
VOL. 19 NO. 1, MARCH, 2014

• Contents | 
• Author index | 
• Subject index | 
• Search | 
• Home

A survey of stemming algorithms in information retrieval

Cristian Moral, Angélica de Antonio, Ricardo Imbert and Jaime 
Ramírez
Escuela Técnica Superior de Ingenieros Informáticos, Universidad 
Politécnica de Madrid, Spain

Abstract 

Background. During the last fifty years, improved information retrieval techniques 
have become necessary because of the huge amount of information people have 
available, which continues to increase rapidly due to the use of new technologies and 
the Internet. Stemming is one of the processes that can improve information retrieval in 
terms of accuracy and performance.
Aim. This paper provides a detailed assessment of the current status of the stemming 
process framed in an information retrieval application field by tracing its historical 
evolution. 
Method. Papers presenting the first approaches for stemming were reviewed to extract 
their main features, benefits and drawbacks. Additionally, papers dealing with 
stemmers for non-English languages or with some more recent proposals were also 
consulted and compiled. Finally, experimental papers defining the most well-known 
methods and metrics aimed at evaluating and classifying stemmers were also taken into 
account to expose their contributions and results. 
Results. Even if not all researchers agree on the benefits and drawbacks of using 
stemming in an information retrieval process in general terms, many of them agree on 
its benefits in specific contexts, such as when the language is highly inflective, when 
documents are short or when there is limited space for storing data. Some researchers 
also state that the nature of the documents can influence the performance and the 
accuracy of the stemmer. 
Conclusions. Despite many researchers having investigated this field over many years, 
there are still some open questions, such as how to evaluate a stemmer independently of 
the information retrieval process, or how much a stemmer improves an information 



retrieval application in terms of speed. As a summary, some guidelines are also 
provided to help readers to determine which is the best stemmer for their needs and the 
tasks they have to carry out. 

CHANGE FONT

Introduction

During recent decades, there has been a huge growth in the volume of data generated around the 
world. The trend began around fifty years ago when the research community experienced the first 
explosion of scientific publications coming from many different domains (Luhn, 1957), later boosted 
by the arrival and the subsequent socialization of the Internet. The need to allow researchers to find 
information among these big collections of data promoted the implementation of some mechanisms to 
support the task (Bell and Jones, 1979). Today, these mechanisms are part of the information retrieval 
process (Baeza-Yates and Ribeiro-Neto, 1999; Manning, Raghavan, and Schütze, 2008), which is a 
full, extensive, and specialized field of research in information technology.

The main objective of information retrieval is to automatically analyse and treat documents to extract 
some measures and relevant data allowing users to easily meet, as well as possible, their information 
need. By information need we mean a high level concept that encompasses not only direct questions 
(e.g., What is stemming?), but also searches for documents referring to a term or set of terms that can 
be very specific (e.g., stemming) or abstract search expressions reflecting that the user is not sure 
about what s/he is looking for (e.g., algorithm to find words' roots). These direct questions, terms and 
expressions are called queries and they represent the user's input to the system. The output answer is 
generally a document title or a set of document titles, which can be ranked according to a matching 
rate between the documents and the query calculated during the process. This process is a pipeline of 
independent but complementary tasks that uses as input a corpus of documents and a user's query, and 
returns as output a set of measures showing how well each and every document answers the 
information need posed by the user.

One of the first steps in the information retrieval pipeline is stemming (Salton, 1971). A stemming 
algorithm, or stemmer, aims at obtaining the stem of a word, that is, its morphological root, by 
clearing the affixes that carry grammatical or lexical information about the word. In both cases, these 
affixes do not modify the concept the word is related to as the semantic informality has been proven 
in the literature, especially in languages that are highly inflective (Popovic and Willett, 1992) and in 
short documents (Krovetz, 1993), in terms of recall and precision.

In this paper we provide a review of the evolution and state of the art of stemming algorithms in the 
last forty-five years, covering not only the functioning of the most well-known and used algorithms 
for this task (Smirnov, 2008), but also analysing evaluations conducted and results obtained by many 
researchers through experimentation. We describe which evaluation metrics have been proposed and 
which of them have allowed the experts to classify and compare different approaches. We complete 
the survey including some more recent proposals to improve the process. We finally dissect some 
algorithms that stem in languages different to English, relying on the same principles but adapting the 
process to the singularities of each of these languages.



Stemming algorithms: purpose

A stemming algorithm, or stemmer, has three main purposes. The first one consists of clustering 
words according to their topic. Many words are derivations from the same stem and we can consider 
that they belong to the same concept (e.g., drive, driven, driver). These derivations are generated 
through appended affixes (prefixes, infixes, and/or suffixes) but, in general, and more specifically in 
English, only suffixes are considered, as generally prefixes and infixes modify the meaning of the 
word, and stripping them would lead to errors of bad topic determination (Hull, 1996). Some 
exceptions to this occur in very inflective languages like German and Dutch (Kraaij and Pohlmann, 
1994), or in documents belonging to some specific topics, like medicine or chemistry, where prefixes 
and suffixes maintain the concept of the word. Among these suffixes two types of derivations can be 
considered (Krovetz, 1993). In the first case, inflectional derivations reflect grammatical information, 
related to the gender, number, case, mood or tense. These derivations do not provoke a change in the 
part-of-speech of the original word (that is the linguistic category of the word, e.g., noun, verb or 
adjective) nor in its meaning. On the contrary, derivational suffixes deal with the creation of new 
words based on an existing word, with which it can share the meaning or not (e.g., words terminating 
in -IZE, -ATION, -SHIP). Stripping these suffixes from a derived word allows its stem to be obtained, 
which is nearly its morphological root, and then thematically related words can be identified by 
matching their stems. 

The second purpose of a stemmer is directly related to the information retrieval process, as having the 
stems of the words allows some phases of the information retrieval process to be improved, among 
which we can highlight the ability to index the documents according to their topics, as their terms are 
grouped by stems (that are similar to concepts) or the expansion of a query to obtain more and more 
precise results. The expansion of the query allows it to be refined by replacing the terms it contains 
with their related topics that are also present in the collection, or by adding these topics to the original 
query. This adaption can be done automatically and transparently to users or the system can propose 
one or more improved formulations of the query to users letting them decide if any of them is more 
specific and defines better their information needs. Even if interactive query expansion is better in 
principle because the user has more feedback on what is happening, typically it cannot be done 
directly with the result of stemming, as stems usually are not understandable by humans (Voorhees, 
1994). 

Finally, the conflation of the words sharing the same stem leads to a reduction of the dictionary to be 
taken into account in the process, as the whole vocabulary contained in the input unprocessed 
collection of documents can be reduced to a set of topics or stems. This leads to a reduction of the 
space needed to store the structures used by an information retrieval system (like the index of terms-
documents) and then also lightens the computational load of the system.

Classical approaches

The process of conflating words has been widely investigated during recent decades and, in general 
terms, two main approaches have been adopted. The first one is an algorithmic-based approach where 
no linguistic considerations, such as gender, number or verbal tense, are considered. These stemmers 
work on the base of a set of rules defining if a suffix has to be removed or not, depending on some 
conditions. As no linguistic consideration is taken into account, in many cases the resulting stem is 
not a well-formed word (sometimes it is not even a recognizable word) and then it is empty of 
meaning. Depending on the task, this can be invisible for users, as the resulting stems are not 



presented to them (e.g., when indexing documents by concepts) or it can be a drawback, as the user is 
not able to understand the extra information given by the system (e.g., query expansion). Then, when 
the undertaken task requires meaningful output stems, a different approach has to be chosen. A 
linguistic-based approach, where the inner semantic information of the word is exploited to group 
related words into the same concept independently from their morphology, becomes then the better 
option. This semantic information can be obtained through dictionaries or thesauri (Miller, 1995), 
which contain hierarchical, semantic and lexical information about words. This second approach has 
rapidly diverged into a different field of research called lemmatization, which will not be addressed in 
this paper.

