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Supervised Latent Dirichlet Allocation With Covariates: A Bayesian
Structural and Measurement Model of Text and Covariates

Kenneth Tyler Wilcox, Ross Jacobucci, Zhiyong Zhang, and Brooke A. Ammerman
Department of Psychology, University of Notre Dame

Abstract
Text is a burgeoning data source for psychological researchers, but little methodological research has
focused on adapting popular modeling approaches for text to the context of psychological research. One
popular measurement model for text, topic modeling, uses a latent mixture model to represent topics
underlying a body of documents. Recently, psychologists have studied relationships between these
topics and other psychological measures by using estimates of the topics as regression predictors along
with other manifest variables. While similar two-stage approaches involving estimated latent variables
are known to yield biased estimates and incorrect standard errors, two-stage topic modeling approaches
have received limited statistical study and, as we show, are subject to the same problems. To address
these problems, we proposed a novel statistical model—supervised latent Dirichlet allocation with cova-
riates (SLDAX)—that jointly incorporates a latent variable measurement model of text and a structural
regression model to allow the latent topics and other manifest variables to serve as predictors of an out-
come. Using a simulation study with data characteristics consistent with psychological text data, we
found that SLDAX estimates were generally more accurate and more efficient. To illustrate the applica-
tion of SLDAX and a two-stage approach, we provide an empirical clinical application to compare the
application of both the two-stage and SLDAX approaches. Finally, we implemented the SLDAX model
in an open-source R package to facilitate its use and further study.

Translational Abstract
Text data is an increasingly popular data source in psychological research that can be analyzed with a
variety of models and algorithms. Topic models are a popular measurement model that use latent varia-
bles to represent constructs underlying a set of documents (e.g., clinical interviews, survey open
responses, written or spoken educational assessments). Recent applications have used estimates of these
“topics” as predictors of other variables in a regression model, but the statistical behavior of this
approach has not been well studied. Similar approaches with other latent variable models are known to
yield incorrect regression coefficient estimates and incorrect inferences. We showed that the use of topic
estimates as regression predictors is also prone to these problems. As a solution, we proposed a model
that jointly estimates the topic model and regression model—supervised latent Dirichlet allocation with
covariates (SLDAX). Using a simulation study under typical psychological text data conditions, we
found that SLDAX estimates were generally more accurate and more precise than the two-stage
approach. We illustrate the SLDAX and two-stage approaches in a clinical study of nonsuicidal self-
injury and emotional dysregulation with participant interpersonal narratives. To allow researchers to
apply the SLDAX model, we developed an open-source R software package.

Keywords: text mining, supervised topic modeling, mixture modeling, Bayesian estimation, regression

Text data, a facet of the big data whose availability has rapidly
increased for psychology (e.g., Adjerid & Kelley, 2018), is a popu-
lar, rich, and challenging data source for psychological research.

Psychological researchers have used text from a wide variety of
sources such as social media (e.g., Schwartz et al., 2013), open-
ended questions (Ammerman et al., 2021; Popping, 2015), and
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medical health record notes (Obeid et al., 2019). However,
researchers face a dizzying array of algorithms to choose from to
analyze and interpret text data. While overviews on the use of text
mining algorithms for psychological research exist (Finch et al.,
2018; Iliev et al., 2015; Jacobucci et al., 2021; Kjell et al., 2019;
Rohrer et al., 2017), many of these algorithms were developed for
much larger data sets than may be common in psychology and lit-
tle research has focused on adapting these algorithms to questions
unique to psychological research. Ad hoc multistage approaches
have been dominant where a text algorithm (e.g., a topic model) is
utilized and the resulting estimates of interest (e.g., topic propor-
tion estimates) are used in a subsequent analysis (e.g., Finch et al.,
2018; Kim, Kwak, Cardozo-Gaibisso, et al., 2017; Kim, Kwak, &
Cohen, 2017; Packard & Berger, 2020; Rohrer et al., 2017;
Schwartz et al., 2013). These approaches, however, remain under-
evaluated and their statistical performance may not be well under-
stood. Therefore, psychology still needs rigorous statistical models
that link text and nontext data with theory.
Quantitative analysis of text in psychology can be traced back

to the development of the general inquirer system (Stone et al.,
1966), which defined and measured psychological processes such
as affection or distress based on a dictionary of words. This was
motivated by the recognition that text contains both latent (com-
plex interpretations of manifest features constructed from manifest
features) and manifest (e.g., word frequencies, usage of parts of
speech, etc.) content (Stone et al., 1966). This idea was more
recently popularized through the development of the linguistic in-
quiry and word count software (LIWC; Pennebaker et al., 2015;
Tausczik & Pennebaker, 2010), which uses a set of dictionaries to
measure psychological constructs (e.g., affective and social proc-
esses). These resultant scores can be the variables of interest or
can serve as inputs in a subsequent analysis (e.g., Kovacs & Klein-
baum, 2020; Packard & Berger, 2020). However, the relevance
and scope of these categories may not be valid for new data in
some applications. Pennebaker et al. (2003) cautioned that diction-
ary-based methods such as LIWC cannot handle the full scope of
constructs that may occur in natural language, pointing to a limita-
tion in the generalizability of predefined dictionaries. As a (partial)
remedy to this limitation, new domain-specific dictionaries can be
constructed to measure constructs of interest. This can be appeal-
ing if these constructs are not well-represented by predefined dic-
tionaries such as those used by LIWC. In practice, manually
constructing a dictionary can be time-consuming and expensive as
it is challenging to exhaustively identify all terms that are both rel-
evant and context invariant (Garten et al., 2018).
LIWC and other dictionary methods share another critical limi-

tation. Words are often polysemic (i.e., a word can possess multi-
ple semantically related meanings in different contexts or uses) or
homonymic (i.e., a word can possess multiple unrelated meanings
in different contexts or uses). “Happiness,” for example, can ex-
hibit polysemy by referring to (a) current positive emotion or (b)
positive evaluation of one’s life overall. “Lie” can exhibit homon-
ymy by referring to, nonexhaustively, (a) resting or (b) deception.
By assigning words to categories using dictionaries, this semantic
complexity can be easily lost. Therefore, Pennebaker et al. (2003)
and Kjell et al. (2019) have argued that data-driven methods such
as latent semantic analysis may be better approaches to content or
thematic analysis than dictionary methods. Latent semantic analy-
sis (LSA, or indexing), an older but popular data-driven approach,

is similar to principal component analysis where a matrix of word
frequencies in each document is decomposed by singular value
decomposition (Deerwester et al., 1990). This decomposition is
designed to maximize the amount of variability in word frequen-
cies using a set of q weighted linear combinations of the word fre-
quencies. Typically, q is much smaller than V, the total number of
unique words in the corpus, so each document can be represented
by a set of these q eigenvector scores rather than the original word
frequencies, achieving what is often a large degree of dimensional-
ity reduction. Each of the q eigenvectors can be interpreted based
on the coefficients corresponding to each of words. The resulting
decomposition is often described as a “semantic space” (Deerwester
et al., 1990) where proximity of words is indicative of semantic
similarity and proximity of documents is indicative of content simi-
larity. These eigenvectors can also be used as starting points for
constructing dictionaries, allowing for faster development of new
dictionaries for use with dictionary methods like LIWC. One limita-
tion, however, is that LIWC and LSA are not statistical models and
can be prone to overfitting (e.g., Blei et al., 2003).

Consequently, a more general and extensible approach is
needed. Because LSA does not provide a generative model of text,
we cannot perform inference nor can we falsify the “semantic”
representations it produces. In light of more recent approaches that
do provide a generative model of text along with similar dimen-
sionality reduction and construction of semantic representations
without the degree of overfitting of LSA, it is difficult to justify
the choice of LSA on statistical grounds (Blei et al., 2003). One
popular approach that addresses these limitations is topic modeling
(Blei et al., 2003; Blei & Lafferty, 2009). We discuss the seminal
latent Dirichlet allocation (LDA) topic model in detail later in this
article. Briefly, topic models provide a fully generative statistical
model of text that uses latent variables to represent text as a mix-
ture of K latent categories (i.e., topics) that can be interpreted
based on how probable each word in a vocabulary is given each
topic. Documents can be represented based on the relative docu-
ment-specific probability of each topic. The model is data-driven,
rather than dictionary-based, and is capable of accounting for pol-
ysemy and homonymy while providing dimensionality reduction.
In short, topic models not only share the desirable aspects of LSA,
but also provide a full statistical model of text. This article does
not intend to provide a comparison of LSA and topic modeling,
but we note that the distinction between the two is analogous to
the difference between principal component analysis and factor
analysis. Although, superficially, the two appear to accomplish
similar outcomes, principal component analysis is better suited to
maximizing the explained variability in a set of variables with a
mathematical model, whereas factor analysis is preferable when
the aim is to accurately model correlations among variables with a
generalizable statistical model (see, e.g., Widaman, 1993). LSA
may provide a convenient mathematical decomposition of the var-
iance in word frequencies, while topic modeling provides a gener-
alizable statistical model of word co-occurrences.

