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In 2002, an article entitled “Four assumptions of multiple regression that researchers should always test” by 
Osborne and Waters was published in PARE. This article has gone on to be viewed more than 275,000 times 
(as of August 2013), and it is one of the first results displayed in a Google search for “regression 
assumptions”. While Osborne and Waters’ efforts in raising awareness of the need to check assumptions 
when using regression are laudable, we note that the original article contained at least two fairly important 
misconceptions about the assumptions of multiple regression: Firstly, that multiple regression requires the 
assumption of normally distributed variables; and secondly, that measurement errors necessarily cause 
underestimation of simple regression coefficients. In this article, we clarify that multiple regression models 
estimated using ordinary least squares require the assumption of normally distributed  errors in order for 
trustworthy inferences, at least in small samples, but not the assumption of normally distributed response or 
predictor variables. Secondly, we point out that regression coefficients in simple regression models will be 
biased (toward zero) estimates of the relationships between variables of interest when measurement error is 
uncorrelated across those variables, but that when correlated measurement error is present, regression 
coefficients may be either upwardly or downwardly biased. We conclude with a brief corrected summary of 
the assumptions of multiple regression when using ordinary least squares. 

 

Testing of assumptions is an important task for the 
researcher utilizing multiple regression, or indeed any 
statistical technique. Serious assumption violations can 
result in biased estimates of relationships, over or 
under-confident estimates of the precision of 
regression coefficients (i.e., biased standard errors), and 
untrustworthy confidence intervals and significance 
tests (Chatterjee & Hadi, 2012; Cohen, Cohen, West, & 
Aiken, 2003). Unfortunately, the reporting of 
assumption checking in social science research articles 
is often relegated to a sentence or two, if that, in the 
method section. We might hope that most researchers 
nevertheless thoroughly and appropriately investigate 
the statistical assumptions of their analyses of choice, 
but we suspect that such a hope would be decidedly 
optimistic. In fact, a recent analysis of a sample of 
psychological researchers’ data analysis practices found 
that assumptions were rarely checked, and the sample’s 
knowledge about the assumptions of basic statistical 
tests was poor (Hoekstra, Kiers, & Johnson, 2012). 

Osborne and Waters’ (2002) attempt to draw attention 
to the assumptions of multiple regression is therefore 
commendable, especially so in that it was published in 
an open-access journal (PARE). It is a testament to 
both the usefulness of clear writing on this topic and 
the success of PARE’s open access model that 
Osborne and Waters’ article has been viewed more 
than 275,000 times as at August 2013 (as per the hit 
counter on the html version of the article). This 
phenomenal number of page views achieves particular 
significance when we consider that Tenopir and King 
(2000) estimate that the average scientific article in the 
United States is read only 900 times. Osborne and 
Waters’ article is also currently one of the first five 
results for a Google search for the search terms 
regression assumptions, no doubt contributing largely to its 
popularity. Its impact on the scientific literature has 
likewise been far from trivial, with Google Scholar 
listing 219 papers and books as citing the article as at 
June 2013. 
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It is the very popularity and ready accessibility of 
Osborne and Waters’ article that prompts us to pen 
this response more than a decade after its original 
publication. Our concern is that Osborne and Waters’ 
article contained two fairly substantial misconceptions 
about the assumptions of multiple regression. These 
misconceptions are that multiple regression requires the 
assumption of normally distributed variables; and that 
measurement error can only lead to under-estimation 
of bivariate relationships. Misconceptions about 
distributional assumptions can have serious 
consequences, including the expending of effort on 
checking unnecessary assumptions, the performing of 
problematic transformations and “corrections”, and the 
neglect of the actual assumptions of the analysis being 
used. In this paper we correct the misconceptions 
contained in Osborne and Waters’ article, making use 
of simple computer simulations to illustrate our points. 
We also provide a brief corrected summary of the 
assumptions of multiple regression. For simplicity, our 
examples are restricted to the bivariate or “simple” 
regression case—i.e., just one predictor and one 
response variable. Our statements nevertheless apply to 
both multiple and simple linear regression, and indeed 
can be generalized to other instances of general linear 
models with a single dependent variable such as 
between-subjects ANOVA and ANCOVA, and 
independent samples t-tests. Comments are restricted, 
however, to models in which the estimation method is 
ordinary least squares (OLS)—as is usually the case. 

Desiderata for a statistical estimator 

Before discussing the assumptions of multiple 
regression, it is important to discuss what we need to 
make these assumptions for. Remembering that a 
regression coefficient based on sample data is an 
estimate of a true regression parameter for the 
population the sample is drawn from, there are three 
particularly important properties for a statistical 
estimator (Dougherty, 2007). These three properties are 
true of regression coefficients calculated via ordinary 
least squares—provided that certain assumptions are 
met (Cohen et al., 2003). 

Unbiased: An estimator is unbiased if its expected 
value (mean) is the same as the true parameter value in 
the population. In other words, an unbiased estimator 

has no systematic bias: It does not have a general 
tendency to over- or under-estimate the true parameter. 

