
Regular Article

Configural frequency trees

Wolfgang Wiedermann1 , Keith C. Herman1, Wendy Reinke1 and Alexander von Eye2
1Department of Educational, School & Counseling Psychology and Missouri Prevention Science Institute, University of Missouri, Columbia, USA and 2Department of
Psychology, Michigan State University, East Lansing, MI, USA

Abstract

Although variable-oriented analyses are dominant in developmental psychopathology, researchers have championed a person-oriented
approach that focuses on the individual as a totality. This view has methodological implications and various person-oriented methods
have been developed to test person-oriented hypotheses. Configural frequency analysis (CFA) has been identified as a prime method for
a person-oriented analysis of categorical data. CFA searches for configurations in cross-classifications and asks whether the number of
observed cases is larger (CFA type) or smaller (CFA antitype) than expected under a probability model. The present study introduces a
combination of CFA and model-based recursive partitioning (MOB) to test for type/antitype heterogeneity in the population. MOB
CFA is well suited to detect complex moderation processes and can distinguish between subpopulation and population types/antitypes.
Model specifications are discussed for first-order CFA and prediction CFA. Results from two simulation studies suggest that MOB CFA
is able to detect moderation processes with high accuracy. Two empirical examples are given from school mental health research for illus-
trative purposes. The first example evaluates heterogeneity in student behavior types/antitypes, the second example focuses on the effect of a
teacher classroom management intervention on student behavior. An implementation of the approach is provided in R.
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The holistic-interactionistic view (e.g., Bergman & Magnusson,
1997; Magnusson, 2001) on individual functioning has influenced
several developmental theories that study adaption and maladap-
tion in individuals (Cairns, 1979; Cairns, Elder, & Costello, 1996;
Cicchetti & Schneider-Rosen, 1986; Ford & Lerner, 1992; Kagan,
1994; Magnusson, 1985; Magnusson, Stattin, Damon, & Lerner,
1998; Magnusson & Allen, 1983). This view implies that when
studying interrelated factors of individual behavior only in isolation
(i.e., ignoring their potentially complex interactions), the factors
may lose their meaning and consequence for individual behavior.
Developmental psychopathology researchers have greatly benefited
from incorporating person-oriented and ideographic approaches in
their (variable-orientation dominated) methodological toolbox
(Daukantaitė, Lundh, & Wångby-Lundh, 2019; Greenberg, Speltz,
Deklyen, & Jones, 2001; Keller, Spieker, & Gilchrist, 2005;
Molenaar, 2010; Mun, Bates, & Vaschillo, 2010; Sterba & Bauer,
2010; von Eye, 2010; von Eye & Bergman, 2003). The person-
oriented approach (Bergman & Magnusson, 1997) emphasizes the
individual as an integrated psychological, biological, and social
organism and focuses on individual characteristics of persons,
their dynamic development over time, and their variation across

contexts. This view has methodological implications which have
been discussed by, for example, Bergman (2001), Bergman,
Magnusson, and El Khouri (2003), and Molenaar and Campbell
(2009), as it requires moving from a variable-oriented “aggregate,
then analyze” to a person-oriented “analyze, then aggregate” per-
spective (cf., Rose, 2015). Over the course, various statistical meth-
ods have been identified as being ideally suited to evaluate
person-oriented research questions (see, e.g., Bergman &
Magnusson, 1997; Sterba & Bauer, 2010; von Eye, Bergman, &
Hsieh, 2015; for a discussion of recent advances in person-oriented
statistical methods see Wiedermann, Bergman, & von Eye, 2016).

One of the characteristic features of the person-oriented
approach is that research questions are asked in person terms
and operationalized as well as analyzed in terms of patterns of
events or values of variables (Magnusson & Stattin, 1998). In
the domain of categorical variables, configural frequency analysis
(CFA; Lienert, 1968; von Eye, 1990) is therefore a prime method
for evaluating hypotheses that are compatible with the person-
oriented approach (von Eye, 2010). CFA has been successfully
applied in a number of fields. We present two examples.

In a study on violent offenders, Hildebrand Karlén, Nilsson,
Wallinius, Billstedt, and Hofvander (2020) used exploratory
CFA, in combination with variable-oriented analyses, to identify
potential configurations of early-onset externalizing problems in
adolescence that are predictive of problem aggregation patterns
in early adulthood in criminal behavior, substance abuse, and psy-
chiatric comorbidity. Two types resulted. The first describes pat-
terns of physical assault, threats and robbery with later sexual
delinquency and arson. The second describes patterns of physical
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assault, threats, and robbery, which are later followed by murder,
sexual delinquency, and arson. This result supports Stattin and
Magnusson’s (1996) theory according to which patterns of exter-
nalizing problems tend to gravitate to clusters of behavior prob-
lems, and that concentration of several problem areas is
prognostic for adjustment problems in adulthood.

The second example, which leads us directly to the topic of
this article, can be found in psychophysiological research
(Müller, Netter, & von Eye, 1997). The authors performed a
two-group CFA in which they examined bivariate catecholamine
response curves in normo- and hypertensive patients under stress.
Results suggested in the form of types and antitypes that hyper-
tensives respond to stress with decreases in their high tonic adren-
aline values. In a two-group comparison, the authors found that
hypertensives and normotensives also differ in that maladaptive
patterns of response to stress are more frequent in hypertensives
than in normotensives – a statement that cannot be justified by
standard CFA; configural group comparison is required.

Configural frequency modeling has been extended in a number
of ways, including CFA for longitudinal data (von Eye, Mun, &
Bogat, 2008) and mediational processes (von Eye, Mun, & Mair,
2009). Although both of these models are person-oriented in nature,
they still assume that identified extreme patterns (so-called CFA
types and antitypes; Lienert, 1968) hold for the entire population
under study. The study of subpopulations, for example, through
the inclusion of moderator variables, constitutes a continuing meth-
odological challenge in configural frequency modeling. In the pres-
ence of variability of effects – that is, in the presence of moderation
– models of CFA have been developed by von Eye, Mair, and Mun
(2010). In addition, decision tree techniques have been incorporated
in configural frequency modeling by Lautsch and Ninke (2000) as
well as Melcher, Lautsch, and Schmutz (2012). These authors sug-
gested to combine chi-squared automatic interaction detectors
(CHAID; Kass, 1980) with prediction CFA (P-CFA; Lienert &
Krauth, 1973). In their approach, CHAID is used to detect heterog-
enous configurations with respect to the occurrence of an event of
interest (the outcome variable), that is, a binary outcome variable
is partitioned into several subgroups and covariates (partitioning
variables) are used to characterize the subgroups. In a second
step, P-CFA is then used to validate potential extreme cells as
CFA types or antitypes (to be defined in detail below). More
recently, von Eye, Wiedermann, and von Weber (2019) proposed
configural and log-linear models for the analysis of decision tree
structures. In essence, the authors make use of special contrasts cor-
responding to the decision made in a tree, and the so-called Schuster
transformation (von Eye, Schuster, & Rogers, 1998; Wiedermann &
von Eye, 2020b) is used to guarantee that specified contrasts can be
interpreted as intended. In a second step, CFA is used to identify
extreme patterns that represent the sequence of decisions. For an
application see Stemmler, Heine, and Wallner (2019).

The present study continues the development of methods for
the analysis of moderation effects in configural frequency model-
ing by making use of model-based recursive partitioning (MOB;
Zeileis, Hothorn, & Hornik, 2008). Based on recursively parti-
tioned generalized linear models (GLMs) (Rusch & Zeileis,
2013), we present the specification of CFA trees. The proposed
approach differs from the previous attempts to combine tree-
based methods and CFA. Instead of using tree methods to deter-
mine configurations of interest, we use MOB to recursively parti-
tion the CFA model itself. The MOB CFA algorithm results in a
regression tree. Each terminal node of the tree is defined by a sep-
arate CFA model with potentially varying type/antitype patterns.

While the MOB CFA algorithm can be applied to a large family
of CFA models (the method can be applied as long as the base
model can be written as a log-linear model), in the present article,
we present applications for first-order CFA (Lienert, 1968) and
P-CFA (Lienert & Krauth, 1973) in the presence of complex mod-
eration. The moderation process is described in the form of a tree
leading to subgroups for which unique CFA pattern results are pos-
sible. Subgroup-specific CFA type/antitype patterns open the door
to identify population types/antitypes (i.e., type/antitype patterns
that hold for the entire set of data) and subpopulation types/anti-
types (i.e., patterns that are specific to certain subgroups in the pop-
ulation). We use two empirical data examples from the field of
school mental health research for illustrative purposes. In the first
example, first-order MOB CFA is applied to detect (sub)population
types/antitypes in student problem behavior patterns. In the second
example, we apply MOB P-CFA in the context of evaluating the
intervention effect of a teacher classroom management program
on students’ internalization problems. To demonstrate the statisti-
cal performance of the method, we present the results from two
Monte Carlo simulation studies suggesting that CFA trees can be
detected with sufficient statistical power in particular in the context
of large samples and large variability of effects.

The article is structured as follows: First, we introduce CFA and
discuss the steps taken when analyzing a cross-classification table
with respect to the occurrence of configurations. Second, we provide
a nontechnical introduction into recursive partitioning (MOB).
Third, we discuss MOB in the context of a Poisson GLM
(McCullagh & Nelder, 1989) to estimate a first-order CFA, present
results of a simulation study, and illustrate the method using data
from school mental health. Fourth, we present CFA tree models for
P-CFA, present simulation results, and give an empirical example.
Fifth, we discuss sensitivity analysis methods to evaluate the stability
of CFA model trees and demonstrate their application using the
two data examples. Finally, the article closes with a discussion on
the implications of the findings for school mental health, potential
extensions, and potential limitations of the presented approach.

