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Abstract 
 
We should dispense with use of the confusing term null hypothesis in educational research reports. To 
explain why the term should be dropped, the nature of, and relationship between, scientific and statistical 
hypothesis testing is clarified by explication of (a) the scientific reasoning used by Gregor Mendel in 
testing specific hypotheses derived from his general inheritance theory and (b) the statistical reasoning 
used in applying the chi-square statistic to his experimental data. The Mendel example is followed by 
application of the same pattern of scientific and statistical reasoning to educational examples. A better 
understanding of the related, but separate, processes of scientific and statistical hypothesis testing, 
including the role of scientific hypotheses (i.e., proposed explanations) and scientific predictions (i.e., 
expected test results), not only reveals why null statistical hypotheses and predictions need not be stated, 
but also reveals how we can improve the clarity of our research reports and improve the quality of the 
research reported by insuring that alternative scientific hypotheses and theories are in fact tested. 
 
P. Eastwell (personal communication, July 5, 2006) asked readers to consider the confusing and 
possible misuse of the term null hypothesis in the context of research reports. In Eastwell’s words: 
 

We distinguish a prediction (an educated guess about the expected outcome of a test) from 
a hypothesis (a possible explanation for the observed facts and laws). Does it follow that 
science education researchers should now dispense with the use of the term null hypothesis 
in circumstances where it is really a null prediction that is being tested? 

 
I think it would be helpful if science education researchers dispensed with use of the term null 
hypothesis under any circumstances, primarily because the term comes from the field of statistics 
and its relationship to scientific hypothesis testing is seldom, if ever, made clear. Hence its use in 
educational research often leads to confusion and may even limit research quality by restricting the 
number of scientific hypotheses generated and tested. As will become clear in this paper, the term 
null prediction is also not required. 
 
Allow me to attempt to clarify by explicating important similarities and differences between 
scientific and statistical hypothesis testing in the context of a crucial experiment conducted by 
Gregor Mendel to test his classic inheritance theory. The example will consider Mendel’s theory, 
the reasoning behind how he tested it, and how statistical hypothesis testing could have been used to 
determine the extent to which departures of Mendel’s observed scientific results from his predicted 
scientific results were due to chance or due to faulty scientific hypotheses. The Mendel example 
(after Lawson, Oehrtman, & Jensen, 2008, with kind permission of Springer Science and Business 
Media) will be followed by some educational examples and implications. 
 
Mendel’s Experiment and the Reasoning Guiding Scientific Hypothesis Testing 
 
As you may recall, Mendel’s theory proposed that dominant and recessive genes exist in pairs (e.g., 
YY, rr) and that the genes of a pair separate and pass independently to egg and sperm cells (i.e., the 
gametes). Then during fertilization, the separated genes (e.g., Y, r) recombine randomly in zygotes 
(i.e., in fertilized eggs). To test these theoretical claims (we will call them scientific hypotheses as 
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they are part of Mendel’s more general and complex inheritance theory), Mendel conducted a two-
part experiment with pea plants. 
 
During the first part of his experiment, Mendel crossed/mated pure-breeding pea plants that 
produced yellow-round seeds (presumably with the dominant YYRR genotype) with pure-breeding 
pea plants that produced green-wrinkled seeds (presumably with the recessive yyrr genotype). All of 
the offspring from this cross produced yellow-round seeds (presumably with the mixed YyRy 
genotype). During the second part of his experiment, Mendel crossed the above offspring of the first 
generation. However, before these plants grew and matured to produce their own seeds, his 
scientific hypotheses (i.e., his explanatory claims) allowed him to make a very specific prediction 
(i.e., an expected result of a planned test given that his explanatory claims are correct) about the 
color and shape of the seeds that should be produced. Specifically his hypotheses led him to expect 
(predict) that the next generation seeds would appear with a 9:3:3:1 ratio of seed types (i.e., 9 
yellow-round: 3 yellow-wrinkled: 3 green-round: 1 green-wrinkled). 
 
When cast in the form of a hypothetico-deductive argument, Mendel’s If/and/then reasoning looks 
like this: 
 

If . . . dominant and recessive paired genes pass independently to gametes and recombine 
randomly in zygotes (scientific hypotheses), 
and . . . pea plants presumably with the RrYy genotype for seed color and shape are crossed 
(planned scientific test), 
then . . . we should observe a seed color/shape ratio of 9:3:3:1 in their offspring (scientific 
prediction). 

 
When Mendel collected, observed, and counted the 556 seeds that were produced in these 
offspring, he found that 315 were yellow-round, 108 were yellow-wrinkled, 101 were green-round, 
and 32 were green-wrinkled. These numbers constitute his observed scientific result. 
 