Consistent: An estimator of a parameter is 
consistent if the estimate converges to the true value of 
the parameter as the sample size increases. I.e. its 
accuracy tends to improve as the sample size grows 
larger. 

Efficient: Efficiency refers to the accuracy of the 
estimates produced by the estimator. An estimator may 
be referred to as efficient if it is the most accurate (i.e., 
its variance is the smallest) of all unbiased estimators 
for the given parameter. 

Aside from these three properties, it is also often 
desirable to assume a particular probability distribution 
for the sampling distribution of a given test statistic. A 
sampling distribution is the distribution of a particular 
statistic over repeated samplings from a population. 
For example, it is conventional to assume that the 
estimate of a regression coefficient will be normally 
distributed over repeated samplings, allowing 
researchers to make inferences about the value of the 
given regression parameter via confidence intervals 
and/or significance tests. The validity of this 
assumption, however, depends on the assumption of 
normally distributed model errors (at least when 
working with small samples), and this is the issue we 
turn to next. 

The Normality Assumption:  
It’s All About the Errors 

In their summary of the assumptions of multiple 
regression, the first of four assumptions given focus by 
Osborne and Waters (2002) is the normality 
assumption. Osborne and Waters state: “Regression 
assumes that variables have normal distributions” (p. 
1).  They do not explicate which variables in particular 
they are referring to, but the implication seems to be 
that multiple regression requires that the predictor 
and/or response variables be normally distributed. In 
reality, only the assumption of normally distributed 
errors is relevant to multiple regression: Specifically, we 
may assume that errors are normally distributed for any 
combination of values on the predictor variables.  

It is important to define at this point what we 
mean by errors, especially as the term is unfortunately 
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used to denote two different concepts that are relevant 
to a regression model. In a regression model, errors are 
the difference between subjects' observed values on the 
response variable and the values predicted by the true 
regression model for the population as a whole. This 
usage of the term error needs to be distinguished from 
the concept of measurement error, which will be defined 
and discussed later in this article. 

The errors of a regression model cannot usually be 
directly observed, of course, since we rarely know the 
parameters of the true regression model. Instead, it is 
possible to investigate the properties of the errors by 
calculating the residuals of a regression model estimated 
using sample data (Weisberg, 2005). The residuals are 
defined as the differences between the observed 
response variable values and the values predicted by the 
estimated regression model. Another way of stating the 
normality assumption is that for any given combination 
of values on the predictor variables, we assume that the 
conditional distribution of the response variable is 
normal1—even though we do not assume that the 
marginal or “raw” distribution of the dependent 
variable is necessarily normal. 

Osborne and Waters (2002) do mention briefly the 
assumption of normality of errors, but say that 
regression is robust to this assumption and do not give 
it any further discussion. The assumption of normally 
distributed errors is useful because when it holds true, 
we can make inferences about the regression 
parameters in the population that a sample was drawn 
from, even when the sample size is relatively small. 
Such inferences are usually made using significance 
tests and/or confidence intervals. However, when the 
sample is small, and errors are not normally distributed, 
these inferences will not be trustworthy. Normality 
violations can degrade estimator efficiency in at least a 
technical sense: When errors are normally distributed, 
OLS is the most efficient of all unbiased estimators 
(White & MacDonald, 1980), whereas in the presence 
of non-normal errors it is only the most efficient in the 

                                                 
1 This alternative formulation of the normality assumption may 
be particularly helpful when considering generalized linear 
models, in which distributions other than the normal may be 
assumed for the conditional distribution of the response 
variable. 

class of linear unbiased estimators (Wooldridge, 2009).  
More concretely, non-normal errors may also mean 
that coefficient t and F statistics may not actually follow 
t and F distributions.  

On the other hand, the assumption of normally 
distributed errors is not required for multiple regression 
to provide regression coefficients that are unbiased and 
consistent, presuming that other assumptions are met. 
Further, as the sample size grows larger, inferences 
about coefficients will usually become more and more 
trustworthy, even when the distribution of errors is not 
normal. This is due to the central limit theorem which 
implies that, even if errors are not normally distributed, 
the sampling distribution of the coefficients will 
approach a normal distribution as sample size grows 
larger, assuming some reasonably minimal 
preconditions. This is why it is plausible to say that 
regression is relatively robust to the assumption of 
normally distributed errors. 

The misconception that the normality assumption 
applies to the response and/or predictor variables is 
problematic in that there are certainly situations where 
the response and/or predictors are not normally 
distributed, but a normal distribution for the errors is 
still plausible. As one example, dichotomous predictors 
are often used in multiple regression; although such 
predictors are clearly not normally distributed, the 
errors of regression models using dichotomous 
predictors may still be normally distributed, allowing 
for trustworthy inferences. Furthermore, dichotomous 
variables that are particularly strong predictors of a 
response variable may induce a bimodality to the 
marginal distribution of the response variable, even if 
the errors are normally distributed. This is one situation 
in which neither predictor nor response variable has a 
normal distribution, despite the model errors being 
normally distributed.  