Since its inception, topic modeling has attracted interest from
psychological researchers (see, e.g., Griffiths & Steyvers, 2004).
Recently, topic modeling has seen increasing use in psychological
research in a variety of applications in order to study a range of
research questions with domains including, for example, clinical,
moral, and educational research questions (e.g., Finch et al., 2018;
He, 2013; Kim, Kwak, Cardozo-Gaibisso, et al., 2017; Kim, Kwak,
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& Cohen, 2017; Packard & Berger, 2020; Rohrer et al., 2017).
Nearly every application of topic modeling to psychological
research has used a two-stage approach in which (a) a topic model
is first fit to text; and (b) estimated topic proportions are then used
as predictors or outcomes in a subsequent (e.g., regression) model.
However, the two-stage approach can be problematic because it
treats the estimated topic proportions as though they were the true
latent topic proportions. Problems associated with two-stage
approaches with latent variable models are well known, particularly
in the mixture modeling literature (e.g., Bolck et al., 2004; Ver-
munt, 2010) and the factor analysis literature (e.g., Devlieger et al.,
2019; Hayes & Usami, 2020). As we will show in our simulation
study, two-stage estimates of the relationships (i.e., regression coef-
ficients) between the latent topic proportions and another manifest
variable can be biased and may have incorrectly estimated standard
errors. The same biased estimates and incorrect standard errors also
occur in the case of two-stage regression approaches with continu-
ous latent variables (Croon, 2002; Devlieger et al., 2016; Levy,
2017; Lu & Thomas, 2008; Skrondal & Laake, 2001). Given the
growing popularity of topic modeling, an alternative to two-stage
estimation procedures is needed. Three recent developments in this
direction are the structural topic model (STM; M. E. Roberts et al.,
2014), the supervised latent Dirichlet allocation model (SLDA; Blei
& McAuliffe, 2008), and a hybrid of the STM and SLDA models
proposed by Ansari et al. (2018). Both STM and SLDA extended
topic modeling to incorporate other manifest variables. STM is sim-
ilar to a multiple indicators–multiple causes (MIMIC; Joreskog &
Goldberger, 1975) model as it models the effects of manifest pre-
dictors on the latent topics underlying the text. SLDA, on the other
hand, treats a manifest outcome variable as an effect indicator of
the topics by allowing the latent topics to predict the outcome.
Finally, the Ansari et al. (2018) model allows covariates to predict
the latent topics (like STM) and the topics to predict an outcome
(like SLDA). Notably, the covariates predicting the latent topics do
not predict the outcome. Choosing among these and other kinds of
extended topic models should be performed with care as the differ-
ent model specifications make different assumptions about covari-
ate, topic, and outcome relationships and aim to answer different
kinds of research questions.
SLDA, in particular, is more closely related to the two-stage

procedure that is currently popular in psychological research
where the latent topic estimates are used as predictors. However,
SLDA does not allow for other manifest predictors of the outcome
to be included. Recently, psychological applications of topic mod-
eling have been interested in assessing the contribution of topics
from text in conjunction with or in addition to other predictors.
For example, Packard and Berger (2020) controlled for topical
content from song lyrics in a regression analysis as a possible con-
founder of second-person pronoun usage (their predictor of inter-
est) when predicting song popularity. Rohrer et al. (2017) used
topics from survey responses regarding sources of worry as predic-
tors of five personality traits from the Big Five Inventory while
controlling for participant gender and age. In the former, the topic
proportion estimates were used as control variables while in the
latter, the topic proportion estimates were the primary predictors
of interest while controlling for age and gender differences. Pack-
ard and Berger (2020) could not use SLDA to control for topical
effects because SLDA does not allow for the inclusion of other
manifest predictors. Rohrer et al. (2017) could have used SLDA to

assess the unconditional relationships between topics and person-
ality, but SLDA would not have allowed them to control for possi-
ble age and gender differences. In both cases, a two-stage
approach was used to accomplish these aims.

Our goal in this article is to describe a new statistical model that
jointly incorporates a latent variable measurement model of text
and a structural regression model that links these latent variables
with an additional set of manifest variables. This new method—
termed supervised latent Dirichlet allocation with covariates
(SLDAX)—generalizes related work on Bayesian topic modeling
(Blei et al., 2003; Blei & McAuliffe, 2008) for text to accommo-
date both latent variables underlying the text and manifest varia-
bles as predictors without resorting to a two-stage estimation
procedure (e.g., Finch et al., 2018; Packard & Berger, 2020;
Rohrer et al., 2017). The rest of the article is organized as follows.
First, we review the latent Dirichlet allocation (LDA) topic model
as it serves as the foundation of our proposed model. Second, we
discuss two-stage and one-stage approaches to using topic propor-
tions to predict an outcome. Third, we describe the proposed
SLDAX model and two MCMC algorithms for estimation and in-
ference with continuous and dichotomous outcomes; we devel-
oped a freely available R package (psychtm; Wilcox, 2021) for
estimating SLDAX and related models. Fourth, we discuss inter-
pretation and statistical inference for SLDAX and related models.
Fifth, we compare the performance of SLDAX and several var-
iants of the commonly used two-stage approach in a simulation
study. Sixth, we illustrate the application of SLDAX in an empiri-
cal example where clinical measures and interpersonal narratives
are used to model emotional dysregulation. We end the article by
discussing implications and limitations of the study and potential
future research directions.

Topic Modeling: Latent Dirichlet Allocation

To help understand our proposed SLDAX model, this section
summarizes latent Dirichlet allocation (LDA; Blei et al., 2003).
LDA is a measurement model for a corpus (i.e., a set of documents
or audio transcripts) that is designed to model relationships among
word co-occurrences via a set of probability distributions. This is
accomplished by introducing a set of K categorical latent random
variables commonly known as topics. Typically, one must specify
K before fitting the LDA model, although it is possible to treat K
as a random variable and estimate it (Teh et al., 2006). We first
describe the generative model for LDA and then describe the
meaning and interpretation of the key model parameters.

Generative Model

Consider a corpus of D documents each of length Nd words, d =
1, . . . , D. We refer to the set of all V unique words1 in the corpus
as a vocabulary—a given document may only contain a subset of
these V words. Let ~wd denote a Nd 3 1 vector of the observed
words in document d and let wdn 2 f1; 2; . . . ;Vg denote an integer
representation of the word in position n of document d, n = 1, . . . ,
Nd. Let ~zd be a Nd 3 1 vector of latent topic assignments corre-
sponding to the observed words in document d and let zdn 2

1We use words here for simplicity, but one can alternatively model
phrases or other units of text.
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f1; 2; . . . ;Kg be the latent topic assigned to wdn. Let ~hd denote a
K 3 1 vector of topic probabilities or proportions under the con-

straint
PK

k¼1 hdk ¼ 1. Let~bk denote a V 3 1 vector of word proba-

bilities for topic k under the constraint
PV

v¼1 bkv ¼ 1. The
generative model for LDA (see Figure 1) is,

1. For each topic k = 1, . . . , K:

(a) Draw the word probability vector ð~bkÞ � Dirð~cÞ
with ~c denoting the hyperparameters that reflect the
relative concentrations of the word probabilities,

2. For each document d = 1, . . . , D:

(a) Draw topic probabilities ð~hdÞ � Dirð~aÞ with ~a
denoting the hyperparameters that reflect the con-
centration of the topic probabilities,

