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Abstract 
 
  Researchers have documented difficulties that elementary school stu-
dents have in understanding volume. Despite its importance in higher math-
ematics, we know little about college students' understanding of volume. 
This study investigated calculus students' understanding of volume. Clini-
cal interview transcripts and written responses to volume problems were 
analyzed. One finding is that some calculus students, when asked to find 
volume, find surface area instead and others blend volume and surface area 
elements. We found that some of these students believe adding the areas 
of an object's faces measures three-dimensional space. Findings from in-
terviews also revealed that understanding volume as an array of cubes is 
connected to successfully solving volume problems. This finding and others 
are compared to what has been documented for elementary school students. 
Implications for calculus teaching and learning are discussed.

Introduction

  We know from research that volume presents challenges to elementary 
school students (Battista & Clements, 1998; De Corte, Verschaffel, & Van 
Collie, 1998;  Fuys, Geddes, & Tischler, 1998; Hirstein, Lamb & Osborne, 
1978; Iszák, 2005; Lehrer. 2003; Lehrer, Jenkins, & Osana, 1998; Mack, 
2011; Nesher, 1992; Peled & Nesher,1998; Simon & Blume, 1994). These 
difficulties are also reflected in student performance on standardized test 
items. For example, on an eighth grade National Assessment of Educational 
Progress (NAEP) multiple-choice question (U.S. Department of Education, 
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2007), students were given the dimensions of five rectangular prisms and 
asked which had the greatest volume. Only 75% of students answered cor-
rectly, which indicates that students may enter high school (where instruc-
tion builds on presumed competence with volume concepts) without profi-
ciency in volume calculations. It would be useful to know if the difficulties 
elementary school students face persist through high school and into their 
study of college-level mathematics.
  We conducted this study within a cognitivist framework (Byrnes, 2000), 
giving students mathematical tasks and analyzing the reasoning underly-
ing their answers. This is consistent with the cognitivist orientation toward 
focusing on "the cognitive events that subtend or cause behaviors (e.g., [a 
student's] conceptual understanding of the question)" (Byrnes, 2001, p. 3). 
We collected written survey data and conducted clinical interviews to inves-
tigate the following research questions:
	1. How successful are calculus students at volume computational problems?
	2. Do calculus students find surface area when directed to find volume?

Our major finding is that nearly all students correctly calculate the volume 
of a rectangular prism, but many students perform surface area calculations 
or calculations that combine volume and surface area elements when asked 
to find the volume of other shapes.

Student Thinking about Volume

  Volume is first learned in elementary school (NCTM, 2000; NGA & CC-
SSO, 2010) and, as noted above, little literature exists about calculus stu-
dents' understanding of volume. Key issues that have been the focus of re-
search include elementary school students' understanding of cross-sections.