An Overview of Configural Frequency Analysis

CFA (Lienert, 1968; von Eye, 1990; von Eye et al., 2010; von Eye &
Gutiérrez Peña, 2004) is a widely applied method to analyze con-
figurations of categorical variables. Here, configurations are charac-
terized as ensembles of categories that define the cells of
cross-classification tables (Lienert, 1968). In configural frequency
modeling one asks whether the number of times the configurations
occur in the data can be expected under a specific model, the
so-called base model (von Eye, 2004). The orientation of deviations
from expectancy classifies the deviating cell as either a CFA type
(i.e., the configuration occurs more often than expected under
the base model) or a CFA antitype (i.e., the configuration occurs
less often than expected under the base model). Conducting CFA
consists of four steps: (a) specification of a CFA base model, (b)
selection of a significance procedure for type/antitype detection,
(c) performing CFA under protection of the nominal significance
level (protection is needed because of multiple testing), and (d)
interpretation of the types/antitypes. In the following paragraphs,
we give a summary of each of the steps.

Step 1: Specification of CFA base model

The CFA base model is a theory-driven probability model used to
estimate expected frequencies of the configurations. Here, it is
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important to note that the base model contains all effects that are
not of interest. If this model is rejected, the effects of interest (i.e.,
the effects that are not part of the base model) are needed to
explain the data. Therefore, CFA identifies sectors in the data
space where effects are particularly noticeable. Such data regions
are expressed in terms of CFA types and antitypes. The majority
of CFA base models can be written as log-linear models log(E
[m]) =X λ with E[m] being the expected frequencies, X is the
design matrix, and λ is the vector of model parameters (for an
exception see, for example, symmetry models discussed in von
Eye, 2002). Base models can be global (e.g., first-order CFA),
regional (e.g., k-group CFA), they can incorporate special effects
(e.g., CFA with covariates), and they can come in the form of mul-
tistep models (e.g., mediation CFA; for a classification of CFA
base model see von Eye & Wiedermann, 2021). Instead of search-
ing for the most parsimonious model to explain variable associa-
tions (a perspective usually taken in log-linear modeling;
Christensen, 1997), CFA identifies configurations that contradict
the base model the strongest. Three characteristics are of central
importance when formulating CFA base models: (a) interpretabil-
ity, (b) parsimony, and (c) the sampling scheme. Interpretability
refers to the fact that every base model must be specified in a
way that there exists only one reason why CFA types and anti-
types can occur; this reason is the effect of interest that is not
part of the CFA base model. Parsimony implies that the number
of parameters of the base model must be as small as possible
while, at the same time, as complete as needed to
guarantee that the emerging types/antitypes can be interpreted
as intended. Finally, decisions concerning base models need to
take into account the sampling scheme of the study (von Eye &
Schuster, 1998). Here, one distinguishes between Poisson, multi-
nomial, and product-multinomial sampling. Under Poisson sam-
pling, neither the sample size nor the frequencies are determined
a priori by the researcher. In the case of multinomial sampling,
the sample size is fixed a priori, and under product-multinomial
sampling, the number of observations in variable categories are
determined a priori. The sampling scheme has implications for
the selection of base models and significance tests discussed in
the next section.

Before we move on with the second step of configural fre-
quency modeling, selection of significance tests, we want to
emphasize one important feature of log-linear model specification
in the context of recursive partitioning. Application of MOB
requires that the log-linear model of interest is specified on the
individual level. That is, instead of regressing
aggregated cell counts on the design matrix, one regresses a vector
mi (with i = 1, …, n indexing the participants), with mi = 1 if the
configuration is observed for subject i and mi = 0 otherwise (also
called the expanded-data method; Hunt, Friesen, Sama, Ryan, &
Milton, 2015). The reason for this is that often continuous split-
ting variables (e.g., age) are included in addition to categorical
splitting variables (such as gender). When all splitting variables
are categorical, individual level data are no longer required.
Here, however, we treat the more general individual-level case.
An individual-level log-linear model can be written as

log(E[mi]) = Xi l

with i = 1, …, n referring the ith subject; Xi represents the
subject-level design matrix consisting of 2J × n rows (with
J being the number of binary variables and n representing the

sample size), and λ being the subject-level vector of parameters.
Case-wise and standard aggregated log-linear models give similar
parameter and standard error estimates (except for the intercept
parameter which depends on the sample size; Christensen,
1997). Example specifications of (case-wise) subject-level design
matrices are given below. Case-wise definitions of design matrices
have been used, for example, in the context of modeling continu-
ous subject-specific effects of choice behavior in the context of
log-linear Bradley Terry models (Hatzinger & Dittrich, 2012)
and in modeling covariate effects on inter-rater agreement
(Hunt et al., 2015). In the present context, we make use of the
expanded-data method to describe CFA base models on the
level of the individual.

Step 2: Selection of significance tests

Significance tests in CFA evaluate the CFA null hypothesis
H0:mk = m̂k where mk are the observed cell frequencies and
m̂k = E[mk] denote the expected cell frequencies (k indexes the
configurations and E indicates expectancy) estimated under
some CFA base model. CFA types emerge when mk . m̂k and
CFA antitypes emerge when mk , m̂k. If the null hypothesis is
retained, configuration k is neither a type nor an antitype. In
the present study, we focus on the binomial test as one of the
first tests that have been suggested in the context of CFA
(Lienert & Krauth, 1973). The test has the advantage that it can
be applied under any sampling scheme. Further, the test is non-
parametric and exact (thus, there is no need to assume that a
test statistic is sufficiently close to the sampling distribution).
The binomial test, however, comes with lower power compared
to some alternatives such as the local Pearson χ2 test or von
Eye and Mair’s (2008) procedure based on standardized
Pearson residuals. The power disadvantage of the binomial test
disappears for large sample scenarios (von Eye & Wiedermann,
2021) which are arguably preferable when searching for popula-
tion subgroups that differ qualitatively from each other.

Step 3: Performing CFA under alpha protection

To determine whether a cell significantly differs from expectation,
one needs to select a nominal significance level α. Because signifi-
cance tests are repeatedly performed under the same null hypoth-
esis, α protection methods are required to avoid inflated Type I
error rates (i.e., inflated rates of false positive results). The issue
is further exacerbated by the fact that, in CFA, significance tests
depend on each other. For example, von Weber, Lautsch,
and von Eye (2003) demonstrated that, when analyzing a simple
2 × 2 cross-classification with a first-order CFA, the four
significance tests are completely dependent upon one another.

Several approaches are available for α adjustment. Bonferroni
α correction, that is, using a nominal significance level of α* =
α/k with k indicating the number of significance tests performed,
is widely accepted for this endeavor. However, several alternative
α adjustment techniques (see, e.g., Dunnett & Tamhane, 1992;
Hochberg, 1988; Holland & Copenhaver, 1987; Olejnik, Li,
Supattathum, & Huberty, 1997) can be used which are known
to be more powerful than Bonferroni adjustment. In the following
applications of CFA, we make use of the more conservative
Bonferroni procedure with the understanding that the perfor-
mance of MOB CFA can potentially be improved by selecting
more liberal α adjustment techniques.
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Step 4: Interpretation of CFA types/antitypes

Following von Eye et al. (2010), the interpretation of CFA types/
antitypes is based on four sources of information. The first of
these is the meaning of the variable categories that define a con-
figuration. The second source are the implications of the applied
base model. For example, when the base model only includes the
main effects of the variables that span the cross-classification (a
so-called first-order CFA), CFA types/antitypes show where in
the data space variable interactions are located (or most visible).
When the base model excludes the relations between predictor
and outcome variables, CFA types/antitypes indicate the predictor
configurations that are particularly strongly related to specific
configurations of the outcome variable(s). The third source of
information is the sampling scheme (e.g., Poisson, multinomial,
product-multinomial). The sampling scheme places constraints
on the specification of a base model which have implications
for the hypotheses that can be tested in the base model. The
fourth source is information that is carried by variables that are
not part of those that span the cross-classification under study
(e.g., explicitly distinguishing between classification indicators
used to separate independent variables). This information can
be used, for instance, by including variables as covariates or mod-
erator variables. Covariates have the potential that CFA types/
antitypes emerge or disappear. Moderators can identify type/anti-
type patterns that differ across groups. In the present approach,
these separate independent variables come in the form of splitting
variables used to partition the data. In the following section, we
introduce principles of recursive partitioning in the context of
log-linear CFA base models.

Model-based Recursive Partitioning

Tree-based methods, valuable alternatives to standard parametric
methods, have extensively been discussed in the past (see, e.g.,
Breiman, Friedman, Olshen, & Stone, 1984; Hothorn, Hornik,
& Zeileis, 2006; Quinlan, 1993; Morgan & Sonquist, 1963;
Strobl, Malley, & Tutz, 2009; Zhang & Singer, 2010). In conven-
tional classification and regression tree (CART) and CHAID algo-
rithms, it is the aim to recursively partition the covariate space to
identify subgroups with different values of an outcome variable.
In contrast, MOB (Zeileis et al., 2008) uses parameters of a prede-
fined parametric model as the basis for recursive partitioning. The
MOB algorithm partitions a set of predefined covariates (so-called
splitting variables) by evaluating parameter instabilities of a para-
metric model. More specifically, a parametric model is formulated
to represent an empirical question of interest. In the present
study, the parametric model of interest is a log-linear model
that defines the meaning of CFA types/antitypes, should they
exist. This log-linear model is then fed into the MOB algorithm
to evaluate whether covariates (splitting variables) exist which
alter the parameters of the log-linear model. Making use of the
GLM framework, we specify the log-linear model as Poisson
regression. That is, let Y be the count response of interest with
the mean E[Y] = μ (E being the expected value operator) and X
defines a matrix collecting independent variables . The mean of
Y is modeled using a linear predictor η =Xβ using g(μ) = η with
g referring to the link function and β defines the vector of regres-
sion coefficients. In the context of log-linear modeling, one often
replaces β with the parameter vector λ indicating the effects asso-
ciated with contrasts in the design matrix X. We can write the log-
linear model in the form of a Poisson regression model using a

log-link,

log(m) = X l.

