Behavioral Relaxation Training for Parkinson’s Disease Related Dyskinesia and Comorbid Social Anxiety

Duane A. Lundervold1,2, Rajesh Pahwa3, and Kelly E. Lyons3
1University of Central Missouri, 2Plaza Primary Care and Geriatrics-Kansas City, Center for Parkinson’s Disease and Movement Disorders, and 3University of Kansas School of Medicine

Abstract

Effects of brief Behavioral Relaxation Training (BRT) on anxiety and dyskinesia of a 57-year-old female, with an 11-year history of Parkinson’s disease (PD) and 16-months post-deep brain stimulation of the subthalamic nucleus, were evaluated. Multiple process and outcome measures were used including the Clinical Anxiety Scale (CAS), Subjective Unit of Distress (SUD) rating and Abbreviated Treatment Acceptability Rating Profile (AARP). An A-B single-case research design with a six week follow up was used to evaluate effectiveness of intervention. BRT resulted in systematic increases in relaxed behavior and decreased SUD ratings in vivo and decrements in CAS scores. Results were maintained at follow up. The participant rated BRT as highly acceptable. Use of single-case research design enabled objective evaluation of intervention effects. Due to the heterogeneity of PD patients, single-case experimental designs are especially valuable for evaluation of treatment effectiveness and technique building with this population. Finally, findings suggest that BRT is a valuable adjunct behavior therapy intervention for patients with anxiety and dyskinesia related to Parkinson’s disease. Further research regarding BRT and Parkinson’s disease-related disability is indicated.

Keywords

Behavioral Relaxation Training, Parkinson’s disease, dyskinesia, anxiety

Parkinson’s disease (PD) is a progressive, neurodegenerative neurological disorder of unknown etiology. Loss of dopaminergic cells in the substantia nigra of the brain is responsible for motor, affective and cognitive changes observed. No cure is available. Common motor symptoms are tremor, rigidity, and bradykinnesia, as well as postural instability in later stages of the disease (Weiner, Shulman, & Lang, 2001). As the disease progresses medication induced motor symptoms, such as dyskinesia—voluntary gross motor wiggling or dance-like movement affecting upper and lower extremities—may emerge (Weiner et al., 2001).

Awareness of the importance and impact of nonmotor symptoms has grown with clinical and research experience indicating cognitive and behavioral components substantially contributing to impaired quality of life and increased severity of motor symptoms. Yet, anxiety remains unrecognized and under treated among PD patients. (O’Sullivan, Williams, & Gallagher, 2008; Schultman, Taback, Rabinstein & Weiner, 2002). Anxiety disorders are the most common psychological disorder in the general population (Thyer et al., 1985), while anxiety disorders among older adults often co-occur with medical and neurological disorders (Raj et al., 1993). PD and comorbid anxiety have been documented repeatedly with estimates of 40-75% (Schiffer, et al., 1988; Shulman et al., 2002; Stein, Heuser, Juncos, & Uhde, 1990). Clinical treatment, when provided, is primarily pharmacological with anxiolytics, benzodiazepines or antidepressants used. Pathological neurodegenerative changes in noradrenergic mechanisms may be responsible for anxiety experienced by patients with PD (Marsh, 2000). No experimental studies have examined the efficacy of medication in this population.

The effects of anxiety on functioning of PD are formidable and further diminish quality of life (Marinus, Leentjens, Visser, Striggelbout & Van Hilten, 2002). Comorbid anxiety results in increased motor dysfunction including more severe tremor, “freezing” (sudden inability to move), dyskinesia and situational anxiety. Indeed, anxiety may produce excess disability than that observed solely due to PD. Treatment of motor and non motor symptoms of PD focuses on maintaining and improving quality of life. Addressing comorbid anxiety is an important target in this process and relaxation training has been suggested (Marsh, 2000).

Despite the wide spread occurrence of comorbid anxiety and PD, few reports of relaxation training with PD patients are available. Schumaker (1980) examined the effect of frontal electromyographic (EMG) biofeedback and progressive muscle relaxation training on manual motor performance of PD patients. No effect of intervention on motor performance was observed. Behavioral Relaxation Training (BRT) has been used to successfully manage tremor of two older adults; one with essential tremor (ET) and another with ET and PD (Chung et al., 1995). Chung et al reported decreased tremor or severity and improved performance in activities of daily. Improved psychological adjustment was anecdotally reported. Lunderveld (1997) reported that BRT and coping self-instructions were effective with an ET patient in reducing tremor severity related to negative arousal (anger in specific social situations). Decreased emotional distress and EMG activity among four muscle groups was observed. More recently, Lunderveld, Pahwa and Lyons (2009) reported using behavioral intervention that included BRT for management of PD and comorbid general anxiety.