(b) For each word n = 1, . . . , Nd:

i. Draw topic assignment ðzdn j~hdÞ � Catð~hdÞ,

ii. Draw word ðwdn j zdn ¼ k;~bkÞ � Catð~bkÞ,

where Dirð�Þ denotes a Dirichlet distribution and Catð�Þ denotes a
categorical distribution.
Although the components of the V-dimensional hyperparameters

~c and the K-dimensional hyperparameters~a can be freely specified,
exchangeable Dirichlet distributions (equal hyperparameters for all
components) are commonly used (e.g., Blei et al., 2003). The

Dirichlet priors are convenient due to conjugacy, but alternative dis-

tributions can be used. Instead of using a Dirichlet prior for ~hd, for
example, a logistic-normal prior more flexiblymodels the correlation
structure of the topics (i.e., correlated topic model; Blei & Lafferty,
2006). The LDA likelihood function depends on theD3Kmatrix of

topic proportions ~H ¼ ½~h01; . . . ;~h0d; . . . ;~h0D� and the K3 Vmatrix of

topic-word probabilities ~B ¼ ½~b0
1; . . . ;

~b 0
k; . . . ;

~b 0
K �. Under the

assumptions that the documents are conditionally independent given
~H and the words are conditionally independent given each docu-
ment’s topic assignments~zd, the likelihood function is

Lð~H; ~BÞ ¼
YD
d¼1

YNd

n¼1

Pr½zdn ¼ k j~hd�Pr½wdn ¼ v j zdn ¼ k;~bk�

¼
YD
d¼1

YNd

n¼1

hdzdnbzdnwdn
;

(1)

where hdzdn is the probability of assigning topic zdn to word wdn in
document d and bzdnwdn

is the probability of word wdn given the
assigned topic zdn in document d. Combining the prior distribu-

tions f ð~hdÞ; d ¼ 1; . . . ;D, and f ð~bkÞ; k ¼ 1; . . . ;K, with the likeli-
hood, the posterior distribution is

f ð~H;~B;~z1; . . . ;~zD j~w1; . . . ; ~wDÞ

¼
Lð~H;~BÞ

YD

d¼1
f ð~hdÞ

YK

k¼1
f ð~bkÞ

f ð~w1; . . . ; ~wDÞ : (2)

Parameter Interpretation and Estimation

The parameters of interest in LDA can be classified into docu-
ment-level (person-level) and word-level (item-level) sets. For docu-

ment d,~hd summarizes the content of the document as a mixture of
the K topics with mixture proportions hdk ¼ Pr½zdn ¼ k� for each
topic. This allows for a lower-dimensional representation of each
document using K topic proportions instead of V word frequencies.
In many applications, some of the topics in a document may have
probabilities near zero and can be considered ignorable so that docu-
ment can be represented using a subset of K* , K topics. Further-
more, we can examine between-person variability in the documents
by comparing the topic proportions across any pair of documents:

that is, we can compare documents d and d0 by comparing ~hd and
~hd0 .2 For topic k, ~bk summarizes topic k as a distribution over V
words with probabilities bkv ¼ Pr½wdn ¼ v j zdn ¼ k� for word v.
Typically, many words will have ignorably small probabilities for a
particular topic. In this case, that topic can be interpreted using this
subset ofV*, Vwords. As we illustrate later in our empirical exam-
ple, the topic-specific word probabilities bkv can be used like factor

Figure 1
Directed Acyclic Graphical Representation of the LDA Model

Note. The nth observed word wdn in document d is represented by a
shaded circle. Latent variables are represented by unshaded circles: zdn
denotes topic assignments for each word in each document; ~hd denotes the
K topic proportions for each document; ~bk denotes the V topic-word proba-
bilities for topic k. Fixed parameters are represented by dots: ~a denotes the
hyperparameters of the topic probabilities; ~c denotes the hyperparameters
of the topic-word probabilities. A set of (conditionally) independent repli-
cates (i.e., words given topics; documents; word probabilities given a topic)
is represented by a rectangle. LDA = latent Dirichlet allocation.

2 Between-person comparisons are limited to rank comparisons because
the topic proportions are ipsative (Clemens, 1966). This is often desired
because comparisons can be made based on the relative prevalence of each
topic across individuals. If, instead, comparisons were made between
individuals using the frequency of words assigned to each topic, more
weight will be given to longer documents rather than the relative
prevalence of each topic (this is also relevant for dictionary-based methods;
Kovacs & Kleinbaum, 2020).
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loadings in factor analysis to interpret each topic.3 Overall, we can

conceptualize ~H as document or person-level parameters and ~B as
word- or item-level parameters.
To obtain the posterior distribution of the LDA model in Equa-

tion 2, the marginal distribution f ð~w1; . . . ; ~wDÞ needs to be com-
puted, but this marginal distribution is intractable (Blei et al., 2003;
Dickey, 1983). Therefore, exact inference using the posterior distri-
bution is intractable. Instead, approximation algorithms such asMar-
kov chain Monte Carlo (MCMC) algorithms (e.g., Gibbs sampling;
Griffiths & Steyvers, 2004) or variational expectation-maximization
(Blei et al., 2003) are used to estimate the model.

Use of Topic Proportions as Predictors

While the topic proportions ~H can be used to summarize the

corpus, it is common for researchers to use ~H as variables (often
predictors) in a subsequent model to study relationships between
the content of the corpus and other measures (e.g., Do topics from
free responses explain variability in self-reported emotional dysre-
gulation?). This can be of interest for several reasons. Text data
can provide auxiliary or complementary information to augment
other scales and measures (Ercikan et al., 1998). By including
both text and other measures as predictors of an outcome,
researchers can study the effects of the topics on an outcome
above and beyond or controlling for the other predictors. Alterna-
tively, as in Packard and Berger (2020), information accounted for
by the topics can be controlled for while evaluating the effects of
the other predictors of interest on an outcome. To answer these
types of research questions, two general approaches exist, namely,
a two-stage procedure and a one-stage procedure.

Two-Stage Estimation

In a two-stage approach, the topic proportion estimates ~̂H
obtained from a topic model (e.g., LDA) are used in a subsequent
model. Perhaps because of its convenience, this two-stage proce-
dure is popular within psychological research (Kim, Kwak, Car-
dozo-Gaibisso, et al., 2017; Kim, Kwak, & Cohen, 2017; Packard
& Berger, 2020; Rohrer et al., 2017; Schwartz et al., 2013). A typi-
cal two-stage approach is as follows: (a) fit a LDA model to a cor-
pus and determine the number of topics to use; (b) obtain estimates

of the topic proportions ~̂H; (c) estimate a (generalized) linear

regression model4 with ~̂H as predictors. Other predictors could also
be included.
However, the two-stage approach may be problematic because it

treats the estimated topic proportions as though they were the true
latent topic proportions. This ignores estimation error and uncer-
tainty. Two possible consequences are that the relationships (i.e.,
regression coefficients) between the latent topics and the dependent
variable can be biased and that the estimated standard errors of the
regression coefficients can be incorrect.5 This has been studied in the
mixture modeling literature in the context of latent class models
where a two-stage approach is used to model relationships from cova-
riates to latent class assignments (Bolck et al., 2004). As we will

show in a simulation study, a two-stage approach using Ĥ can lead
to severely biased topic proportion regression coefficients and incor-
rect standard errors. Consequently, two-stage estimates of relation-
ships between topic proportions and other variables can be

inaccurate and lead to incorrect inference. To our knowledge, these
problems have not been studied in the topic modeling literature.