Normality assumption simulation 

The following simulation presents a situation 
where a dichotomous predictor X, that has a very 
strong effect on a response variable Y, results in the 
response variable not taking a normal distribution, 
despite the errors being normally distributed. The 
simulation was completed in R 2.15.2; the relevant code 
is attached in an appendix for readers interested in 
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replicating our results. For this simulation, we define 
the true population model as the following: 

5  

where 	~	 0, 1  

In other words, in this scenario, the response 
variable Y is equal to the value of the predictor variable 
X multiplied by five, plus an error term. The error term 
is normally distributed with a mean of zero, and a 
standard deviation of one. In the simulation, X will be 
a fixed dichotomous variable, with an equal number of 
cases in each group (as might be the case for, say, a 
randomized controlled trial). For the purpose of 
illustration, this scenario is one where the effect size is 
very large: Approximately five standard deviation units. 
The reader may also note that given that we are 
analyzing the relationship between a single 
dichotomous predictor and a continuous response 
variable, it might be more conventional to use an 
independent samples t-test or perhaps an ANOVA. In 
fact, independent samples t-tests and between-subjects 
ANOVA are just special cases of regression, having the 
same assumptions and resulting in the same inferential 
statistics. 

In the first step of the simulation, we simulate a 
single sample of 30 participants, with 15 participants in 
each of the two subsamples formed by the X variable. 
This allows us to offer a visual depiction of the 
distribution of the response variable Y. In Figure 1 a 
histogram shows that due to the strong influence of the 
dichotomous predictor variable X, the response 
variable Y is bimodal. Its non-normality is also clear in 
a normal q-q plot, where the quantiles of the 
distribution do not match those of a normal 
distribution, as indicated by the straight line. A Shapiro-
Wilk normality test also provides evidence to reject a 
null hypothesis of a normal distribution for this 
variable, W = 0.910, p = .015. On the other hand, if we 
regress Y on X and then calculate the residuals, there is 
no evidence to reject a null hypothesis of normality for 
the marginal distribution of the errors, W = 0.971, p = 
.562. In sum, despite the presence of normally 
distributed errors, the response variable in this 
simulated example is clearly not normally distributed. 

The predictor variable is obviously likewise not 
normally distributed, being dichotomous. 

Figure 1. Histogram and Normal Q-Q Plots for the 
Simulated Response Variable Y 

We can now proceed to check whether a 
regression model still produces trustworthy results in 
this scenario of non-normal predictor and response 
variables, but normal errors. Firstly, we will briefly 
check that regression via ordinary least squares 
provides coefficients that are unbiased. We will do this 
by running a simulation in which we generate a large 
number of samples (10,000), each sample having a total 
of 30 cases, or 15 cases in each subsample formed by 
the dichotomous predictor variable. A linear regression 
model is then fit in each sample, the coefficient for the 
effect of X on Y is estimated, and summary statistics 
are calculated for the coefficients. The results are 
displayed in Table 1. 

Table 1: Results from simulation testing 
unbiasedness of coefficient estimates with non-
normal X, non-normal Y, and normal errors 

Statistic Results 

N of samples generated 10,000 

Mean coefficient estimate 5.002 

Minimum coefficient estimate 3.518 

Maximum coefficient estimate 6.679 

Standard deviation of coefficient 
estimates 

0.362 

The simulation demonstrates that the estimates of 
the regression coefficient for X are unbiased: The mean 
estimate nearly exactly equals the true parameter of 5, 
although of course the estimates vary around the true 
value. The unbiasedness of the estimates is 
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unremarkable, and in actuality the assumption of 
normally distributed errors is not required to achieve 
unbiasedness of coefficient estimates. We will omit 
evaluations of consistency and efficiency, but 
coefficients estimated in this situation would be both 
consistent and efficient. 

Although not essential to achieve unbiasedness of 
regression coefficients, normally distributed errors are 
required to achieve trustworthy inferences (e.g., 
confidence intervals) in small samples (Weisberg, 2005). 
We can investigate the trustworthiness of confidence 
intervals calculated via OLS regression in this scenario 
by evaluating the coverage of confidence intervals. The 
coverage of a confidence interval is the proportion of 
intervals calculated using the given estimator that 
actually contain the true value of the parameter of 
interest, such as a regression parameter. If a 95% 
confidence interval has correct coverage, this means 
that if a large number of samples are drawn from the 
population of interest and a confidence interval 
calculated based on the data from each sample, 95% of 
these intervals will contain the true parameter value. In 
the simulation below, we generate 10,000 samples using 
the model discussed previously (dichotomous X, non-
normal Y, normal errors). Once again, each sample 
contains 30 cases. We then investigate the coverage of 
95% confidence intervals for the regression parameter 
for the predictor variable X. Results are presented in 
Table 2 Error! Reference source not found.. 

