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Abstract 
The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the 
universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical 
pendulum as part of the General Physics course for students in the universities. This approach was realized on bases of 
interactive simulations on a personal computer, a part of the free online e-learning system at http://ialms.net/sim/. This 
system was practically applied with students at Sofia University, Bulgaria, among others. The shown simulation 
demonstrates the capabilities of the Web for online representations and visualizations of simulated physics processes 
that are hard to observe in laboratory conditions with all the accompanying parameters, vectors, quantities and 
trajectories. The discussed simulation allows the study of spherical pendulum both in conservative and non-conservative 
force fields. The conservative force field is created by the earth gravity force, whose magnitude may be varied in the 
simulation from positive to negative values, while its direction is always vertical. The simulation also supports various 
non-conservative forces that may be applied to the pendulum. The current article concentrates on the case of 
conservative forces acting. 
Keywords: Simulation of spherical pendulum, 3D-stereo simulation, E-learning physics through stereo 3D 
visualization. 
 
Introduction 
 
This article describes the capabilities of the modern web technologies through online stereo 3D 
simulations of physics phenomena. Here we present a part of a free online virtual laboratory used 
for e-learning mechanics that is used for teaching the spherical pendulum. This simulation is 
implemented in the General Physics course for students at Sofia University, Bulgaria (see 
http://ialms.net/sim/). The student may observe the pendulum motion in conservative and non-
conservative force fields. Earth gravity force (adjustable by value) creates the conservative force 
field. Non-conservative force fields are the dissipative force of friction and external periodical 
sinusoidal, and horizontal forces along the Ox  and Oy  axes, which may be superimposed in the 
simulation. The current material concentrates on the case of conservative force field. 

The usage of computer-aided learning can be traced back to the early ages of the electronic 
computer. Modern technologies have brought this e-learning tool to unpredicted avenues (Ivanov & 
Neacsu, 2011). Further, the latest technological advances have enabled the realization of virtual 
laboratories that are accessed online on the Internet. These approaches, among others, include 
utilization of mobile devices (Vogt & Kuhn, 2013) and the application of stereo 3D vision in online 
physics education (Zabunov, 2012). The latter promises future astonishing implementations of 
distant e-learning systems. The usage of computer as a learning tool concerning the pendulum is 
well discussed in recent scientific papers (Lieto et al., 1991; Erkal, 2000; Aggarwal et al., 2005; 
Liang et al., 2008; Wadhwa, 2009; Gintautas & Hübler, 2009). 

The spherical pendulum motion is a fruitful mechanical setting. While simple to visualize 
and comprehend it has been the subject of analysis and discussions from scientific perspective to 
educational purpose. The motion of a classical pendulum in a gravitational conservative force field 
has been comprehensively discussed in a number of articles (Butikov, 1999; 2012; 2008; Essén & 
Apazidis, 2009; Anicin et al., 1993; Lane, 1970). On the other hand, the publication (Czudková & 
Musilová, 2000) reveals the truth that spherical pendulum and even its special cases, such as conical 
pendulum, seem to be difficult to understand not only for secondary school students but even for 
students taking introductory university courses in physics. In (Butikov, 1999) the physical 
pendulum is analysed and further examined using computerized simulations. 
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When introducing a simulation on the spherical pendulum, it should be 
noted that its dynamics equations define an analytical solution in several cases (Ochs, 2011; Yang et 
al., 2010; Johannessen, 2011). On the other hand, dumped cases along with special external force 
cases (forced pendulums) require approximate solutions (Beléndez et al., 2010; Johannessen, 2010; 
Qing-Xin & Pei, 2010). 
 

Description of the problem 
Practical teaching of the spherical pendulum and its special cases is impeded by the 

impossibility to observe all vector and scalar quantities, inherent to its kinematics and dynamics 
during a laboratory exercise. There are studies of performing experiments with the spherical 
pendulum in order to help students better understand certain problems (Russeva et al. 2010; Lee & 
Wong, 2011). The Foucault pendulum has generated substantial interest among researcher as well 
(Stanovnik, 2006; Mattila, 1991). 