The first stemmer mentioned in the literature is the Lovins Stemmer (Lovins, 1968). The algorithm
consists of two steps: elimination of the suffixes and treatment of the remaining stem. The suffix 
stripping is done by matching the termination of the word with the longest suffix from an ordered list 
of 294 suffixes and applying one of the twenty-nine associated application rules. After this the 
remaining stem is treated to solve some linguistic exceptions like double d or double t endings. This 
step, called the recoding phase, is also based on a set of thirty-five rules that determine if the 
termination of the remaining stem has to be partially deleted or modified (e.g., inputting should be 
stemmed to input, not to inputt). Finally, conflation is done with a partial-matching algorithm that 
groups words whose stems are very close, but not necessarily the same. This permits an increase in 
the conflation rate and it is based on the assumption that two stems that are mostly equal but have 
little differences because of the suffix stripping process (e.g., explain and explanation are differently 
stemmed to explain and explan) belong to the same concept and should be grouped together. 
Nevertheless, this, obviously, can increase the errors by conflating words that are not related but 
mostly share the same stem (e.g., probe and probate are respectively stemmed to probe and prob, and 
then are likely to conflate by partial-matching). To avoid these errors without losing precision or 
recall, Dawson proposes an adaptation of the Lovins' stemmer (Dawson, 1974) based on two 
modifications. Firstly, the recoding phase is omitted and only the partial-matching routine is used to 
conflate words. Secondly, to fill the gap left by the recoding phase, he greatly increases the list of 
common suffixes up to 1200 to handle a lot more situations that were absent in the Lovins stemmer 
and were many times solved in the recoding phase.

Even if Lovins stemmer is one of the most widely known stemmers, Porter's stemmer (Porter, 1980) is 
the most used in information retrieval, probably because of its balance between simplicity and 
accuracy. Porter defines a five step algorithm applied to every word in the vocabulary. A word is 
defined as a succession of vowel-consonant pairs [C](VC)m[V], where C and V are lists of one or 
more consonants and vowels respectively and m is the measure of the word. The algorithm counts on 
around sixty rules that are divided into five steps that define the conditions under which they get 
applied (the term suffix has to match the suffix condition appearing in the rule and the remainder of 
the term, that is, the initial term without the suffix has to satisfy the condition also indicated in the 
rule) and how the term is modified to obtain the stem (which suffix replaces the former suffix). As an 
example, the rule (m > 1) EMENT → ∅ indicates that if a term has the suffix -EMENT and the 
measure m of the remainder of the term is greater than one (in this case m=2), then the suffix -EMENT
is deleted. Then, according to this rule, the stem of the term replacement is replac. The algorithm is 
considered concise enough to avoid using a recoding phase or a partial-matching approach, as the set 
of rules are executed sequentially to remove complex suffixes by treating them as a set of more 
simple suffixes that are cleared in every step of the algorithm (e.g., generalizations is incrementally 
reduced to generalization, generalize, general and finally gener through four different steps of the 
algorithm).



Another well-known proposal is the Paice/Husk stemmer (Paice, 1990), which is an iterative 
algorithm using the same rules and suffixes in every loop. Each rule is divided into five parts, with 
two of them being optional:

• the suffix, written in inverse order to ease matching with the words' terminations,
• the symbol '*' indicating that the term can be stemmed only one time (optional),
• the number of letters that must be cleared from the termination of the term,
• the string that must be appended to the cleared form of the term (optional),
• the symbol '>' indicating that the term can be treated in the next iteration, or the symbol '.'

indicating that the term's final stem has been obtained.

An example of this rule is sei3y>, where terms with the termination -IES get their three last letters 
cleared and the letter -Y is appended. The obtained word is considered again in the next iteration of 
the stemming process. For example, the term flies would be stemmed to fly. This ability to delete 
some letters and to append new ones, which in practice means replacing part of the stem, is equivalent 
to the recoding phase, which is indirectly incorporated into the rules themselves.

Finally, Krovetz (1993) has proposed a very simple algorithm which is supposed to cover the three 
most common inflectional derivations that occur: plural forms, past tense and -ING verb forms. In 
addition, some recoding rules are defined to obtain meaningful words after deleting the suffix, using 
as a support a dictionary against which the stemmed words are compared.

Even though some new approaches have been proposed in the literature to address the problem of 
stemming, most of them are based on the classical ones, or are developed to stem words from other 
non-English languages. In fact, nowadays, many researchers still use Porter's stemmer for many 
different tasks (Patil and Patil, 2013; Chintala and Reddy, 2013) or have tried to improve it (Ben 
Abdessalem Karaa, 2013).

Evaluation and comparison

Some metrics have been defined in the literature to determine how well a stemmer behaves. These 
metrics allow not only measuring the performance (that is the precision and recall) of every single 
stemmer, but also comparing them in different aspects and, therefore, obtaining some kind of 
classification.

Stemming errors

The first step in calculating the precision of a stemmer consists of identifying what type of errors can 
be made, under which conditions they occur and how they affect the result. In stemming, two main 
errors have been identified, both related to the aggressiveness with which the stemmer clears the 
terminations of the terms. On the one hand, when the stemmer deletes only the terminations that are 
almost certainly a suffix that must be cleared, there is a risk of keeping some more complex suffixes 
or ambiguous terminations in the remaining stem that should also be stripped to obtain the 
morphological root of the word. This error is called under-stemming, as the stemmer stripping is 
under the expected level. On the other hand, a stemmer makes an over-stemming error when it strips 
more terminations than it should, clearing parts of the word that belong to the morphological root. 
When this error occurs, there is a loss of semantic information as part of the morphological root is 
deleted. Porter goes beyond these definitions and divides this type of error into two cases (Porter, 
2001): over-stemming when the suffix stripped provokes a change of the meaning of the stem (that is, 



the termination cleared is a suffix, but one belonging to the root) and mis-stemming when the cleared 
termination is not a suffix, but part of the root.

Both errors imply a decrease in the performance of the stemmer, but differently. When a word is 
under-stemmed it becomes more difficult to identify if two words are related based on their 
morphology, as their obtained stems are mostly equal, but not totally because of a suffix that has not 
been deleted. The opposite case takes place when over-stemming is done. In this case the problem is 
that it becomes more possible that two words that are not related but share part of their morphological 
root are wrongly detected as related because their stems are equal.

Some solutions have been proposed to reduce these errors as much as possible. For over-stemming 
most of the proposed stemmers set a minimum size constraint on the resulting stem. This means that a 
term is stemmed only if its stem has a minimum length that typically is two or three letters. By doing 
this, the algorithm avoids deleting or modifying the termination of a term that matches one of the 
suffixes of the list but is not actually a suffix. As an example, a rule where the suffix -IES is replaced 
by the suffix -Y should impose on the remaining term a size greater than one to avoid stemming the 
conjugated verb DIES to DY. Therefore it is essential to define the stemming rules as carefully as 
possible to consider most cases and then prevent uncontrolled situations (Dawson, 1974; Porter, 1980; 
Paice, 1990). In the other case, the under-conflation provoked by under-stemming can be palliated by 
applying partial-match algorithms (Dawson, 1974; Lovins, 1968) that determine that two stems are 
related if the similarity between their morphology is over a defined threshold. Even if these solutions 
are useful only in some cases and, sometimes, can introduce new errors, globally they yield good 
results. Their adoption depends on the required needs for the task: if the conflation is an important 
aspect, even at expense of the thematic precision of the resulting groups, then solutions against under-
stemming will be adopted; conversely, if it is preferable to have perfectly classified groups according 
to their topic, even if they are little and lack some related documents, then over-stemming errors 
should especially be addressed. Typically, a trade-off between the two approaches is desired, even if it 
increases the difficulty of the process.