Identifying a parameter instability in λ with respect to a par-
titioning covariate implies that subgroup-specific conditional
effects exist in the data. The (score-based) generalized
M-fluctuation test (Zeileis & Hornik, 2007) is used to assess the
stability of (log-linear) model parameters along selected splitting
variables. To protect the global significance level, score tests are
used with Bonferroni α correction. The type of M-fluctuation
test depends on the measurement level of the splitting variable.
For continuous variables, the supLM statistic (Andrews, 1993) is
employed; for categorical splitting variables χ2 statistics by Hjort
and Koning (2002) are applied. A parameter instability is cap-
tured by fitting separate models for each subgroup. To split the
sample along the selected covariate, the cut-point with the largest
model fit improvement is used. The algorithm terminates in end
nodes when no parameter instabilities are found or when the size
of the subsample is smaller than an a priori selected minimum
(Rusch & Zeileis, 2013; Zeileis et al., 2008). To avoid overfitting
(in particular, when sample sizes are very large), post-pruning
strategies based on information criteria (such as, e.g., the
Akaike information criterion; AIC) have been suggested to
prune back splits that do not improve model fit (Zeileis et al.,
2008). Each end node consists of a local log-linear model

log(mg) = Xg lg

with g indexing the detected subgroups (g = 1, …, G).
Subsequently, these G local log-linear models are treated as
subgroup-specific CFA base models. Before we move on and pre-
sent model tree specifications for first-order CFA (as one of the
most important CFA models) and P-CFA (in which one distin-
guishes between predictor and outcome variables), we briefly
introduce a graphical visualization of the MOB CFA end nodes.

Mosaic displays as data visualization

Regression trees offer a representation of potentially complex moder-
ation mechanisms in the form of accessible tree structures. In addi-
tion, depending on the models displayed in the end nodes,
differences in model parameters can be visualized using graphical
methods as well. In the context of configural frequency modeling,
partitions found via MOB CFA can be represented as n-way contin-
gency tables. Thus, mosaic plots (or mosaic displays; Hartigan &
Kleiner, 1984; Friendly, 1994, 1995; for an example see Figure 5) con-
stitute an attractive graphical method to summarize partition-specific
CFA results (for a discussion of the use of mosaic displays in the CFA
context see Mun, von Eye, Fitzgerald, & Zucker, 2001).

Mosaic plots have become the primary method to visualize fre-
quencies of a n-way contingency tables and to analyze structures
of log-linear models (Friendly, 1994, 1995). In mosaic plots, cell
frequencies are represented by tiles (rectangles) that are propor-
tional to the cell frequencies of the cross-table. The idea is best
introduced using a simple two-way table. The expected frequen-
cies under independence can be displayed as tiles whose widths
are proportional to the total frequency in each column (the first
variable), and whose heights are proportional to the total
frequency in each row (the second variable). Then, the area of
the tile is proportional to the cell frequency. Specifically, a unit
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area is divided into bars with width equal to the marginal
frequencies (probabilities) of the first variable, and these bars
are divided into tiles with heights being equal to the conditional
frequencies (probabilities) of the second variable. The resulting
area reflects the total quantity (cell frequencies) in the cross-table
of the variables. When two variables are independent, the tiles of
the mosaic plot will align (i.e., all tiles in each row have the same
height). Not aligning tiles indicate dependency structures between
the two variables. Several pattern detection approaches can be
imposed on the mosaic plot through making use of coloring
and shading of tiles (Friendly, 1994).

In the present context, feasibility of mosaic plots depends on
the number of variables involved and the complexity of the
base model. Here, the maximum number of variables to meaning-
fully use mosaic displays simply depends on the readers’ familiar-
ity with interpreting mosaic plots. When the model is too
complex to be visualized in an accessible way, simple CFA sum-
mary tables can be used instead of mosaic plots. In the first
empirical example given below, we use CFA summary tables, in
the second example, we give an example using mosaic displays.
Although readers may be required to familiarize themselves
with decoding statistical information from mosaic displays first,
this type of visualization is ideally suited to display MOB CFA dif-
ferences across partitions. In its simplest form, mosaic plots can
be generated for the gth contingency table. In addition, each
partition-specific mosaic plot can be shaded according to the sta-
tus of the configuration as “no deviation” (marked gray in the
plots given in Figures 5 and 6), type (marked green), or antitype
(marked red), that is, the pattern detection method is the pres-
ence/absence of types/antitypes itself. However, more complex
representations that take into account fit information of
partition-specific log-linear models can be used as well (cf.
Friendly, 1994, 1995).

First-order CFA Trees

The first CFA tree model discussed here builds on the first-order
CFA base model. This model constitutes the classic version of
CFA and was originally proposed by Lienert (1968). The model
only takes main effects of all variables into account and, thus,
assumes independence of variables. If CFA types/antitypes exist,
they can only emerge due to the presence of interactions (of
any order) among variables. For J variables (Xj, j = 1, …, J ), the
first-order base model can be written as

log(E[m]) = l+
∑J

j=1

lXj

with λ being the intercept and lXj being the main effect parameter
for Xj. For J = 3 binary variables (i.e., in case of a 2 × 2 × 2 cross
contingency table), the effect coded design matrix X for this
model is

X =

1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first column of the design matrix represents the intercept,
the second column specifies the main effect for the first variable
(X1), and the third and fourth column give the main effects for
the second and third variable (X2 and X3). Each column contrasts
the two categories of each variable (e.g., the presence of a symp-
tom is coded with 1 and the absence of the symptom is indicated
by −1).

In CFA trees, we assume that parameters of the base model
can vary across subgroups (partitions) of the data. Formally,
the first-order MOB CFA model for g = 1, …, G subgroups and
j = 1, …, J indicators is given by

log(E[m]g) = lg +
∑J

j=1

l
Xj
g

with λg being the subgroup-specific intercept and l
Xj
g specifying

the subgroup-specific main effects. Varying log-linear model
parameters across subgroups open the door to the presence of
subgroup-specific CFA types and antitypes. Splitting variables
of CFA trees can be conceptualized as moderators. Tree estima-
tion is based on a reformulation of the log-linear model as a
Poisson count regression model (often referred to as the
“Poisson trick”) making use of the fact that Poisson counts are
jointly multinomially distributed (Agresti, 2002). To apply the
MOB algorithm, one requires a case-wise design matrix for
the Poisson regression model. To give an example, consider
the case of two individuals, three binary classification variables
(X1–X3; 0 = symptom absence, 1 = symptom present), and two
continuous splitting variables U and V. For Person 1, suppose
we observe X1 = X2 = X3 = 0 (i.e., the configuration {0 0 0}) as
well as U = u1 and V = v1. In contrast, for Person 2, we obtain
the configuration {1 0 0} together with U = u2 and V = v2. The
corresponding case-wise design matrix for the two participants
then takes the form

Person m X1 X2 X3 U V

1 1 0 0 0 u1 v1

1 0 1 0 0 u1 v1

1 0 0 1 0 u1 v1

1 0 1 1 0 u1 v1

1 0 0 0 1 u1 v1

1 0 1 0 1 u1 v1

1 0 0 1 1 u1 v1

1 0 1 1 1 u1 v1

2 0 0 0 0 u2 v2

2 1 1 0 0 u2 v2

2 0 0 1 0 u2 v2

2 0 1 1 0 u2 v2

2 0 0 0 1 u2 v2

2 0 1 0 1 u2 v2

2 0 0 1 1 u2 v2

2 0 1 1 1 u2 v2
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where m gives the observed frequencies for all possible patterns
based on the three X indicators (the intercept is implied).
Because {0 0 0} was observed for the first person, we use m = 1
for this particular configuration, and m = 0 for the remaining
seven configurations. Similarly, for Person 2, we use m = 1 for
{1 0 0} and m = 0 otherwise. For both participants, values of the
splitting values U and V (u1, u2, v1, and v2) are each repeated
eight times according to the number of configurations. The result-
ing design matrix contains 16 rows (eight possible patterns for
each of two participants). More generally, for n participants and
J binary indicators, the number of rows of the case-wise design
matrix is given by n ⋅ 2J. In the corresponding MOB Poisson
regression model, m is treated as the response, the dummy vari-
ables for X1–X3 are used as independent variables (effect coding
could be applied as well), and U and V serve as splitting variables.
Within MOB, generalized M-fluctuation tests (Zeileis & Hornik,
2007) are used to assess stability of model parameters for the indi-
cators X1, X2, and X3 along the splitting variables U and V. The
resulting partitions can be interpreted as terminal nodes of a
CFA tree containing separate first-order CFA models with varying
parameters and (potentially) partition-specific types and anti-
types. In the following section, we illustrate the performance of
first-order MOB CFA using Monte Carlo simulations.

Simulation Study I

To illustrate the performance of MOB CFA in the context of a
first-order base model, a simulation study was performed using
the R statistical programing environment (R Core Team, 2020).
The data generating mechanism is summarized in Figure 1.
Four subgroups based on three relevant partitioning variables,
Z1, Z2, and Z5, among a set of ncov covariates were generated.
The number of covariates (Z1, …, Zncov) was either ncov = 5 or
10. Following Dusseldorp and Van Mechelen (2014), Fokkema,
Smits, Zeileis, Hothorn, and Kelderman (2018), and van Wie,
Li, and Wiedermann (2019), all covariates were randomly
drawn from a multivariate normal distribution with means for
Z1, Z2, Z4, and Z5 of 10, 30, −40, and 70. The means of the
remaining covariates (Z3 and depending on the value of ncov,
Z6, …, Z10) were randomly generated from the uniform distribu-
tion on the interval [−70, 70]. The standard deviation of all covar-
iates was set to 10 and pairwise correlations of all covariates were
fixed at 0.3. Following Schrepp (2006), simulated configurations
were based on a set of dichotomous indicators, for example,
representing the absence or presence of symptoms that occur
randomly in the underlying population (0 = symptom absent,
1 = symptom present). In the simulation, the number of indica-
tors was set to 5 and the probabilities of observing the symptoms
were randomly drawn from a uniform distribution with a mini-
mum of 0.05 and a maximum of 0.15. To simulate the occurrence
of CFA types, in the next step, observed (individual-level) symp-
tom configurations were replaced with predefined type configura-
tions with probabilities δ = 0.20, 0.25, 0.30, and 0.35. The
predefined type configurations varied across subgroups. In
Subgroup 1 (individuals for which Z1≤ 17 and Z2≤ 30), the con-
figuration {1 1 1 1 1} constitutes a CFA type, in Subgroups 2 (Z1 >
17 and Z2≤ 30) and 3 (Z2 > 30 and Z5≤ 63) no types occurs, and
in Subgroup 4 (Z2 > 30 and Z5 > 63) the configuration {0 1 1 1 1}
is a CFA type. In other words, in one subgroup, a CFA type was
characterized by the occurrence of all five symptoms, and in a sec-
ond subgroup, a CFA type is characterized by the absence of the
first symptom and the presence of the remaining four symptoms.

