin coktan se¢meli testlere gore daha kisa
oluslar1 ve de uygulamali test sorularimin 6l¢iilmesi istenen becerilerle direk olarak
ilgili olmayan bircok faktorlerin etkisine coktan secmeli sorulardan daha acik
oluslaridir. Uygulama testleri ile calisan psikometristler de diger testlerle calisan
meslektaslar1 gibi Madde Tepki Modellerinin saglayacagr orneklem bagmlilig
oldukca diisiik olan madde ve kisi istatistiklerine ihtiya¢ duymakta ve yukarida
sayilan zorluklar1 asabilecek yeni modellerin gelistirilmesini beklemektedir.

Amag: Tkincil degiskenleri model hesaplamalarina yordayici olarak dahil etmeye izin
veren Aciklayict Madde Tepki Modelleri bir¢ok farkli ortamda uygulanan bir ¢ok
testin madde ve kisi istatistiklerinin kalitesinin arttirilmasinda kullanilmaktadir.
Ancak bu modellerin uygulamali testlerde kullamildiklarinda sikca karsilasilan
diisiik model uygunlugu ve diistik gtivenirlik problemlerini ¢6zmede kullanilmast
ile ilgili bir cahsma hentiz yapilmamistir. Bu calismanin amaci Madde Tepki
Modelleri kullanildiginda veriye uygunluk indeksleri diisiik cikan alt1 adet interaktif
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uygulamali madde iceren bir uygulama testi icin Aciklayict Madde Tepki
Modellerinin iyi bir alternatif olup olmadigini degerlendirmekti.

Yéntem: Bu calismanin 6rneklemi arastirmaya konu olan uygulamali CCS (Computer
Case Simulations) testini alan 767 kisinin alti uygulama sorusuna verdigi
cevaplardan olusmaktadir. CCS Amerika’da calisma lisanst almaya hak
kazanabilmek i¢in hekim adaylarinin aldiklar: {i¢ asamali bir testin, tictincti ve son
asmasinda verilen bir uygulama testidir. Hekim adaylar1 bu son asamada ¢oktan
se¢meli bir testin yani sira bu uygulama testini de alirlar. Siav sirasinda, her bir CCS
uygulamasi i¢in hekim adaylarma bilgisayar ortaminda bir hasta profili verilir.
Hekim adaylar1 uygun olduklarmi dustindiikleri teshis ve takipleri interaktif bir
ortamda yapabilmektedir. Her bir CCS icin hekim adaylar1 maksimum 25 dakika
harcayabilir. Bu calismada orneklemdeki kisiler her uygulama sorusundaki
performanslar: icin yanlis uygulamaya 0, kismi dogru uygulamaya 1 ve dogru
uygulamaya 2 puanla puanlanmustir.

Kismi puanlama kullanildig: icin, Kismi Puanlama Madde Tepki Modelleri (Partial
Credit Modeling) ile hesaplanan bes ayr1 model kullamilmistir. Ik model hicbir
yordayici degisken olmadan, yani geleneksel kismi puanlama Madde Tepki
Modelleri ile hesaplanmustir. Tkinci model uygulama sorusunun siras, tigtincii model
uygulama sorusuna ne kadar zaman harcandigi, dordiincti model hekim adayrmn
cinsiyeti ve besinci model hekim adaymin son asama smavinin ¢oktan se¢meli
sorulardan olusan kismindan aldigt puam yordayici olarak kullanarak
hesaplanmistir. Her yordayicinin faydalihigimi test etmek icin her bir Acgiklayici
Madde Tepki Modeli icin hesaplanan veriye uygunluk indeksleri geleneksel Madde
Tepki Modeli icin hesaplanan indeksleri ile karsilagtirilmistir.