Behavioral Relaxation Training (BRT), a behaviorally-based procedure, employs behavioral skill training to teach 10 overt relaxed behaviors (Popens, 1998). The behaviors are Head, Eyes, Mouth, Shoulders, Throat, Body, Hands, Feet, Quiet and Breathing. Motor response definitions have been empirically validated (Poppen & Maurer, 1983). Training of the behaviors proceeds through...
two phases: acquisition and proficiency. During acquisition training participants acquire the 10 overt behaviors. Whereas in proficiency training the goal is fluent performance of overt behavior and instruction in covert observation and discrimination of interoceptive, proprioceptive, kinesthetic stimuli produced by performance of overt relaxed or unrelaxed behavior. Verbal instructions are provided to prompt accurate discrimination of covert stimuli, for example, “Notice what it feels like as you relax your hand in the curled, claw-like position on the arm of the chair.” Correct performance of relaxed behaviors is reinforced using praise. Corrective feedback is provided contingent on unrelaxed behavior. As a result, “the problem of privacy” with respect to correspondence between private and public behavior is lessened since participant's verbal report of relaxation states is more likely to correspond with performance of overt relaxed behavior (Skinner, 1969).

Typically, eight to 15 BRT individual BRT sessions are conducted with training in both reclined and upright relaxed positions (Chung, Poppen, & Lundervold, 1995; Lundervold & Poppen 2004). Because BRT is based on performance of overt behavior it is easier to teach to children and disabled individuals who may not have the capacity or skill to covertly observe and report on change in muscle tension as is the case when using progressive muscle relaxation. Similarly, BRT for individuals with motor impairment, such as PD, may be especially valuable where the disease diminishes capacity to tense and relax skeletal muscles.

Participant

RZ (a fictitious name), a cognitively intact 57-year-old female with PD 18 months post-DBS implant surgery of the subthalamic nucleus, took part. RZ met DSM-IV-TR criteria for Social Anxiety and reported no pre-morbid history of anxiety disorder. She was stabilized on anti-Parkinson and anxiolytic medication for six months prior to referral. Anxiety was related to moderate to severe lower right extremity dyskinesia remained problematic. Abnormal motor movement was provoked by social situations and stress, e.g., driving in traffic. RZ had no previous history of anxiety and pre-DBS surgery psychological assessment indicated no pre-morbid psychopathology.

The Unified Parkinson's Disease Rating Scale (UPDRS) is a widely used clinical and research instrument used to assess motor performance, activities of daily living (ADL), behavior and mentation (cognition and mood) (Fahn et al., 1987). (See Table 1).

UPDRS assessment, conducted one day after initial contact for behavior therapy services, evaluated performance of ADLs, motor skill and mentation (cognition and mood) (Fahn et al., 1987). Post-DBS UPDRS assessment revealed significant functional improvement and mild to minimal dyskinesia.

Measures

The Clinical Anxiety Scale (CAS, a 25-item structured self-report rating scale was used for idio- graphic assessment of anxiety (Thyer, 1984). Reliability and validity of the CAS is good. A benefit of the CAS is its description of overt behaviors and situations related to anxiety rather than an emphasis on physiological and neurophysiological items that mimic PD (Higgins, Fields, Troster, 2001). Clinical cut off is 30 (range of 0-100) with higher scores indicating greater severity.

Depression was measured using the Geriatric Depression Scale (GDS). The 30-item, full scale GDS was used to assess self-reported depression (Ye-savage, Brink, Rose, Lum, Huang, Adey, & Leier, 1983). The GDS has been recommended for use with medically ill and PD patients (Meara, Mitchelmore, & Hobson, 1999). Clinical cut off is 11 with higher scores indicating greater self-reported depression. SUD ratings (subjective unit of distress (SUD)) were obtained using a 0-10 SUD (1 = calm; 10 = panic) scale to record episodic distress associated with social situations and dyskinesia (Wolpe & Lazarus, 1966).

The Behavioral Relaxation Scale (BRS), a valid, quantitative, direct observation measure of 10 relaxed behaviors (Poppen, 1998) was used to assess relaxation. Each minute of the observation period is divided into three intervals of 30-, 15-, and 15- seconds. During the 30-second interval, the number of breaths is counted. In the first 15-second interval the remaining nine behaviors are observed. In the subsequent 15-second interval, the behaviors are scored as relaxed or unrelaxed. A percent-relaxed score is obtained by dividing the number of relaxed behaviors by the total number of relaxed and unrelaxed behaviors x 100.

The eight-item Abbreviated Acceptability Rating Profile (AARP) was used to assess acceptability of behavior therapy intervention (Tarnowski & Simonian, 1992). The AARP has a unitary factor structure (acceptability) and has been found to have good reliability when used with clinical samples. Scores can range from 8-48 with higher scores indicating greater acceptability.

Procedure

All contact with the patient was conducted in a standard medical examination room contained in a movement disorders center. Five treatment sessions, scheduled two to four weeks apart, were conducted. A sixth and final session was conducted six weeks post-treatment and served as a follow up assessment.

A. Baseline. At session one, the Clinical Anxiety Scale (CAS) and Geriatric Depression Scale (GDS) were completed, followed by a diagnostic and behavioral interview (DAL). The purpose of the behavioral interview was to pinpoint intervention goals, target behaviors, and current maintaining antecedent and consequent conditions related to social anxiety and dyskinesia (Speigler & Guevremont, 2003). After providing a rationale for self-recording, the patient was trained in the use of SUD recording. Review of anxiety and dyskinesia over the preceding 24-hour period was conducted, situational antecedents were identified and a Subjective Unit of Distress (SUD) rating made for each.