Table 2: Results from simulation testing 
unbiasedness of coefficient confidence 
intervals with non-normal X, non-normal Y, 
and normal errors 

Statistic Results 

N of samples generated 10,000 

Number of intervals including 
the true parameter 

9,518 

Coverage 95.18% 

This simulation demonstrates that the coverage of 
95% confidence intervals is nearly exactly correct at 
95.18%. The fact that only a finite number of samples 
can be generated explains the very slight difference of 
0.18%. This result demonstrates the trustworthiness of 

small-sample inferences in this scenario in which 
neither the predictor nor the response variable is 
normally distributed (but errors are normally 
distributed). While we intentionally used a rather 
exaggerated case for illustrative purposes (a 
dichotomous predictor with a very strong effect on the 
response variable), scenarios substantively similar to 
this one may occur in real life. It is therefore important 
that researchers using multiple regression investigate 
how the residuals from their regression model behave, 
in order to determine how well they fit the assumption 
of normally distributed errors for the model under 
consideration. On the other hand, investigations of the 
distributions of the response and predictor variables 
may be useful for the sake of description, but have less 
bearing on whether the assumptions of multiple 
regression are actually met. 

The Effects of Measurement Error on 
Regression Coefficients 

We will now switch our focus to another kind of 
error: Measurement error. The formal definition of 
measurement error differs somewhat across different 
theories of measurement (e.g., classical test theory 
versus latent variable theory), but a loose conceptual 
definition is that measurement error is the difference 
between an observed score and either the subject’s true 
score or the subject’s actual level of the attribute of 
interest. Osborne and Waters (2002, p. 2) state that the 
absence of measurement error is an assumption of 
multiple regression, and claim: “In simple correlation 
and regression, unreliable measurement causes 
relationships to be under-estimated”. (Simple regression 
involves only one predictor and one response; Osborne 
and Waters correctly note that in multiple regression, 
coefficients may be upwardly or downwardly biased by 
measurement error). They go on to provide formulae 
for correcting the attenuating effects of measurement 
error on zero-order and partial correlation coefficients.  

The formulae provided by Osborne and Waters 
are closely related to classical test theory, and attempt 
to estimate the relationships between true scores on the 
measured variables. In classical test theory, true scores 
can be conceptualized as such: If we were able to 
administer a particular test to the same individual an 
extremely large number of times, with each 
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administration being independent of the other 
administrations, and the individual’s level of the trait of 
interest remaining unchanged, then his or her true 
score would be the average score across all these 
administrations (Lord & Novick, 1968; Raykov & 
Marcoulides, 2011). In other words, an individual’s true 
score on a test is his or her expected score on the test. 
The “correction for attenuation” formulae provided by 
Osborne and Waters allow for the estimation of zero-
order and partial correlations between true scores on 
different variables, but only under the restrictive 
assumption that measurement error is uncorrelated 
across these variables. While classical test theorists have 
typically relied on this assumption, it is not guaranteed 
by the axioms of classical test theory, and may be false 
in real world situations (Zimmerman & Williams, 1977; 
Zimmerman, 1998). 

Complicating the issue further is the fact that the 
true score relates to the reliability of scores, and not 
their validity. An individual’s true score is defined as his 
or her expected score on the test itself, and is not 
necessarily the respondent’s actual level of the 
particular attribute of interest, such as anxiety, 
intelligence, depression, and so forth. Attributes such 
as intelligence or anxiety, which are not directly 
observable, are commonly termed latent variables. It is 
the relationships between such latent variables that 
social scientists often wish to actually draw inferences 
about. If measurement error is correlated across the 
measured variables, regression coefficients may be 
downwardly or upwardly biased estimates of the actual 
relationships between the latent variables, depending 
partly on the magnitude and direction of the correlation 
between measurement error terms. Importantly, the 
“corrections” for measurement error suggested by 
Osborne and Waters simply are not designed to 
estimate relationships amongst latent variables: They 
are designed to estimate relationships between true 
scores. There is no particular basis to assume that they 
will improve estimates of relationships between latent 
variables. We illustrate this point with a simple 
simulation in which correlated measurement error 
results in regression coefficients over-estimating the 
relationship between two latent variables, where a 
“correction” for attenuation exacerbates rather than 
solves this issue.  

This simulation explicitly takes a latent variable 
perspective on measurement. Other theories about the 
essential nature of measurement are possible, and 
include the classical concept of measurement (Michell, 
1999), classical test theory, and representationalism (see 
Borsboom, 2005). However, given the pervasive use of 
latent variable models such as factor  models, structural 
equation models, and item response theory models in 
the social sciences, and indeed recent research 
appearing on the pages of PARE (e.g., Baryla, Shelley, 
& Trainor, 2012; Han, 2012; Thompson & Weiss, 
2011), we expect that the latent variable perspective on 
measurement will be the most familiar and relevant to 
readers. 