Elementary School Students' Volume Understanding
  Volume computations rely on the idea of array of cubes. A three-dimen-
sional array is formed by the iteration of a cube into rows, columns, and 
layers such that there are no gaps or overlaps. Two difficulties students have 
are understanding an array's unit structure (Battista & Clements, 1996) and 
using an array to compute volume (Curry & Outhred, 2005).
  These are related difficulties. One source of difficulty with using an array 
for computation is not seeing the relationships between rows, columns, and 
layers. Some students, given an array of cubes and asked to find volume, 
counted individualized cubes with "no global organizational schema" and 
seemed to view the answer as representing "a large number of randomly ar-
ranged objects" rather than a count that represented the array's volume (Bat-
tista & Clements, 1998, p. 228-229). Other researchers have concluded that 
elementary school students seem to see units as individual pieces to count 
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rather than fractional parts of an initial whole (Hirstein, Lamb, & Osborne, 
1978; Mack, 2011). Students who counted individual cubes neglected the 
innermost cubes and sometimes double-count edge and corner cubes (Bat-
tista & Clements, 1996).
  Battista and Clements (1996) studied students' enumeration of three-
dimensional cube arrays using written and manipulative tasks and found 
that only 23% of third graders and 63% of fifth graders could determine the 
number of cubes in a 3x4x5 cube building made from interlocking centime-
ter cubes. The researchers concluded that "students might see the three-di-
mensional array strictly in terms of its faces" (Battista & Clements, 1998, p. 
229). In other words, these students may have been thinking about surface 
area when asked about volume.
  Curry and Outhred (2005) found that students who are successful at enu-
merating arrays of cubes seem to have a mental picture of arrays and use 
a computational strategy of counting the units in the base layer and multi-
plying by the number of layers (Curry & Outhred, 2006) while the unsuc-
cessful students typically covered only the base of the box. The research-
ers concluded that although "most students seem to have achieved a sound 
understanding of length and area measurement by Grade 4, the same cannot 
be said for volume [arrays]" (p. 272).
  Some elementary school students use area and volume formulae with-
out understanding them (De Corte, Verschaffel, & van Collie, 1998; Fuys, 
Geddes, & Tischler, 1988; Nesher, 1992; Peled & Nesher, 1988). In a study 
about students'  multiplication strategies, De Corte el al. (1998) included 
area computation problems and found that students may multiply length 
times width to find area (not [as] a result of a 'deep' understanding of the 
problem structure and a mindful matching of that understanding with a for-
mal arithmetical operation, but...based on the direct and rather mindless 
application of a well-known formula" (p. 19). Echoing this, Battista and 
Clements (1998) found some students use V=LWH "with no indication that 
they understand it in terms of layers" (Battista & Clements, 1998, p. 222). 
Even some prospective elementary school teachers use the A=lw formula 
without being able to explain why it finds area (Simon & Blume, 1994).

Secondary School Students' Understanding of Cross-Sections
  Identifying the shape of a solid's cross section is difficult for middle 
school and high school students (Davis, 1973). This finding is important 
because some volumes can be thought of as V=Bh where B is the area of 
the base of the solid and the base is, in fact, a cross-section. This finding 
carries particular importance if it is also true for calculus students, as vol-
umes of solids of revolution problems require identifying the shape of a 
cross-section.
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  The present study was designed to investigate calculus students' com-
putations of volume, their understanding of volume formulae, as well as 
the issues noted above that other researchers have documented in younger 
students.

Research Design

Data Sources and Instrument
  The data analyzed here are from written surveys completed by 198 dif-
ferential calculus students and 20 clinical interviews with a subset of those 
students. Subjects were enrolled in differential calculus at a large public 
northeastern university and the researchers recruited volunteers to complete 
written surveys and clinical interviews. Data were collected for three se-
mesters: spring 2011, summer 2011, and fall 2012. The university offers a 
single track of calculus for all majors in the physical sciences, engineering, 
biological sciences and education, as well as other disciplines.
  Data collection and analysis had two phases. First, students completed 
written tasks. Since our focus was on the reasoning behind students' an-
swers, we interviewed a subset of the students so that we could hear how 
students reasoned through the problems and ask questions about their rea-
soning. This methodology allowed for a quantitative analysis of a large 
number of written responses and a qualitative analysis of student thinking 
about those responses.
  The written survey tasks consisted of diagrams of solids with dimensions 
labeled. Students were directed to compute the volume of the solid and 
explain their work. The rectangular prism task is shown in Figure 1. The 
other tasks were:

Figure 1.
Volume of a Rectantular Prism
What is the volume of the box? Ex-
plain how you found it.