B. BRT. Four sessions of BRT were conducted. Due to the limited time available for intervention, baseline assessment of relaxed behaviors was not conducted. Self-report measures were completed at the beginning of each session. Each BRT sessions was approximately 15-minutes in duration. At the end of each BRT training session, a two- to five-minute post-training as-

---

### Table 1. Participant characteristics.

<table>
<thead>
<tr>
<th>PD duration</th>
<th>Mentation</th>
<th>ADL</th>
<th>Motor</th>
<th>PD staging</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 years</td>
<td>mild confusion intermittent depression</td>
<td>6</td>
<td>7</td>
<td>14 19</td>
</tr>
</tbody>
</table>

1 based on time since diagnosis
2 UPDRS assessment conducted with stimulation (Fahn et al., 1987)
3 UPDRS with stimulation at the time of behavior therapy
4 Hoehn & Yahr (1967) disease severity staging

### UPDRS2,3

<table>
<thead>
<tr>
<th>UPDRS2</th>
<th>UPDRS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>On meds</td>
<td>Off meds</td>
</tr>
<tr>
<td>On meds</td>
<td>Off meds</td>
</tr>
<tr>
<td>H/Y II/V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVl qd</td>
</tr>
<tr>
<td>Pravacid 15 mg qd</td>
</tr>
<tr>
<td>Colace one qd</td>
</tr>
<tr>
<td>Amantadine 100 mg tbd</td>
</tr>
<tr>
<td>Artane 2 mg tbd</td>
</tr>
<tr>
<td>Loxapra 10 mg qd</td>
</tr>
<tr>
<td>Sinemet 25/100 ½ qv/day</td>
</tr>
<tr>
<td>Ambien 5 mg qhs prn</td>
</tr>
<tr>
<td>Fosamax 1 q week</td>
</tr>
</tbody>
</table>
Behavioral Relaxation Training (BRT) was administered to a patient with Parkinson's disease-related dyskinesia and comorbid social anxiety. The patient was instructed to practice BRT at least once per day, and to use BRT prior to encountering anxiety-provoking situations. The patient was also instructed to continue engaging in relaxed behaviors until the SUD rating declined from its previous level. Patient diary data (SUD ratings) were mailed or brought to the next treatment session depending on the point in treatment. A treatment acceptability rating was obtained at the last treatment session.

C. Follow-up assessment. A six week follow-up assessment, conducted at which time self-report measures were completed and direct observation of relaxed behavior was obtained.

Results
BRS scores indicated increasing skill in demonstrating relaxed behaviors following BRT. Session-by-session BRS scores were: 70%, 78%, 95% and 74% relaxed at follow up. Baseline CAS score indicated mild, clinically significant anxiety (Thyer, 1984). (See Figure 1).

CAS scores systematically declined following BRT. Results were maintained at follow up. Substantial subjective distress was reported at baseline. (See Figure 2).

Discussion
Brief BRT resulted in increased skill in performance of relaxed behaviors, reduced emotional distress in vivo, management of dyskinetic episodes and clinically significant change in structured self-report questionnaire measure of anxiety. BRT also was found to be highly acceptable to the patient. Effects of BRT on anxiety were above those produced by medication or DBS implant surgery. Use of single-case research methods enabled objective evaluation of the benefit of and magnitude of change following intervention (Bloom, Fischer, & Orme, 2003).

Results add further support to the use of BRT for management of anxiety and dyskinesia associated with PD (Chung et al., 1995; Lundervold, Pahwa, & Lyons, 2009). While relaxation has been advocated by physicians working with PD patients (Marsh, 2000), only two other reports of are available in the literature (Chung, et al., 1995; Schumaker, 1980). Our results are consistent with Chung et al and contradict Schumaker. Unlike progressive muscle relaxation, as employed by Schumaker, BRT does not require the participant to engage in a series of tense-relax exercises. Lack of benefit reported by Shumaker may have been due to the setting event affecting the participants, i.e., diminished biological capacity to perform the necessary response. Consequently, BRT may be the relaxation training procedure of choice for patients with PD who experience loss of motor control and heightened muscle tension. Further research, comparing BRT with other relaxation training procedures for PD, is indicated.

Obvious limitations of this case study include retrospective and limited baseline SUD rating, lack of baseline assessment and reliability of relaxed behavior, and limited follow-up assessment. Dyskinesia was not directly assessed though the patient reported a decrease in dyskinesia following BRT. Clearly, further examination of the effect of BRT on dyskinesia and social anxiety among PD patients I needed using more rigorous single-subject research.


Author Contact Information

Dr. Duane A. Lundervold,
Department of Psychological Science,
Levinger 1111, University of Central Missouri, Warrensburg, MO 64093. Email: Lundervold@ucmo.edu