
Universal Journal of Educational Research 2(2): 173-180, 2014 http://www.hrpub.org 
DOI: 10.13189/ujer.2014.020209 

Application of Hierarchical Linear Models/Linear 
Mixed-effects Models in School Effectiveness Research  

H. W. Ker 

Department of International Trade, Chihlee Institute of Technology, Wunhua Rd., Banciao District, New Taipei City, Taiwan 
*Corresponding Author: hker@mail.chihlee.edu.tw 

Copyright © 2014 Horizon Research Publishing All rights reserved. 

Abstract  Multilevel data are very common in 
educational research. Hierarchical linear models/linear 
mixed-effects models (HLMs/LMEs) are often utilized to 
analyze multilevel data nowadays. This paper discusses the 
problems of utilizing ordinary regressions for modeling 
multilevel educational data, compare the data analytic results 
from three regression techniques, and demonstrate the 
appropriate use of HLMs/LMEs in school effectiveness 
research. An analysis of a subset of NELS-88 data in which 
students are nested within schools is used to illustrate 
features of HLMs/LMEs, relative to both student-level 
analysis that ignores the hierarchy of the dataset, and 
school-level analysis that aggregate the student-level units. 
The features and advantages of HLMs/LMEs in multilevel 
educational data analysis are discussed. Some guidelines, 
caveats, suggestions and recommendations in utilizing 
HLMs/LMEs for analyzing multilevel educational data are 
highlighted.  
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1. Introduction 
Hierarchical data structures are very common in 

educational research. For example, schooling systems are an 
example of a hierarchical structure, with students nested 
within classrooms, grade levels, schools, and school districts. 
The main goal of ‘school effectiveness’ research is to 
describe the differences within and between schools. For 
example, an investigator may want to know to what extent of 
differences in average exam results between schools are 
accounted for by factors such as intake achievements of 
students, students’ social-economic status (SES), 
characteristics of students, average class sizes, school types 
(public or private), and regions of school. In this case, 
students are level-1 units and schools are level-2 units. 
Level-1 predictors are intake achievements of students, 
students’ SES, and characteristics of students. Level-2 

predictors are average class sizes, school types, and regions 
of school. Data that repeatedly collected on an individual 
student is another type of hierarchical data in a sense that the 
repeated measures are nested within individuals [1] [2]. For 
example, a researcher may want to investigate that keeping 
gifted students in the ordinary class or separate class will 
lead to better performance. The researcher may have the 
measures from several achievement scores during the time 
segment of investigation, and the score of aptitude test 
available. The repeated measures of performance can be 
viewed as level-1 units which are in terms of nested within 
the individual student.  

The existence of data hierarchies is not ignorable [3]. 
Hierarchical data do present several problems for traditional 
data analytic techniques such as ordinary regressions. These 
problems are discussed as follows:  

1. Problems of ignoring the importance of group effects 
and assumption of independence: students that are 
within hierarchies tend to be more homogeneous to 
each other than students randomly sampled from the 
entire population. This is because students are not 
randomly assigned to schools from population, but 
rather are assigned to schools based on students’ 
residencies. Students in the same school tend to share 
certain characteristics (i.e., physical environment, the 
same teacher, educational background, experiential, 
demographic, curriculum organization, SES, and 
educational preparation). Observations based on these 
students are not completely independent. However, 
ordinary regression techniques have the assumption of 
independence of observations. Because this 
assumption is violated in hierarchical data, ordinary 
regression produces standard errors that are too small. 
This leads to a higher probability of rejecting the null 
hypothesis [4]. Moreover, students in the same school 
can be viewed as having the same group membership. 
Once groupings are established, they will tend to 
become differentiated, and this implies that there exist 
differences among schools, and groups and its 
members can both influence and be influenced by the 
environmental composition of the groups. To ignore 
the importance of group effects, it may produce 
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invalid results and come to wrong conclusions for 
studying the casual relationships.  