•	 A right triangular prism; triangular base 
1=3 ft, h=4 ft; hprism=8 ft

•	 A cylinder, r=3 in., h=8 in.
The complete statements of these tasks can 
be found in Appendix A.
  Interviewees completed that written in-
strument but were asked to "think aloud" 
as they worked on the tasks. Clarifying 
questions were asked to probe understand-
ing. Commonly-asked questions of this sort 
were "Can you tell me about that formula? 
Why is the 2 there?" and "Can you tell me 
why that formula finds volume?" Interviews 
were audio recorded and transcribed.
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Method of Data Analysis
  Data were analyzed using a Grounded Theory-inspired approach (Glaser 
& Strauss, 1967). This entailed looking for patterns in a portion of the data 
and forming categories, then creating category descriptions and criteria. 
Those criteria were then used to code all the data, refining categories un-
til new categories ceased to emerge. One departure from classic Grounded  
Theory was accessing literature prior to coding. A second was the use of 
anecdotal evidence that calculus students sometimes find surface area when 
asked to find volume. These departures informed coding in that prior to 
looking at data, we had ideas about what categories might emerge.
  Analyzing written responses required deciding which parts of a response 
were relevant to the research question. We used the magnitude of the answer 
to judge correctness and we looked at written work (arithmetic) as it gave 
clues to student thinking. Units were not taken into account here, though 
the units students use for spatial computations is an additional issue that 
was part of a larger study (Dorko, 2012). Analysis was done by shape, not 
by student. That is, the data presented are the percent of students whose 
responses fell into each category for that task. The initial analysis resulted 
in three categories for students' work; volume, surface area [instead of vol-
ume], and other. The categories and their criteria are presented in Table 1. 
We used these criteria to develop coding algorithms for the three volume 
problems. An example of a task and its algorithm are shown in Figure 2. All 
algorithms were created in a way that sorted responses based on identifying 
parts of a student's work that might represent finding surface area, parts of 
a student's work that might represent finding volume, and an "other" cat-
egory for responses that had neither of the aforementioned ideas. That is, 
algorithms for the other shapes are similar to the algorithm presented below 
(see Appendix B).
Table 1.
Categories for written responses.
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Figure 2.
Volume of Cylinder task.

Coding algorithm for the cylinder (correct vol-
ume 72π units3; correct surface area: 66π units2)

1.	 If the work says πr2h, 2πr2h, 72π, or 144π, 
categorize as "found volume." If not, go to 
step 2.

2.	 Did the student write πr2 + ______ or 2πr2 
+ ______ where ______ is something that 
looks like it might be πdh or some other 
computation that looks like an area of a lat-
eral face? Did the student write 66π? In ei-
ther case, categorize as "found surface area 
instead of volume." If not, proceed to step 3.

3.	 Categorize as "other."

  The method of analysis for interview data mirrored the method of analy-
sis for survey data. As interview data included both transcripts and students' 
written work, there were two parts to the analysis. First, written data were 
categorized according to the aforementioned algorithms. Then, transcripts 
were used to investigate the thinking that led to answers for each category. 
For instance, we looked for students who used the formulae 2πr2h and asked 
the student to "unpack" the formulae. Specifically, we looked for explana-
tion of why the 2 was there. Did the student think the area of a circle was 
2πr2? Did the two refer to the two bases of a cylinder? A 'yes' to the first 
would be consistent with thinking of volume as area of base times height, 
albeit with an incorrect formula for the area of the base. A 'yes' to the second 
would be consistent with the surface area idea of including the area of all 
faces. This analysis was used in two ways: to sort student formulae and to 
investigate why students find surface area instead of volume.
  In the next section, we present the findings from our analyses. We use 
interview data to further explain some of these results. In particular, we use 
interview quotes to clarify how we classified students' volume formulae. 
The second section of the results contain students' success rates on the tasks, 
relying on coding from the written data. We return to the interview data to 
discuss why some students find surface area and the relationship between 
students' understanding of arrays and their computational success.

Results and Discussion

  We present our findings in four parts. One finding is about students' rea-
soning and computational formulae, and since this is a good overview of the 
issues students have with volume, we begin with that and follow it with suc-
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cess rates on the problems. We then discuss why some students find surface 
area instead of volume. The final section is about the relationship between 
success on problems and understanding arrays.