Sample sizes were set to n = 500, 1,000, and 1,500. The simulation
design was fully crossed resulting in 2 (number of covariates) × 3
(sample size) × 4 (effect size δ) = 24 simulation conditions. For
each simulation condition, 100 samples were generated.

For each generated sample, we computed the subject-specific
(effect coded) design matrix of a first-order CFA for the five
binary indicators to explain the observed configuration frequen-
cies. MOB was used to identify (potentially) better fitting local
first-order CFA models. Bonferroni-corrected parameter stability
tests were performed using a nominal significance level of 5%.
Regression trees were estimated with a maximal depth of three,
limiting the number of terminal nodes to eight. The function
GLM tree of the R package partykit (Hothorn & Zeileis, 2015)
was used for MOB estimation. Next, for each subgroup identified
through MOB, we performed a separate first-order CFA with
Bonferroni-corrected binomial tests (implemented in the R pack-
age confreq, Stemmler & Heine, 2017) to evaluate the presence of
types and antitypes.

Results
Figure 2 summarizes the performance of the MOB CFA algorithm
to identify the correct tree structure. We focus on the size and the
overall accuracy of the estimated trees. Following Fokkema et al.
(2018) and van Wie et al. (2019), we defined an accurately recov-
ered tree as one that (a) consists of seven nodes in total (three
splitting and four terminal nodes), (b) uses Z2 as the first splitting
variable with a value of 30 ± 5 (i.e., ± half the population standard
deviations of the partitioning covariates), (c) identifies Z1 as the
next split on the left with 17 ± 5, and (d) uses Z5 as the final split-
ting variable on the right side of the tree with a value of 63 ± 5.

The upper panel of Figure 2 gives the average tree size as a
function of the number of covariates, sample size, and the prob-
ability to observe a subgroup-specific CFA type (δ). For large
sample sizes (n = 1,500), the average tree size is close to the true
one, independent of the number of covariates and the level of
δ. For smaller sample sizes, the average tree size tends to be
smaller, in particular, when the probability of CFA types is
small as well. For example, for n = 1,000 and δ = 0.20, we obtain
an average tree size of 6.77 (SD = 0.70). For n = 500 and δ =
0.20, the average tree size declines to 3.11 nodes on average
(SD = 1.10). Similarly, a large number of covariates also slightly
decreases the average tree size. This effect is, however, mitigated
for larger samples. For n = 500, 1,000, and 1,500, we observe an
average tree sizes of 4.38 (SD = 1.57), 6.52 (SD = 0.98), and 6.98
(SD = 0.22) if ncov = 5, and 4.15 (SD = 1.49), 6.38 (SD = 1.15),

Figure 1. Data-generating mechanism of simulated first-order configural frequency
analysis (CFA) trees based on three splitting variables Z1, Z2, and Z5.
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and 6.91 (SD = 0.47) if the number of covariates increases to ncov
= 10.

Next, we focus on the tree accuracy (cf. Figure 2 lower panel).
As expected, accuracy heavily depends on sample size and the
probability of CFA types (δ). For n = 1,500, for example, tree accu-
racy is close to 100% across all level of δ, except for ncov = 10 and
δ = 0.20 (however, tree accuracy is still larger than 80% in this data
condition). For n = 1,000, larger effect sizes (δ > 0.25) are needed
to achieve adequate accuracy. In contrast, tree accuracy tends to be
low for small samples (n = 500) and slightly decreases with the
number of covariates (again the latter effect is mitigated by larger
samples). Overall, we can conclude that the MOB CFA is able to
identify the true data-generating model, however, larger samples
are generally preferable when studying CFA tree structures.

Finally, we focus on the percentage of correctly identified CFA
types per subgroup. Here, we focus on cases in which MOB CFA
correctly returned four subgroups. In Subgroup 1, the percentage
of detecting the configuration {1 1 1 1 1} as a CFA type ranged
from 96.2% to 100% across all simulation conditions. In
Subgroup 4, the configuration {0 1 1 1 1} was detected in 100%
of the cases. Here, the case of a small sample size (n = 500), a
small effect size (δ = 0.20), and a large number of covariates
(ncov = 10) constitutes an exception. In this extreme case, MOB
CFA correctly identified the four subgroups in only one simulated
sample (in 70% of the simulated samples, a two-group solution
was preferred) and the binomial test for the configuration {0 1
1 1 1} was nonsignificant in this sample. Overall, however, we

can conclude that MOB CFA is able to determine subgroup-
specific CFA types with high probability.

Empirical Example 1

Next, we illustrate the application of first-order MOB CFA using a
real-world example. The data we use come from a large-scale ran-
domized controlled trial (RCT) that evaluates the impact of the
Incredible Years Teacher Classroom Management (IY TCM) pro-
gram on student social–emotional, disruptive behavior, and aca-
demic outcomes (cf. Reinke, Herman, & Dong, 2018). The IY
TCM program is designed to promote effective classroom man-
agement practices for preschool and early elementary teachers
and focuses on promoting students’ prosocial skills, increasing
parents’ involvement, and positive teacher–parent relationships
(Webster-Stratton, Reid, & Hammond, 2004). The original
study focused on evaluating the effectiveness of the IY TCM pro-
gram in students in kindergarten to third grade from nine schools
in a school district in the Midwestern part of the United States. In
the following re-analysis, we focus on students’ behavior at study
baseline using data obtained from 1,630 students (104 teachers)
with valid baseline and post-treatment measures (Wiedermann,
Reinke, & Herman, 2020).

Student behavior, that is concentration problems (C), disrup-
tive behavior (D), emotional dysregulation (E), internalization
problems (I), and family problems (F), was assessed with the
Teacher Observation of Classroom Adaptation-Checklist

Figure 2. Average tree size and accuracy of recursively
partitioned first-order configural frequency analysis (CFA) as a
function of sample size (n), number of covariates (ncov), and
probability of CFA types (δ).
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(TOCA-C; Koth, Bradshaw, & Leaf, 2009). Internal consistency
(evaluated via Cronbach’s alpha) for the subscales ranged from
0.70 to 0.94. To evaluate potential patterns of students’ problem-
atic behavior, we dichotomized subscale-specific mean composite
scores. Problematic behavior was defined as subscale scores at or
beyond the 90th sample percentile (0 = TOCA-C subscale score
<90th percentile, 1 = TOCA-C subscale score ≥90th percentile).
Binary problem behavior indicators were analyzed using MOB
CFA with a first-order base model, assuming independence
between problem behavior indicators. Gender (0 = male, 1 =
female), grade (K-3rd grade), race (1 = black, 0 = others), and
school membership were used as splitting variables. Descriptive
statistics of all variables for the overall sample and by treatment
status are given in Table 1.

Before using recursive partitioning to find subgroups of prob-
lem behavior patterns, we estimate a first-order CFA for the total
sample without considering splitting variables as a benchmark.
The LR goodness of fit test rejects the model of independence
for the total sample (χ2(26) = 809.27, p < .001). Therefore, we
expect types and/or antitypes to occur. Table 2 gives the expected
frequencies, p values of cell-wise binomial tests, and CFA deci-
sions based on a Bonferroni-corrected significance level of 0.05/
32 = 0.00156. Overall, we observe 10 types and seven antitypes.
We refrain from a detailed interpretation of these 17 extreme
cells. Instead, we highlight some important aspects of the results

and use them as a benchmark for comparison with
results obtained from first-order MOB CFA. Some aspects of
the results in Table 2 are quite typical for CFA. For example,
the largest cell describing the absence of any problem behavior
{0 0 0 0 0} constitutes a CFA type. Here, 901.3 cases (55.3% of
the sample) were expected but 1,097 (67.3%) were observed.
The second largest cell, configuration {1 0 0 0 1} describing stu-
dents with severe concentration problems and family issues,
also constitutes a CFA type; about 17.7 (1.2%) were expected
and 98 (6.0%) were observed. Interestingly, the third and fourth
largest cells in the cross-table determine CFA antitypes. These
are the configurations {0 0 0 0 1} (i.e., severe family problems
only; expected to be observed in about 148.5 cases [9.1%], but
only observed for 74 students [4.5%]) and {0 0 0 1 0} (i.e., inter-
nalization problems only; expected for about 101.3 students
[6.2%], however, only observed for 73 students [4.5%]). Other
important CFA types are the configurations {0 1 1 0 0} and {0
1 1 1 0}. The first one describes students with severe disruptive
behavior as well as severe emotional dysregulation which occurred
in 47 cases (2.9%). However, according to the independence
model, one would expect only 12.5 cases (0.8%). The second con-
figuration describes students with severe disruptive behavior,
emotional dysregulation, and internalization problems. Here,
only 1.4 cases (0.09%) were expected, but 24 students (1.5%)
were observed.