2. Problem of the ways to deal with cross-level data: In 
educational research, it is often the case that a 
researcher is interested in investigating the 
relationships between environmental factors (e.g., 
teaching styles, teacher behaviors, class sizes, 
educational policies, etc.) and individual outcomes 
(e.g., performance, attitudes, behaviors, etc.). But 
given that outcomes are collected at the student level, 
and other variables at group levels (e.g., classroom, 
schools, school districts), the question arises as how to 
deal with cross-level interaction. One approach is to 
bring group-level variables down to student level (i.e., 
assign classrooms, teachers, or school characteristics 
to all students). This results in two problems. The first 
is that the resulting statistical inferences (i.e., 
significance tests) are biased and typically 
over-optimistic [5]. The second is that failure to 
incorporate schools in the statistical model means that 
the influence of school is ignorable [6]. The other way 
to deal with the problem of cross-level data is to 
aggregate student levels up to group levels which 
means that do regression over the means of group 
level. This aggregated analysis has several problems. 
The first is that much of the individual variability on 
outcome variable is lost. It can lead to under- or 
over-estimation of observed relationships between 
variables [7]. The second is that outcome variable 
change significantly and substantively from individual 
achievement to average group-level achievement. 
Furthermore, disregarding within-school variance will 
yield a large increase of multiple correlation 
coefficients [6]. Neither disaggregated analyses nor 
aggregated analyses can adequately describe the 
nature of hierarchical data well. What are required are 
models which simultaneously can model student level 
relationships and take into account of grouping.  

3. The problem of the units of analysis: A classic and 
well-known example on the units of analysis is a study 
on the ways of teaching reading for elementary school 
students carried out by Bennett [8]. The results 
showed that there exist statistically significant 
differences between ways of teaching (i.e., so-called 
‘formal’ style of teaching reading is better than other 
methods). The data were using multiple regressions 
where students are the units of analysis. However, 
Aitkin & Hinde [9] reanalyzed the data and showed 
that when the grouping of students into class was 
taken account, the significant differences disappeared. 
This reanalysis is the important example of a 
multilevel analysis of educational data, using 
information from both “higher” level units and “lower” 
level units.  

Hierarchical linear models/linear mixed-effects models 
(HLMs/LMEs) have received a lot of attention in many 
fields because of their flexibility in analyzing hierarchical 

data. They are the extension of linear models. The 
application of multilevel analysis for educational 
hierarchical data has several advantages. First, it enables the 
researchers to obtain statistically efficient estimates of 
regression coefficients. Secondly, by using the grouping 
information, it provides correct standard errors, confidence 
intervals and significant tests [10]. Only appropriate 
statistical analysis can provide valid results. Thirdly, by 
specifying patterned variance- covariance matrices, it can 
help to describe the complexities of variation among higher 
level, especially when the covariance models are of research 
interest. Fourthly, by allowing the use of covariates or 
predictors measured at any levels of hierarchy, it enables 
researcher to explore the cross-level interaction. Fifthly, 
HLMs/LMEs can solve the confounding problem from 
different levels by decomposing the variables into the 
components according to the levels of variables [11]. In a 
student-school hierarchical structure, for example, the 
average social and economic status (SES) of a school may 
have influence on students’ learning on the effects of an 
individual student’s SES. SES at school level may represent 
the source of school effectiveness. SES at student level is a 
measure of the resource of individual home environment and 
family support. The variable SES at different levels has 
different meanings. HLMs/LMEs solve the confounding 
problem of variables by specifying the variables at 
appropriate levels, i.e., student’s SES is put in level-1 model 
and school average SES is specifying in level-2 model.  