Measurement error simulation 

Imagine a scenario where a researcher is interested 
in the relationship between latent variable X and latent 
variable Y as presented in Figure 1. These variables 
might be particular cognitive abilities, personality traits, 
consumer satisfaction components, levels of 
psychopathology, or whatever example the reader 
prefers. The researcher cannot tap into direct error-free 
measurements of these latent variables, but instead has 
to obtain scores on particular tests: “Test score X” and 
“Test score Y”. These tests are of course imperfect, 
and each subject to a degree of measurement error. 
Observed scores on each test are caused by a 
combination of an effect of measurement error, and an 
effect of the latent variable the test is meant to be 
measuring. The complicating factor we will include in 
this illustrative scenario is that measurement error is 
correlated across the two instruments. We will simulate 
a population of 10,000 observations, with a correlation 
of exactly 0.15 between the latent variables X and Y, 
and a correlation of 0.30 between measurement errors 
on the two variables. For simplicity, the regression 
coefficients for the effects of the latent variables and 
measurement error terms on the observed test scores 
are all set to 1, as are the variances of the latent 
variables; measurement error terms are set to a variance 
of 0.5. Using the simulated data, we can then calculate 
the correlation between observed scores on test X and 
test Y in this population. We will focus on the 
correlation coefficient at this point to facilitate an 
investigation of the effects of the correction for 
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measurement error suggested by Osborne and Waters 
(which is designed for correlation coefficients). The 
results would be otherwise similar were we to use an 
unstandardised regression coefficient to evaluate the 
relationship between test scores X and Y. 

 

Figure 2. Path Diagram of the Measurement Error 
Simulation 

The results are concerning. In this scenario, the 
population correlation between latent variables X and 
Y is just 0.15, but the correlation between observed 
scores on tests X and Y ( = 0.21) actually 
overestimates the correlation between the latent 
variables. This is due to the presence of correlated 
measurement error ( = 0.30). Of course, an actual 
researcher is unlikely to have access to data for a full 
population; the correlation between observed scores on 
tests X and Y has an expected value of 0.21 across 
samples from the population of 10,000 cases, but 
estimates based on sample data would fluctuate 
somewhat around this value. Estimates of the 
correlation between scores on test X and Y based on 
samples from the population of 10,000 cases will 
nevertheless be upwardly biased estimates of the 
population correlation between latent variables X and 
Y in this scenario. 

Attempting to correct for the presence of 
measurement error using formula 1 provided by 
Osborne and Waters (the classic “correction for 
attenuation” formula) would not resolve this problem. 

Using the formulae in Raykov (2004) for calculating the 
reliability of measures in a latent variable model, we can 
obtain a population reliability value of 0.67 for scores 
on both Test X and Test Y. If we then apply Osborne 
and Waters formula 1 to obtain the “corrected” value 
for the population correlation between X and Y, the 
result is as below: 

∗

√

0.21

√0.67 ∗ 0.67
0.31 

The “corrected” value for the population 
correlation between test scores X and Y of 0.31 thus 
even further overestimates the actual correlation of just 
0.15 between the latent variables X and Y. The net 
result is that in this scenario, the presence of correlated 
measurement error means that the correlation between 
observed scores on tests X and Y overestimates the 
correlation between the latent variables of interest; and 
this problem is seriously exacerbated by the application 
of the correction for attenuation formula. Again, this 
simulation is conducted on the basis of a population 
dataset; estimates of the “corrected” correlation on the 
basis of samples from the population would fluctuate 
somewhat around the population value of 0.31. 

The reader may object that this is an artificial 
example, and we have not provided a plausible case for 
why measurement error might be correlated across 
multiple measuring instruments or tests. In reality, a 
number of sources may produce correlated 
measurement error. For example, when the same 
method is used to measure multiple attributes, this may 
result in correlated measurement error across those 
variables (Andrews, 1984). Furthermore, situational 
variables such as variations in the health of participants 
and noise levels may cause correlations in the 
measurement error of attributes of participants 
measured at the same point in time (Zimmerman & 
Williams, 1977). 

Measurement error, then, may certainly bias 
estimates of the relationships between particular 
constructs, but not necessarily in a predictably 
downwards fashion, even for simple bivariate 
regression (as Osborne and Waters seem to suggest). In 
turn, this means that researchers cannot comfortably 
assume that measurement error can only result in 
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making a given study’s findings more conservative, in 
the sense of only reducing rather than inflating 
regression estimates.  

Relatedly, we would caution against widespread 
use of the adjustments or “corrections” for 
measurement error that are suggested by Osborne and 
Waters: There is little basis to conclude that these 
adjustments will result in better estimates of 
relationships between the latent variables or constructs 
that researchers are interested in. Borsboom and 
Mellenbergh (2002) likewise argue against the use of 
the well-known correction for attenuation formula 
(formula 1 in Osborne and Waters), providing a more 
detailed examination of this particular question. 
Researchers who wish to account for the presence of 
measurement error when estimating the relationships 
between latent variables would be far better served by 
applications of modern latent variable modeling 
techniques such as structural equation modeling, which 
allow for the explicit modeling of (correlated and 
uncorrelated) measurement error. 

So what are the statistical assumptions of 
multiple regression? 

Having commented on two misconceptions about 
the assumptions of multiple regression, it is perhaps 
worthwhile closing with a brief (revised) summary of 
the assumptions of linear regression by ordinary least 
squares. The following assumptions apply regardless of 
whether simple (bivariate) or multiple linear regression 
is utilized, and also apply to other instances of general 
linear models with single dependent variables such as 
between-subjects ANOVA and ANCOVA, and 
independent samples t-tests. It is important to note in 
passing that we do not discuss assumptions about 
measurement levels in this article, restraining our focus 
to purely statistical assumptions. Some theoretical 
positions on measurement proscribe the use of 
parametric statistical procedures with data of certain 
measurement levels, such as the variety of 
representationalism advocated by S. S. Stevens (1946). 
However, this proscription does not necessarily apply 
to all theoretical positions on measurement (see Hand, 
1996; Michell, 1986; Zand Scholten, 2011), and the 
statistical assumptions underlying parametric analyses do 
not include any assumptions about levels of 

measurement (Gaito, 1980). We refer the reader 
interested in the issue of measurement levels to the 
above-cited articles and omit further discussion of this 
issue here. 