Classification and evaluation

Based on the errors defined above, a classification has been proposed to label a stemmer depending 
on which type of errors it most commonly does. The strength of a stemmer is defined as the 
aggressiveness with which the stemmer clears the terminations of the terms and it depends on the rate 
of over-stemming and under-stemming made by a stemmer. A strong (or heavy) stemmer has a high 
rate of over-stemming errors, while a weak (or light) stemmer is characterized by having a high under-
stemming rate.

Paice (1994) proposes some metrics to evaluate a stemmer regardless of the task carried out: the 
under-stemming index (UI), the over-stemming index (OI), the stemming weight (SW) and an error 
rate relative to truncation (ERRT). An experiment with the Lovins, Porter and Paice/Husk stemmers 
showed that Paice/Husk has the highest rate of over-stemming and Porter the lowest and, on the 
contrary, Porter makes more under-stemming errors than the others, with Paice/Husk being the one 
generating least errors of this type. As Paice considers that the strength of a stemmer can be directly 
defined by its over-stemming and under-stemming indexes (SW=OI/UI), he concludes that 
Paice/Husk is the strongest stemmer, followed by Lovins which is still considered a strong stemmer, 
and finally Porter, which is the weakest among the three. This result is supported by Frakes and Fox 
(2003) who, using an inverse modified Hamming distance measure, also affirm that Paice/Husk is 
stronger than Lovins, which in turn is greatly stronger than Porter. They also compute the strength of 



the "S" stemmer, which, as expected, is much weaker than Porter. The "S" stemmer deals only with 
plural forms and its treatment has been proposed by Harman (1991) as a baseline for evaluation and 
comparison of stemmers. The simple truncation of a fixed number of letters has also been used in 
many cases as a baseline algorithm for comparisons (Braschler and Ripplinger, 2004; Paice, 1994). 
Table 1 summarizes the main features of the presented stemmers and their strength.

Table 1: Summary of classical stemmers features.

Stemmer
Number 
of rules

Number of 
suffixes

Use of 
recoding 

phase

Use of 
partial-

matching
Strength

Use of 
constraint 

rules
Lovins 29 294 35 rules yes strong yes

Dawson unknown 1200 no yes strong yes
Porter 62 51 no no weak yes

Paice/Husk 115 unknown no no
very 

strong
yes

Krovetz unknown
5 (-S, -ES, -
IES,-ED, -

ING)

yes (use of 
dictionary)

no
very 
weak

no

However, these metrics do not allow the evaluation of the accuracy of a stemmer, but only the 
classification of it according to its typical errors. In order to evaluate the accuracy of the stemming 
process two metrics, introduced by Kent, et al. (1955), are used. These metrics have been widely 
adopted in information retrieval as the standard metrics to evaluate the accuracy of the process. The 
first metric, recall, reflects the rate of relevant documents that are obtained as an answer to a query, 
while precision represents the rate of the retrieved documents that are relevant to the query. In other 
words, when the stemmer tends to group as many related documents as possible, even if other non-
related documents are also included in the same group, the recall is high, while if the stemmer builds 
groups with as few non-related documents within a group as possible, even if some related documents 
are possibly not included in it, the precision is high. These measures have allowed some authors to 
link performance in terms of recall and precision to the strength of the stemmer, and then to over-
stemming and under-stemming (Frakes and Fox, 2003; Paice, 1994; Harman, 1991). Their 
conclusions are that strong stemmers will, in general, increase the recall of the results, as they make 
more probable that two words belonging to the same concept get conflated together, but they also 
decrease the precision as a higher number of non-related words also get conflated together because of 
over-stemming. Accordingly, they confirm that weak stemmers are better at correctly conflating 
related words, thus increasing the precision, but are more likely to avoid conflating related words 
because of under-stemming, therefore decreasing the recall.

Another way to evaluate an algorithmic-based stemmer is through its conflation rate, also called the 
Index Compression Factor (ICF), which defines how much the stemming process compresses the 
input vocabulary and then how much it reduces the storage capacity needed and increases the 
efficiency of the information retrieval system which has to deal with a thinned dictionary. Porter 
states that his stemmer reduces the initial vocabulary by a third. Many experiments have proven that 
the vocabulary compression depends on the strength of the stemmer, as can be seen in Table 2. 
Lennon, et al. (1988), Frakes and Fox (2003), Paice (1994) and Harman (1991) have proved with their 
experiments that strong stemmers yield a better index compression factor than weaker ones, as they 
conflate more words.



Table 2: Vocabulary compression (ICF).
(Note: ranges are provided for lennon >et al. because experiments are 

carried out over four collections (see Table 3).)
Lennon et al. Frakes Paice Harman

"S" stemmer - 1% - 11.48%

Porter stemmer from 26.2% to 38.8% 17% 38.90% 28.74%
Lovins stemmer from 30.9% to 45.8% 29% 44.60% 38.23%

Paice/Husk stemmer - 33% 51.30% -

To rank the stemmers according to their performance many experiments have been carried out. 
Harman (1991) compares, in terms of recall and precision, the behaviour of an "S" stemmer, the 
Porter stemmer and the SMART system (Salton, 1971) which implements an enhanced version of the 
Lovins stemmer. In the experiment, an information need is posed through a query and the system 
returns a ranked list of documents related to the query. Stemming is applied both to the documents 
and the query, and the evaluation is done with respect to a simple classic ranking technique (returns 
an ordered list of documents whose vocabulary best matches the terms of the query) and a more 
sophisticated one using term weighting and query expansion. The results show a non-significant 
increase of performance when using stemming, but an interesting benefit in terms of space, as the 
vocabulary is reduced by nearly 40%. The cause of the low improvement in terms of precision is that 
the stemmer fails (because of over-stemming or under-stemming, depending on the selected stemmer) 
as many times as it succeeds and that is why the author proposes a selective stemming, where the 
user, depending on the number and quality of the results and on the task s/he has to carry out, decides 
whether to use a strong or a weak stemmer. Frakes (1984) also carries out two experiments to evaluate 
the accuracy of a system based on the Lovins stemmer in terms of a metric called E (Van Rijsbergen, 
1979) which considers both recall and precision, and concludes that the performance is mostly the 
same either if the conflation is done manually by experts or if it is done automatically using a 
stemmer. Another experiment is undertaken by Hull (1996) over five stemmers: "S", Porter, Lovins, 
Xerox inflectional, and derivational analysers (Xerox, 1994). Even if his results do not prove a high 
improvement in information retrieval (4-6%), he asserts that stemming is clearly beneficial for recall. 
In fact, Hull bases this conclusion on the results of three measures: the average precision at eleven 
points of recall (APR11), the average precision at five to ten documents examined (AP[5-15]) and the 
average recall at fifty to one hundred and fifty documents examined (AR[50-150]). The first measure 
is calculated by averaging the precision obtained for each of the defined levels of recall (that is when 
recall is 0.1, precision is measured, then when recall reaches 0.2 precision is calculated again, and so 
on) using a set of queries. This metric is one of the most well-known in information retrieval and 
allows analysing the interdependence between recall and precision. The other two metrics calculate 
respectively the average precision and the average recall applying stemming to increasing numbers of 
documents. In his experimentation, Hull notes that both APR11 and AP[5-15] measures remain 
mostly the same with or without stemming, while AR[50-150] increases when stemming is applied. 
Krovetz (1993) also confirms that the use of stemming brings a big enhancement in terms of 
performance and especially of recall when the documents are short.