One-Stage Estimation

The supervised LDAmodel (SLDA) proposed by Blei andMcAu-
liffe (2008) is a one-stage model that extends LDA to include an out-
come variable that is observed along with each document. Let
~�zd ¼ ½�zd1; . . . ;�zdk; . . . ;�zdK �0 be the vector of proportions of topic
assignments in a document, which we refer to as empirical topic pro-
portions throughout the paper; �zdk ¼ N�1

d

PNd
n¼1 Iðzdn ¼ kÞ and I(·)

is an indicator function equal to 1 if topic assignment n in document

d is equal to k and 0 otherwise. Note that
PK

k¼1 �zdk ¼ 1. In SLDA,~�zd
predicts the observed outcome yd using a (generalized) linear regres-
sionmodel with aK3 1 vector of regression coefficients~g,

yd ¼
XK
k¼1

�zdkgk þ ed; (3)

where ed is a residual with the usual assumption that ed �iid Nð0;r2Þ.
The regression component of SLDA in Equation 3 corresponds to a
first-degree canonical polynomial model for mixture proportions
(Scheffé, 1958) and introduces a set of population-level parameters~g.
No intercept is included in the regression model because of the con-
straint that

P
k�zdk ¼ 1 in every document—inclusion of an intercept

term would result in perfect collinearity. Equivalently, the model can
be reparameterized to include an intercept andK – 1 regression coeffi-
cients, but interpretation and inference for the regression coefficients
becomes more challenging due to its dependence on the choice of the
reference topic (Cornell, 2002). Using the generalized linear modeling
framework (McCullagh & Nelder, 1989), SLDA can accommodate
nonnormal outcomes with an appropriate canonical link function (Blei
&McAuliffe, 2008). Like the posterior for LDA, the exact form of the
posterior is intractable and approximationmethods are needed for esti-
mation. Blei and McAuliffe (2008) derived a variational inference
algorithm to estimate the SLDAmodel.

Like LDA, SLDA models the corpus using topic proportions
and word-topic probabilities (a measurement model of the text),
but it jointly models the relationship between the topic assign-
ments and the outcome (a structural model). As a result, the esti-
mated topic assignments and topic proportions in SLDA will be
related to the outcome provided that the population regression
coefficients of the topics vary. In contrast, topics estimated by
LDA will not necessarily have any relation to the outcome of in-
terest because the outcome is not linked to the topics during the
estimation procedure (Magnusson et al., 2020).6 This distinction
can impact performance: Blei and McAuliffe (2008), for example,

3 In factor analysis, factors can be interpreted based on the loading of
each manifest variable on each factor where interpretation is typically
based on which items have nonzero loadings on a factor.

4 Correlation analyses between estimated topic proportions and other
manifest variables are a special case (i.e., univariate linear regression).

5 The same bias and incorrect standard errors can also occur in the case
of continuous latent variables (Croon, 2002; Lu & Thomas, 2008; Skrondal
& Laake, 2001).

6 Magnusson et al. (2020) compared the distinction between such a two-
stage procedure (i.e., LDA followed by regression) and a supervised topic
model to the difference between principal components regression (a two-
stage procedure) and partial least squares regression (a one-stage procedure).
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showed that SLDA had better predictive performance on new data
in two empirical examples than a two-stage approach. Although
SLDA is a one-stage approach, it does not incorporate other pre-
dictors besides the empirical topic proportions. In the next section,
we introduce a generalization of SLDA that incorporates other
manifest predictors in a one-stage approach.

Supervised Latent Dirichlet Allocation With
Covariates (SLDAX)

Model Overview

As we discussed previously, text data can provide auxiliary or com-
plementary information to complement other measures (Ercikan et al.,
1998). By including topic proportions and other measures as predic-
tors of an outcome, researchers can study the conditional effects of
topics on an outcome and the conditional effects of other predictors on
an outcome. For example, we can control for auxiliary information
captured by topics from open-ended survey responses while evaluat-
ing the effects of other manifest predictors. Alternatively, we can
assess the incremental contribution of complementary or auxiliary in-
formation accounted for by topics (e.g., from clinical interviews) after
accounting for standardmeasures to model clinical outcomes.
Because SLDA does not incorporate other predictors besides

the topics, an alternative model is needed. For example, in our em-
pirical example, we model relationships between emotional dysre-
gulation, nonsuicidal self-injury, and subjective interpersonal
distress along with participant narratives of an interpersonal con-
flict. SLDA can only model the relationship between the text
responses and a single outcome (e.g., emotional dysregulation).
On the other hand, we could estimate a LDA model for the text
and then use the topic proportion estimates with the other meas-
ures to model emotional dysregulation, but this is a two-stage
approach with potentially poor performance (see our simulation
results). To address this limitation, we developed the supervised
latent Dirichlet allocation with covariates (SLDAX) model, a gen-
eralization of SLDA, that incorporates manifest variables and
latent topics as predictors of an outcome.
Suppose that a set of p predictor variables denoted by the p 3 1

vector~xd is observed with document d and dependent variable yd
for D participants. The generative model for SLDAX with a nor-
mally distributed outcome (see Figure 2) is shown below,

1. Draw residual variance r2 � IGða02 ;
b0
2 Þ,

2. Draw regression coefficients ~g � Nð~l0; ~R0Þ

3. For each topic k = 1, . . . , K:

(a) Draw~bk � Dirð~cÞ,

4. For each document d = 1, . . . , D:

(a) Draw~hd � Dirð~aÞ,

(b) For each word n = 1, . . . , Nd:

i. Draw topic zdn j~hd � Catð~hdÞ,

ii. Draw word wdn j zdn ¼ k;~bk � Catð~bkÞ,

(c) Draw yd � Nð~r 0d~g;r2Þ,

where r2 is the residual variance of yd, IG(·) denotes an inverse-
gamma distribution, ~g is a (p þ K) 3 1 vector of regression coeffi-
cients, and~rd ¼ ð~xd;~�zdÞ is a (p þ K) 3 1 vector that augments the
empirical topic proportions with the vector of observed predictors.
As in the case of SLDA, alternative link functions and distributions
can be used by modifying step (4c) of the SLDAX generative
model. In this article, we consider two cases: (a) yd is normally dis-
tributed and (b) yd is Bernoulli-distributed (via a logit link func-
tion). If the outcome is Bernoulli-distributed, we can replace Step
4c in Algorithm 4 with

ð4c0Þ Draw yd � BerðpdÞ;
where logitðpdÞ ¼~r 0d~g and logitðpdÞ ¼ logð pd

1�pd
Þ; 0, pd , 1. No

intercept is included in the regression model because
P

k�zdk ¼ 1 in
every document. Regardless of the choice of link function and distri-
bution of yd, the exact form of the posterior distribution is intractable,
so we next describe two MCMC algorithms to approximate the pos-
terior distribution. We developed a freely available R package
(psychtm; Wilcox, 2021) that implements these MCMC algorithms
for estimating and summarizing SLDAX and related models.

We note that SLDAX is distinct from the STM. Like SLDA, the
STM incorporates a LDA-style topic model of text with other
manifest variables. The key distinction is that STM assumes that
the manifest variables predict the topic proportions and/or topic-
word probabilities. In comparison, SLDA assumes that the empiri-
cal topic proportions predict a manifest outcome. Our proposed
SLDAX model is aligned with SLDA: The empirical topic propor-
tions and an additional set of manifest variables jointly predict a
manifest outcome. Consequently, the choice between STM and
SLDAX depends on the research question(s) of interest.

Estimation

This section addresses the case where y is assumed to be normally
distributed. For a sampling algorithm when the outcome is dichoto-
mous, see Appendix A. Assuming that the outcomes yd, documents,
and the words are conditionally independent, the likelihood function is

Lð~H;~B; ~g;r2Þ ¼ ð2pr2Þ�D
2exp

�ð2r2Þ�1
XD
d¼1

ðyd �~r 0d~gÞ2
( )YD

d¼1

YNd

n¼1

hdzdnbzdnwdn
: (4)

Combining the priors and the likelihood, the posterior distribu-
tion is

f ð~g;r2; ~H;~B;~z1; . . . ;~zD j~y; ~X ; ~w1; . . . ; ~wDÞ ¼
Lð~H;~B; ~g;r2Þf ð~gÞf ðr2ÞQD

d¼1 f ð~hdÞ
QK

k¼1 f ð~bkÞ
f ð~y; ~X ; ~w1; . . . ; ~wDÞ

:

(5)
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Collapsed Gibbs Sampler Algorithm

We use an iterative Bayesian estimation algorithm—Gibbs
sampling—to draw samples from the posterior. Within a Bayes-
ian framework, model parameters and latent variables are
viewed as random variables that have a joint distribution. The
Gibbs sampler approximates this joint distribution by sampling
sequentially from the full conditional distribution of each pa-
rameter and variable given the parameters and variables drawn
in the previous iteration (e.g., Geman & Geman, 1984). We
briefly describe the algorithm here. It is possible to sample
from the joint posterior in Equation 5, but this requires sam-
pling many parameters. In particular, there are D(K – 1) free pa-

rameters in ~H and K(V – 1) free parameters in ~B. As a result,
mixing of the Markov chain from Gibbs sampling can be slow
in practice. However, as Griffiths and Steyvers (2004) showed

for LDA, the choice of Dirichlet priors for ~hd and ~bk allows ~H

and ~B to be integrated out of the posterior. For SLDAX, this
yields a marginal posterior,

f ð~g;r2;~z1; . . . ;~zD j~y; ~X ; ~w1; . . . ; ~wDÞ: (6)

Sampling from such a marginal posterior allows faster sam-
pling with less autocorrelation between iterations (Liu, 1994).