What conclusion should Mendel draw from this scientific result? Were his scientific hypotheses 
supported? A quick calculation reveals that a 9:3:3:1 ratio of seed types should have produced about 
313 yellow-round seeds, 104 yellow-wrinkled seeds, 104 green-round seeds, and 35 green-wrinkled 
seeds. These predicted numbers are very similar to the observed numbers. Therefore, Mendel 
concluded that the slight departures between his predicted and observed results were random in 
nature and that his scientific hypotheses (and the more general theory of which they were a part) 
were supported. 
 
But were the slight departures between his predicted and observed results really due to chance? Or 
was there in fact something wrong with Mendel’s hypotheses? Of course Mendel had no way of 
knowing because the process of statistical hypothesis testing, the way of knowing, had not been 
invented in 1865 when Mendel published his results. Consequently, let’s briefly consider the 
reasoning guiding statistical hypothesis testing to see how it can answer this key question. 
 
The Reasoning Guiding Statistical Hypothesis Testing 
 
Consider testing a coin for “fairness.” Assuming that one has a fair coin, when tossed, one would 
predict that it would land heads about half the time and tails the other half. So to test a coin for 
fairness (i.e., to test the statistical null hypothesis that you have a fair coin), you could toss it 100 
times. Suppose it lands heads 47 times and tails 53 times. You probably would not be too bothered 
by this. Your observed ratio of 47:53 is quite close to the predicted 50:50 ratio. However, what 
would you conclude if your observed ratio turned out 35:65, if it turned out 5:95? Obviously, there 
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will be some point when you no longer conclude that the observed result matches your prediction. 
Would you conclude that a coin that lands heads only 5 out of 100 tosses is fair? You probably 
would not. Said another way, you would probably reject the statistical null hypothesis that the coin 
is fair (i.e., that both probabilities are 0.50). 
 
How then can we know when a departure from a predicted scientific result is due to chance or to a 
faulty scientific hypothesis? Although we can never know for sure, it turns out that, thanks to 
statistical hypothesis testing, we can nevertheless estimate the likelihood of various departures from 
predictions. In other words, even though we cannot be certain about the truth or falsity of any 
particular scientific hypothesis, at least we can estimate our degree of uncertainty. 
 
Mathematicians have invented formulas to generate such uncertainty estimates. One formula, the 
chi-square formula introduced in 1900 by Karl Pearson (Walker, 1958), can be used in the present 
context. The chi-square formula calculates a single value (a statistic) that we can compare to values 
listed in a statistical table to tell us what we need to know. The chi-square value/statistic (i.e., 2χ ) is 
calculated by comparing predicted and observed results. As observed results deviate farther from 
predicted results, the chi-square values increase. So a relatively large 2χ  value means that the 
results are probably not due to chance. For example, in a coin toss situation we have two categories 
of data with predicted numbers of 50 heads and 50 tails and observed numbers of 47 heads and 53 
tails. So the 2χ calculation looks like this: 
 

( )
( )

( )
( )

( )2 2 2 2
2 47 heads  50 heads 53 tails  50 tails 3 3

0.36
50 heads 50 tails 50 50

χ
− − −

= + = + =  

 
How does one interpret this value of 0.36? Suppose 100 people each have a fair coin. Suppose 
further that each person flips his/her fair coin 100 times and records the number of heads that turn 
up. If we now create a graph plotting these numbers versus their frequency, we will end up with a 
distribution most likely with around 50 heads (or 50 tails) as the modal value. Suppose further that 
each person calculates a 2χ value for the results of his/her 100 tosses and we then plot the various 

2χ  values versus their frequency. Because the smallest possible value is zero (obtained when 
observed and predicted numbers are the same), we will end up with a distribution of 100 chi-square 
values extending to the right of zero with increasingly large values being less and less probable. 
This is called a sampling distribution. Statisticians have compiled the probabilities associated with 
several such values and sampling distributions and listed them in statistical tables. Consequently, if 
we have a new coin and want to know if it is fair, we can toss it 100 times and count the number of 
times it turns up heads (or tails). We can then use the observed results and the chi-square formula to 
calculate a 2χ value and compare it to the values in the appropriate statistical table. 
 