In addition, Frakes and Fox (2003) propose a similarity measure allowing the determination of 
similarity between two stemmers by comparing the results they return. This measure allows the easy 
classification of a new stemmer depending on which is the most similar known-stemmer. The 
similarity is calculated on the basis of the inverse modified Hamming distance. The experiment 
carried out by the authors over four stemmers ("S" stemmer, Lovins, Porter, Paice/Husk) concludes 



that Paice and Lovins stemmers are the most similar, while the Paice and "S" stemmers are the most 
different. Analysing the similarity measures of all the possible combinations of two stemmers the 
authors conclude that the algorithms similarity depends on their strength similarity.

Figure 1 sums up the features presented above for four of the main classical approaches for stemming. 
This summary reinforces the idea that all the features depend on the strength of the stemmers and then 
on the rate of over-stemming and under-stemming errors.

Figure 1: Features summary of classical stemmers. 

To evaluate stemmers and obtain these measures a big collection of documents is needed. Over recent 
years, many collections have been proposed and many of them have become reference sets to test new 
stemmers and, more generally, to evaluate new approaches to any step of the information retrieval 
process. Table 3 shows which corpora of documents have been used in the bibliography cited in this 
paper. In turn, Table 4 lists the most widely known and used collections, and their main features.

Table 3: Corpora used by researchers.
Publication Corpora used

Adam, Asimakis, Bouras and Poulopoulos (2010)
Unknown collection (News articles and e-mail 
messages)

Braschler and Ripplinger (2004) CLEF 2001
Chen and Gey (2002) Agence France Press (383,872 Arabic articles)
Fernández, Díaz, Gutiérrez and Muñoz (2011) MIKTEX 2.6 Dictionary (Spanish terms list)

Frakes (1984)
Unknown collection(12,000 abstracts about 
psychology)

Frakes and Fox (2003) MOBY, Unix spelling dictionary

García Figuerola, Gómez-Díaz, Zazo Rodríguez 
and Alonso Berrocal (2001)

CLEF

Harman (1991) CACM, MEDLARS, Cranfield
Hull (1996) TREC, WSJ 

Korenius, Laurikkala, Järvelin and Juhola (2004)
Unknown collection (53,893 articles from Finnish 
newspapers)

Krovetz (1993) CACM, Time, NPL, WEST

Kraaij and Pohlmann (1994) CELEX database



Kraaij and Pohlmann (1996) Dutch publishers' database (59,608 articles from 
three regional newspapers)

Larkey, Ballesteros and Connell (2002) Arabic TREC 2001
Lennon, Pierce, Tarry and Willett (1988) Cranfield, Brown, INSPEC, NPL

Majumder, Mitra and Pal (2008) CLEF 2006
Paice (1994) CISI

Taghva, Elkhoury and Coombs (2005) Arabic TREC 2001

Table 4: Reference corpora in information retrieval.
Name of 

the corpus
Type of 

data
Volume of 

data
Topics of data Source Available at Free

Brown Documents
500 

documents, 1 
million terms

Press, religion, 
skill and hobbies, 

popular lore, belles
-lettres, 

government and 
house organs, 

learned, fiction and 
humour

American English 
texts printed in 

1961

Brown 
Corpus

(Archived by 
WebCite® 

here)

No

CACM Abstracts
3204 

documents
Engineering

Communications 
of the ACM 

journal

CACM 
Corpus

(Archived by 
WebCite® 

here)

Yes

CISI Abstracts
1460 

documents
Library Science

Books and 
scientific journals

CISI Corpus
(Archived by 
WebCite® 

here)

Yes

CLEF Articles
2006 edition: 
536,678 terms

News

Newspaper in 
Dutch, English, 
French, German, 

Italian and Spanish

CLEF Corpus
(Archived by 
WebCite® 

here)

No

Cranfield Abstracts

1400 
documents, 

139,935 terms 
(4,632 after 
stop-words 
removal)

Aeronautical 
engineering

Scientific journals

Cranfield 
Corpus

(Archived by 
WebCite® 

here)

Yes

INSPEC Abstracts 10 million 
documents

Astronomy, 
electronics, 

communications, 
ergonomics, 

computers and 
computing, 

computer science, 

Scientific and 
engineering 

journals since 1898

Inspec Corpus
(Archived by 
WebCite® 

here)

No



control 
engineering, 

electrical 
engineering, 
information 

technology and 
physics

MEDLARS Abstracts
1033 

documents
Medicine Scientific journals

Medlars 
Corpus

(Archived by 
WebCite® 

here)

Yes

NPL Abstracts
11,429 

documents
Reports of vehicle 

evaluations
National Physical 

Laboratory

NPL Corpus
(Archived by 
WebCite® 

here)

Yes

Reuters-
21578

Articles
21,578 

documents
News Reuters

Reuters-
21578 Corpus
(Archived by 
WebCite® 

here)

Yes

Time Articles
425 

documents
News Time magazine

Time Corpus
(Archived by 
WebCite® 

here)

Yes

TREC Articles
≈1.89 million 

documents
News

Newswire and 
other sources

Trec Corpus
(Archived by 
WebCite® 

here)

No

WSJ Articles
≈30 million of 

terms
News Wall Street Journal

WSJ Corpus
(Archived by 
WebCite® 

here)

No

Some researchers (Krovetz, 1993; Hull, 1996; Harman, 1991) relate the performance of a stemmer to 
the collection used as input. In fact, they all confirm after their experimentation that stemmers 
perform better, mainly in terms of precision, when the documents are short (less than 200 words per 
document). This can be explained because the probability that terms used in the query appear in the 
same form in the documents decreases as the vocabulary is reduced, and then the conflation obtained 
by the stemming allows detecting more related terms. This hypothesis also applies for the length of 
the query.

Stemming in other languages 

Although many of the stemmers are aimed at and are evaluated with the English language, some 
researchers have modified existing approaches or proposed new ones to handle other languages. 
According to linguistics, languages can be divided into two main categories depending on their 



morphological structure: analytic languages and synthetic languages. The second category can be 
divided, in turn, into three subcategories, namely agglutinative languages, fusional (or inflecting) 
languages and polysynthetic languages (Comrie, 1989; Pirkola, 2001; Aikhenvald et al., 2007). 
However, this classification is an idealization, as all languages belong to more than one category, 
even if they generally fit better into one of them. In fact, two continuous variables have been proposed 
to indicate to what extent a language belongs to one type or another, the index of synthesis and the 
index of fusion (Whaley, 1997). The index of synthesis describes the extent of morphological 
synthesis, that is, how much the words of a language are affixed. At one extreme are the most analytic 
languages (also called isolating languages), where all morphemes are free morphemes (language 
tends to have no morphology at all), while at the other extreme, the most polysynthetic languages tend 
to have sentences consisting of a single complex word formed by many morphemes. The second 
variable, the index of fusion, describes how easy it is to split the words into morphemes. On this scale, 
one extreme would be the agglutinative languages that have words that can be easily separated into 
clearly identifiable morphemes, while at the other extreme would be the fusional languages, where 
words are formed by morphemes that are not clearly identifiable. Using these indexes, Table 5 
provides the prevailing morphological type of some of the languages for which stemmers have been 
developed. This diversity of languages and types implies there is also diversity in the problems and 
challenges that sometimes need to be handled by new non-classical approaches as the classical ones 
lead to results that are not as accurate and efficient as in English (Kettunen, 2009). 