Figure 3 gives the estimated MOB CFA tree using similar spec-
ifications as in Simulation Study 1. Three of the four covariates
were identified as important splitting variables: school member-
ship, race, and gender. First, MOB separates three schools
(Schools 4, 5, and 6) from the remaining six (Schools 1, 2, 3, 7,
8, and 9). Further, in the three separated schools, students’ race
constitutes an important moderating factor. In contrast, for the
remaining six schools, gender instead of race proves to be an
important influence. The estimated tree results in four subgroups
(terminal nodes). Subgroup 1 consists of non-black students in
Schools 4, 5, 6 (n = 146, 9.0%), Subgroup 2 are black students
in the same schools (n = 362, 22.2%), Subgroup 3 describes
male students in the Schools 1, 2, 3, 7, 8, and 9 (n = 554,
34.0%), and the last subgroup consists of female students in one
of the six schools (n = 568, 34.8%). Each terminal node consists
of a separate first-order CFA base model. Bonferroni-corrected
binomial tests were used to test whether types or antitypes are
present per subgroup. The LR goodness of fit test rejects the
model of independence in all four subgroups (LR χ2 statistics
ranged from 75.98 to 337.78 with 26 degrees of freedom and all
ps < .001). Therefore, as expected, types and antitypes emerge
in every subgroup and, more important, type/antitype patterns
vary across subgroups where some patterns can be observed in
every subgroup and some patterns are unique to specific sub-
groups. In the following, we interpret some of the results pre-
sented in Figure 3 with respect to the occurrence of types/
antitypes at the population and subpopulation levels. The type
pattern {0 0 0 0 0}, describing the absence of problem behavior,
occurs in every subgroup indicating that this is a population
type (i.e., one that is observed across all partitions of the sample).
Similarly, the antitype pattern {1 0 0 0 0} is also observed in every
subgroup and can, thus, be conceptualized as a population anti-
type. The second largest type for the total sample, {1 0 0 0 1},
is specific to the Subgroups 1 and 2 (i.e., students in the
Schools 4, 5, and 6), and, therefore, describes a subpopulation
type (i.e., a type that occurs in specific partitions of the data).
In other words, the occurrence of severe concentration problems

Table 1. Demographic statistics. Values in parentheses give percentages

Control
(n = 815)

Treatment
(n = 815)

Total
(n = 1,630)

Concentr. Probl. 86 (10.6) 85 (10.4) 171 (10.5)

Disruptive
Behav.

79 (9.7) 88 (10.8) 167 (10.2)

Emot. Dysregul. 79 (9.7) 95 (11.7) 174 (10.7)

Internal. Probl. 83 (10.2) 81 (9.9) 164 (10.1)

Family Probl. 127 (15.6) 103 (12.6) 230 (14.1)

Race: Black 608 (74.6) 619 (76) 1,227 (75.3)

Gender: Female 403 (49.4) 391 (48) 794 (48.7)

Grade

K 232 (28.5) 231 (28.3) 463 (28.4)

1st 215 (26.4) 224 (27.5) 439 (26.9)

2nd 249 (30.6) 157 (19.3) 406 (24.9)

3rd 119 (14.6) 203 (24.9) 322 (19.8)

School

(1) 76 (9.3) 84 (10.3) 160 (9.8)

(2) 95 (11.7) 76 (9.3) 171 (10.5)

(3) 83 (10.2) 106 (13.0) 189 (11.6)

(4) 110 (13.5) 99 (12.1) 209 (12.8)

(5) 95 (11.7) 77 (9.4) 172 (10.6)

(6) 56 (6.9) 71 (8.7) 127 (7.8)

(7) 105 (12.9) 118 (14.5) 223 (13.7)

(8) 97 (11.9) 72 (8.8) 169 (10.4)

(9) 98 (12.0) 112 (13.7) 210 (12.9)

W. Wiedermann et al.1592

https://doi.org/10.1017/S0954579421000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579421000018


and family issues are specific to the three schools described above.
The largest antitype according to the CFA results based on the
total sample – family issues only ({0 0 0 0 1}) – is, in fact, specific
to Subgroups 3 and 4 and constitutes a subpopulation antitype. In
other words, family issues only occur with lower probability than
expected in the remaining six schools. This effect does not depend
on students’ gender.

Prediction CFA Trees

P-CFA has been proposed by Lienert and Krauth (1973) and
extended by von Eye and Bogat (2005) and von Eye, Mair, and

Bogat (2005). The main difference between standard CFA and
P-CFA concerns the status of the variables involved. In standard
CFA (e.g., the first-order CFA discussed above) all variables are
treated as exploratory variables. In contrast, in P-CFA one explic-
itly distinguishes between predictor (independent) and outcome
(dependent) variables with the goal to identify predictor patterns
that are associated with certain outcomes. Outcomes can come in
the form of specific single events (e.g., receiving a clinical diagno-
sis) or in the form of specific patterns associated with multiple
outcome variables (e.g., showing a clinically relevant behavior pat-
tern). Similar to standard CFA, P-CFA does not ask whether pre-
dictor variables are related to outcome variables (these types of

Table 2. First-order configural frequency analysis (CFA) results for the total sample (n = 1,630)

C D E I F m E[m] p value Decision

0 0 0 0 0 1,097 901.33 0.00000 Type

1 0 0 0 0 38 107.49 0.00000 Antitype

0 1 0 0 0 48 104.05 0.00000 Antitype

1 1 0 0 0 3 12.41 0.00162 –

0 0 1 0 0 27 108.18 0.00000 Antitype

1 0 1 0 0 0 12.9 0.00003 Antitype

0 1 1 0 0 47 12.49 0.00000 Type

1 1 1 0 0 7 1.49 0.00088 Type

0 0 0 1 0 73 101.31 0.00146 Antitype

1 0 0 1 0 4 12.08 0.00703 –

0 1 0 1 0 6 11.69 0.05362 –

1 1 0 1 0 0 1.39 0.40639 –

0 0 1 1 0 20 12.16 0.02353 –

1 0 1 1 0 2 1.45 0.42542 –

0 1 1 1 0 24 1.4 0.00000 Type

1 1 1 1 0 4 0.17 0.00003 Type

0 0 0 0 1 74 148.51 0.00000 Antitype

1 0 0 0 1 98 17.71 0.00000 Type

0 1 0 0 1 2 17.14 0.00001 Antitype

1 1 0 0 1 0 2.04 0.39392 –

0 0 1 0 1 10 17.82 0.03240 –

1 0 1 0 1 1 2.13 0.37284 –

0 1 1 0 1 9 2.06 0.00029 Type

1 1 1 0 1 5 0.25 0.00001 Type

0 0 0 1 1 7 16.69 0.00637 –

1 0 0 1 1 4 1.99 0.14109 –

0 1 0 1 1 1 1.93 0.42601 –

1 1 0 1 1 1 0.23 0.20532 –

0 0 1 1 1 6 2 0.01662 –

1 0 1 1 1 2 0.24 0.02437 –

0 1 1 1 1 8 0.23 0.00000 Type

1 1 1 1 1 2 0.03 0.00037 Type

Note. C = concentration problems, D = disruptive behavior, E = emotional dysregulation, I = internalization problems, F = family problems, m = observed frequencies, E[m] = expected
frequencies. Bonferroni-corrected α = 0.00156.
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questions are usually addressed using (multinomial) logistic
regression models). Instead, P-CFA asks whether specific patterns
of categorical predictors go hand-in-hand with specific outcome
patterns (von Eye et al., 2005). To introduce P-CFA, let Y be a
binary outcome variable and X1 and X2 are two binary predictors.
Crossed, the three variables span a 2 × 2 × 2 cross contingency
table. The P-CFA base model proposed by Lienert and Krauth
(1973) has the following characteristics: (a) the base model is sat-
urated in the predictor variables (thus, types/antitypes cannot
emerge due to the association among predictors), (b) the base
model is saturated in the outcome variables (thus, types/antitypes
cannot emerge due to the association among outcome variables),
and (c) the base model assumes independence between predictor
and outcome variables. In other words, types/antitypes can only
emerge due to the presence of a predictor–outcome association.
Specifically, if, for a specific predictor pattern, more cases are
observed than expected under the P-CFA base model, the predic-
tor pattern is said to predict the occurrence of the outcome pat-
tern and, thus, constitutes a prediction type. In contrast, if
fewer cases are observed, the predictor pattern is said to predict
the nonoccurrence of outcome patterns and constitutes a predic-
tion antitype. For the three variables (Y, X1, and X2), the corre-
sponding base model is

log(E[m]) = l+ lX1 + lX2 + lY + lX1X2

with λ being the intercept, lX1 , lX2 , and λY being the main effects
of the three variables, and lX1X2 specifies the two-way interaction
on the predictor side of the model. Terms that are missing in the
base model are those that link the predictors (X1 and X2) to the
outcome Y. The corresponding effect coded design matrix of

the model is

X =

1 1 1 1 1
1 1 1 −1 1
1 1 −1 1 −1
1 1 −1 −1 −1
1 −1 1 1 −1
1 −1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first column represents the intercept (λ), columns 2–4
indicate the three main effects for X1, X2, and Y, and the last col-
umn represents the interaction term X1X2.

In contrast to standard P-CFA, the proposed P-CFA tree
approach assumes that subgroups (g = 1, …, G) exist for which
potentially different prediction type/antitype patterns occur.
P-CFA types/antitypes that exist for all G subgroups constitute
population prediction types/antitypes and types/antitypes that are
unique to specific subgroups describe subpopulation prediction
types/antitypes. Again, the P-CFA tree is constructed using a pri-
ori specified splitting variables which can be categorical or contin-
uous in nature. Formally, for three binary variables (X1, X2, and
Y ), the MOB P-CFA model for g = 1, …, G subgroups can be
written as

log(E[m]g) = lg + lX1
g + lX2

g + lYg + lX1X2
g

with λg representing the subgroup-specific intercept, lX1
g , lX2

g , lYg
referring to the subgroup-specific main effects, and lX1X2

g being
the subgroup-specific interaction effect. Because log-linear

Figure 3. Recursively partitioned first-order configural frequency analysis of student problem behavior indicators (C = concentration problems, D = disruptive behav-
ior, E = emotional dysregulation, I = internalization problems, F = family problems) based on n = 1,630 students.
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model parameters are allowed to vary across subgroups, the algo-
rithm is able to identify subgroup-specific prediction types and
antitypes. To implement MOB P-CFA, one requires a case-wise
design matrix. Consider two individuals, three binary variables
(two predictors X1 and X2 and one outcome Y; 0 = event not
observed, 1 = event observed), and two continuous splitting vari-
ables U and V. For Person 1, suppose we observe X1 = X2 = Y = 1,
that is the configuration {1 1 1}, together with U = u1 and V = v1.
For Person 2, we observe the configuration {0 1 0} and U = u2 and
V = v2. Then, the corresponding case-wise design matrix for the
two participants is (the intercept is implied in the model matrix)