By collapsing out ~H and ~B, only ~g; r2, and~z1; . . . ;~zd;~zD need

to be sampled. After the Gibbs sampler converges, we can subse-

quently sample ~H and ~B from their full conditional distributions.
The computational steps are as follows. For iteration t, t = 1, . . . , T:

1. Draw ~gðtÞ from f
�
~g jr2ðt�1Þ

;~zðt�1Þ
1 ; . . . ;~zðt�1Þ

D ;~y; ~X ;
~w1; . . . ; ~wD

�
.

2. Draw r2ðtÞ from f
�
r2 j~gðtÞ;~zðt�1Þ

1 ; . . . ;~zðt�1Þ
D ;~y; ~X ;

~w1; . . . ; ~wD

�
.

3. For n, n = 1, . . . , Nd and d, d = 1, . . . , D:

(a) Draw zðtÞdn from f
�
zdn j~gðtÞ;r2ðtÞ ;~zðt�1Þ

1 ; . . . ; zðt�1Þ
dð�nÞ;

. . . ;~zðt�1Þ
D ;~y; ~X ; ~w1; . . . ; ~wD

�
.

4. For document d, d = 1, . . . , D:

(a) Draw topic proportions~hðtÞd from f
�
~hd j~gðtÞ;r2ðtÞ ;

~zðtÞ1 ; . . . ;~zðtÞD ;~y; ~X ; ~w1; . . . ; ~wD

�
.

5. For topic k, k = 1, . . . , K:

(a) Draw topic–vocabulary distributions~bðtÞ
k from f

�
~bk j

~HðtÞ; ~gðtÞ;r2ðtÞ ;~zðtÞ1 ; . . . ;~zðtÞD ;~y; ~X ; ~w1; . . . ; ~wD

�
.

Figure 2
Directed Acyclic Graphical Representation of the SLDAX Model With a Normal
Outcome

Note. Observed variables are represented by shaded circles: wdn denotes the nth word in
document d; for subject d, ~xd denotes p predictor scores and yd denotes the outcome for
subject d. Latent variables are represented by unshaded circles: zdn denotes topic assign-
ments for each word in each document; ~hd denotes the K topic proportions for each docu-
ment; ~bk denotes the V topic-word probabilities for topic k; ~g denotes the regression
coefficients relating~xd and~zd to yd; r

2 denotes the residual variance of Y. Fixed parameters
are represented by dots: ~a denotes the hyperparameters of the topic probabilities; ~c denotes
the hyperparameters of the topic-word probabilities; ~l0 and ~R0 denote the prior mean vec-
tor and covariance matrix of ~g, respectively; a0 and b0 are the shape and rate hyperpara-
meters for r2. A set of (conditionally) independent replicates (i.e., words given topics;
documents; word probabilities given a topic) is represented by a rectangle. SLDAX =
supervised latent Dirichlet allocation with covariates.
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when drawing zðtÞdn , note that zðt�1Þ
dn is not conditioned upon. If ~H

and/or ~B are not of interest, Steps (4) and/or (5) can be omitted.
The technical details of the derivations of the necessary condi-
tional distributions are given in Appendix B.

Label Switching

Because the likelihood for SLDAX (as well as LDA and
SLDA) is invariant to permutation of the topic labels, care is
needed when summarizing the posterior samples for estimation
and inference.7 This permutation invariance leads to K! modes in
the posterior that may be visited during sampling. This so-called
label switching can result in parameter labels for the K topics (i.e.,
the topic proportions, topic-word probabilities, and topic regression
coefficients) being permuted during sampling. As a consequence,
ignoring label switching when obtaining posterior summaries can
produce distorted posterior distributions and point estimates that do
not correspond to any of the posterior modes.
Several strategies to resolve label switching have been proposed

in the mixture modeling literature. The simplest approach in prin-
ciple is to constrain some parameters that correspond to the mix-
ture components such that a single posterior mode is identified
during sampling (e.g., Richardson & Green, 1997). However, it is
difficult to ensure that a particular set of constraints will guarantee
the identification of a single mode and, worse, imposing such a
constraint may even distort the sampled posterior distribution
(Celeux et al., 2000). Clustering-type algorithms have been shown
to provide better solutions to the label switching problem than or-
dered constraints (Celeux et al., 2000; Stephens, 2000). In particu-
lar, the algorithm proposed by Stephens (2000) has been shown to
perform well (Cassiday et al., 2021; Dias & Wedel, 2004). Briefly,
the Stephens algorithm seeks to align the draws at each iteration
of the MCMC sampler of the matrix of K mixture proportions for
the D observations by minimizing the Kullback-Leibler diver-
gence between the classification matrix at each iteration and an av-
erage of the classification probabilities across the set of samples.
In the context of the SLDAX model, we only need to supply the
matrix of posterior topic proportions H(t) at posterior samples t = 1,
2, . . . , T for the Stephens algorithm.
Another strategy to resolve the label switching problem is to

change the prior specification. Instead of using symmetric priors
on the topic parameters, asymmetric priors can be used. Research
in this direction is limited, but Wallach et al. (2009) demonstrated
empirically that asymmetrical priors onH combined with symmet-
ric priors on B may improve model fit and interpretability for large
corpora. This requires the specification of a more complicated
hierarchical prior for H and is not readily available in most topic
modeling software, so we do not pursue this approach further in
this article.

Interpreting and Testing the Effects of Topics

Interpretation of the corpus parameters ~H and ~B can be per-
formed in the same way as for LDA. One nuance in interpreting
the latent topics, much like the distinction between interpreting
latent factors in factor analysis and structural equation modeling,
is that the topics are conditioned on the outcome~y, meaning that~y
can essentially be seen as an additional indicator of each topic

(see, e.g., Levy, 2017). Consequently, inclusion of ~y may lead to

different topic-word probabilities ~B and topic proportions ~H
between LDA and SLDAX models.

Interpretation of the regression coefficients for the topics
deserves particular attention. It is common, but incorrect, to com-
pare the topic regression coefficients to zero for inference as is
common practice in standard regression analysis; one may be
tempted to interpret a positively signed coefficient as indicative of
a positive relationship between the topic and the outcome and a
negatively signed coefficient as indicative of a negative relation-
ship (see, e.g., Packard & Berger, 2020; Rohrer et al., 2017;
Schwartz et al., 2013). However, this is inappropriate and mislead-
ing because the topics are proportions. In this section, we briefly
review key results from the mixture regression modeling literature
and provide guidance on correct interpretation and testing of the
topic regression coefficients in SLDAX and two-stage approaches.

Interpretation

In standard regression models, the absence of a relationship
between a predictor and the outcome is commonly tested by
assessing the corresponding regression coefficient hk under the
null hypothesis H0 : gk ¼ 0. However, when a set of K proportions

f�zdkgKk¼1 are included as predictors, then the usual comparison of
the regression coefficient for component k against zero is inappro-
priate because the set of proportions is constrained to sum to one.
For simplicity, assume that no covariates are included (i.e., an
SLDA model). The structural portion of the model is a regression
equation where the empirical topic proportions are used as a set of
K predictors,

E½Yd� ¼
XK
k¼1

gk�zdk: (7)

Because the empirical topic proportions are constrained to sum
to one,

P
k�zdk ¼ 1, each coefficient hk represents the expected value

of Y when only component k is present (i.e., �zdk = 1 and �zdk0 ¼ 0 for
all k0 6¼ k; Cornell, 2002; Scheffé, 1958). To see why zero is not
(generally) a meaningful point of comparison for hk, consider the
null hypothesis H0 : gk ¼ 0; k ¼; . . . ;K. Under this null hypothesis,

E½Yd� ¼
PK

k¼1 gk�zdk ¼
PK

k¼1ð0Þ�zdk ¼ 0: the expected value of Y is
zero when none of the empirical topic proportions are related to Y.
Unless Y has been mean-centered, this will rarely be a meaningful
hypothesis.