Table 5: Prevailing morphological type of some languages 

Language

Morphological type

Analytic/
isolating

Synthetic

Agglutinative Fusional/inflecting Polysynthetic

Indonesian (Asian et al.
2005)

X

English (Lovins, 1968; 
Porter, 1980; Paice, 1990; 
Krovetz, 1993)

X

Finnish (Korenius et al., 
2004)

X

Hungarian (Majumder et al., 
2008)

X

Basque (Otxandorena, 2010) X

Turkish (Dinçer, 2003; 
Eryiğit and Adalı, 2004)

X

Bengali (Majumder et al., 
2007)

X

German (Braschler and 
Ripplinger, 2004)

X

Dutch (Kraaij and Pohlmann, 
1994)

X

Portuguese (Orengo and 
Huyck, 2001)

X

X



French (Moulinier, McCulloh 
and Lund, 2001)
Czech (Majumder et al., 
2008)

X

Arabic (de Roeck and Al-
Fares, 2000; Larkey et al., 
2002; Chen and Gey, 2002; 
Taghva et al., 2005)

X

Bulgarian (Majumder et al., 
2008)

X

Slovene (Popovic and 
Willett, 1992)

X

Greek (Adam et al., 2010) X
Mohawk X

In fact, even if modern English can be considered an analytic language, it is also a weakly inflective 
language due to its heritage of Old English, which was a fusional language (Meyer, 2010). This 
means it is much easier to obtain the stems of the words than in other very isolating languages like 
Mandarin Chinese or Indonesian. In fact, while stemming in English only cares about suffix stripping, 
stemming in Indonesian must consider and remove a wider range of affixes, like prefixes, infixes, 
confixes (combination of prefixes and suffixes), as well as suffixes. Many of the proposed algorithms 
for stemming Indonesian words use well-known elements used in classical stemmers like dictionaries, 
lists of rules and recoding (Asian, Williams and Tahaghoghi, 2005).

With respect to agglutinative languages, Finnish (Kettunen, Kunttu and Järvelin, 2005) and Turkish 
are good examples of highly inflective languages deriving from a complex morphology. In particular, 
Turkish has approximately 23,000 stems and words are formed depending on their grammatical 
function, which is indicated by adding suffixes to stems. This results in a theoretically infinite number 
of words that can be created (Hankamer, 1984). This theoretical infinity of words makes the use of 
stemming algorithms highly recommended in order to increase the conflation rate and reduce the 
storage volume (Dinçer, 2003). Due to the morphological complexity of Turkish, typically 
morphological analysers have been proposed as stemmers (Eryiğit and Adalı, 2004). However, 
morphological analysers are computationally very costly, which is why other approaches have tried to 
reduce this complexity while trying to obtain an acceptable level of accuracy, for example using n-
grams (Ekmekçioglu, Lynch and Willett, 1996) or removing affixes using a set of rules and a list of 
well-known suffixes, as with Porter's stemmer (Çilden, 2010).

On the other side, fusional languages have a large amount of representatives, as most of the Indo-
European languages are of this type. Many of the stemmers for them are based on Porter's approach, 
as it fits perfectly with their morphological structure. One example is the algorithmic stemmer 
proposed by Popovic and Willett for the Slovene language (Popovic and Willett, 1992) that uses a list 
of 5,276 well-known suffixes. This number is much higher than Porter's original one because Slovene 
is morphologically much richer than English, and then the casuistry, both for inflectional and 
derivational suffixes, is bigger. The experiments carried out to test this Slovene stemmer show a 
significant improvement in terms of precision while maintaining recall. In fact, many researchers 
ensure that the performance of a stemmer increases as the morphological complexity of the language 
does (Popovic and Willett, 1992; Chen and Gey, 2002; Kraaij and Pohlmann, 1994). To prove it, 
Popovic and Willett carried out the same experiment using as input the Slovene corpus translated to 



English and compared the performance measures obtained. The results of the English experiment 
showed a non-significant improvement in terms of precision and recall, and then confirmed the 
relation between performance and morphological complexity of the language. Other more 
sophisticated approaches have been proposed, always based on the use of suffix removal rules, but 
improving the result by adapting their application to the peculiarities of the language. This is the case 
of the stemmer developed by Adam et al. (2010) dealing with the Greek language, which is also a 
morphologically rich language. Moreover, Greek has an added difficulty, as many suffixes depend on 
the grammatical type of the word within the sentence. That is why the authors propose enriching a 
typical algorithmic stemmer with an initial part-of-speech tagging phase to obtain every word's 
grammatical category. Then, stripping rules are applied to a subset of the list of possible suffixes, 
depending on the part-of-speech tag of the term to be stemmed. Due to this, the Greek stemmer 
proposed yields very good results, as 96.7% of the vocabulary (considering only nouns, adjectives, 
verbs and pronouns) is stemmed correctly. Analysing the detail of the errors (12.5% of them are 
because of over-stemming while the rest are caused by under-stemming), the stemmer can be 
classified as a weak stemmer.

Finally, to the best of our knowledge, no stemming algorithms have been proposed for polysynthetic 
languages, like Mohawk, Blackfoot or Greenlandic. Probably, in these languages, the fact that words 
are composed of many morphemes complicates the identification of a single stem per word. 

Nevertheless, even if some alternative approaches have been proposed to meet the specificities of 
certain languages, the Porter algorithm is still one of the most used approaches because of its 
simplicity, extensibility and adaptability. Moreover, Porter has eased the task by creating Snowball
(Archived by WebCite® here), a framework to develop new stemmers (Porter, 2001). Snowball, 
which is presented as an easy-to-learn and easy-to-use language, permits an ANSI C or JAVA version 
of a stemmer to be obtained simply by defining the rules with some lines of code. Currently, 
stemmers for around twenty different languages have been implemented using Snowball, among 
which are the majority of the agglutinative and fusional languages listed in Table 5.

Recent approaches

To enhance the performance of the stemming and/or to reduce as much as possible the loss of 
accuracy because of over and under-stemming errors, some researchers have proposed alternative 
approaches in recent years (Mayfield and McNamee, 2003; Peng, Ahmed, Li and Lu, 2007). Many of 
them are based on exploiting the context or the domain, either of the term itself or of the document. 
One example is the work of Xu and Croft (1998), where they propose to consider the co-occurrence of 
two terms within a collection of documents to determine if they belong to the same concept. If they 
do, then they must be conflated under the same stem. Their hypothesis is that if two terms are related 
and belong to the same topic it is highly probable that they will occur together in a given window of 
words within the documents of the collection. According to this, they propose refining the 
equivalence classes of terms (all the groups of terms that will conflate into the same stem) obtained 
after applying a heavy stemmer by subdividing or grouping them. This refinement, based on the 
concept of hierarchical clustering, is done with two algorithms that make use of a metric em, based on 
mutual information theory, that indicates how possible it is to have the same term within a window of 
words. The first algorithm, called Connected Component Algorithm (CCA), divides an initial 
equivalence class into subclasses each containing terms with an em higher than a defined threshold. 
This algorithm can affect the effectiveness of the retrieval because of the appearance of strings
(creation of big classes of equivalence that internally are sparsely connected (Salton, 1989)), which is 
why the Optimal Partition Algorithm (OPA) is used to calculate the best equivalence groups to 



maximize the performance of the whole system. To achieve this, for every pair of words (a, b) the net 
benefit of conflating them or not is calculated, which is the difference between the measure em(a, b), 
representing the benefit of conflating, and the constant δ, representing the harm it causes to precision 
to conflate a and b. Finally, the best optimal partition is the one that maximizes the sum of net 
benefits for every pair of words. The authors carried out an experiment to evaluate their system in two 
languages, English and Spanish. In both cases, the results obtained after applying their algorithms to 
the output stems returned by the Porter stemmer and by a trigram approach (an n-gram corresponds to 
the n first letters of a word, then a trigram contains the first three letters of a word), with a window of 
100 words, show a significant improvement with respect to the original stemmers in terms of 
performance. However, Larkey et al. (2002) apply the same technique to Arabic but their experiments 
yield better results with a simple stemmer, based on stripping predefined suffixes and prefixes and 
also removing stop-words, than with the same approach enriched with co-occurrence analysis.