Students' Volume Formulae
  We believe there is an important link between students' formulae and 
their reasoning: that is, our data leads us to believe that students' formula 
are not (as is commonly assumed) remembered or misremembered, but are 
instead representative of ideas students have about volume. This finding, 
based on the synthesis of interview data with written work, let us to catego-
rize students' formulae according to their surface area and volume elements. 
What we mean by "surface area and volume elements" is what we alluded 
to in discussing how the 2 in 2πr2h might from the ill-remembered area for-
mula and might be from accounting for two bases. Categorizing students' 
formula in this way gave us the categories and component formulae shown 
in Table 3. The example given is for the cylinder; similar tables exist for 
each shape and are included in Appendix C. (Note the appearance of 2πr2h 
in both the "incorrect volume, no surface area element" and "surface area 
and volume elements" categories, per the reasoning stated above).

Table 2.
Categories for student responses to the cylinder task.

  This table includes all formulae that appeared in students' written work 
and interviews. Interview data provided help in placing the formula, and 
interview data are the basis of our claim that students' formulae are a reflec-
tion of their reasoning. For instance, consider Nell's reasoning about the 
volume of the cylinder:

hdr
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	 Nell: I don't know the formula for this one. Two pi r squared... times the 
height. Sure. We'll go with that one. So you have two circles at the ends, 
which is two pi r squared... you have two pi r squared because that's the 
area on the top and the bottom so you can just double it, then you have to 
times it by the height.

	 Interviewer: Why do I have two areas?
	 Nell: You have two circles/
	 Interviewer: What about this multiplying by the height? Why do we do 

that?
	 Nell: It gives you the space between the two areas. Volume is all about the 

space something takes up so you need to know how tall it is.

Table 3.
Counts and percentages of students who did and did not find volume.

Nell's reference to the space between two areas is indicative that she was 
thinking about volume. However, her formula (2πr2h) included a surface 
area idea: she explained it as "the area on the top and the area on the bottom, 
so you can just double [πr2]". We thus put the formula 2πr2h in the "surface 
area and volume elements" category (see Table 3). It is also included in the 
"incorrect volume, no surface area elements" because other students talked 
about this formula as area of base times height where the area of the base 
was 2πr2. In this case, the two is not a nod to two bases, it is an incorrect 
formula for area but correct reasoning for volume.
  Nell was not the only student who thought about including both circles 
when finding volume: Jo went back and forth about whether she could use 
the formula 2πr2h or πr2h. The interviewer asked her to make the case for 
both one and two circles as a way to investigate her reasoning:

Jo: The area of the circle is pi r squared times the height, but I can't de-
cide if I need one or two circles.
Interviewer: Convince me that you need two circles.
Jo: You need two because you have the top and the bottom of the cylin-
der. But you don't actually need two... you just need the one. Because you 
get the area of the circle and you multiply it by the height... the circle is 
the same throughout the whole layer so you just multiply it by the height.
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Jo's final reasoning was correct, but it's noteworthy that her initial response 
to the problem involved a surface area idea. Thus, despite her correct final 
response, we believe this is evidence that some students have mixed and 
combined surface area and volume ideas.
  Most of the elements of the categories shown in Table 3 come from stu-
dents' written work. No interviewee used a formula like (4/3)πr2h (or any 
of the others with a fractional coefficient for an otherwise correct volume 
formula), but we suspect students mixed and combined the formula for a 
cylinder with that of sphere, pyramid, or cone − all shapes whose volume 
formulas have fractional coefficients. Further, we suspect that students who 
use these formulae do not have an understanding of volume as area of base 
times height. Our evidence for this claim is that for a student who under-
stands volume as area of base times height, a formula like (1/3)πr2h makes 
little sense.
  The other formulae in the table provide additional evidence that some 
calculus students have difficulties with volume and surface area. We think 
answers like 'hdr' and πrh (both from "incorrect volume, no surface area ele-
ments") in which it seems the student has multiplied whatever dimensions 
were given (and in the latter, probably remembered that circle calculations 
often involve π) may result from translating a V=lwh form to a different 
shape. That is, we speculate that the students have a schema for volume to 
the effect of "volume is the product of measured attributes" and roughly 
equated V=lwh to V=hdr. Other instances of this included multiplying all of 
the dimensions given in the triangular prism; for instance, students' volume 
calculations included formulae like and 3 x 4x 5, (½) x 3 x 4 x 5 x 8. These 
lend further evidence that some students may hold "multiply whatever num-
bers you're given" as an accurate way to find volume, and moreover, don't 
understand volume as area of base times height.
  In conclusion, we found that calculus students who are unsuccessful at 
finding volume often find surface area or a number that represents a com-
bination of surface area and volume ideas. We speculate that many students 
do not understand volume as area of base times height, and construct for-
mula based on ideas about area and volume. Some of those ideas include 
volume formula often having fractional coefficients (as in the (½) x 3 x 4 x 
5 x 8 and (4/3)πr2h cases), or the more troublesome cases in which students 
have combined surface area and volume ideas. In the next section, we dis-
cuss the prevalence of these sorts of difficulties.