The presented computer simulation creates the opportunity to watch a stereoscopic image of 
the simulated process along with its dynamical motion of the complete spherical pendulum dynamic 
model. The scalar quantities are printed with their momentary values, while all vector variables are 
rendered as arrows with different colours and also their component values are printed. In this way, a 
number of complex questions, related to the spherical pendulum, can be observed and clarified, and 
students may place the simulation in diverse situations and initial conditions targeting the 
explanation of certain phenomena. 
 

 
Figure 1. Spherical pendulum in online simulation. 

A comparison with existing simulation systems 
In recent years computers have become adequate to realizing sophisticated simulations of 

physical phenomena. 3D graphics are now capable of visualizing setups of laboratory settings and 
the realization of virtual laboratories is now possible (Gagnon, 2012; Lane, 2013; Wieman et al., 
2010; Christian & Esquembre, 2007; Blanton, 2006). 

Nevertheless, e-learning demands to reach further and requires more realistic visualizations 
and distant online access on the Internet. The author conducted research on the Internet and as a 
result an unassimilated resource for realizing 3D-computer graphical simulations of mechanical 
processes was revealed. Markedly distinct was the absence of serious simulations in the field of 
rigid body motion and the accompanying classical settings in teaching mechanics such as the 
spherical pendulum. 

Some of the discovered online simulations that relate to pendulums are: 
1. A planar pendulum simulation (http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=11). 

The viewer may observe pendulum momentum, period and other quantities. 
2. Another planar pendulum simulation: http://www.myphysicslab.com/pendulum1.html. A 

plot of the angular acceleration depending on the angle is generated. 
The presented simulations offer valuable visualization and interactive analysis of the studied 

settings, but they present only 2D graphical calculations and offer no visualization of all major 
vectors involved and other variables innate to the studied phenomenon. In contrast to the presented 
examples, the current simulation (Figure 1) offers an interactive process viewed in 3D stereoscopic 
view mode (Figure 2), which enhances dramatically the perception of the studied phenomenon and 
the understanding of a large number of relevant problems. 
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Figure 2. The scene from Figure 1 shown in stereo 3D graphics mode (use red-cyan anaglyph glasses to 

observe ). 
 

Description of the simulation interface and features 
A user’s manual may be accessed online on http://ialms.net/sim/3d-pendulum-simulation-

tutorial. The described simulation realizes spherical pendulum motion under different conditions. 
The simplest case is when no external forces are acting. The motion is determined only by the 
constraint of pendulum massless bar (string). The second option is to introduce an external force 
(force of weight or gravity force), which is a conservative force and creates a conservative force 
field. Additionally, the observer may introduce non-conservative forces such as dissipative force of 
friction and external periodical sinusoidal forces. As mentioned earlier, the current paper gives an 
account of the conservative case. The latter is examined using gravity force acting along the vertical 
Oz axis. 

We should mention that the pendulum is visualized in 3D graphics using textures and light 
shades to increase the ease of perception. All vectors are also presented in 3D view as arrows with 
different colours. Students may display the momentum of the pendulum as a vector. All acting 
forces can be shown with differently coloured vectors, along with angular momentum vector and 
moment of the resultant force vector. The two moments are calculated towards an origin point, 
which can be set with its three coordinates. The data panel presents values of the visualized vectors 
along with other scalar quantities related to the simulated process such as pendulum energies, the 
potential well and pendulum period (Gough, 1983; Turkyilmazoglu, 2010; Beléndez et al., 2011). 
The student may enter values for pendulum initial position and starting linear velocity. Learners 
may also select the pendulum length and mass in the corresponding fields. At any time the user may 
show or hide pendulum trajectory and its potential well by checking or unchecking the 
corresponding checkboxes. 
 

Studying the spherical pendulum through stereoscopic 3D simulation 
Studying the spherical pendulum in its special cases – planar and conical pendulum, is 

hampered because of the vector nature of its dynamical characteristics: force, momentum, moment 
of the resultant force (torque) and moment of momentum (angular momentum). 
 The simulation provides an opportunity to enhance the perception of vectors’ mutual 
disposition in space. Vectors may be displayed consecutively, for example one could first display 
the forces acting, then the torque and then the angular momentum. Thus the following vector 
products are illustrated: 

1. FrM


×= . Here F


 is the resultant force. The moment of the resultant force is calculated 
towards different origins as mentioned above. 

2. prL 
×= . Again, the angular momentum is calculated towards different origins. 