Performance enhancement of the stemmer is not the only aspect that has been investigated in the 
literature. An example is the statistical stemmer proposed by Melucci and Orio (2003), where the 
most important contribution is that it requires no manual work, not even in the training phase, to 
generate the model containing the rules of the stemmer. This is possible because a hidden Markov 
model is used to determine for every term if a letter belongs to the stem or to the suffix. The 
parameters used by this hidden Markov model are calculated through an unsupervised training 
process using expectation maximization, where no morphological rules or list of known stems are 
needed. Regarding performance, the authors carried out an experiment where they compared the 
Porter stemmer with their system and determined that the performance was equivalent.

Other researchers have proposed stemmers that are not based on rules. Majumder et al. (2007) aim at 
creating stemmers for languages that lack linguistic resources (like morphological rules or a 
thesaurus), such as Bengali. The proposal consists of creating equivalent classes of words using an 
unsupervised, statistical and agglomerative hierarchical clustering algorithm based on a measure of 
distance between strings. Besides this, as in a hierarchical clustering algorithm, obtained classes can 
be merged depending on their similitude. After carrying out some experiments using as a baseline a 
non-stemming approach, two classical approaches (Porter and Lovins) and an adapted cluster-based 
approach using n-gram to cluster instead of a similarity measure (de Roeck and Al-Fares, 2000), their 
proposal has an equivalent performance both in English and French in comparison to the original 
Porter results, but in Bengali it increases considerably with respect to the non-stemming version (up to 
around 40% improvement both in recall and precision).

Another approach to develop stemmers for languages that are extremely complex in terms of 
morphology or that lack linguistic resources consists of using a cross-language stemmer, that is, using 
mechanisms, such as bilingual dictionaries or machine translators, to translate the documents from the 
source language to English and then applying to them any of the stemmers developed for English 
while associating the results to the source document (Popovic and Willett, 1992; Larkey et al., 2002; 
Chen and Gey, 2002).

Conclusion

Stemming algorithms' purpose is quite simple and specific: find the morphological root of a word. 
However, no language strictly follows a deterministic set of rules, so it is difficult to achieve this 
purpose systematically. That is why a perfect stemmer, able to accurately obtain the stems of any term 
independently of its features, does not exist. Researchers have tried to provide some classifications 
and evaluation metrics to help users when selecting a stemmer according to the task they have to carry 



out and to the expected results. To achieve this, two metrics, recall and precision, have been adopted 
as performance measures. The problem of these two metrics is that they are highly dependent on other 
processes of the information retrieval pipeline. In fact, both are related to the accuracy of the ordered 
list of documents that best answer an information need posed through a query. Stemming only allows 
a reduction of related words to the same morphological root, and then to abstract the words in 
documents to concepts at a higher semantic level, but other algorithms in the information retrieval 
pipeline are in charge of translating these concepts into multidimensional vectors and of figuring out 
the similitude between every document and the query, based on a similitude metric that must also be 
defined. Thus, many factors can have an influence on the precision and recall of an information 
retrieval application. The problem is that almost no researcher exposes under which exact conditions 
and information retrieval algorithms and metrics they carry out their experiments to evaluate the 
performance of stemmers. Therefore, it becomes quite difficult to compare performance measures 
obtained from different experiments and researchers, as we cannot ensure that all the algorithms and 
metrics used, except for the stemming algorithm, work at least equivalently. The result is that there is 
not a good solution to evaluate a stemmer individually and independently of other information 
retrieval process factors, in terms of precision and recall.

To avoid possible interferences from these other processes in the information retrieval pipeline, some 
approaches have been proposed to evaluate stemmers' performance without the need to embed 
stemming into an information retrieval process, such as quantifying how much they compress the 
input vocabulary or characterizing which types of errors they generate. On the one hand, we have seen 
that stemmers produce two types of errors (over-stemming and under-stemming), which in turn define 
the strength of the stemmer. This strength is one of the main features that define a stemmer, as the rest 
of the properties and metrics are related to it. If a user needs to classify a collection of documents so 
that the number of groups is as low as possible and each group contains most of the topic-related 
documents, then a stronger stemmer is suitable as they provide a high recall and have a high 
conflation rate. An example could be a student that needs to explore exhaustively all the documents 
related with a topic within a collection of documents: even if some of the retrieved documents do not 
belong to the topic, the user can be sure that the vast majority of those which do deal with the topic 
will be present in the output. Oppositely, if the task requires the classification to return highly 
coherent groups (where most of their documents are topic-related), even if two or more of these 
groups are related in some way, then the precision offered by a weak stemmer is one of the main 
features to consider. Notwithstanding, no researcher has proposed an objective and absolute measure 
of a stemmer's strength. In fact, proposed classifications have been done in a relative way by ordering 
the stemmers according to the values obtained for each of them in terms of under-stemming and over-
stemming (as strength directly depends on these two measures).

Besides these performance considerations, other constraints can have an influence on which stemmer 
is the best adapted to the needs of the user. For example, a strong stemmer can be the better option if 
the system has storage restrictions to handle the stemming process (e.g., smartphone), as these 
stemmers reduce considerably the dictionary associated to the documents that is needed to calculate 
the similitude measures between documents or between a document and a query. Even if no 
experiments have been explicitly proposed to evaluate the benefits or drawbacks of applying 
stemming or not in an information retrieval process, it is assumed that, as the dictionary of terms that 
is going to be manipulated by the subsequent algorithms in the information retrieval pipeline is 
considerably thinner, then their processing speed should also increase considerably. This can be a 
turning point in devices with hardware limitations (e.g., smartphones) or in remote systems where the 
exchanged dataflow should be as low as possible (e.g., client-server systems).



With respect to the usefulness of stemming terms in an information retrieval system, there is not wide 
agreement. Nevertheless, all experiments seem to demonstrate that the nature and the length of the 
collection's documents directly influence the results. As we have seen, short documents like abstracts 
are perfect candidates for stemming, as the co-occurrence rate of their terms is lower, and then 
conflating related words can make hidden thematic relations flourish. Furthermore, languages that are 
highly inflective benefit much more from stemming as their terms are morphologically more related, 
and most of the derivations or inflections applied to related words are defined by rules that allow a 
straightforward recognition of the affixes. Finally, both the nature of the input documents (and their 
vocabulary) and the purpose of the application (search, explore, classify, etc.) greatly conditions the 
usefulness of applying stemming in an information retrieval application.

Acknowledgements

This research work has been partially funded by the Spanish Ministry of Science and Innovation 
through research project TIN2009-14659-C03-02, and also by Universidad Politécnica de Madrid 
(UPM) through grant SBUPM-SIPMHXZ. The authors thank to copy-editors of the journal for their 
assistance in enabling them to satisfy the style requirements of the journal.