Researchers has to take data structure into account in data 
analysis because ignoring the hierarchical data structure 
would invalidate most traditional statistical analysis methods 
(i.e., independent observation), and risk overlooking 
important group effects and within group dependencies. The 
goals of this paper are to discuss the problems of employing 
ordinary regression in analyzing multilevel data and how it 
should be dealt with appropriately, and to provide examples 
to compare the three regression techniques (disaggregated 
analysis, aggregated analysis, and HLMs/LMEs) and 
demonstrate doing appropriate analyses. An analysis of a 
subset of NELS-88 data in which students are nested within 
schools is used to illustrate features of HLMs/LMEs, relative 
to both student-level analysis that ignores the hierarchy of 
the dataset, and school-level analysis that aggregate the 
student-level units. The features and advantages of 
HLMs/LMEs in multilevel data analysis are discussed. 
Several precautions and recommendations on the 
applications of HLMs/LMEs are suggested. This paper is 
mainly conceptual oriented. It does not contain the very 
detailed technical aspects and procedures needed to 
implement multilevel analysis. The readers interested in 
HLMs/LMEs are encouraged to refer to other suggested 
multilevel readings [12] [13], [26] [14] [6] [15] [2] [5] [16] 
for a full description of the methodological detail of 
HLMs/LMEs.  

2. Hierarchical Linear Models/ Linear 
Mixed-Effects Models 
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HLMs/LMEs are indispensable tools for analyzing 
hierarchically structured data in psychological, educational, 
medical, organizational, geographic, social behavioral, and 
child growth research [17] [12] [18]. For examples, Francis, 
Fletcher, Stuebing, Davidson, and Thompson [19] applied 
individual growth curves approach to the analysis of change 
of recovery of cognitive function following pediatric closed 
head injury. Kreft and Yoon [20] addressed the advantages 
of HLMs/LMEs for studying school effectiveness research. 
Huttenlocher, Haight, Bryk, Seltzer, and Lyons [23] applied 
HLM in studying early vocabulary growth. Barnett, 
Raudenbush, Brennan, and Pleck [22] utilized HLM in a 
longitudinal study regarding job change, marital experiences 
and change in psychological distress. Kidwell, Mossholder, 
and Bennet [23] studied the contextual effects on 
organizational citizenship behavior.  

HLMs/LMEs are known as “hierarchical linear models”, 
“multilevel models” [12], “random coefficient models,” or 
“linear mixed-effects models” [24]. The term “hierarchical 
linear models” or “multilevel models” captures the 
characteristics of the model. The models are separated into 
levels. The models are appropriate for data that are 
hierarchically structured with lower-level units nested within 
higher-level units. [25]. The intercept and slopes at 
lower-level model become the outcomes of higher-level 
model. The term “random coefficient models” or “linear 
mixed-effects models” can be explained from experimental 
designs and the distributions of parameters in regression 
form. Random coefficient models include the parameters 
(i.e., intercepts, slopes) that describe the distributions of the 
variances of group-level statistics (i.e., group intercepts or 
group slopes). Therefore, they are so-called “random effects” 
or “random coefficients.” In experimental research, the 
random effects describe the levels of treatments that are 
assumed be sampled from a population and inferences refer 
to this population [24]. Random coefficient models can also 
describe a type of linear or nonlinear forms where the 
parameters are assumed to vary from a certain probability 
distribution.[29]. Linear mixed-effects models are 
mixed-effects models in which both fixed and random 
effects occur linearly in the model function [27]. 

HLMs/LMEs allow researchers to analyze hierarchically 
nested data with two or more levels. For example, a 
student-school hierarchical linear model consists of two 
submodels: student-level (level-1) and school-level (level-2). 
The parameters in a school-level model specify the unknown 
distribution of student-level parameters. The intercept and 
slopes at student-level can be specified as random. 
Substituting the level-2 equations for the slopes and 
intercepts into the level-1 model yields a linear mixed-effects 
model. Researchers can specify the effects of level-1 
coefficients depending on their research interest or the 
empirical evidence shown in data. 

HLMs/LMEs have the advantages of allowing researchers 
to specify the individual-level parameters as randomly 
varying across groups. It provides a compromise between 
modeling each group by a separate individual regression 

model, and modeling all groups simultaneously by using a 
single regression equation [29]. Three common methods for 
estimating the parameters in HLMs/LMEs are maximum 
likelihood estimation (MLE), restricted maximum likelihood 
(REML) and Bayes estimation [31] [32].  