Bulgular: Model uygunluk indeksleri ¢coktan secmeli bsliimden alman test puaninin
iyi bir yordayict oldugunu gostermektedir. Uygulama sorusunun hangi sirayla
cevaplandigl, uygulama sorusuna harcanan toplam zaman ve hekim adayimn
cinsiyeti yordayici olarak faydali bulunmamustir. Karsilastirldiginda Madde Tepki
Modeli ve coktan se¢meli test puani ile hesaplanan Agiklayict Madde Tepki Modelli
ile hesaplanan madde esik degerlerini kullanarak elde edilen figiirler acikca
gostermektedir ki iyi bir yordayici ile kurulan bir Aciklayict Madde Tepki Modeli
madde istatistikleri ile kisilerin beceri diizeyleri arasindaki fonksiyonel iliskiyi iyi
yonde degistirebilecektir.

Oneriler: Uzmanlar kisilerin bilgi ve becerilerini ortaya koyabilecekleri uygulama
sinavlarmin, coktan se¢meli sinavlara bir¢ok bakimdan isttin oldugunu diistintirler.
Ancak uygulama smavlari ile elde edilen test puanlarmin giivenirligi coktan se¢meli
sinavlarla karsilastirildiginda genellikle diistiktiir. Test giivenirligini arttirmanin en
olagan yolu olan madde sayisim arttirma uygulama smavlart i¢in ¢ok kolay
olmamaktadir. Uygulama sorularmi gelistirmek, uygulamak ve puanlamak oldukca
emek yogun ve pahali olabilmektedir. Test maddeleri artirilamiyorsa, bir alternatif
uygulama elde bulunan ek verilerin yapilan model tahminlerinde kullanilmasi
olabilir. Bu calisma boylesi bir yaklasimla yapilmustir.
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Bulgular gostermektedir ki geleneksel Madde Tepki Modeli uygulandiginda kabul
edilebilir veriye uygunluk indeksleri ve giivenilir madde istatistikleri elde etmede
guclik ceken wuygulama testleri Aciklayict Madde Tepki Modellerinin
uygulamalarmndan yararlanabilir. Bu arastirmaya konu olan CCS uygulama testi i¢in
alman sonugclar gostermektedir ki ikincil degiskenlerin saglayacag: ek bilgi, bu bilgi
olmadan elde edilecek tahminleri iyi yonde degistirecektir. Elbette Aciklayicit Madde
Tepki Model'inin basarilt olmasi igin ikincil verilerin elde bulunmasi ve modele
eklenmesi basli basina yeterli olmayacaktir. Bu ikincil degiskenlerin katkisinin ne
olacagt bu arastirmada da kullanilan asamali bir yaklasim ile ayr1 aym
degerlendirilmelidir. Aciklayict Madde Tepki Model uygulamalar: kullanicilara
farkli model gelistirme imkani da sunmaktadir. Ornegin, arastirmacilar, eldeki
veriler uygun oldugunda, birden fazla ikincil degiskenin de dahil edilebilecegi
alternatif modeller ile interaksiyon ihtimallerini de kolayca calisabilirler.

Anahtar Sézciikler: Kism1 Puan Modeli, Madde Tepki Modeli,
uygulama testleri, madde istatistikleri, basar1 tahmini

APPENDIX A. SAS SYNTAX

/* Read in*/

data CCS;

infile "H:\CCS\DATA\SASdatalIN.dat";

INPUT per index y3 11 12 I3 14 I5 16 niseq time MC male;
RUN;

/* Estimate*/
/* Model 1 - PCM no covariates, CCS data - PCM three categories 0-2, */
PROC NLMIXED data=CCS method=gauss technique=quanew noad qpoints=10;
PARMS bl_1-b1_6=0 b2_1-b2_6=0 sd=0.5;
betal=bl_1*I1+bl_2*I2+bl_3*I3+bl_4*14+bl_5*I5+bl_6*16;
beta2=b2_1*11+b2_2*12+b2_3*I3+b2_4*14+b2_5*15+b2_6*16;
expl=exp(theta-betal);
exp2=exp(2*theta-betal-beta2);
denom=1+expl+exp2;
if (y3=0) then p=1/denom;
else if (y3=1) then p=expl/denom;
else if (y3=2) then p=exp2/denom;
if (p>1e-8) then ll=log(p);
else 11=-1e100;
Model y3~general(ll);
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RANDOM theta~normal(0,sd**2)subject=per;
ESTIMATE 'sd**2' sd**2;
RUN;