Assumption about the model: Linearity in the 
parameters 

The model that relates the response Y to the 
predictors X1, X2, X3... Xp is assumed to be linear in the 
regression parameters (Chatterjee & Hadi, 2012). This 
means that the response variable is assumed to be a 
linear function of the parameters (1, 2, 3… p), but 
not necessarily a linear function of the predictor 
variables X1, X2, X3... Xp. Osborne and Waters (2002, p. 
1) unfortunately repeat a common misconception in 
claiming that “Standard multiple regression can only 
accurately estimate the relationship between dependent 
and independent variables if the relationships are linear 
in nature”. In reality, some types of non-linear 
relationships can be modeled within a linear regression 
framework. For example, a quadratic (U or reverse-U 
shaped) relationship between X and Y can be 
accommodated by including both X and X2 as 
predictors, as in the equation: 

 
 

This regression equation is still a linear regression 
equation, because Y is modeled as a linear function of 
the parameters ,  and . On the other hand, a 

regression equation such as  is non-linear 
in the parameters, and cannot be modeled within a 
linear regression framework.  As Osborne and Waters 
note, unmodeled non-linearity can be identified by 
plotting residuals against predicted values of Y. If the 
relationship between the response and predictor 
variables appears to take a form that is not linear in the 
regression parameters, non-linear regression models are 
available, although transformations may also be used to 
achieve a linear function in some cases (Chatterjee & 
Hadi, 2012). If the true model relating the predictors to 
the response variable is not of the form specified in the 
regression model (e.g., non-linear in the parameters, or 
simply of a different form to that specified), then the 
calculated coefficients will lead to erroneous 
conclusions about the strength and nature of the 
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relationships between the variables in the model. 
Furthermore, the important assumption that the errors 
have a conditional mean of zero will be breached in 
such a scenario; the formal consequences of this 
problem are reviewed below. 

Assumptions about the model errors 

It should perhaps go without saying that given that 
the following four assumptions apply to errors rather 
than the response and/or predictor variables, it is not 
possible to investigate these assumptions without 
estimating the actual regression model of interest itself. 
It is a common misconception that assumption 
checking can and should be fully completed prior to 
the running of substantive analyses; in reality, 
assumption checking should be an ongoing process 
throughout any data analysis. 

1. Zero conditional mean of errors 

The errors are assumed to have a mean of zero for 
any given value, or combination of values, on the 
predictor variables (Fox, 1997; Weisberg, 2005). When 
the conditional means of the errors are zero (and the 
other assumptions are also met), the desirable 
properties of OLS estimators discussed in this article 
apply regardless of whether the X values are fixed, as in 
an experiment, or random, as in sampled from a 
population (Berk, 2004; Snedecor & Cochran, 1980). 
On the other hand, if this assumption is violated, 
regression coefficients may be biased (Berk, 2004). 
Plausible reasons for a breach of this assumption 
include unmodeled non-linearity (e.g., if the model 
specifies a linear relationship between the predictor and 
the response and the true relationship is non-linear), or 
measurement error that is correlated across the 
response and predictor variable(s). As such, the 
sections above and below discussing assumptions with 
regard to linearity and measurement error provide 
advice that is also useful for identifying and responding 
to breaches of the assumption that the errors have 
conditional means of zero. 

2. Independence of errors 

The errors are assumed to be independent 
(Chatterjee & Hadi, 2012; Fox, 1997; Weisberg, 2005). 
Breach of this assumption leads to biased estimates of 
standard errors and significance, though the estimates 

of the regression coefficients remain unbiased, yet 
inefficient (Chatterjee & Hadi, 2012). Osborne and 
Waters (2002) state that independence of observations is 
required for linear regression, which is not entirely 
correct. Much in the same way that we assume that the 
errors (but not necessarily the raw variables) are 
normally distributed, we only need to assume 
independence of errors, not the observations 
themselves. In practice, many situations may produce 
dependent observations. For example, the observed 
values of data collected in the form of a time series may 
exhibit a form of independence breach in which 
observations are correlated with lagged values of the 
time series (i.e., current observations are autocorrelated 
with recent observations). However, a correctly 
specified time series model (e.g., perhaps including 
autoregressive terms) may result in independent errors 
and trustworthy results. The possibility of 
autocorrelated errors may be investigated by calculating 
an autocorrelation function (see Cryer & Chan, 2008), 
although other sources of error dependence  may be 
identified using knowledge about the study design. For 
example, the use of cluster rather than random 
sampling can result in dependence of errors (Winship 
& Radbill, 1994). In general, the appropriate response 
to dependent errors depends on the source of this 
dependence. For example, the use of time series data 
may require the use of some form of time series 
analysis (see Cryer & Chan, 2008; Hamilton, 1994), 
while the analysis of nested data may require the use of 
a multilevel model (see Goldstein, 2011). 