A number of estimation algorithms have been derived to 
implement the methods of estimation. Raudenbush [32] did 
an intensive review on these algorithms. Aitkin and 
Longford [33], and Longford [24][34] developed a Fisher 
scoring algorithm for the maximum likelihood estimation of 
covariance components in multilevel mixed linear models. 
Goldstein[35] used iterative generalized least squares 
approach to obtain maximum likelihood estimate of 
multilevel mixed linear models. Lindley and Smith[31] 
derived Bayesian estimates for hierarchical linear model. 
Dempster, Laird, and Rubin[36] established that EM 
algorithm numerically obtained maximum likelihood 
estimates, a result with special relevance for covariance 
component estimation. The common algorithms that 
implement these estimation methods are iterative 
generalized least square, Fisher scoring and 
expectation-maximization. 

There is still controversy about which estimation method 
with which algorithm should be used under particular 
sampling conditions. When the number of the units in 
group-level is large, any estimation method can be employed. 
However, parameter estimation is more problematic when 
the number of the units in group-level is small, because the 
group-level regression coefficients and individual effects are 
conditional upon the estimated values of group-level 
variance, and the variance might be underestimated [26] 
[37].  

Bayesian estimation is usually used in simple 
HLMs/LMEs because the numerical integration for complex 
models is computationally intensive and are not easy to 
program. However, when the sample size is large, MLE and 
REML approaches work well and the Bayesian approach is 
not necessary [11]. 

In a two-level hierarchical model, the MLE and REML 
approaches produce very similar results for 2σ , but there are 
some differences in estimating the level-2 
variance-covariance components. MLE and REML 
approaches have very similar results if the number of level-2 
units (J) is large. On the other hand, if the number of level-2 
units is small, the MLE variance estimates are smaller than 
the REML estimates. REML minimizes least squares 
residuals and is generally considered better than the 
maximum likelihood method based on the deviance of the 
data only. However, de Leeuw and Kreft [38](1995, p.183) 
noted that “ the evidence of their superiority in complicated 
cases, and in multilevel analysis in particular, is not too 
convincing.” 

The estimates of variance-covariance components from 
maximum likelihood estimation are conditioned upon the 
point estimates of fixed effects. REML adjusts for 
uncertainty regarding the fixed effects in estimating 
variance-covariance components. Nevertheless, REML’s 
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superiority in complicated models is still in question [38]. 
Bayes estimation does not have the restrictions that MLE and 
REML have; however, Bayesian estimation may not be 
feasible for complicated models due to the computational 
demands of multiple numerical integration requirements [7]. 

Anderson [39] summarized the comparison between 
REML and MLE as follows: 

1. Both estimation methods are based on the maximum 
likelihood principles and the estimators from MLE 
and REML are consistent, efficient and 
asymptotically normal. 

2. MLE provides the estimates for fixed effects 
whereas REML does not. 

3. With the univariate normal population and standard 
linear regression models, the estimated means are the 
same under MLE and REML. However, the vector of 
fixed effects is not the same under MLE and REML 
in linear mixed-effects models.  

4. In a balanced design, REML estimators yields the 
same results as obtained from classical ANOVA-type 
estimates.  

5. The estimated variance components are larger in 
REML than in ML. 

6. ML and REML estimations differ more when the 
number of parameters in fixed effects increases. 

7. Likelihood ratio tests on variance components can be 
used with models fit by REML or MLE. Both models 
must be fit by REML and the fixed-effects structures 
must be the same for both models. 