Students' Performance on Volume Tasks
  The counts and percentages of students who found volume, surface area, 
or other for the four solids are shown in Table 4.
This table shows that 98% of students found the volume of the rectangu-
lar prism; 87% of students found the volume of the cylinder, and 78% of 
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students found the volume of the triangular prism. We speculate that a rect-
angular prism is more common shape and thus students have its volume 
formula memorized, but struggle when they encounter other shapes. Cer-
tainly, Nell and Jo struggled with how they might find the volume of the 
cylinder. We also note that students were more likely to find surface area for 
the cylinder and the triangular prism (5.1% and 13.9%, respectively). Fur-
ther research is needed to explain exactly why different shapes are harder 
in terms of finding volume, but we suspect the reason may be students not 
understanding volume as area of base times height or the combination some 
students hold of surface area and volume ideas.

Why Some Students Find Surface Area
  We used interview data to examine why some students find surface area 
when directed to find volume. One reason is that some students seem to 
have combined elements from formulae, as Nell and Jo did. Despite the fact 
that both of these students understood volume as three-dimensional space, 
as evidenced by Nell's comment about volume being the "space between 
the two areas" and Jo's comment that the circle was "the same all the way 
through so we can just multiply by the height." A different reason that some 
students find surface area is the belief that adding the areas of the faces 
measures three-dimensional space. For instance, Geddy's description of 
filling an object with sugar cubes is indicative of understanding the concept 
of volume:

Geddy: Volume is the amount of units it takes to occupy a space, like 
a three dimensional space. If you think of a box of sugar cubes, like a 
Domino box, I think when they come packaged they are usually just full 
of the little sugar cubes and there's no space between those cubes. So 
that's what volume is. It's when you have a bunch of little smaller pieces 
combining to fill a space without any gaps.

Geddy's "volume" computation, however, was actually a surface area com-
putation (see Figure 3).

Figure 3. Surface area of the triangular prism
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Alex also understood volume but found surface area. She described volume 
as "when I think of volume I think of, like, this water bottle − what's the 
volume of water it can hold." Talking about holding water is evidence of 
understanding volume as three-dimensional space. However, Alex found 
the surface area of the triangular prism. Her work is shown in Figure 4.

We asked Alex to explain her work.
Alex: I took the area of each rectangle and added that up, then I took the 
area of the triangles and added that to the rectangles to get the overall 
area. And I couldn't remember the area for the triangle. I thought it was 
1/2 times base times height, which is 6. And there are 2, so 6 times 2 
equals 12, so 12 is the area of the triangles... and then the area of the rect-
angles... and I just added them all together.