In a standard regression model, the comparable null hypothesis
where all predictors have no relationship to Y isH0 : E½Yd� ¼ g0: the
expected value of Y is a constant, but need not be equal to zero.
Scheffé (1958) and Cox (1971) showed that the appropriate null hy-
pothesis corresponding to a hypothesis that none of theK proportions
are related to the outcome is H0 : g1 ¼ � � � ¼ gk ¼ � � � ¼ gK ¼ g0

where h0 is the population expected value of Y and h0 need not be

equal to zero. In an SLDAX model with additional predictors ~X , h0

will be the conditional expected value of Y when the other manifest

predictors ~X are fixed at 0. The same reasoning holds for nonlinear

7 Under symmetric Dirichlet priors, the posterior is also invariant to
permutation of the topic labels.
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regression models within the generalized linear model. Therefore, it
is typically not meaningful to compare SLDAX (or SLDA) topic
regression coefficients to zero for both interpretation and inference.
If, for example, the marginal sample mean of Y is equal to 5, we

would expect the topic regression coefficient estimates from an
SLDAmodel to be close to 5 when a topic is not related to Y, greater
than 5 if the topic is positively associated with Y, and less than 5 if
the topic is negatively associated with Y—a topic regression coeffi-
cient of 0 in this example would correspond to a topic that is nega-
tively associated with Y, not unassociated with Y. In the case of a
dichotomous outcome, topic regression coefficient estimates on the
log-odds scale would be expected to vary around 0 (on the log-odds
scale) when the marginal probability of Y = 1 is near .5. If the mar-
ginal probability is, say, .75, we would expect topic regression coef-
ficients to vary around 1.1 instead of 0. Therefore, it is important to
interpret topic regression coefficient estimates in the context of the
marginal or conditional mean of Y rather than zero.

Inference

It follows from the discussion above that tests of the relation-
ship between prevalence of a topic and the outcome differ from
standard regression practice. Each coefficient hk represents the av-
erage response when only topic k is present. One could compare
ĝk to h0 to determine if that topic is related to the outcome, but
this ignores the fact that increasing the prevalence of topic k corre-
sponds to a reduction of the prevalence of the other K – 1 topics.
For regression models with mixture components as predictors,
Snee and Marquardt (1976) defined the effect of component k on Y
as the change in the expected value of Y resulting from a change
in the proportion of component k while holding the relative pro-
portions of the remaining K – 1 components constant—this is in
fact the slope of Equation 7 with respect to hk along the �zk axis
(for further discussion of mixture component slopes, see, e.g., Cor-
nell, 2002). They define the effect as a contrast,

ck ¼ gk � ðK � 1Þ�1
XK
k0 6¼k

gk0 : (8)

Throughout the rest of the article, we define the effect of a topic
as the change in the expected value of Y resulting from a change in
the empirical topic proportion �zk (for an SLDAX model) or the
topic proportion hk (for a two-stage approach) of component k
while holding the relative proportions of the remaining K – 1 topics
constant; this effect will take the form of a contrast as in Equation
8, although two other approaches to defining this contrast will be
discussed. The corresponding null hypothesis that component k has
no unique relationship with Y is H0 : ck ¼ 0 (Park, 1978; Snee &
Marquardt, 1976). In the context of SLDA and SLDAX models,
this null hypothesis corresponds to the absence of a relationship
between topic k and Y. Because we are using Bayesian estimation,
we do not review details of the frequentist test statistics and distri-
butional results (see Cornell, 2002; Snee & Marquardt, 1976).
Instead, the posterior samples can be used directly to obtain poste-
rior estimates of ck and corresponding credible intervals for each
topic. If the credible interval for ck excludes 0, one could conclude
that topic k is related to Y. Unlike the topic regression coefficients,

the contrasts in Equation 8 can be directly compared to zero to
determine whether and in what direction a topic is related to Y.

However, if the empirical topic proportions are range restricted
(i.e., their range is less than 0 to 1), then Equation 8 is not an
appropriate estimate of the topic effects. Because Equation 8 com-
pares the expected value of Y when proportion k is equal to 0 (and
the other proportions are equal to each other) to the expected value
of Y when proportion k is equal to 1 (and all other proportions are
0), this comparison may not be meaningful if these points do not
occur in the posterior empirical topic proportions with high proba-
bility—in other words, documents may not be completely
explained by a single topic so proportions of 1 may never occur,
particularly if it is a longer document; conversely, a topic may be
used by all subjects to some extent so proportions of 0 may never
occur. In this case, Equation 8 can be misleading. To account for
range-restricted proportions, Snee and Marquardt (1976) defined a
range-adjusted contrast by multiplying ck by rk,

cðadjÞk ¼ rkck: (9)

In the case of SLDAX, rk is the range of the empirical topic pro-
portions of topic k. This (nearly) restricts the test of topic effects
to the observed space of empirical topic proportions.

However, Piepel (1982) showed that Equation 9 does not
account for the relative size of the constrained region of the topic
simplex and can still lead to tests where the location of the contrast
proportions fall outside the observed empirical topic proportions
or may even fall outside the range of 0 to 1. Consequently, the
estimates of a given topic effect from Equation 9 can be of the
wrong magnitude and even the wrong direction. Piepel (1982) pro-
posed a third approach that resolves the problems associated with
Equations 8 and 9. The algebraic steps are lengthy, so we refer
readers to Piepel (1982) for details in order to save space. Gener-
ally, the approach compares the expected value of the outcome at
the centroid of the constrained simplex to the expected value of
the outcome at the maximum observed value of each proportion
while holding the relative proportions of the other components
constant. This accounts for any range restrictions in the empirical
topic proportions and ensures that the estimated effect of changing
a given empirical topic proportion is constrained to the observed

space of proportions. We denote Piepel’s contrasts as cðPÞk .
Both Equation 9 and Piepel’s method tend to yield more precise

estimates (i.e., more powerful tests) of the contrasts of interest
than Equation 8 because the latter approach does not adjust for
range restriction. To ensure that the test of topic effects are con-
sistent with the available data, we recommend Piepel’s method
instead of Equations 8 and 9, although Equation 9 is easier to use
and may yield similar results to Piepel’s method if range restric-
tion is not extreme for any topic.8 These methods are equally ap-
plicable to two-stage alternatives to SLDAX with the same
limitations.

Finally, we note that the absence of statistical evidence for a
nonzero topic effect does not imply that the topic should be
removed from the model. Such a topic may provide useful

8 If there is no range restriction in the empirical topic proportions, all
three approaches are equivalent.
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information about the measurement model of the corpus; refitting
the model with fewer topics may deleteriously impact the quality
of the measurement model of the responses. Rather, a topic effect
near zero suggests that the topic may not be related to the out-
come above and beyond the effects of the other topics and mani-
fest predictors in the model. One might be interested in such a
case in model simplification. One common approach in mixture
regression modeling when several components have similar non-
significant regression coefficient estimates is to refit the model
under the constraint that these regression coefficients are equal
(see, e.g., Cornell, 2002). In the case of SLDAX and SLDA, the
structural model could be simplified by refitting the model using
low-variance priors with a common (often nonzero) mean for the
topic regression coefficients that are to be constrained.9