3. Homoscedasticity (constant variance) of errors 

The model errors are generally assumed to have an 
unknown but finite variance that is constant across all 
levels of the predictor variables. This assumption is also 
known as the homogeneity of variance assumption. If 
the errors have a variance that is finite but not constant 
across different levels of the predictor/s (i.e., 
heteroscedasticity is present), ordinary least squares 
estimates will be unbiased and consistent as long as the 
errors are independent, but will not be efficient 
(Weisberg, 2005). The inference process will also be 
untrustworthy since conventionally computed 
confidence intervals and t and F-tests for OLS 
estimators can no longer be justified. As Osborne and 
Waters state, heteroscedasticity can be identified by 
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plotting standardized (or studentized) residuals against 
the predicted values of Y. When heteroscedasticity is 
encountered, several alternatives are available to the 
researcher. These alternatives include variance 
stabilizing transformations (Montgomery, Peck, & 
Vining, 2001; Weisberg, 2005), robust estimation 
methods for standard errors (e.g., Huber-White 
standard errors; White, 1980), bootstrap methods 
(Montgomery et al., 2001), estimation via Weighted 
Least Squares (Chatterjee & Hadi, 2012), or the 
specification of a Generalized Linear Model (Cohen et 
al., 2003; Montgomery et al., 2001).  

4. Normal distribution of errors 

This assumption has been discussed at length 
previously in this article. Normally distributed errors 
are not required for regression coefficients to be 
unbiased, consistent, and efficient (at least in the sense 
of being best linear unbiased estimates) but this 
assumption is required for trustworthy significance tests 
and confidence intervals in small samples (Cohen et al., 
2003). The larger the sample, the lesser the importance 
of this assumption. This assumption formally applies to 
the distribution of the errors (or, equivalently, the 
conditional distribution of the response variable) for 
any given combination of values on the predictor 
variables. In some simple cases, such as for a single 
categorical predictor, it may be possible to investigate 
the distribution of residuals (or equivalently, the 
distribution of the response variable) at all values of the 
predictor variables. In many cases, however, there will 
be a very large number of possible values on the 
predictor variables. In this more general situation, it is 
only feasible to investigate the marginal distribution of 
the residuals, which may provide a reasonable guide to 
the accuracy of the normality assumption. A normal Q-
Q plot may be useful for this purpose (see Cohen et al., 
2003). Since the normality assumption is primarily of 
importance for small samples, non-normality of the 
errors may be addressed by increasing the sample size. 
When this is not possible, inference in small samples 
with non-normal errors can be achieved by using 
bootstrap methods (Efron & Tibshirani, 1986; 
Montgomery et al., 2001), or the specification of a 
Generalized Linear Model with an error distribution 
other than the normal (Cohen et al., 2003; Montgomery 
et al., 2001). 

It is worth noting in passing that while the 
regression model requires only the normality of errors, 
the Pearson product moment correlation model requires 
that the two variables follow a bivariate normal 
distribution (Pedhazur, 1997). I.e., in the correlation 
model, both the marginal and conditional distribution 
of each variable is assumed to be normal. 

Assumptions about measurement error 

The predictor variables are assumed to be 
measured without error (Chatterjee & Hadi, 2012; 
Montgomery et al., 2001). Error in the response variable 
measurements (but not the predictors) will not 
harmfully affect inferences relating to unstandardized 
regression coefficients, provided this measurement 
error is not correlated with the predictor variable 
values. Aside from this special case, measurement error 
can result in either upwardly or downwardly biased 
coefficients, depending on whether measurement error 
is correlated or uncorrelated across the measured 
variables, and depending on the magnitude and 
direction of any correlations amongst error terms. 
Where measurement error exists for the predictors, or 
correlated measurement error exists for either the 
predictors or the response variable, analysis methods 
that allow measurement error to be explicitly modeled 
may be a better alternative to OLS regression. 
Structural equation modeling (see Kline, 2005) may 
allow for the detection (Raykov, 2004) and correction 
of both correlated and uncorrelated measurement 
error. For a more general introduction to psychometric 
theory and measurement, see Raykov and Marcoulides 
(2011). 

Other potential problems 

Although perhaps not best described as 
assumptions, since these are not theoretical constraints 
imposed in the definition of the General Linear Model, 
two important potential problems are often described 
in conjunction with discussions of the assumptions of 
linear regression: Multicollinearity and outliers. 