About the authors

Cristian Moral is a Ph.D. Candidate in the Escuela Técnica Superior de Ingenieros Informáticos at 
Universidad Politécnica de Madrid, Spain. He received his Master of Science in Computer Science 
both from Universidad Politécnica de Madrid and from Politecnico di Torino (Italy). Cristian is 
member of the Decoroso Crespo Laboratory since 2011, where he has participated in some R&D 
projects in the area of virtual environments. His current research interests are information retrieval, 
visualization and manipulation through adaptive virtual environments and human-computer 
interaction. He can be contacted at: cmoral@fi.upm.es.
Angélica de Antonio has been faculty member in the Escuela Técnica Superior de Ingenieros 
Informáticos at the Universidad Politécnica de Madrid since 1990. She received her Ph.D. in 
Computer Science in 1994. Angelica is Director of the Decoroso Crespo Laboratory since 1995, 
where she has led several R&D projects in the areas of intelligent tutoring systems, e-learning, virtual 
environments and intelligent agents. Her current research interests focus on virtual and augmented 
reality, adaptive systems and human-computer interaction. She can be contacted at: 
angelica@fi.upm.es.
Ricardo Imbert is an associate professor in the Escuela Técnica Superior de Ingenieros Informáticos 
at the Universidad Politécnica de Madrid since 2000. He received his Ph.D. in Computer Science in 
2005. Ricardo is member of the Decoroso Crespo Laboratory since 1996, where he has led several 
R&D projects in the areas of intelligent tutoring systems, intelligent software agents, virtual 
environments and adaptive interactive systems. His current research interests deal with cognitive 
agent architectures, agent-based software engineering, human-computer interaction and interactive 
systems. He can be contacted at: rimbert@fi.upm.es.
Jaime Ramírez is an assistant professor in the Escuela Técnica Superior de Ingenieros Informáticos 
at Universidad Politécnica de Madrid, Spain. He received his Ph.D. in Computer Science in 2002. 
Jaime is member of the Decoroso Crespo Laboratory since 1996, where he has participated in several 
R&D projects in the areas of intelligent tutoring systems, e-learning, virtual environments and 
intelligent agents. His current research interests are intelligent tutoring systems, virtual environments 
for training, and user and student modelling using ontologies and data mining. He can be contacted at: 
jramirez@fi.upm.es.



References

• Adam, G., Asimakis, K., Bouras, C. & Poulopoulos, V. (2010). An efficient mechanism for 
stemming and tagging: the case of Greek language. In Rossitza Setchi, Ivan Jordanov, Robert 
J. Howlett and Lakhmi C. Jain , (Eds.), Proceedings of the 14th International Conference on 
Knowledge-based and Intelligent Information and Engineering Systems, Part III, 389-397. 
Berlin: Springer-Verlag. 

• Aikhenvald, A.Y., Talmy, L., Bickel, B., Nichols, J., Corbett, G.G., Timberlake, A... et al., 
Thompson, S. (2007). Language Typology and Syntactic Description. Volume 3: 
Grammatical Categories and the Lexicon. Shopen, T. (Ed.). Cambridge: Cambridge 
University Press

• Asian, J., Williams, H. E. & Tahaghoghi, S. M. (2005). Stemming Indonesian. Proceedings of 
the 28th Australasian conference on Computer Science - ACSC '05, 38, 307-314. Newcastle, 
Australia: Australian Computer Society, Inc. 

• Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern information retrieval. Boston, MA: 
Addison-Wesley Longman Publishing Co., Inc.

• Bell, C. and Jones, K. P. (1979). Towards everyday language information retrieval systems 
via minicomputers. Journal of the American Society for Information Science, 30(6), 334-339. 

• Ben Abdessalem Karaa, W. (2013). A new stemmer to improve information. International 
Journal of Network Security & Its Applications (IJNSA), 5(4), 143-154

• Braschler, M. & Ripplinger, B. (2004). How effective is stemming and decompounding for 
German text retrieval? Information Retrieval, 7(3-4), 291-316.

• Chen, A. & Gey, F. (2002). Building an Arabic stemmer for information retrieval. In 
Proceedings of TREC 2002, 631-639. NIST, Gaithersburg. 

• Chintala, D. R. & Reddy, E. M. (2013). An approach to enhance the CPI using Porter 
stemming algorithm. International Journal of Advanced Research in Computer Science and 
Software Engineering, 3(7), 1148-1156

• Çilden, E. K. (2010). Stemming Turkish words using Snowball. Retrieved 26 January 2014 
from http://snowball.tartarus.org/algorithms/turkish/accompanying_paper.doc. (Archived by 
WebCite® at http://www.webcitation.org/6MvJeR7Wz)

• Comrie, B. (1989). Language universals and linguistic typology: syntax and morphology. 
Chicago, IL: University of Chicago Press

• Dawson, J. (1974). Suffix removal and word conflation. ALLC Bulletin, 2(3), 33-46
• de Roeck, A. N. & Al-Fares, W. (2000). A morphologically sensitive clustering algorithm for 

identifying Arabic roots. In Proceedings of the 38th Annual Meeting on Association for 
Computational Linguistics, (pp. 199-206). Stroudsburg, PA: Association for Computational 
Linguistics. 

• Dinçer, B.T. (2003). Stemming in agglutinative languages: a probabilistic stemmer for 
Turkish. In A. Yazıcı and C. Sener, (Eds.), Computer and Information Sciences - ISCIS 2003, 
(pp. 244-251.) Berlin: Springer

• Ekmekçioglu, F. Ç., Lynch, M. F. & Willett, P. (1996). Stemming and n-gram matching for 
term conflation in Turkish texts. Information Research, 2(2), paper 13. Retrieved from 
http://www.informationr.net/ir/2-2/paper13.html (Archived by WebCite® at 
http://www.webcitation.org/6NbaMhEBc)

• Eryiğit, G. C. & Adalı, E. (2004). An affix stripping morphological analyzer for Turkish. In 
M. H. Hamza, (Ed.), Proceedings of the International Conference on Artificial Intelligence 
and Applications - AIA'04, (pp. 299-304). Innsbruck, Austria: ACTA Press.



• Fernández, A., Díaz, J., Gutiérrez, Y. & Muñoz, R. (2011). An unsupervised method to 
improve Spanish stemmer. In Proceedings of the 16th International Conference on Natural 
Language Processing and Information Systems, (pp. 221-224). Berlin: Springer-Verlag. 

• Frakes, W. B. (1984). Term conflation for information retrieval. In Proceedings of the 7th 
annual international ACM SIGIR conference on Research and development in information 
retrieval, (pp. 383-389). Swinton, UK: British Computer Society. 

• Frakes, W.B. & Fox, C.J. (2003). Strength and similarity of affix removal stemming 
algorithms. SIGIR Forum, 37(1), 26-30. 

• García Figuerola, L.C., Gómez-Díaz, R., Zazo Rodríguez, Á. F. & Alonso Berrocal, J. L. 
(2001). Stemming in Spanish: a first approach to its impact on information retrieval. Results 
of the CLEF 2001 Cross-Language System Evaluation Campaign. Working Notes for the 
CLEF 2001 Workshop, (pp. 197-202). Springer-Verlag

• Hankamer, J. (1984). Turkish generative morphology and morphological parsing. Paper 
presented at the Second International Conference on Turkish Linguistics, Istanbul, Turkey

• Harman, D. (1991). How effective is suffixing? Journal of the American Society for 
Information Science, 42(1), 7-15. 

• Hull, D. A. (1996). Stemming algorithms - a case study for detailed evaluation. Journal of the 
American Society for Information Science, 47, 70-84

• Kent, A., Berry, M. M., Luehrs, F. U. & Perry, J. W. (1955). Machine literature searching 
VIII. Operational criteria for designing information retrieval systems. American 
Documentation, 6(2), 93-101

• Kettunen, K. (2009). Reductive and generative approaches to management of morphological 
variation of keywords in monolingual information retrieval: an overview. Journal of 
Documentation, 65(2), 267-290

• Kettunen, K., Kunttu, T. & Järvelin, K. (2005). To stem or lemmatize a highly inflectional 
language in a probabilistic IR environment? Journal of Documentation, 61(4), 476-496

• Korenius, T., Laurikkala, J., Järvelin, K. & Juhola, M. (2004). Stemming and lemmatization 
in the clustering of Finnish text documents. In Proceedings of the thirteenth ACM 
International Conference on Information and Knowledge Management, (pp. 625-633). New 
York, NY: ACM Press.