8. Likelihood ratio tests for fixed effects can be used 
only for MLE. They aren’t valid for REML. 

3. Example 

3.1. The Data Set 

For the illustration of the three statistical strategies 
(disaggregation, aggregation, and HLMs/LMEs) for 
analyzing multilevel educational data, a subset of the 
National Educational Longitudinal Survey of 1988 
(NELS-88) data was used. The data were collected by the 
National Center for Education Statistics of the US 
Department of Education. The data contains a representative 
sample of approximately 1000 schools across United States 
that enroll more than 20,000 eighth graders in the base year 
study. The data are at a variety of levels, including individual 
students, family, teachers, and schools [6] [4]. In this 
analysis, 100 out of 1003 schools were randomly selected. 
There are 2241 students in this subset. The outcome variable 
is math achievement (Math). The explanatory variables are 
student socioeconomic status (SES), the number of hours of 
homework (HomeW), the school types (SchTypes, public 
schools are coded 1 and private schools coded 0), and the 
percent of students in the schools who are members of racial 
minority groups (%Minority). SES and HomeW are level-1 
predictors, and SchTypes and %Minority are level-2 
variables. In general, SES and HomeW are expected 
positively related to math achievement, and SchTypes 
and %Minority are negatively related to math achievement. 
Three regression models (disaggration, aggregation, and 
HLMs/LMEs) were fit to this subset of NELS-88 data. 
Results from these analyses are given in Table 1. The first 
two columns of Table 1 give results of ordinary regression 
models at student level and school level, and the third 
column gives the results from HLMs/LMEs. The estimation 
method for HLMs/LMEs is REML. 

3.2. A Comparison of Regression Models 

Table 1.  Comparison of Three Regression Models for a Subset of NELS-88 Data 

        Ordinary regression model   __         HLMs/LMEs       

 
 

Student level 
(n = 2241) 

School Level 
(n = 100)  

Variable Estimate SE Estimate SE Estimate SE 

Constant 52.089** 0.571 49.451** 1.402 52.917** 0.897 

HomeW 1.303** 0.124 1.889** 0.627 1.174** 0.122 

SchTypes -1.789** 0.518 -0.031 0.474 -2.258** 0.872 

SES 5.110** 0.249 6.875** 0.765 4.452** 0.269 

%Minority -0.707** 0.087 -0.727** 0.135 -0.796** 0.147 

Residual standard error 8.612 - 2.877 - 8.226 - 

School standard error - - - - 2.601 - 

** p<.01. 

 



  Universal Journal of Educational Research 2(2): 173-180, 2014 177 
 

Disaggregated analysis. The student level analysis 
ignored the hierarchical structure that students are nested 
within schools and treated as independent observations. It 
also means that no systematic influence of the schools on 
math achievement is expected, and all influence of the school 
are in residual errors. The resulting model was significant, 
with R-squared = 0.308, F (4, 2236) = 248.5, p < .0001. All 
four predictors were significant predictors of students’ math 
achievement. As expected, SES and HomeW are expected 
positively related to math achievement, and SchTypes 
and %Minority are negatively related to math achievement. 

Aggregated analysis. In school-level analysis, all 
student-level variables were aggregated up to school level by 
averaging. This strategy ignores all within-school variation 
and cannot make any inferences or predictions directly for 
individual students. The resulting model was significant, 
with R-squared = 0.752, F (4, 95) = 72.150, p < .0001. Both 
average SES and average HomeW were significantly 
positively related to math achievement. The 
predictor %Minority was negatively related to math 
achievement. In this analysis, SchTypes was not a significant 
predictor of average math achievements.  

Multilevel analysis. A random intercept model was 
performed via HLM, in which the respective level 1 and 
level 2 predictors were specified appropriately. In multilevel 
analysis, the variance for outcome variable is broken into 
level-1 and level-2 variance. The residual standard error 
between schools is 2.601, and the residual standard error 
between students is 8.226. The absolute value of 
log-likelihood is 7959.898. The intraclass correlation is 0.24 
(2.601/(8.226+2.601) ), indicating that about 24% of the 
variance in math achievement is between schools. This 
analysis shows that significant positive effects of level-1 
predictors on math achievement, and negative relationships 
between math achievement and level-2 predictors. 

4. Discussion on the Three Regression 
Models 

The example above demonstrates that the selection of 
statistical models can influence the conclusions drawn from 
a given data set. In comparison, the multilevel model is 
assumed that it represents the best estimate of the true 
relationships between the predictors and the outcome. 
Compared with disaggregated analysis, the aggregated 
analysis overestimated the value of R-squared 144%. 
Compared with HLMs/LMEs, the aggregated analysis 
overestimated the regression coefficients of level-1 
predictors, while underestimated the regression coefficients 
of level-2 predictors. For example, it overestimated the 
regression coefficient for HomeW by 61% and SES by 54%, 
and underestimated the slope for SchTypes by 98% and 
for %Minority by 9%. Using aggregated analysis at the 

school level only produce a nonsignificant SchTypes. The 
results from aggregated analysis evidence the previous 
discussion: the aggregated analysis yield a large increase of 
multiple correlation coefficient, and under- or over-estimate 
the regression coefficients.  