Thus the notions of moment towards origin and moment towards axis are clarified. The 

simulation demonstrates the relation between the two moments 
dt
LdM



= , which are presented 

simultaneously (Arnold, 1989). Thus, their cause-effect dependency is manifested, i.e. the change of 
the angular momentum is due to moment of external force. 
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 By the means of the simulation, a difficult to realize in practice effect is 
achieved – the altering of magnitude or introduction/elimination of external forces. For example, by 
the elimination of the gravity force, the pendulum continues to move along a circle solely under the 
action of the stretching (reaction) force of its bar (cord). The vector of the latter force points to the 
centre of the circular trajectory and is constant in its magnitude as is the magnitude of pendulum 
velocity, which is equal to the velocity magnitude in the moment of the gravity force elimination. 

 
Figure 3. Showing vectors along the simulation. 

 
Planar and conical pendulum 
Both planar pendulum and conical pendulum proved to be a successful starting point to 

teaching mechanics in schools and universities (Tongaonkar & Khadse, 2011; Bender, 2007). On 
Figure 4 a planar pendulum is shown, which swings in the vertical plane Oxz  (see the reference 
frame on Figure 4). Vector Oy  is normal to the pendulum motion plane. Pendulum trajectory is a 
circle or a sector of a circle with radius r , equal to the pendulum bar length. Figure 5 demonstrates 
a conical pendulum. 

 
Figure 4. Planar pendulum. 

These are, all, special cases of the spherical pendulum and hence they are examined first. 
The third special case, when the gravity force is not acting, is rather trivial, therefore it is not 
illustrated on a separate figure. The reader may place the simulation in such a condition and observe 
pendulum motion. It will be only mentioned that this case is also a planar case but with plane of 
movement not necessarily vertical as shown on Figure 4. It is important to remember that all 
examined cases are conservative and the force of air friction is excluded in the simulation. The only 
external force acting is the gravity force, while the bar force is defined as internal for the pendulum. 
The resultant force is, therefore, the sum of these two forces. The following dynamic variables are 
calculated and displayed: 

1. The bar stretching force (reaction force) – blue vector. 
2. Gravity force (constant) – green vector. 
3. Resultant force – yellow vector. 
4. Pendulum momentum proportional to its velocity – purple vector. 
5. Moment of resultant force towards a given origin 
6. Angular momentum towards a given origin 
The simulation enables the student to compare motions of conical and planar pendulums. It is 

elucidated that pendulum trajectory shape is determined only by the initial conditions and not by the 
external acting forces, because these are the same in both cases. Even having the same initial 
pendulum orientation, the initial velocity may be chosen so that it would yield a planar or a conical 
pendulum. The latter two, being special cases of pendulum motion, are observed under specific 
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initial conditions – the general case of the initial conditions yields spherical 
pendulum (see below). This is often a fact difficult to understand while studying mechanical 
motions. Assigning different initial conditions and observing the consequent trajectory shape is a 
beneficial task for students while they use the simulation. 
 

 
Figure 5. Conical pendulum. 

 
Another point of study is the static equilibrium pendulum state (lowest position). It is 

frequently bound with dynamical equilibrium where there are equal forces acting in opposite 
directions and a zero resultant force. It is visualized through the simulation where in this lowest 
position the resultant force is always pointing upwards against the pivot point and is not zero. This 
fact results from the presence of normal acceleration proportional to the square of the pendulum 
velocity. 
 

Spherical pendulum – the general case 
As previously mentioned, the general case of a pendulum is a motion whose trajectory does 

not develop on a plane, but rather on the surface of a sphere with radius equal to pendulum bar 
length. This general case is called spherical pendulum and may be observed in the simulation if 
initial values of velocity and orientation do not satisfy the planar and conical pendulum conditions 
(Figures 1, 2, 3, 7 and 8). 
 
Sample problems, solved with the help of the described simulation 

 

 
Figure 6. Shooting the pendulum. Total momentum conserved. 

 
Sample problem 1. The momentum conservation law may be demonstrated with this 

problem. Let the pendulum be in lowest position and the gravity force acting. The pendulum will be 
at rest. Let us shoot the pendulum with a bullet having mass of 10 grams and initial horizontal 
velocity of 500 m/s (Figure 6). 
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If the pendulum has mass of 1 kg, to what height after the shot will it 
climb before falling back again? 