Simulation Study

This section describes a Monte Carlo simulation study
designed to evaluate the performance of the Gibbs sampler for
the SLDAX model and to compare its performance with a two-
stage approach representative of current practice: (a) variational
EM (VEM) is used to estimate an LDA model and (b) the esti-
mated topic proportions from the first step are used as predictors
along with another manifest predictor in a regression model. For
this simulation, we used the SLDAX model with a normally dis-
tributed outcome Y as the population model. For D observations,

the D 3 (K þ 1) matrix ~R included a single predictor X generated
from a standard normal distribution and K empirical topic pro-

portions ~�Z . We set the number of topics K to 2 or 5. Without loss
of generality, we set the average total variance of the outcome Y
to 1. We fixed the hyperparameters as follows: a and c were both
set to 1. The magnitude of the regression coefficients was calcu-
lated so that the coefficient for X corresponded to a partial R2 of
.15 (a “medium” effect; Cohen, 1988) and the set of coefficients
for the K topics jointly corresponded to a partial R2 of .35: For
K = 2, the coefficients were simulated to have equal magnitudes
and opposite signs; for K = 5, the coefficients were simulated as
f�2g�; �g � ; 0;g � ; 2g � g for a constant h� chosen to obtain the
desired partial R2. See Appendix D for details of the derivation
of the regression coefficients. The residual variance was calcu-
lated as the difference between the total variance of the outcome
Y (fixed to 1) and the variance explained by X and the topics.
Using R (Version 3.6.2; R Core Team, 2019), we generated 100
data sets within each cell of a design with four crossed factors:
(a) the number of topics K (2 and 5); (b) the number of subjects
D (50, 200, 800, and 1,500); (c) the average document length �Nd

(15, 80, and 150); and (d) the vocabulary size V (500 and 1,000).
The number of words in each document Nd were generated from
a Poisson distribution with mean and variance equal to �Nd.
We used R to fit the SLDAX and two-stage models. SLDAX

models were estimated with Gibbs sampling using the psychtm R
package (Wilcox, 2021); the LDA models were estimated with
the VEM algorithm proposed by Blei et al. (2003) using the top-
icmodels R package (Version 0.2-9; Gr€un & Hornik, 2011).
When estimating the SLDAX models, we specified common dif-

fuse priors: ~R0 was set to 104~I ; a0 and b0 were both set to .001;
~l0 was set to {�2, 2} if K = 2 and {�5, �2.5, 0, 2.5, 5} if K = 5
for the topic regression coefficients and 0 for the regression

coefficient for X; a and c were both set to 1. Possible label
switching was handled using the relabeling algorithm proposed
by Stephens (2000) which is implemented in the label.switching
R package (Version 1.8; Papastamoulis, 2016). After examining
trace plots and Geweke Z statistics to diagnose convergence on
several artificial data sets, we generated 3,000 samples from the
MCMC chain after a burn-in period of 5,000 iterations and a
thinning period of 10.10

When estimating the LDA models, a was initialized to 1 and
then either (a) estimated or (b) fixed to 1; c is not used by the

VEM algorithm when estimating the topic–word probabilities ~b.
The estimated a approach is commonly applied in practice and
is the default in many topic modeling software packages,
whereas the fixed a approach is more comparable to SLDAX
because a is assumed to be fixed as a hyperparameter in the
SLDAX algorithm. The maximum number of E steps was set to
500 with a convergence tolerance for the relative change in the
log-likelihood of 10�6; the maximum number of M steps was set
to 1,000 with a convergence tolerance of 10�4.11 The topic pro-

portion estimates ~̂H were then used along with X in a linear
regression model12 of Y fit in R using (a) the lm() function for or-
dinary least squares regression or (b) the gibbs_mlr() function
from the psychtm R package (Wilcox, 2021) for Bayesian regres-

sion using the same diffuse prior specifications for ~R0; ~l0, a0, and
b0 as described above.13 In summary, we compared five modeling
approaches: (a) VEM LDA with a fixed followed by OLS regres-
sion; (b) VEM LDA with a estimated followed by OLS regression;
(c) VEM LDA with a fixed followed by Bayesian regression; (d)
VEM LDA with a estimated followed by Bayesian regression; and
(e) SLDAX.

We compared the performance of the five modeling approaches in
terms of estimation accuracy via relative bias and both accuracy and
precision via the normalized root mean squared error (NRMSE). The
relative bias for a parameter of interest, h, was calculated by averag-

ing 100 ĥ r�h
h (when h = 0) across replications where ĥr is the point

estimate from the rth replication.14 We considered relative bias
smaller than 10% ignorable (Hoogland & Boomsma, 1998; L. K.
Muthén & Muthén, 2002). The NRMSE with R replications was

9 The use of low-variance priors to constrain parameters has also been
discussed in the context of Bayesian structural equation modeling by
Muthén and Asparouhov (2012).

10 Different random starting values were drawn from the prior
distributions in each MCMC chain. Convergence was checked using the
Geweke (1992) Z statistic for each parameter. Convergence rates were
generally above 90% across conditions with one exception: When fitting a
five-topic model with 200 subjects and an average document length of 80
words, convergence rates could decrease to 60%�70%.

11 A different random initialization of the topic-word probabilities was
used for each replication.

12 As noted previously in the SLDAX model, no intercept was included

to avoid perfect collinearity with ~̂H.
13 Computational tasks were executed on the University of Notre Dame

Center for Research Computing’s supercomputing infrastructure using a
Linux shell script to coordinate the simulation tasks. All simulation code is
available upon request from the first author.

14When the population parameter was equal to zero, bias was calculated
instead of relative bias by averaging ĥr � h across replications.
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calculated by 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR

r¼1
ðĥ � hÞ2
R

r
= j h j . For SLDAX models, ĥr

was calculated using the posterior mean. Smaller NRMSE indicates
better estimation. We focus on the regression coefficients for X and
~�Z because these parameters are often of primary interest when incor-
porating topics and manifest predictors in a regression context.
ANOVA models using sandwich-type standard error estimates
(Huber, 1967; White, 1980) were fit for each regression coefficient
to the relative bias and NRMSE in order to assess which simulation
factors (modeling approach [five], number of topics [two], number
of subjects [three], average document length [three], vocabulary size
[two]) influenced estimation accuracy and precision. Given the large
sample size (10,800 total samples), all factors for some regression
coefficient metrics were significant including the five-way highest-
order interaction, even though not all of these effects may be practi-
cally significant. Following standard practice in this scenario (e.g.,
Baird & Maxwell, 2016), factors (main effects and interactions) that
were significant and contributed a partial R2 of at least 2% (a “small”
effect; Cohen, 1988) are emphasized below in the text, figures, and
tables.15

Bias

The average relative biases of the estimated regression coeffi-
cients are shown in Tables 1, 2, and 3.

Regression Coefficient for the Manifest Predictor

For the regression coefficient of the manifest variable X, the
total R2 was small (1.0%) and the largest partial R2 corresponding
to a four-way interaction among modeling approach, number of
subjects, average document length, and vocabulary size was negli-
gible (.1%), so we do not discuss this model further. Bias for the
estimates of the regression coefficient of X was ignorable for all
five methods across all simulation conditions, M = .3%, SE = .1%,
95% CI [.0%, .6%].

Regression Coefficients for the Empirical Topic Proportions

The accuracy of the five modeling approaches differed, how-
ever, for the topic regression coefficients ĝZ—results were vir-
tually identical across the topic regression coefficients so we
present results for the first coefficient to save space. A three-
way interaction among modeling approaches, the number of
subjects, and the average document length, F(24, 23145) =
431.40, p , .001, R2

partial = 6.3%, and a three-way interaction

between modeling approaches, the number of subjects, and the
number of topics, F(12, 23145) = 363.80, p , .001, R2

partial =

2.5%, both explained more than 2% of the variance in relative
bias. Including the associated lower-order factors with these
factors explained 70.7% of the total variance. Relative bias for
the first topic regression coefficient for the two-stage
approaches using OLS regression and SLDAX is shown in Fig-
ure 3. Estimation bias was virtually identical across conditions
using two-stage approaches when comparing OLS regression
and Bayesian regression, so we present the two-stage results for
OLS regression only for simplicity below.
For the two-stage approach with estimated a, the topic regres-

sion coefficient estimates were always biased. The magnitude of

this bias increased as the number of subjects increased, as the aver-
age document length increased, and as the number of topics
increased. In most cases, the topic regression coefficient were
overestimated with relative bias often exceeding 100% and, in
some cases, reaching approximately 2,000%. When the average
document length was 15 words, bias was nonignorably negative
with fewer than 1,500 subjects and nonignorably positive with
1,500 subjects. This suggests that using the VEM LDA algorithm
with estimated a in a two-stage procedure can substantially inflate
the magnitude of the estimated topic regression coefficients.16

Unlike the estimated a two-stage approach, fixed a two-stage
estimates of the topic regression coefficients were not positively
biased. However, this approach was still problematic because,
unexpectedly, estimation bias did not consistently decrease as the
average document length or the number of subjects increased.
When the average document length was 15 words, the topic
regression coefficient estimates were negatively biased: For a five-
topic model, estimation bias was relatively unaffected by the num-
ber of subjects; for a two-topic model, estimation bias decreased
in magnitude as the number of subjects increased. When the aver-
age document length was 80 words, estimation bias decreased in
magnitude as the number of subjects increased for a five-topic
model. However, estimation bias for a two-topic model unexpect-
edly became more negative as the number of subjects increased.
When the average document length was 150 words, estimation
bias decreased in magnitude as the number of subjects increased
for two- and five-topic models. With one exception17, estimation
bias was only ignorable when the average document length was
150 words with at least 800 or 1,500 subjects depending on the
number of topics.