There is a discrepancy in Alex, Geddy, and other students' understanding 
of volume as a concept and their calculations such that these students un-
derstanding volume, but think adding the areas of the faces accounts for the 
measure of a three-dimensional space. This reasoning, and the combination 
of surface-area-and-volume formula discussed above, are the two reasons 
that students in this study found surface area when directed to find volume.
  An understanding that seems to be connected to students' success on area 

Figure 4.
Alex's triangular prism.

Figure 3. Next Best Version
Surface area of the triangular prism
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and volume tasks is their understanding of arrays. We discuss this finding 
in the next section.

Students' Understanding of Arrays

  A number of students used the formula V=1wh to find the volume of the 
rectangular prism. We asked interviewees to "unpack" this formula to see 
if they were simply reciting a formula or if they understood why it finds 
volume. Students' responses led us to several findings about their under-
standing of arrays. In this section, we discuss these findings and compare 
them to findings about elementary school students' understanding of arrays.
  One finding about calculus students is that some students can describe 
the formula V=1wh in terms of relationships between rows, columns, and 
layers for a rectangular prism but not for other shapes. For instance, Amelia 
used the lwh formula for the volume of the rectangular prism and talked 
about an array when the researcher asked her to unpack that formula.

Amelia: If we think about this in terms of area − you still have like this 
box [points to the 5 cm x 10 cm face], as long as you can figure out that 
there's like [draws a 5 x 10 array of squares on the face] so this represents 
50 boxes, then you know that you have four of these... so you can think of 
it as having four sheets of 50 squares.

Amelia's drawing is shown in Figure 5. She has drawn 'boxes' (unit squares) 
on the front face and indicated the four 'sheets' (layers) along the 4 cm or-
thogonal face.

Figure 5.
Amelia's rectangular prism.

While this work is indicative that Amelia understands arrays, her attempt 
to apply an array to the triangular prism problem indicated that her under-
standing of arrays as specific to the rectangular prism. We had asked her if 



- 60 -

the "sheets" idea applied to the triangular prism, and she had trouble imag-
ining cutting a unit cube to fit an acute angle:

Amelia: Where its a triangle,  you obviously can't squeeze a square into 
an acute angle. I guess that's why we have formulas, because we can't 
physically put a cubed object into that space there.

A thorough understanding of arrays would include the idea of fractions of 
unit cubes, an idea that eluded Amelia. She had found the correct volume 
of the rectangular prism, but found surface area in the triangular prism task. 
Geddy's work was similar: she explained volume as an array for the rectan-
gular prism but found surface area for the triangular prism (see Figure 3). 
In contrast to Amelia, however, Geddy did seem to apply the array model to 
the rectangular prism. She said

Geddy: Well, since it's 108, it's an even number of cubes. You'd be able to 
use squares equal to volume 1 ft cubed and you should be able to fit them 
all in without having any gaps.

We take Geddy's phrase about "squares equal to volume 1 ft cubed" to mean 
unit cubes and the statement about "fitting them in without gaps" to be in-
dicative of an array of cubes.

  A second finding about calculus students is that some do not have an 
array model for volume at all. Carly, one of the students who found the sur-
face area of the rectangular prism, did not seem to have an understanding of 
arrays. She discussed her reasoning about the rectangular prism:

Carly: I know there's an equation for volume. I don't remember what the 
equation is, but you know this is 5, this is 4, this is 10 [labels diagram]. I 
know you can find each side but I don't that gives you the volume... like 
find 10 times 4 so you know this side is 40 cm and this side is 10 times 5 
so this side is 50. And I would just assume that this side is the same so I'd 
say the back side is 50 and the bottom would be 5 times 4 so that would be 
20 and the top would be 20. But if you add all those together I don't think 
that would give you the volume because volume includes all the space in 
between − like in the middle of the box.