 
Solution 
The momentum of the system of two bodies – pendulum and bullet, is conserved. Pendulum 

initial momentum is zero, while after the impact, which is fully inelastic one, the system of two 
bodies forms one compound body with mass 1,01 kg and the same momentum as the momentum of 
the bullet, i.e.: 

m/s9505.401.101.0 221 =⇒= vvv   
Hence, the compound system kinetic energy after the impact would be: 

J3762.12
2

2
2 =

mv  

At the highest point, pendulum kinetic energy would have been fully transformed into potential 
energy: 

m2491.1
22

2
2

2
2 ==⇒=

g
vhmghmv  

 
(see Figure 6 and http://ialms.net/sim/). ■ 

 
Sample problem 2. On Figure 7 it is depicted a simulation of a conical pendulum. The 

angular momentum and moment of resultant force are shown. The origin point of both moments is 
chosen so that torque is zero and angular momentum is therefore constant. 

a. What are the coordinates of this origin point? 
b. Why is angular velocity vertical? 
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Figure 7. Conical pendulum. Reference point for the moment of resultant force and angular momentum 

moved along the vertical axes to the plane of motion. 
 

Solution: 
a. The torque is equal to the cross product of radius vector and resultant force: 

FrM


×= . The latter is not zero and is pointing to the centre of the trajectory circle 
(Figure 6). The only possible variant that this vector product to be zero is when the 
radius vector is parallel to the resultant force, for which defines the origin point to 
coincide with the trajectory circle centre: (0,0,-3.54). 

b. Angular velocity is equal to the cross product of radius vector and momentum: 
prL 

×= . Momentum is horizontal. To satisfy sub-clause a. we chose a horizontal 
radius vector, orthogonal to momentum. This condition yields a vertical cross 
product. It should be mentioned that, due to orthogonality of momentum and radius 
vector, angular momentum magnitude towards origin point (0,0,-3.54) is equal to 
angular momentum towards Oz  axis. If we choose another origin point along the 
Oz  axis the z-component of the respective angular momentum will be always the 
same and equal to the magnitude of angular momentum with origin point (0,0,-
3.54). 

 

 
Figure 8. Spherical pendulum with initial velocity close but not equal to the conical case. Potential well is 

formed. 
 

Sample problem 3. Figure 5 shows the simulation of a pendulum under initial conditions 
satisfying a conical case. In this example the bar length is m5=r  and its starting angle is o45  
towards vector )( Oz− . 

What starting horizontal velocity should the pendulum have in order to start moving in a 
conical case? 

 
Solution: 
The condition defining a conical pendulum is: 

z

z
r
rrgv
22

2 −
−=  
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Where zr  is the z-component of the initial position of the pendulum? The o45  starting angle defines 

the relation 
2
rrz −= . Thus for the velocity it is calculated: 

sm89.568.34
2
581.9

2
2 =⇒=

×
== vgrv  

 
As the pendulum is initially oriented in the Oxz  plane the starting velocity is towards the Oy  axis 
(Figure 5) and the vector of the initial velocity is ( )0,89.5,0 ± . After setting these values in the 
simulation, pendulum starts to move conically and the vertical component of its velocity is always 
zero, the vertical component of its position is constant (the momentary values of these vectors are 
printed in the data panel on Figure 5 in the lower-right corner of the interface). 

What would happen if the above condition for initial velocity is not obeyed? If the initial 
velocity has the same direction (along the Oy  axis) but is greater in magnitude, a spherical 
pendulum is observed and the pendulum will start to raise after the initial moment. On the contrary, 
if the velocity magnitude is lower, pendulum will start to fall after initial moment. Students may 
observe these two cases by setting the initial velocity along Oy  axis to 9 and 3 meters per second 
respectively. 
 

 
Figure 9. Spherical pendulum with low initial velocity. A deep potential well is formed, but point (0,0,-l) is 

never reached. 
 