Person m X1 X2 Y X1X2 U V

1 0 0 0 0 0 u1 v1

1 0 1 0 0 0 u1 v1

1 0 0 1 0 0 u1 v1

1 0 1 1 0 1 u1 v1

1 0 0 0 1 0 u1 v1

1 0 1 0 1 0 u1 v1

1 0 0 1 1 0 u1 v1

1 1 1 1 1 1 u1 v1

2 0 0 0 0 0 u2 v2

2 0 1 0 0 0 u2 v2

2 1 0 1 0 0 u2 v2

2 0 1 1 0 1 u2 v2

2 0 0 0 1 0 u2 v2

2 0 1 0 1 0 u2 v2

2 0 0 1 1 0 u2 v2

2 0 1 1 1 1 u2 v2

with m being the observed frequencies for all possible patterns.
For Person 1, one uses m = 1 for the observed pattern {1 1 1}
and m = 0 for the remaining configurations. In a similar fashion,
for Person 2, one uses m = 1 for the configuration {0 1 0} and m =
0 otherwise. Similar to the first-order MOB CFA described above,
values of the splitting values U and V are each repeated eight
times for each person. To estimate the MOB P-CFA, one uses a
MOB Poisson regression model where m serves as the response,
the four dummy variables for X1, X2, Y, and X1X2 are the indepen-
dent variables, and U and V serve as MOB splitting variables.
Again, generalized M-fluctuation tests (Zeileis & Hornik, 2007)
are used to detect instabilities of model parameters along the
splitting variables. Parameter instabilities are captured by fitting
separate Poisson regression models per subgroup. The resulting
partitions represent terminal nodes of a P-CFA tree. Each termi-
nal node contains a separate P-CFA model with partition-specific
parameters and (potentially) prediction types and antitypes. To
evaluate the performance of MOB P-CFA, we performed a second
Monte Carlo simulation experiment.

Simulation Study 2

In the second Monte Carlo simulation experiment, we focus on a
data scenario in which both, a variable- and a person-oriented

effect exist simultaneously. Specifically, we focus on a pre–post
comparison for two experimental groups, a treatment group
and a business as usual group, and a binary outcome variable Y
(0 = event not observed, 1 = event observed). The data-generating
mechanism followed a logistic regression model with one out-
come and two predictors, that is, log( p/[1− p]) = β0 + β1T + β2X
with p being the probability of the event occurring (Y = 1), T
being a treatment indicator (0 = business as usual, 1 = treatment),
and X being a continuous covariate (representing continuous pre-
treatment scores). T was randomly drawn from a binomial distri-
bution with a probability of T = 1 of 50% and X was generated
from a standard normal distribution. Mimicking properties of a
successful random assignment of subjects to either the control
or treatment group, T and X were generated independently with
Cor(T, X ) = 0. Following Huang (2019), the intercept β0 was set
to zero (representing the predicted probability in the reference
group of 50%), the treatment effect was set to β1 = 0.5, and the
covariate effect was β2 = 1. The outcome was sampled from a
Bernoulli distribution with probability p = exp(β0 + β1T + β2X )/
[1 + exp(β0 + β1T + β2X )].

Data were generated using the same regression tree as in
Simulation Study 1 (cf. Figure 1). That is, four subgroups were
simulated using the three partitioning variables Z1, Z2, and Z5
among a set of ncov covariates. The overall number of covariates
was ncov = 5 or 10. Because P-CFA assumes that variables are cat-
egorical in nature, the continuous X variable was dichotomized at
the mean. In the first subgroup (i.e., if Z1≤ 17 and Z2≤ 30),
observed configuration of X, T, and Y were replaced with the
type configuration {1 1 1} with probabilities δ = 0.20, 0.25, 0.30,
and 0.35. In the second and third subgroups (i.e., if Z1 > 17
and Z2≤ 30 or if Z2 > 30 and Z5≤ 63) no types occurred. In
the fourth subgroup (Z2 > 30 and Z5 > 63), the type configuration
was {0 1 1} occurred with probability δ. In other words, in
Subgroup 1, the occurrence of Y = 1 is associated with T = 1
and X = 1 (i.e., X scores above the sample mean) which is also
in line with the overall variable-oriented effect (i.e., large X scores
and T = 1 increase the chance of Y = 1). In contrast, in Subgroup
4, Y = 1 is likely to occur together with T = 1 and X = 0 (i.e., X
scores below the sample mean). Note that the latter person-
oriented effect contradicts the global variable-oriented effect.
Here, lower X scores and T = 1 is likely to be observed together
with Y = 1. Overall sample sizes were set to n = 500, 1,000, and
1,500. The simulation design was fully crossed resulting in 2
(number of covariates) × 3 (sample size) × 4 (effect size δ) = 24
simulation conditions. One hundred samples were generated per
condition.

For each sample, the case-specific design matrix of the P-CFA
was generated to predict the observed configuration frequencies.
Next, MOB was employed to identify P-CFA subgroups. MOB esti-
mation was based on a GLM tree with a log link and a Poisson
error distribution. The variables Z1, …, Zncov were used as potential
splitting variables. Bonferroni-corrected parameter stability tests
were performed with a familywise nominal significance level of
5%. Similar to Simulation Study 1, regression trees were estimated
with a maximal depth of three, limiting the number of terminal
nodes to eight. Finally, for each identified subgroup, we estimated
a separate P-CFA with Bonferroni-corrected binomial tests to test
for the presence of prediction types and antitypes.

Results
Figure 4 summarizes the performance of the MOB P-CFA
approach as a function of sample size, number of covariates,
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and probability of CFA types (δ). The upper panel of Figure 4
gives the average tree size per simulation condition, the lower
panel summarizes tree accuracy (using the same definition as in
Simulation Study 1). For smaller sample sizes and δ effects, the
estimated trees tend to be smaller than the “true” tree structure.
However, for large samples and δ≥ 0.30, the average tree size is
close to the “true” value. For n = 500, 1,000, and 1,500, we observe
average tree sizes of 4.03 (SD = 1.35), 5.44 (SD = 1.53), and 6.08
(SD = 1.34) for ncov = 5, and 3.94 (SD = 1.37), 5.33 (SD = 1.62),
and 6.13 (SD = 1.35) for ncov = 10. Similarly, large sample sizes
(n = 1,500) and larger δ effects (δ≥ 0.30) are required to obtain
tree accuracy rates larger than 80% (see Figure 4 lower panel).
Overall, we conclude that, similar to the first-order MOB CFA,
MOB P-CFA is able to identify the underlying data-generating
tree structure. However, again, larger samples are preferable
when studying P-CFA tree structures.

Finally, we now focus on the percentage of correctly identified
prediction types per subgroup. Again, we restrict our analysis to
cases in which the MOB P-CFA algorithm correctly identified
four subgroups. For Subgroup 1, we focus on the percentages to
detect the prediction type {1 1 1}; for subgroup 4, we focus on
the configuration {0 1 1}. Percentages to correctly identify {1 1
1} as a CFA type of Subgroup 1 ranged from 33.3% to 100% across
all simulation conditions with an average of 89.5% (SD = 18.4%).
Note that percentages larger than 80% were observed for 19 out of
24 simulation conditions. The remaining five simulation condi-
tions describe data scenarios involving small sample sizes and

small δ effects. For example, the minimum of 33.3% occurred
for n = 500, δ = 0.25, and ncov = 5. Percentages of correctly identi-
fying {0 1 1} as a CFA type in Subgroup 4 were lower than the
corresponding percentages in Subgroup 1. This can be explained
by the fact that the configuration {0 1 1} contradicts the underly-
ing variable-oriented effect. Large percentages were only observed
for n = 1,500 and δ = 0.35. Here, for ncov = 5, {0 1 1} was correctly
identified in 80.8% of the cases; for ncov = 10, the type configura-
tion was detected in 73.0% of the cases. Thus, overall, we can con-
clude that MOB P-CFA is able to detect subgroup-specific
prediction types. Detection, however, is more accurate for type
configurations that are in line with the global variable-oriented
effect (such as {1 1 1} in the present context). When prediction
type patterns contradict the global variable-oriented effect (such
as {0 1 1}), large samples and large δ effects are required to detect
these patterns with sufficient accuracy.

Empirical Example 2

In the following section, we illustrate the application of the MOB
P-CFA approach again using the IY TCM data from Reinke et al.
(2018). Now, we focus on the effectiveness of the IY TCM program
to reduce teacher-rated internalization problems of students. Pre-
and post-treatment internalization problems were measured using
the TOCA-C (Koth et al., 2009). Scores were dichotomized at the
90th percentile. The binary internalization indicators were then ana-
lyzed using MOB P-CFA. Treatment status (T; 0 = business as usual;

Figure 4. Average tree size and accuracy of recursively parti-
tioned prediction configural frequency analysis (P-CFA) as a
function of sample size (n), number of covariates (ncov), and
probability of CFA types (δ).
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1 = IY TCM) and pre-treatment internalization status (I1; 0 = <90th
percentile; 1 =≥90th percentile) were used as predictors and
post-treatment internalization problems (I2; 0 = <90th percentile;
1 =≥90th percentile) was treated as outcome variable. The corre-
sponding base model was saturated in the predictors and assumed
independence between outcome and predictors. Formally, the
model can be written as log (E[m]) = l+ lI1 + lT + lI2 + lI1T .
The covariates gender (0 =male, 1 = female), grade (K-3rd grade),
race (1 = black, 0 = others), and school membership were used as
splitting variables in the MOB algorithm.