Carly had the correct idea that volume should account for "the middle" of 
the shape, but was not able to extend the idea of accounting for "the middle" 
to appropriate mathematics. Rather, she reverted to two-dimensional ideas. 
This leads us to the following: we hypothesize that there may be a relation-
ship between students' array understanding and their success on these tasks.
  This finding is strengthened by a number of students who described vol-
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ume as an array or as layers and answered all of the problems correctly. For 
instance, Luke found the correct volumes for all shapes.  He talked about 
depth and planes in the rectangular prism, which we consider analogous to 
layers in an array:

Luke: The volume of the box is 10 cm x 4 cm x 5 cm, and that is 200 
cm3. I think of it as having an area, which is one plane, and you're mul-
tiplying it over 4 cm so you multiply your one plane by the depth of the 
object and that gives you the volume.

Wendell, who also found volume on all the tasks, discussed the volume of 
the rectangular prism similarly:

Wendell: I'm a hands-on kind of person so I think it would be easiest 
to explain by giving them 5 one-centimeter cubes and show them that's 
one stack, then do it by 4, then tell them there are 10 stacks high. Then 
you tell them if there are 20 in the bottom and 10 stacks high, 20 x 10 
is how you find the volume.

We did not ask Luke and Wendell to sketch arrays for the other shapes, but 
based on their descriptions for the rectangular prism array and their success 
on the other task, we suspect they would have sketched and described ac-
curate array models for these shapes. Furthermore, we suspect that having 
these models is related to their computational success across all of the tasks. 
In contrast, the less-robust understanding of arrays in the other students 
(Geddy, Amelia, and Carly) may be related to their surface area finding in 
other tasks. Carly found surface area on all the tasks and did not understand-
ing arrays; Geddy found surface area on two of the tasks but did understand 
arrays; Amelia understood an array only in terms of the rectangular prism 
and found volume for that task but surface area on the others. Luke and 
Wendell understood arrays and solved all of the problems correctly. We 
believe these data suggest that having an array model of volume for a shape 
has some connection to successfully finding volume of that shape (but not 
necessarily others), while not having an array model of volume for a shape 
may be connected to surface area computations (or computations involving 
both surface area and volume elements).
  These calculus students' difficulties with arrays are similar to the difficul-
ties faced by elementary students about the same topic. Elementary school 
students  have trouble  understanding the unit structure of an array (Battista 
& Clements, 1996) and using an array to compute volume (Curry & Outh-
red, 2005). We found that some calculus students, like elementary school 
students, have trouble with the structure of an array (e.g., Carly's work.) 
However, while elementary school students often do not see the relationship 
among the rows, columns, and layers in an array, many calculus students do 
(e.g., Wendell and Luke) and can use them for computation. Between the 
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extremes of 'no array model' and 'array model', there are calculus students 
who have a model for a rectangular prism but not other shapes. We suspect 
a student's array model, robust or otherwise, is related to computational 
ability. In conclusion, while some calculus students' have overcome the 
difficulties elementary school students face with arrays, others continue to 
struggle with array models and their use in volume computation.
  In the next section, we state some final conclusions as well as implica-
tions for instruction and suggestions for further research.