Sample problem 4. Each spherical pendulum has its potential well – limiting maximum and 
minimum heights (z-components of its position) beyond which it cannot travel (Beukers & 
Cushman, 2001). This potential well is defined by its initial conditions and the gravity force 
(Figures 8 and 9). 
Calculate the potential well of the pendulum if its initial conditions are, 

1. 2sm81.9=g  
2. m5=r  

3. m
2
25,0,

2
25

0 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=r  

4. ( ) sm0,8,00 =v  
Solution 
The potential well of the pendulum is defined by the cubic inequality: 

0
2

23
2

2
2223 ≥+++=−+−− dcrbrar

m
L

m
Errgrr

m
Egr zzz

z
zzz  

 
Let us first calculate the constants: 

1. 6836.2
2
2581.932

2 0

2
0 −=−=+= zgrv

m
E  
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2. 8002208
2
25

2

2

0000 =⇒==−=
m
Lvrvr

m
L z

xyyx
z  ( 0>zL  - pendulum is rotating to the 

left) 
Further, let us calculate the four quotients of the cubic inequality: 
 81.9=a  

6836.2=b  
 25.245−=c  
 09.467−=d  
We solve the cubic inequality and get [ ]m3849.2,5355.31 −−∈zr .  

Sample problem 5. Under what initial conditions would the pendulum form a 3-leaved 
daisy-like closed trajectory? 

Solution: 
Only an outline of the solution will be given. The pendulum conservative case has exact 

analytical solution and its motion properties can be formulated in terms of elliptic integrals and 
elliptic functions. Its motion is periodic while its trajectory may be a closed curve in finite time or 
not, depending on the initial conditions. 
 

 
Figure 10. Spherical pendulum with closed trajectory having three petals. 

Let us present the pendulum motion in cylindrical coordinates such that ϕρ cos=x , 
ϕρ sin=y  and zz =  ( ρ  is the horizontal projection of the radius vector and ϕ  is the angle between 

ρ  and Ox  axis). Then the relation between 
dz
dϕ  and z  is easily expressed. Integrating both sides of 

this equation for a full period maxminmax zzz →→ , or two times the half period maxmin zz → , leads to 
an equation presenting period angle Tϕ  in terms of initial conditions, involving elliptic integrals. 
Finding the reverse function (involves elliptic functions) yields a presentation of the initial 
conditions in terms of the period angle Tϕ . From the condition πϕπ 2<< T  it follows that a closed 
trajectory is observed when πϕ 2nm T =  (m  and n  are natural numbers and m  should be greater 

than n ). The trajectory will be a closed curve with 
2
mn  petals. For three petals we find 3=m , 2=n  

and 
3
4π

ϕ =T . 

Figure 10 presents the simulation of the pendulum, whose trajectory is a closed curve with 
three petals. The initial conditions for a horizontal pendulum are horizontal tangential velocity of 

m/s995.3 .  
Students’ response 
The simulation was used in lectures with students taking the General Physics course at Sofia 
University (Figure 11). 
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Figure 11. The author on a lecture with students at Sofia University. 

 
Lecturers and professors at the Faculty of Physics were among the many parties interested in 

this new approach and its efficiency. As a result a research questionnaire was developed and 
students were asked to answer the questions. Here an excerpt of the questionnaire is presented in 
order to show students’ attitude towards this novel visualization learning approach. Table 1. 
presents a small excerpt of the results from the study conducted after the simulation was presented 
to students as a method of blended tutoring. It was found that the simulation helps in two directions 
mainly: forming concepts such as vector variables and other quantities related to the simulated 
process (force, acceleration, trajectories of motion, etc.); improving the comprehension of concepts 
and relations between those. The students were informed that they could use the simulation free 
without limitations from the Internet at web address http://ialms.net/sim. 
 

 
After using the simulation, did you acquire a clearer notion of quantities and laws in 

mechanics? 

 
 
 
 

1 
Table 1. An extract of students’ responses to questions regarding the effects of teaching spherical 

pendulum using the 3D stereo online simulation 
The reported observations lead to a conclusion that the implementation of 3D-stereo online 

simulations promotes the comprehension and intensifies the motivation of students in learning the 
taught material. 
 
 
Conclusion 
 
This article focuses on the use of online e-learning simulation that visualizes through stereo 3D 
graphics the spherical pendulum in conservative force field. The author presents the benefits from 
using the simulation and how new technologies may be utilized to create virtual online laboratories 
with efficient and effective 3D stereo presentation approach. 
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