First, we again focus on the P-CFA results of the total sample
of 1,630 students given in Table 3 (the corresponding mosaic
display is given in Figure 5). According to the LR goodness-of-fit
test, the model does not fit the data well (χ2(3) = 244.68, p < .001)
and we can conclude that prediction types/antitypes may exist.
Again, we use the binomial test to evaluate whether cell frequen-
cies significantly deviate from expectation. We used Bonferroni
correction to protect the nominal significance level leading to
an adjusted significance level of 0.05/8 = 0.00625. Overall, we
observe two prediction types and four prediction antitypes.
Interestingly, the two largest cells describing the absence of inter-
nalization problems in both treatment groups ({0 0 0} and {0 1 0})
do not deviate from expectation under the P-CFA model.
Prediction types describe patterns of continuing internalization
problems for both experimental groups. For the control group,
that is for the cell {1 0 1}, we observed 49 (3.0%) students
although only 8.6 (0.5%) had been expected. In the treatment
condition, we observed 40 (2.5%) students with pre- and post-
treatment internalization problems while only expecting 8.4
(0.5%) cases. The first two out of the four prediction antitypes,
{1 0 0} and {1 1 0}, describe decreasing internalization problems
in both groups. Here, only 34 cases (2.1%) were observed in the
control group but 74.5 (4.6%) had been expected. Similarly, in
the treatment group, 41 cases (2.5%) have been observed and

72.7 (4.5%) had been expected. Finally, the last two prediction
antitypes describe an increase of internalization problems for
both groups, {0 0 1} and {0 1 1}. Thirty-five control participants
(2.2%) have been observed but 75.5 (4.6%) had been expected. In
the treatment group, 44 students (2.7%) showed this pattern while
75.7 (4.6%) should have been observed according to the base
P-CFA model.

Next, we ask whether the existing prediction types/antitypes
hold on the population level or whether some prediction types/
antitypes are specific to certain subpopulations. In addition, we
evaluate whether the two patterns that did not significantly devi-
ate from model expectation constitute prediction types/antitypes
in a subpopulation. The MOB P-CFA algorithm can be used to
address both questions. Figure 6 summarizes the MOB P-CFA
tree for the splitting variables gender, grade, race, and school
membership. Out of the four splitting variables two proved to
be useful to partition the data, grade and school membership.
Note that school membership was selected as a splitting variable
for both grade partitions. Thus, the resulting regression tree con-
sists of four terminal nodes. The first subgroup (n = 703, 43.1%)
consists of K-, first- or second-grade students in Schools 1, 2, 4,
5, or 8. Students in the second subgroup (n = 605, 37.1%) are in
K-, first, or second grade in Schools 3, 6, 7, or 9. The third sub-
group is characterized as third-grade students in Schools 1, 4, or 6
(n = 95, 5.8%), and the last subgroup consists of third-grade stu-
dents in Schools 2, 3, 5, 7, 8 or 9 (n = 227, 13.9%). For all four
subgroups Bonferroni-corrected binomial tests suggest that
types/antitypes exist.

In contrast to Empirical Example 1, we use mosaic displays to
summarize end nodes (cf. Figure 6). In the mosaic plots, we use
green areas to indicate P-CFA types, red areas to indicate
P-CFA antitypes, and gray areas when no significant discrepan-
cies exist. First, in comparison with the mosaic plot for the
total sample (Figure 5), only Subgroup 2 shows similar depend-
ency structures (interestingly, this is not the largest subgroup in
the sample). Next, we observe different mosaic structures and,
therefore, different dependencies between variables, across parti-
tions, as expected. Overall, we observe the same type/antitype pat-
terns as for the total sample. That is, using the order {baseline,
status, post-treatment} to indicate baseline internalization prob-
lems (0 = below, 1 = above), status (0 = control, 1 = IY TCM treat-
ment), and post-treatment internalization problems (0 = below,
1 = above), the configurations {1 0 1} and {1 1 1} constitute
CFA types and {1 0 0}, {1 1 0}, {0 0 1}, and {0 1 1} are CFA anti-
types. None of these patterns, however, hold on a population level.
The type pattern {1 0 1} for example (i.e., high baseline scores –
control group – high post-treatment scores), holds for the subpo-
pulation of Subgroups 1, 2 and 4, and the CFA type {1 1 1} (high
baseline scores – IY TCM treatment – high post-treatment scores)
is only observed for Subgroups 2 and 3. Similarly, the antitype
{1 0 0} (high baseline scores – control group – low post-treatment
scores) holds in Subgroups 1 and 2, {1 1 0} is only observed in
Subgroups 2 and 3, and {0 0 1} and {0 1 1} only exists in
Subgroup 2.

Evaluating the Stability of CFA Trees

Tree structures found in the data can be unstable and highly sam-
ple dependent, that is, small changes in the input data can have
tremendous effects on the resulting tree structure (Philipp,
Rusch, Hornik, & Strobl, 2018). Thus, carefully evaluating the
stability of a regression tree constitutes an important element of

Figure 5. Mosaic plot of teacher-rated internalization problems for the total sample
(n = 1,630 students); Status (left dimension) = control versus Incredible Years Teacher
Classroom Management (IY TCM) treatment, posttreat (top dimension) = post-
treatment internalization problems, baseline (right dimension) = pre-treatment inter-
nalization problems; red = configural frequency analysis (CFA) antitype, green = CFA
type, gray = no deviation from expectation.
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every MOB application. Nonparametric bootstrapping has for
example been suggested to quantify the robustness of the initial
tree results (Philipp et al., 2018). Because different tree structures
can lead to equivalent partitions and interpretation (Turney,
1995), instead of evaluating the structure of re-sampled trees,
one can focus on two elements of a tree: (a) variable selection
and (b) cut-point selection.

Let b = 1, …, B denote the index of the B bootstrap samples
(i.e., sampling with replacement from the original data) and j =
1, …, J indicates the variables (Zj) considered for partition.
Further, let sbj be an indicator that takes value 1 if Zj is selected
for partitioning and 0 otherwise. Then, the variable selection per-
centage is defined as B−1 ∑

b sbj × 100 and is expected to be close
to 100% for those partitioning variables that had been selected in
the original tree. To evaluate potential variability of cut-points,

two strategies are available depending on the measurement scale
of the partitioning variable Zj. For categorical splitting variables,
cut-point selection percentages of the B re-samples can be used.
In case of a continuous splitting variable, descriptive statistics
such as means and standard deviations can be used to summarize
the distribution of cut-points obtained from B re-samples (e.g.,
average cut-points of Zj are expected to be close to the corre-
sponding cut-point in the initial tree).

To illustrate MOB stability analysis in the context of configural
frequency trees, we again use the data of the two empirical exam-
ples. For the first data example, we generated 100 re-samples of
the five baseline student behavior indicators (concentration prob-
lem, disruptive behavior, emotional dysregulation, internalization
problems, and family problems) and estimated a first-order MOB
CFA for each re-sample. In line with the initial tree (cf. Figure 3),
school membership was selected in 100% of the re-samples. Race
was selecting in 57% and gender was selected in 38% of the
re-samples. In addition, grade was identified as being a relevant
splitting variable in 12% of the re-samples. In other words, with
respect to the stability of the initial configural frequency tree,
we observe mixed results. While school membership is identified
as a stable component of the trees, race and gender show instabil-
ities. Further, cut-point selection analysis of school membership
suggests that the observed partition in Figure 3, [4, 5, 6] and [1,
2, 3, 7, 8, 9] was replicated in 68% of the re-samples. However,
the most prevalent school membership partition (replicated in
82% of the re-samples) was one where School 6 is member of
the other partition, that is, [4, 5][1, 2, 3, 6, 7, 8, 9]. This indicates
that partitioning can be considered stable for Schools 4 and 5, but
selection variability exists for School 6.

For the second data example, we generated 100 re-samples
using pre- and post-treatment internalization and treatment status
indicators. For each re-sample, we used MOB P-CFA to detect
potential subgroups. The two splitting variables of the initial

Figure 6. MOB P-CFA tree of teacher-rated internalization problems based on n = 1,630 students. Status (left dimension) = control versus Incredible Years Teacher
Classroom Management (IY TCM) treatment, posttreat (top dimension) = post-treatment internalization problems, baseline (right dimension) = pre-treatment inter-
nalization problems; red = CFA antitype, green = CFA type, gray = no deviation from expectation.

Table 3. Prediction configural frequency analysis (P-CFA) results for the total
sample (n = 1,630)

I1 T I2 m E[m] p value Decision

0 0 0 697 656.55 0.02208 –

1 0 0 34 74.45 0.00000 Antitype

0 1 0 690 658.35 0.05818 –

1 1 0 41 72.65 0.00003 Antitype

0 0 1 35 75.45 0.00000 Antitype

1 0 1 49 8.55 0.00000 Type

0 1 1 44 75.65 0.00004 Antitype

1 1 1 40 8.35 0.00000 Type

Note. I1 = pre-treatment internalization problems, I2 = post-treatment internalization problems,
m = observed frequencies, E[m] = expected frequencies. Bonferroni-corrected α = 0.00625.
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tree (school membership and grade) were selected in 100% of the
re-samples indicating that, in contrast to the tree in Example 1,
this configural frequency tree can be considered stable (note
that, in addition, gender was selected as a splitting variable in
3% of the re-samples). Further, cut-point analysis suggests that
in the majority of re-samples (68%) MOB P-CFA separated K-,
first and second graders from third graders (which is in line
with the initial tree), followed by partitions of the form [K, 3rd]
[1st, 2nd] (18%) and [K, 1st, 3rd][2nd] (17%). Further, the two
school membership partitions of the initial tree, that is, [1, 2, 4,
5, 8][3, 6, 7, 9] for K-, first, and second graders and [1, 4, 6][2,
3, 5, 7, 8, 9] for third graders was selected in the majority of
re-samples (27% and 24% respectively), followed by the partitions
[1, 2, 3, 4, 5, 7, 8][6, 9] (22%). The remaining partitions were less
likely to occur (all ≤8%). Thus, overall, we can conclude that the
initial configural frequency tree is sufficiently stable with respect
to the selected cut-points.