To summarize, we have just tested a descriptive statement (i.e., a statistical null hypothesis) about 
an unknown parameter. In this case the statistical null hypothesis is that both probabilities are 0.50. 
And just like in causal scientific hypothesis testing, we used hypothetico-deductive reasoning to do 
so. That is: 
 

If . . . the probability of landing heads is 0.50 (fair-coin statistical null hypothesis), 
and . . . we flip a coin 100 times and compute a chi-square value for the result (planned 
statistical test), 
then . . . the chi-square value should fall well within the sampling distribution as reflected by 
the values and probabilities that appear in the appropriate statistical table (statistical 
prediction). 
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And . . . the calculated value of 0.36 derived from our result of 47 heads and 53 tails does 
fall well within the sampling distribution. More specifically, the appropriate table tells us 
that a value of 0.36 will occur due to chance alone between 50% and 70% of the time such a 
test is conducted (observed statistical result). 
Therefore . . . most likely the probability of landing heads (or tails) really is 0.50. Thus, we 
can be quite confident that the coin is fair (statistical conclusion). 

 
Calculating and Interpreting a Chi-Square Value for Mendel’s Results 
 
Let’s now return to Mendel’s experiment and use his predicted and observed results to calculate a 
chi-square value and see if the departures are likely due to chance. The calculated 2χ  value turns 
out to be 0.51. A quick check of the appropriate statistical table shows this value (with three 
degrees of freedom) associated with probabilities 0.90 and 0.95. This means that between 90% 
and 95% of the time, chance variations would result in a greater departure from a true 9:3:3:1 
distribution than do Mendel’s results. In other words, it seems safe to conclude that the difference 
between Mendel’s observed and predicted results are due to chance. Therefore, not only is the 
descriptive statistical null hypothesis supported, but so are Mendel’s causal scientific hypotheses 
and his general inheritance theory. 
 
Table 1 summarizes both scientific and statistical hypotheses in terms of the If/and/then arguments 
in which hypotheses are tested through the generation of specific predictions. As you can see, both 
processes involve prediction generation followed by data collection and the comparison of predicted 
and observed results. However, the goal of scientific hypothesis testing is to test scientific 
hypotheses, which are causal in nature, while the goal of statistical hypothesis testing is to test 
statistical null hypotheses, which are descriptive in nature. 
 
Note also that the scientific prediction (i.e., we should observe a seed color/shape ratio of 9:3:3:1 
in the offspring plants) and the statistical null hypothesis (i.e., a seed color/shape ratio of 9:3:3:1 
exists in the offspring) sound much the same. In the former case, however, we have a statement 
about how a scientific test should turn out assuming that a causal scientific hypothesis is correct, 
while in the latter case we have a descriptive statistical hypothesis about the nature of seed colors 
and shapes. 
 
Educational Examples and Implications 
 
In the first edition of their classic statistics textbook, Glass and Stanley (1970) discuss the 
evaluation of three teaching methods (i.e., textbook, programmed textbook, and computer-level 
program) on reading comprehension. The evaluation involves random assignment of students into 
three treatment groups, one group for each teaching method. Students are then administered a 
posttest to determine which method was most effective. During their discussion, Glass and Stanley 
state the experiment's null hypothesis as “the population means for the three teaching methods are 
equal.” (p. 411) 
 
As discussed, this statement represents a descriptive statistical hypothesis; not a causal scientific 
hypothesis. Unfortunately, in their example Glass and Stanley (1970) do not offer any causal 
scientific hypotheses. If scientific hypotheses were discussed, they would provide reasons/causes for 
the possible superiority of one treatment over the other(s) (e.g., programmed texts are better because 
they include frequent questions that provoke students to reflect on what they have read). Thus, an 
unmentioned hypothetico-deductive argument might go something like this: 
 



Science Education Review, 7(3), 2008 110
 
 

If . . . provoking students to reflect on what they have read increases comprehension (scientific 
hypothesis), 
and . . . some students read standard text while others read programmed text or a computer-
level program and the three groups are then tested (planned scientific test),  
then . . . mean test score of the programmed text students should be higher than those of the 
other two groups (scientific prediction). Or, stated as a statistical null hypothesis, the 
population means for the three teaching methods are equal. 

 
Table 1 
The Reasoning Guiding Scientific and Statistical Hypothesis Testing (Lawson, Oehrtman & Jensen, 
2008) 
 

Process 
Aspect of reasoning 

Scientific hypothesis testing Statistical hypothesis testing 

Hypotheses: 
If . . . 

Dominant and recessive gene pairs pass 
independently to gametes and recombine 
randomly in pea plant zygotes (scientific 
hypotheses). 

A seed color/shape ratio of 9:3:3:1 exists 
in the offspring (statistical null 
hypothesis). 

Planned tests: 
and . . . 

Cross pea plants presumably with the 
RrYy genotype for seed color and shape 
(planned scientific test). 

Collect a sample of seeds and compute the 
value of our selected statistic (planned 
statistical test). 

Predictions: 
then . . . 

We should observe a seed color/shape 
ratio of 9:3:3:1 in the offspring  (scientific 
prediction). 