/* Model 2 - PCM with item sequence covariate, CCS data - PCM three categories: 0-2 */
PROC NLMIXED data=CCS method=gauss technique=quanew noad qpoints=10;
PARMS b1_1-b1_6=0 b2_1-b2_6=0 ts=0 sd=0.5;
theta=eps+ts*niseq;
betal=bl_1*I1+bl_2*I2+bl_3*I3+bl_4*14+bl_5*I5+bl_6*16;
beta2=b2_1*11+b2_2*12+b2_3*I3+b2_4*14+b2_5*15+b2_6*16;
expl=exp(theta-betal);
exp2=exp(2*theta-betal-beta2);
denom=1+expl+exp2;
if (y3=0) then p=1/denom;
else if (y3=1) then p=expl/denom;
else if (y3=2) then p=exp2/denom;
if (p>1e-8) then ll=log(p);
else 11=-1e100;
Model y3~general(ll);
RANDOM eps~normal(0,sd**2)subject=per;
ESTIMATE 'sd**2' sd**2;
RUN;

/* Model 3 - PCM with response time covariate, CCS data - PCM three categories: 0-2 */
PROC NLMIXED data=CCS method=gauss technique=quanew noad qpoints=10;
PARMS b1_1-b1_6=0 b2_1-b2_6=0 ti=0 sd=0.5;
theta=eps+ti*time;

betal=bl_1*I1+bl_2*I2+bl_3*I3+bl_4*14+bl_5*I5+bl_6*16;
beta2=b2_1*11+b2_2*12+b2_3*[3+b2_4*14+b2_5*15+b2_6*16;

expl=exp(theta-betal);

exp2=exp(2*theta-betal-beta2);

denom=1+expl+exp2;
if (y3=0) then p=1/denom;
else if (y3=1) then p=expl/denom;
else if (y3=2) then p=exp2/denom;
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if (p>1e-8) then ll=log(p);

else 11=-1e100;

Model y3~general(ll);

RANDOM eps~normal(0,sd**2)subject=per;
ESTIMATE 'sd**2' sd**2;

RUN;

/* Model 4 - PCM with gender covariate: male coded as 1, CCS data, PCM three
categories: 0-2*/

PROC NLMIXED data=CCS method=gauss technique=quanew noad qpoints=10;
PARMS b1_1-b1_6=0 b2_1-b2_6=0 g=0 sd=0.5;
theta=eps+g*male;

betal=bl_1*I1+bl_2*I2+bl_3*I3+bl_4*14+bl_5*I5+bl_6*16;

beta2=b2_1*11+b2_2*12+b2_3*I3+b2_4*14+b2_5*15+b2_6*16;
expl=exp(theta-betal);
exp2=exp(2*theta-betal-beta2);
denom=1+expl+exp2;

if (y3=0) then p=1/denom;

else if (y3=1) then p=expl/denom;

else if (y3=2) then p=exp2/denom;

if (p>1e-8) then ll=log(p);

else 11=-1e100;

Model y3~general(ll);

RANDOM eps~normal(0,sd**2)subject=per;

ESTIMATE 'sd**2' sd**2;

RUN;

/* Model 5 - PCM with MCT Scores as a person covariate, CCS data - PCM three
categories: 0-2, */

PROC NLMIXED data=CCS method=gauss technique=quanew noad qpoints=10;
PARMS b1_1-b1_6=0 b2_1-b2_6=0 t=0 sd=0.5;
theta=eps+t*MC;
betal=bl_1*I1+bl_2*I2+bl_3*I3+bl_4*14+bl_5*I5+bl_6*16;
beta2=b2_1*11+b2_2*12+b2_3*I3+b2_4*14+b2_5*15+b2_6*16;
expl=exp(theta-betal);
exp2=exp(2*theta-betal-beta2);
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denom=1+expl+exp2;
if (y3=0) then p=1/denom;
else if (y3=1) then p=expl/denom;
else if (y3=2) then p=exp2/denom;
if (p>1e-8) then ll=log(p);
else 11=-1e100;
Model y3~general(ll);
RANDOM eps~normal(0,sd**2)subject=per;
ESTIMATE 'sd**2' sd**2;
RUN;