Discussion

The present study introduced principles of configural frequency
modeling and recursive partitioning and proposed a combination
of the two methods to study moderation processes from a person-
oriented (i.e., a pattern) perspective. CFA identifies the location of
a categorical data space for which effects can be observed and
MOB identifies subgroups for which model parameters signifi-
cantly vary. Combining the two approaches leads to a powerful
algorithm to evaluate moderation processes while preserving a
person-oriented perspective. Configural frequency trees can be
used to identify population-level and subpopulation-level types
and antitypes. Application of the proposed configural frequency
tree framework was illustrated focusing on first-order CFA and
P-CFA trees. For both applications, Monte Carlo simulation
results suggested that MOB CFA is able to recover true tree struc-
tures with adequate probability in particular for large sample sizes
and large effect sizes. Further, two real-world empirical examples
from school mental health research were presented for illustrative
purposes. In both examples, MOB CFA identified four subgroups
(partitions) that differ with respect to the likelihood of observing
specific CFA type/antitype patterns.

The findings highlight the promise of CFA for identifying
meaningful heterogeneity within populations and in response to
interventions. The empirical example identified common patterns
of youth behavior problems in relation to their expected occur-
rence. Youth with no behavior problems and those with
co-occurring problems (concentration and family problems as
well as emotional dysregulation and disruptive behaviors with
and without internalization) were over-represented types. Those
with family problems alone and internalization problems alone
emerged as underrepresented antitypes. These findings are consis-
tent with extensive research showing the common co-occurrence
of youth behavior problems which arise rarely in isolation or as
singular symptoms (Angold, Costello, & Erkanli, 1999; Herman,
Ostrander, Walkup, Silva, & March, 2007). For instance, one
study found that 80% of youth with major depressive disorder
had clinically significant levels of other symptoms including con-
centration problems and disruptive behaviors (Herman et al.,
2007). In addition, much prior research has highlighted family
problems as a strong risk factor for youth mental health concerns
(Dishion & Patterson, 2006; George, Herman, & Ostrander, 2006;
Rothenberg, Hussong, & Chassin, 2016), so it is not surprising
that an antitype of family problems without youth behavior

problems emerged from these analyses. CFA offers a parsimoni-
ous method for characterizing patterns of co-occurring symp-
toms, environmental contexts, and timing of risk conditions in
line with a developmental psychopathology perspective
(Cicchetti & Toth, 1995).

Subsequent analyses that included school, race, and gender as
partitioning variables, suggested that particular schools were asso-
ciated with higher risk for youth behavior problems, especially the
concentration plus family problems type. School contexts influ-
ence student risk and how family risk (e.g., the percentage of fam-
ilies with economic challenges) intersects with school risk to
influence negative youth outcomes (Biglan, Flay, Embry, &
Sandler, 2012; Reinke & Herman, 2002). That the family-only
antitype was most common in the other six schools is consistent
with the importance of school context in the likelihood of youth
expressing emotional and behavior symptoms. These schools may
have provided a protective buffer for youth in them that reduced
their risk of mental health concerns, at least as observed and
reported by their teachers, in the presence of family problems.
It was also noteworthy that the “no problems” pattern emerged
as an overrepresented population type, again suggesting that the
collective school environment in this district may have provided
a protective buffer that mitigated expected levels of youth mental
health concerns.

The CFA of treatment effects highlights the promise of the
method in uncovering contextual factors associated with youth
outcomes in response to intervention that does not have the
downside or complexities of using multiple moderation analyses.
In this example, both treatment conditions experienced compara-
ble trends. MOB findings highlight the promise of CFA in helping
understanding the generalizability and replication of RCT find-
ings. Recent research has suggested that treatment effects may
be contingent on unspecified and unexamined contextual factors
that are inherent to any study. For instance, Kaplan et al. (2020)
conducted a multisite study that involved 10 RCTs of the same
design and found widely discrepant effect sizes based on the con-
text of each study. These authors argued that causal mechanisms
need to be contextualized and that future studies need to include
careful elaboration and evaluation of potential contextual moder-
ators of study effects. Recently, Herman, Dong, Reinke, and
Bradshaw (2020) also found the findings of an educational RCT
varied before and after a prominent historical event based on
both participant race and treatment condition. Both Kaplan
et al. (2020) and Herman et al. (2020) used moderation analyses
to identify these contextual variations of study effects. MOB CFA
offers a more sophisticated and powerful tool to detect and sum-
marize multiple contextual processes simultaneously.

The presented MOB CFA framework can be extended in var-
ious ways. In essence, any CFA model that can be cast as a log-
linear model can serve as a candidate for MOB CFA. Here, we
want to focus on two potential extensions that seem particularly
relevant for developmental psychopathology: k-sample CFA and
longitudinal CFA. k-sample CFA has been suggested to test
whether configurations of categorical variables (so-called discrim-
ination variables) differ across the categories of a grouping vari-
able. In this approach, the grouping variable can be considered
a moderator. MOB CFA could be used to investigate the effects
that additional continuous or categorical moderators have, and
to determine whether population-based group differences hold
when additional moderators are the basis of finer-grained classi-
fications. Similarly, longitudinal CFA can be used to determine
whether patterns of development are predictive of endpoints of
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development. Here, MOB CFA can be used to find finer-grained
endpoint patterns as well as finer-grained developmental trajecto-
ries. In other words, MOB CFA can be used to determine whether
a population is homogeneous in type/antitype patterns of
development.

Another extension concerns sensitivity analyses associated
with MOB CFA applications. Previous studies have emphasized
that single decision trees can provide low predictive performance
and that ensemble techniques such as bagging (Breiman, 1996),
boosting (Freund & Schapire, 1995), and random forests
(Breiman, 2001) can overcome some of these issues (Fokkema
& Strobl, 2020; Strobl et al., 2009). We expect that making use
of ensemble methods in the context of MOB CFA can also lead
to model improvements.

Although CFA is usually presented for “true” categorical var-
iables, that is, variables that measure constructs in the form of
(un)ordered distinct categories (taxa), configural frequency mod-
eling can also be useful in the context of categorized continuous
variables (e.g., a dichotomized composite measure) leading to a
broad area of potential applications in developmental psychopa-
thology research. In the presented real-world data examples, for
instance, composite measures of student behavior were dichoto-
mized at the 90th percentile to indicate problem behavior. It is
important to note that data categorization is not free of limitations
and has been hotly debated in quantitative methods research.
Some authors argue that dichotomization should be avoided
due to the tremendous loss of information affecting the validity
of subsequent statistical models (Cohen, 1983; DeCoster, Iselin,
& Gallucci, 2009; MacCallum, Zhang, Preacher, & Rucker, 2002;
Maxwell & Delaney, 1993; Rucker, McShane, & Preacher, 2015),
others argue that the cost of dichotomization is comparatively
low given potential benefits in clarity and communicability of
results (Iacobucci, Posavac, Kardes, Schneider, & Popovich,
2015; von Eye & Mair, 2012; Westfall, 2011; Wiedermann &
von Eye, 2020a). Furthermore, and most important for the pre-
sent context, all previous studies have discussed benefits and
costs of dichotomization from a purely variable-oriented perspec-
tive. Less is known about the effects of dichotomization when
research hypotheses are tested in terms of patterns, that is, in
the person-oriented research context. Although further studies
are needed to evaluate the gains and losses of data categorization
in person-oriented analyses, our results of Simulation Study 2
may provide some preliminary insights. In the second simulation
experiment, we simulated a continuous covariate that was subse-
quently dichotomized at the mean. Simulation results indicate
that MOB identifies underlying partitions with high accuracy
even when a dichotomized variable is included in the model.
Thus, in the present context, adverse effects of categorization
can be expected to be low in configural frequency modeling.

MOB CFA does not come without some limitations. Both sim-
ulation studies suggested that large sample sizes are preferable to
detect tree structures. The requirement of sufficiently large sample
sizes will often be fulfilled in cross-sectional research that adopts a
person-oriented/pattern perspective. In precision public health
and precision prevention science (Khoury, Iademarco, & Riley,
2016; Supplee, Parekh, & Johnson, 2018), for example, it is well-
recognized that large samples are needed to take individual vari-
ability into account and to make valid statements about sub-
groups or clients. That is, since collected information of people
is more informative when diverse people of the underlying popu-
lation are included and large enough subgroup-specific sample
sizes are necessary to guarantee an accurate representation of

the corresponding subpopulation, the overall sample sizes can
be expected to be sufficiently large for applying MOB CFA.
However, often, person-oriented studies focus on intensive longi-
tudinal individual data (e.g., daily diary data) with moderate sam-
ples sizes. Configural frequency modeling of intensive longitudinal
data has been discussed by von Eye et al. (2010). Here, CFA mod-
els are available to evaluate runs (asking whether adjacent scores
are equal or different) and lags of a series (e.g., relating informa-
tion from one time point to information from the next).
Information that describes runs and lags can then be categorized
and crossed with other categorial indicators (e.g., demographic
variables). The benefit of ideographic data information usually
comes at the cost of small to moderate sample sizes. Although,
our simulation studies clearly indicated that, in a cross-sectional
data setting, large samples are preferable, the ability of
MOB CFA to detect heterogenous subgroups will also depend
on the complexity of the tree and the magnitude of the effects.
For example, extreme groups may also be detectable in the form
of a two-group MOB solution even when sample sizes are moder-
ate – apparently, ultimate statements about the performance of
MOB CFA under such extreme conditions require further studies.

The requirement of larger sample sizes also puts constraints on
the number of variables that can be incorporated to define config-
urations of interest. For example, with 1,500 subjects and 10
binary variables the case-wise data for MOB has 210 × 1,500 =
1,536,000 rows. Thus, if the number of indicators is large,
researchers should consider the application of a data reduction
method prior to MOB CFA. For example, latent class analysis
techniques (Collins & Lanza, 2010; Lazarsfeld & Henry, 1968)
can be used to summarize potentially complex profiles of sub-
groups of indicators in the form of a small number of latent clas-
ses. Latent class membership information across subgroups of
indicators can then be used for recursive partitioning (for a dis-
cussion of latent class analysis in the context of CFA modeling
see Wiedermann & von Eye, 2016).

Overall, MOB CFA can be a powerful tool to study moderation
processes from a pattern perspective provided that sample sizes
are sufficiently large, and one takes effort in critically evaluating
the robustness of the findings. To make MOB CFA accessible to
researchers, we provide an implementation of the discussed mod-
els in R in the online supplement to this article.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0954579421000018.
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