The standard error of intercept is approximately twice as 
large in the results from random intercept model as in that 
from the disaggrated analysis. This implies that the 
disaggregate analysis produces an over-optimistic 
impression of the precision of this estimate, and illustrate the 
risk of overlooking the hierarchical structure in data analysis. 
Generally the standard errors from disaggregated model are 
smaller than those from multilevel models. The residual 
error is higher in the disaggregated model because the 
multilevel model allows for additional parameter to model 
the variation. The values of the regression coefficients at 
level-1 predictors (HomeW and SES) in the disaggregated 
and multilevel model are very close. This is because in 
REML, the fixed-effects coefficients are estimated with least 
squares methods as well. However, the relationships between 
outcome and level-2 predictors (SchTypes and %Minority) 
are stronger in the multilevel model than those in 
disaggregated models. The standard errors at level-2 
predictors are larger in multilevel model than in 
disaggregated model because single-level analysis tends to 
produce biased standard errors (generally lower than they 
should be) for the coefficients defined at level 2. 

This subset of NELS-88 can be further analyzed to 
investigate the possible cross-level interaction effects. A 
random intercepts and slopes model is fit to the data with the 
level-1 intercept and slopes (HomeW and SES) having 
SchTypes and %Minority as predictors. After standard 
HLMs/LMEs model-building procedure and model 
reduction, Table 2 is the results for the random intercepts and 
slopes model. 

The standard deviations for the random effects of 
intercepts, HomeW and SES are 2.478, 0.699 and 0.847, 
respectively. All estimates for the random effects are 
significant. The residual standard error is 8.118. The 
absolute value of log-likelihood is 7947.719. The 
variance-covariance model is general positive definite. All 
main effects are significant. The interpretation for the 
regression coefficients of fixed-effects are the same as that of 
the usual OLS regression. For example, Holding other 
variables constant, the regression coefficient for SchTypes is 
-3.182 means that on average a student in a private sector has 
math scores which is 3.182 higher than a student in the public 
sector. This analysis reveals a significant cross-level 
interaction between SES and %Minority. This interaction 
indicates that the slope for SES gets stronger as %Minority 
decrease. This also implies that higher socioeconomic status 
is associated with smaller effects of %Minority on math 
achievement. 
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Table 2.  Results of Multilevel Models with Cross-level Interaction 

Random Effects 

 Intercept HomeW SES Residual 

Standard Deviation 2.478 0.699 0.847 8.118 

Fixed Effects 

Parameter Value Std.Error DF t-value p-value 

(Intercept) 54.109 0.998 2137 54.204 <.0001 

HomeW 1.111 0.144 2137 7.692 <.0001 

SES 4.029 0.829 2137 4.860 <.0001 

SchTypes -3.182 0.979 97 -3.249 <.0001 

%Minority -0.899 0.154 97 -5.822 <.0001 

SES*%Minority -0.368 0.129 2137 -2.849 <.0001 

Note. (a) Model fit: AIC=15923.44, BIC=16003.44, logLik=-7947.72 

5. Conclusions and Suggestions 
The example demonstrated above highlight the features of 

multilevel models for analyzing educational data and how 
analysis by traditional regression models at single level can 
lead to biased estimated of standard errors and draw different 
conclusion. As demonstrated, HLMs/LMEs provide a 
powerful tool for analysis of hierarchical data. Alternatively, 
traditional analysis at the individual level or group level is 
problematic. Traditional analysis at individual level ignores 
dependence in the data that results from grouping, whereas 
analysis at the group level does not permit a straightforward 
inferences or prediction for individual. Traditional analysis 
cannot accurately model the true relationship between 
outcome and predictors. HLMs/ LMEs can include 
independent variables at either group or individual level and 
estimate their effects as well as interactions. The advantages 
of multilevel modeling include producing statistically 
efficient estimates of regression coefficients, correct 
standard errors, confidence intervals, and significant tests, 
can use covariates measured at any levels of hierarchy. With 
hierarchical data common in educational research, and with 
recent advanced developments of statistical software for the 
ease of performing multilevel modeling, it is hoped that 
educational researchers can become more acquainted with 
the procedures and rational of HLMs/LMES in analyzing 
hierarchical data. 