The value of the statistic should fall well 
within the sampling distribution (statistical 
prediction). 

Results: 
And/But . . . 

Of the 556 seeds, 315 were yellow-round, 
108 were yellow-wrinkled, 101 were green-
round, and 32 were green-wrinkled 
(observed scientific result). 

The value for Mendel’s observed results 
(Chi-square = 0.51, df = 3) falls well 
within the sampling distribution (observed 
statistical result). 

Conclusions: 
Therefore . . . 

Mendel’s scientific hypotheses for pea 
plants and his general inheritance theory 
are supported (scientific conclusion). 

The departure of Mendel’s observed 
scientific results from the predicted 
scientific results are most likely due to 
random variation, so the statistical null 
hypothesis is supported (statistical 
conclusion). 

 
This argument adds a critical component to Glass and Stanley's (1970) example; namely, a reason 
that one treatment is predicted to be superior to the other(s). Without such a reason, even if only 
implicitly held, the researchers would most likely not have conducted the experiment in the first 
place. Hence, by omitting discussion of possible reasons (i.e., scientific hypotheses), Glass and 
Stanley not only omit a critical aspect of the research process, they also fail to differentiate scientific 
hypothesis testing from statistical hypothesis testing. 
 
Consider a second educational example. Suppose you are a high school biology teacher and 
have just taught a unit on Mendelian genetics. Upon testing your students you find that some 
of them did very well on the test while others did very poorly. Piagetian theory argues that 
intellectual development occurs in stages and that formal stage reasoning patterns are needed 
to understand theoretical concepts, such as many of those embedded in Mendelian genetics. 
Based on Piagetian theory, you suspect that some of your students may not yet have 
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developed the presumably necessary formal reasoning patterns. Consequently, you generate 
the following causal scientific hypothesis, planned test, and scientific prediction: 
 
Scientific hypothesis. Formal stage reasoning patterns are necessary to understand Mendelian 
genetics. 
Planned test. Assess students’ stages of intellectual development and compare their stages with 
their understanding of Mendelian genetics as measured by test performance.   
Scientific prediction. The concrete operational students should be the ones who fail the test, while 
the formal operational students should be the ones who pass the test. 
 
In terms of statistics, you are predicting that the collective scores of the formal students will be 
significantly higher than those of the concrete students, where significantly refers to statistical 
significance. When stated in the null form, we get the following: The mean test scores of the formal 
and concrete students should be equal. If we conduct the appropriate statistical test and find that the 
mean test score of the formal students is in fact statistically higher than that of the concrete students, 
we can reject the statistical null hypothesis. This in turn allows us to accept the causal scientific 
hypothesis. In other words, we have support for the scientific hypothesis that formal stage reasoning 
patterns are needed to understand Mendelian genetics. 
 
What then would you make of a report in which the author states: 
 

The following hypotheses were postulated and computed at the 0.05 level of significance: 
Hypothesis 1: Students grouped in heterogeneous cooperative groups will perform 
significantly higher than those grouped in friendship cooperative groups.  
Hypothesis 2: Students grouped in friendship cooperative groups will perform significantly 
higher than those grouped in traditional groups. 

 
Are these scientific or statistical hypotheses? Clearly they are statistical hypotheses. Accordingly, 
it becomes incumbent upon the author to clearly state what the scientific theories and/or 
hypotheses are and why they led him/her to predict such a statistical outcome. In short, a solid 
research effort and a well-crafted research report should clearly identify: 
 

1. The puzzling observation in need of explanation. 
2. The general theory or theories that may offer a possible explanation(s). 
3. Specific hypotheses derived from those theories that the study aims to test. 
4. The research design, including the If/and/then argument identifying the reasoning linking 

the scientific hypothesis and the design (i.e., planned test) to clearly stated scientific 
prediction(s). 

5. In the case of quantitative research, the specific statistic(s) used to determine the match 
between the scientific prediction(s) and the result(s). Note that there is no need to state 
statistical null hypotheses as doing so is likely to confuse readers. 

6. The research results and the extent to which they match the scientific prediction(s). 
7. A conclusion about the status of the tested scientific hypothesis/theory (i.e., supported, 

contradicted) including, if possible, ad hoc scientific hypotheses and suggestions for future 
research. 

 
The next time you read, or perhaps write, an educational report, see if it spells out these critical 
elements and their connections. The implication is that becoming more conscious of how to 
conduct and report research aimed at testing scientific theories and hypotheses--not just statistical 
hypotheses and statistical null hypotheses--should improve the way science educators conceive of, 
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carry out, conduct, and report their research. This in turn should better inform and improve 
practice. 
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