Conclusions, Implications for Instruction, and Suggestions for
Further Research
  One of the questions this study sought to answer was "How successful 
are calculus students at solving computational volume problems?" Success 
depends on shape. For the rectangular prism, 98.5% of calculus students 
found volume; 94.5% of students found the volume of the cylinder; and 
84.2% of students found the volume of the triangular prism. It's important 
to note that students were more successful with the rectangular prism than 
the assumedly less familiar cylinder and triangular prism.
  This may have  implications for volume-finding in calculus; for instance, 
volumes of solids of revolution are rarely elementary shapes. A related find-
ing with relevance to volumes of solids of revolution  is that students who 
successfully found volume often thought of it in terms of area of base times 
height or as an array with layers. The base or a layer is a cross-section of 
the solid. Solving a volume of revolution problem often requires identifying 
the shape of a cross section and an expression to represent its area. The area 
expression is then integrated to find the volume of the solid. We think this 
is similar to area of base times height and to a layer model of volume be-
cause the integration sums the volume of infinitesimally thin layers (cross-
sections). We suggest that instructors include these models of volume as 
part of instruction about volumes of solids of revolution.
  The other research questions concerned whether or not calculus students 
find surface area when directed to find volume. As with volume-finding, 
the percentage differs by shape (1.5% for the rectangular prism, 5.5% for 
the cylinder, and 15.2% for the triangular prism). Further research is needed 
to know exactly what causes the differences in surface area finding for dif-
ferent shapes, but findings from the present study provides some insights 
as to why students find surface area at all. One reason is that some students 
think that adding the areas of faces measures three-dimensional space. A 
second is that some students have a clear conceptual understanding of vol-
ume, but blend of surface area and volume elements in computational for-
mula. This has important implications for calculus learning, particularly in 
optimization problems. Standard optimization problems require students to 
minimize the surface area for a given volume (or vise versa). Students must 
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construct formulae for both, solve one for a variable (often height) that can 
be substituted into the other equation, and only then can a student begin the 
calculus involved. It's possible that difficulties with optimization may be 
linked to these first few non-calculus steps. While further research is needed 
to confirm if this is the case, we suggest that instructors provide opportuni-
ties for students to revisit surface area and volume concepts and formulae, 
and perhaps give students these formulae on exams to ensure that calculus 
knowledge, rather then geometry knowledge is tested.

Issues Shared By Calculus Students and Elementary School Students
  Finding surface area when directed to find volume is an issue that has been 
documented with elementary school students. In a Battista and Clements 
(1998) study, three tasks were given in which third- and fifth- grades students 
were directed to find the volume of a three-dimensional array of cubes. About 
18% found surface area using pictures of a 4x2x2 array, a 4x3x3 array and a 
manipulative 3x4x5 array. In this study, 1.5% of students found surface area 
of a picture of a rectangular prism. We conclude that, at least for this shape, 
calculus students are more successful than elementary school students at find-
ing volume, but it exists as an issue in both populations.
  An additional issue shared by calculus students and elementary school 
students is that some students from both populations struggle with repre-
senting volumes with arrays and using the arrays for volume computations.

Implications for Instruction
  In addition to the instructional implications mentioned above, we think 
instructors can use students' computational formulae to diagnose their ideas. 
Our findings indicate that students' formulae are often indicative of ideas 
they hold about surface area and volume, such as Nell and Jo's thoughts 
about whether or not to include the two bases in finding the area of the 
cylinder. We think that sorting students' formulae, as we did in Table 3, can 
be useful to identify ideas they bring to a computation. Instruction can then 
target those particular conceptions.
  Additionally, we believe that many of students' errors result from not 
understanding volume as an array. We thus suggest that instructors provide 
students with educational opportunities to model volumes with arrays and 
connect the models to volume formulae. In a similar vein, we think that the 
conception of volume as area of base times height should be emphasized 
and, in calculus, connected to the idea of cross-sections. This could improve 
student success on volumes of solids of revolution, a notably difficult cal-
culus topic (Orton, 1983).
  Finally, we found that students' success in finding volume was somewhat 
shape-dependent. We suggest that volume learners proactive finding the 
volumes of a variety of shapes, rectangular solids and otherwise.
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Suggestions for Further Research
  We are particularly interested in how students' understanding of volume, 
and the surface area-volume combinations found here, are brought to bear 
in calculus topics like optimization, related rates, and volumes of solids of 
revolution. Many optimization problems  use both surface area and volume. 
We are interested in how students who have difficulty with volume work 
through these problems. We suspect that, as in other areas of research about 
calculus learning, the issues students have with calculus topics is rooted in 
issues with underlying concepts. Further research is needed to investigate if 
this is also the case with volume and the calculus topics that use it.

____________________
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at the University of Maine.
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