Although HLMs/ LMEs have many advantages in 
analyzing hierarchical data, they are not necessary in some 
circumstances. It should be noted that multilevel modeling 
approach can not be applied blindly. Researchers should be 
able to judge the circumstances where HLMs/LMEs are 
appropriate in analyzing hierarchical data. In some cases, 
separate regression line for each group is more appropriate. 
For example it is appropriate to fit separate regression line 
for each school if only a few schools involved and each with 
a large number of students, or researchers only want to make 

inferences about those specific schools. However, if these 
schools are regarded as a random sample from a population 
of schools and the research interest is to make inferences 
about the variation between schools in general, then a 
multilevel approach necessary. In some cases, standard 
multiple regressions and other single-level statistical 
methods are more appropriate. HLMs/LMEs are useful when 
random factors are present in multilevel data. When data do 
not show between-subjects variability, the cases have very 
large groups with very small intra-class correlations, the data 
already provide all information needed and inference only 
apply to the specified groups, or the research interest is to 
compare the average performance among groups, 
HLMs/LMEs are not necessary. In these cases, standard 
multiple regression methods, dummy variable regression, or 
varied experimental design techniques are enough to analyze 
data. Moreover, it should be careful in specifying the effects 
of the parameters in building HLMs/LMEs. Fixing an effect 
can change the results of the significant test on that effect as 
well as the estimates of other parameters. General guidelines 
to specify a fixed or random effect cannot apply to all 
situations. Models with too many parameters specified as 
random effects may have difficulty in convergence. Hence it 
is crucial to carefully examine the data structure, the results, 
and the underlying theory of the study before specifying 
fixed or random effects. 

For the further development of facilitating the application 
of HLMs/LMEs, visual-graphical techniques should be 
developed to explore multilevel data, aid model building and 
model checking support. Because multilevel data has the 
hierarchy of data structure, the exploratory analysis, 
statistical modeling, and examination of model-fit of 
multilevel data are more complicated than those of standard 
multiple regressions. Traditional statistical graphs (i.e., 
histograms, bar graphs, pie charts, stem-and-leaf display) are 
not enough to aid multilevel analysis. For example, in 
multilevel analysis, the evidence from data exploration has 
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to show the need of utilizing HLMs/LMEs (i.e., data have 
between-subjects variability) as well as the nature and the 
patterns of data structure. In model-building process, 
graphical methods should be able to guide the forms of fixed 
effects, the variance-covariance models, and the models for 
within-subject errors. In model-checking, it should help to 
understand the numerical facts for the results from the tests 
of assumptions. In other words, the questions often 
addressed in multilevel research—including characterizing 
or describing the patterns at both the group and individual 
levels, identifying the important predictors and unusual 
subjects, choosing suitable statistical models, selecting 
random-effects structures, suggesting possible residuals 
covariance models, and examining the model-fits—can be 
answered via visual-graphical methods. Conventional 
visualization methods, new graphical techniques, and the 
advance of graphical technology in computational ability 
should be integrated into a systematic procedure to suit 
multilevel modeling. 

Multilevel data are very common in social science 
research, especially challenging in educational field. 
HLMs/LMEs are often utilized to analyze multilevel data 
nowadays. This paper discusses the problems of utilizing 
ordinary regressions in analyzing multilevel educational data, 
compares three data analytic results from regression 
techniques, and demonstrates the appropriate uses of 
HLMs/LMEs. Some caveats and recommendations in 
utilizing HLMs/LMEs are highlighted. The attempt here is to 
advocate HLMs/LMEs as an alternative in analyzing 
multilevel educational data as well as provide guidelines and 
suggestions in appropriate use of multilevel modeling. 
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