• Kraaij, W. & Pohlmann, R. (1994). Porter's stemming algorithm for Dutch. In L.G.M. 
Noordman & W.A.M. de Vroomen (Eds.), Informatiewetenschap 1994: Wetenschappelijke 
bijdragen aan de derde STINFON Conferentie, (pp. 167-180). Leiden, Netherlands: Stichting 
Informatiewetenschap Nederland

• Kraaij, W. & Pohlmann, R. (1996). Viewing stemming as recall enhancement. In Proceedings 
of the 19th Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, (pp. 40-48.) New York, NY: ACM Press.

• Krovetz, R. (1993). Viewing morphology as an inference process. In Proceedings of the 16th 
Annual International ACM SIGIR Conference on Research and Development in Information 
Retrieval, 191-202. New York, NY: ACM Press.

• Larkey, L.S., Ballesteros, L. & Connell, M. E. (2002). Improving stemming for Arabic 
information retrieval: light stemming and co-occurrence analysis. In Proceedings of the 25th 
annual International ACM SIGIR Conference on Research and Development in Information 
Retrieval, (pp. 275-282). New York, NY: ACM Press.

• Lennon, M., Pierce, D. S., Tarry, B. D. & Willett, P. (1988). Document retrieval systems. In 
P. Willett (Ed.), Document retrieval systems, (pp. 99-105). London: Taylor Graham 
Publishing.

• Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and 
Computational Linguistics, 11(1/2), 22-31. Retrieved 26 January 2014 from http://mt-



archive.info/MT-1968-Lovins.pdf. (Archived by WebCite® at 
http://www.webcitation.org/6MmQ25qVU)

• Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary 
information. IBM Journal of Research and Development, 1(4), 309-317. 

• Majumder, P., Mitra, M. & Pal, D. (2008). Bulgarian, Hungarian and Czech stemming using 
YASS. In Carol Peters, Valentin Jijkoun, Thomas Mandl, Henning Müller, Douglas W. Oard, 
Anselmo Peñas, Vivien Petras & Diana Santos (Eds.), Advances in multilingual and 
multimodal information retrieval: 8th Workshop of the Cross-Language Evaluation Forum, 
CLEF 2007, Budpest, Hungary, September 2007. Revised selected papers, (pp. 49-56). 
Berlin: Springer-Verlag. (Lecture Notes in Computer Science, 5152).

• Majumder, P., Mitra, M., Parui, S. K., Kole, G., Mitra, P. & Datta, K. (2007). YASS: yet 
another suffix stripper. ACM Transactions on Information Systems, 25(4), paper 18. Retireved 
from http://cse.iitkgp.ac.in/~pabrita/paper/stemmer.pdf (Archived by WebCite® at 
http://www.webcitation.org/6NbketMkE)

• Manning, C. D., Raghavan, P. & Schütze, H. (2008). Introduction to information retrieval. 
New York, NY: Cambridge University Press

• Mayfield, J. & McNamee, P. (2003). Single n-gram stemming. In Proceedings of the 26th 
Annual International ACM SIGIR Conference on Research and Development in Informaion 
Retrieval, (pp. 415-416). New York, NY: ACM Press.

• Melucci, M. & Orio, N. (2003). A novel method for stemmer generation based on hidden 
Markov models. In Proceedings of the Twelfth International Conference on Information and 
Knowledge Management, (pp. 131-138). New York, NY: ACM Press.

• Meyer, C. F. (2010). Introducing English linguistics. Cambridge: Cambridge University Press
• Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 

38(11), 39-41. 
• Moulinier, I., McCulloh, J. A. & Lund, E. (2001). West Group at CLEF 2000: Non-English 

monolingual retrieval. In Revised Papers from the Workshop of Cross-Language Evaluation 
Forum on Cross-Language Information Retrieval and Evaluation, (pp. 253-260). London: 
Springer-Verlag. 

• Orengo, V. & Huyck, C. (2001). A stemming algorithm for the Portuguese language. In 
Proceedings of the Eighth International Symposium on String Processing and Information 
Retrieval 2001 (SPIRE 2001), (pp. 186-193). Laguna de San Rafael, Chile: IEEE Computer 
Society Press. 

• Otxandorena, M. (2010). A Basque stemming algorithm. Retrieved 26 January 2014 from 
http://snowball.tartarus.org/algorithms/basque/stemmer.html. (Archived by WebCite® at 
http://www.webcitation.org/6MmQC5KbS) 

• Paice, C. D. (1990). Another stemmer. SIGIR Forum, 24(3), 56-61. 
• Paice, C. D. (1994). An evaluation method for stemming algorithms. In Proceedings of the 

17th Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, (pp. 42-50). New York, NY: Springer-Verlag. 

• Patil, C. G. & Patil, S. S. (2013). Use of Porter stemming algorithm and SVM for emotion 
extraction from news headlines. International Journal of Electronics, Communication & Soft 
Computing Science and Engineering, 2(7), 9-13

• Peng, F., Ahmed, N., Li, X. & Lu, Y. (2007). Context sensitive stemming for Web search. In 
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, (pp. 639-646). New York, NY: ACM Press. 

• Pirkola, A. (2001). Morphological typology of languages for IR. Journal of Documentation, 
57(3), 330-348



Tweet 0

• Popovic, M. & Willett, P. (1992). The effectiveness of stemming for natural-language access 
to Slovene textual data. Journal of the American Society for Information Science, 43(5), 384-
390. 

• Porter, M. F. (1980). An algorithm for suffix stripping. Program: Electronic Library and 
Information Systems, 40(3), 211-218. 

• Porter, M. F. (2001). Snowball: a language for stemming algorithms. Retrieved 26 January 
2014 from http://snowball.tartarus.org/texts/introduction.html. (Archived by WebCite® at 
http://www.webcitation.org/6MmQJZdhV)

• Salton, G. (1971). The SMART retrieval system - experiments in automatic document 
processing. Upper Saddle River, NJ: Prentice-Hall, Inc.

• Salton, G. (1989). Automatic text processing: the transformation, analysis, and retrieval of 
information by computer. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

• Smirnov, I. (2008). Overview of stemming algorithms. Retrieved 26 January 2014 from 
http://the-smirnovs.org/info/stemming.pdf. (Archived by WebCite® at 
http://www.webcitation.org/6MmQO7y0Sv)

• Taghva, K., Elkhoury, R. & Coombs, J. (2005). Arabic stemming without a root dictionary. In 
Proceedings of the International Conference on Information Technology: Coding and 
Computing (ITCC'05), Volume I, (pp. 152-157). Washington, DC: IEEE Computer Society. 

• Van Rijsbergen, C. J. (1979). Information Retrieval. (2nd. ed.). Newton, MA: Butterworth-
Heinemann

• Voorhees, E. M. (1994). Query expansion using lexical-semantic relations. In Proceedings of 
the 17th Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, (pp. 61-69). New York, NY: Springer-Verlag. 

• Whaley, L. J. (1997). Introduction to typology: the unity and diversity of language. Thousand 
Oaks, CA: Sage Publications.

• Xerox Corporation Ltd. (1994). Xerox linguistic database reference (English version 1.1.4). 
Norwalk, CT: Xerox Corporation Ltd.

• Xu, J. & Croft, W.B. (1998). Corpus-based stemming using cooccurrence of word variants. 
ACM Transactions on Information Systems, 16(1), 61-81. 

How to cite this paper 

Moral, C., de Antonio, A., Imbert, R. & Ramírez, J. (2014). A survey of stemming algorithms in 
information retrieval/ Information Research, 19(1) paper 605. [Available at 
http://InformationR.net/ir/19-1/paper605.html]

Find other papers on this subject

Scholar Search Google Search Bing

Check for citations, using Google Scholar

10

© the authors, 2014. 
Last updated: 22 February, 2014 

0Like



• Contents | 
• Author index | 
• Subject index | 
• Search | 
• Home