1. Multicollinearity 

The presence of correlations between the 
predictors is termed collinearity (for a relationship 
between two predictor variables) or multicollinearity 
(for relationships between more than two predictors). 
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In severe cases (such as a perfect correlation between 
two or more predictors), multicollinearity can mean 
that no unique least squares solution to a regression 
analysis can be computed (Belsley, Kuh, & Welsch, 
1980; Slinker & Glantz, 1985).  More commonly, less 
severe multicollinearity can lead to unstable estimates 
of the coefficients for individual predictors: That is, the 
standard errors and confidence intervals for the 
coefficient estimates will be inflated (Belsley et al., 
1980). The extent to which multicollinearity is a 
concern depends somewhat on the aims of the analysis: 
If prediction is the main objective, multicollinearity is 
not a significant obstacle, as prediction of the response 
variable (including prediction intervals) will not be 
harmfully affected. If the aim is inference about 
population parameters, however, multicollinearity is 
more problematic. The variance inflation factor is one 
popular measure of multicollinearity, although several 
other diagnostics are available (Belsley et al., 1980; 
Cohen et al., 2003). Appropriate responses to 
multicollinearity may include the use of an alternative 
estimation method such as ridge regression 
(Montgomery et al., 2001), or principal components 
regression (Chatterjee & Hadi, 2012). Removing some 
of the highly correlated predictors may be considered 
too, but this solution is usually not ideal (Chatterjee & 
Hadi, 2012) 

2. Outliers 

In some cases, the results of a regression analysis 
may be strongly influenced by individual members of 
the sample that have highly unusual values on one or 
more variables under analysis, or a highly unusual 
combination of values. This is not necessarily a 
problem in itself, nor necessarily a justification for 
excluding such cases. However, if the outlying value(s) 
are a result of measurement or coding error such as a 
typographical mistake, or the result of the inclusion of 
a case that is not a member of the intended population, 
then the results of a regression analysis will obviously 
be deleteriously affected (Stevens, 1984).  Several 
diagnostics are available to identify outliers (Belsley et 
al., 1980; Cohen et al., 2003), of which Cook’s distance 
is perhaps the most widely used. Determining the 
correct course of action when outliers are detected may 
be a complex decision. It may not be justifiable to 
exclude an observation unless there is a valid 

substantive reason to consider it as an invalid 
observation (e.g., if there was an error in recording a 
data point, or if the case is not a member of the 
intended population; Montgomery et al., 2001). When 
outliers are excluded, it may be useful to present results 
both with and without outlier exclusions (Stevens, 
1984). Alternatively, the use of “robust” regression 
methods may help to reduce the influence of outlying 
observations (Montgomery et al., 2001; Western, 1995). 

Conclusions 

Carefully considering the reasonableness of the 
assumptions of multiple regression in the context of a 
particular dataset and analysis is an important 
prerequisite to the drawing of trustworthy conclusions 
from data. It is our hope that this article will help 
everyday researchers to complete informed assessments 
of the actual assumptions of multiple regression and 
other general linear models when applying this 
important family of techniques. Thorough and well-
informed assumption checks will help researchers to 
select appropriate analyses and, ultimately, to produce 
meaningful and robust conclusions. 
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Appendix: R code for simulations 

Generating a sample of data with dichotomous X, normal errors, and non-normal Y 

set.seed(seed=123)  
#setting seed for replicability 
n.group <- 15  
#subsample size of 15 cases (i.e., a small sample) 
X = rep(0:1, each = n.group)  
#create dichotomous X with equal samples sizes in each group 
E = rnorm(2*n.group, 0, 1) 
#Error is normally distributed with mean of zero, SD of 1 
Y = X*5 + E 
#Y is equal to 5*X plus normally distributed error 
hist(Y) #histogram of Y 
qqnorm(Y); qqline(Y) #q-q plot of Y 
shapiro.test(Y) #Shapiro-Wilk test for response variable 
fit<-lm(Y~X) #fit a linear model 
shapiro.test(fit$res) #Shapiro-Wilk test for residuals 

 

Testing unbiasedness of estimates 

set.seed(seed=123) 
fun1 <- function(n.group = 15){ 
 x <- rep(0:1, each = n.group) 
 y <- 3+5*x + rnorm(n.group*2, 0, 1) 
 o <- lm(y ~ x)  
 return(coef(o)) 
} 
out1 <- replicate(10000, fun1()) 
summary(out1[2,]) 
sd(out1[2,]) 

 

Testing coverage of confidence intervals 

set.seed(seed=123) 
CIfun <- function(n.group = 15){ 
 x <- rep(0:1, each = n.group) 
 y <- 3+5*x + rnorm(n.group*2, 0, 1) 
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 o <- lm(y ~ x) 
 xlimits <- c(confint(o)[2,1], confint(o)[2,2]) 
 return(xlimits) 
} 
out2 <- replicate(10000, CIfun()) 
#coverage 
1-(sum(out2[1,]>5) + sum(out2[2,]<5))/ncol(out2) 

 

Measurement error simulation 

set.seed(123) 
library(MASS) 
sigmaL = matrix(c(1,0.15,0.15,1),2) #covariance matrix for latent variables 
latents = mvrnorm(10000, mu = c(0,0), sigmaL, empirical = TRUE) 
sigmaE = matrix(c(0.5,0.15,0.15,0.5),2) #covariance matrix for errors. 
errors = mvrnorm(10000, mu = c(0,0), sigmaE, empirical = TRUE) 
ObsX = 1*latents[,1] + 1*errors[,1] 
ObsY = 1*latents[,2] + 1*errors[,2] 
cor(ObsX, ObsY) 
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