Like the fixed a two-stage approach, SLDAX estimates of the
topic regression coefficients were not positively biased. How-
ever, the bias of the SLDAX estimates was consistent with
expectations that it would decrease with more subjects and lon-
ger documents. For two-topic models, the topic coefficient esti-
mates were negatively biased when the average document length
was 15 words but approached the population values as the num-
ber of subjects increased; for an average document length of 80
words or more, the bias of the estimated topic regression coeffi-
cients was ignorable for a two-topic model with at least 200 sub-
jects. For five-topic models, the topic coefficients were always
negatively biased, but the magnitude of the bias depended on
both the number of subjects and the average document length;
for an average document length of 15 words, estimates were neg-
atively biased (M = �98%) even with 1,500 subjects. Holding
the number of subjects fixed, increasing the average document
length decreased the magnitude of the bias. Similarly, holding
the average document length fixed, increasing the number of sub-
jects decreased the magnitude of the bias, although increasing
the number of subjects from 800 to 1,500 reduced the magnitude

15 Complete results are available from the first author upon request.
16 Inspection of the a estimates in these conditions showed that the

estimated a was often one to two orders of magnitude larger than the
population value.

17 Bias was ignorable when the average document length was 80 words
for a two-topic model only with 200 subjects.
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of the bias less than the improvement in bias from 200 to 800
subjects. In comparison, increasing the average document length
noticeably reduced the magnitude of the bias. Comparison of
Tables 2 and 3 shows that SLDAX generally yielded more accu-
rate estimates than the fixed a two-stage approach except when
the average document length was 15 words for which SLDAX
yielded slightly more negatively biased estimates.18

NRMSE

NRMSE, which measures both bias and variance of the estima-
tor, for the three approaches is shown in Tables 4, 5, and 6.

Regression Coefficient for the Manifest Predictor

For the regression coefficient of the manifest variable X, the
total R2 was 29.4%, but was almost completely accounted for by
the main effect of the number of subjects, F(3, 23145) = 3108.97,
p , .001, R2

partial = 28.4%. As expected, NRMSE decreased signif-

icantly as the number of subjects increased for all approaches. No
other factors explained more than .1% of the variance.

Regression Coefficients for the Empirical Topic Proportions

NRMSE results were virtually identical across the topic regres-
sion coefficients, so we focus on results for the first coefficient to
save space. For the topic proportion regression coefficient, the
total R2 was 85.7%. A four-way interaction among modeling
approaches, the number of subjects, the number of topics, and the
average document length, F(24, 23145) = 226.29, p , .001,
R2
partial = 3.4%, explained more than 2% of the variance in

NRMSE. Including the associated lower-order factors with these
factors explained 76.2% of the total variance. NRMSE was virtu-
ally identical across conditions using two-stage approaches when
comparing OLS regression and Bayesian regression, so we present
the two-stage results for OLS regression only for simplicity below.

For the estimated a two-stage approach, the NRMSE was
greater across all conditions for the topic regression coefficients
than both the fixed a two-stage approach or SLDAX, so we do not
discuss results from this method further.

NRMSE for the fixed a and SLDAX methods is shown in
Figure 4. In all conditions except when the average document
length was 15 words and a five-topic model was fit, the NRMSE
of the SLDAX estimates was generally smaller than or comparable
to the NRMSE of the fixed a two-stage estimates. Furthermore,
the NRMSE from the fixed a two-stage estimates increased
for two-topic models when the average document length was 80
and 150 as the number of subjects increased, which is consistent
with the inflated bias in these conditions discussed previously. The
NRMSE of the SLDAX estimates behaved as expected by consis-
tently decreasing as the amount of data increases. The advantage
of SLDAX can be seen clearly for conditions where the estimation
bias from both the fixed a two-stage approach and SLDAX was
ignorable because NRMSE then corresponds to estimation stand-
ard error: Estimation bias from both approaches was ignorable in
two conditions (K = 2, D = 200, �Nd ¼ 80 and K = 2, D = 1, 500,

Table 1
Relative Bias (%) for the Two-Stage Approach With Estimated a and OLS Regression

K D Nd hX gZ 1
gZ 2

gZ 4
gZ 5

r2

2 50 15 1.2 �87.8 �88.1 67.3
2 50 80 6.5 �59.5 �60.0 45.2
2 50 150 2.8 42.0 40.3 37.0
2 200 15 �0.8 �86.5 �85.5 68.4
2 200 80 �0.6 142.2 141.9 59.7
2 200 150 1.4 366.5 367.0 59.0
2 800 15 �0.2 �19.5 �19.2 69.0
2 800 80 0.9 428.0 427.8 65.0
2 800 150 0.4 546.5 545.7 62.1
2 1,500 15 �0.5 27.3 27.6 69.6
2 1,500 80 0.7 440.5 440.9 65.5
2 1,500 150 0.1 615.0 614.6 59.7
5 50 15 �2.5 �80.3 �82.0 �84.3 �79.9 71.3
5 50 80 0.3 �77.2 �80.4 �81.2 �78.7 64.4
5 50 150 0.7 �72.2 �75.2 �75.8 �71.8 59.3
5 200 15 �0.3 �87.7 �90.1 �88.6 �86.4 73.0
5 200 80 �0.0 312.2 261.0 248.4 301.2 66.5
5 200 150 �0.3 946.3 801.9 743.4 946.0 62.9
5 800 15 �0.6 124.6 86.0 84.8 125.1 71.3
5 800 80 0.9 1,123.0 987.5 940.4 1,186.9 67.4
5 800 150 0.1 1,774.6 1,595.1 1,500.4 1,828.2 65.9
5 1,500 15 �0.0 284.9 221.9 213.0 279.7 71.5
5 1,500 80 0.1 1,168.5 922.1 904.0 1,171.5 67.7
5 1,500 150 0.6 1,948.5 1,648.7 1,740.5 1,980.2 64.0

Note. OLS = ordinary least squares; K = number of topics; D = number of documents; Nd = average document length (words); hX = regression coeffi-
cient for predictor X; gZ 1

= regression coefficient for topic 1; gZ 2
= regression coefficient for topic 2; gZ 4

= regression coefficient for topic 4; gZ 5
=

regression coefficient for topic 5; r2 = residual variance. Note that for gZ 3
= 0, relative bias is undefined so it is not included.

18 Two exceptions occurred for a five-topic model when the average
document length was 150 words with 800 and 1,500 subjects where the
fixed a two-stage approach yielded slightly less biased estimates than
SLDAX.
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�Nd ¼ 150). For these conditions, NRMSE for SLDAX was always
smaller than NRMSE for the fixed a two-stage approach, suggest-
ing again that SLDAX yielded more efficient estimates than the
two-stage approach.

Empirical Example

To illustrate the estimation and interpretation of a SLDAXmodel,
we apply SLDAX to interpersonal interview data from a study of

Table 2
Relative Bias (%) for the Two-Stage Approach With Fixed a and OLS Regression

K D Nd hX gZ 1
gZ 2

gZ 4
gZ 5

r2

2 50 15 1.5 �85.4 �85.9 67.4
2 50 80 5.6 �55.0 �55.2 42.3
2 50 150 2.5 �24.2 �25.8 13.2
2 200 15 �0.8 �83.5 �82.5 67.9
2 200 80 �1.2 �8.1 �8.9 12.4
2 200 150 1.1 �15.5 �14.8 20.7
2 800 15 �0.2 �68.8 �68.4 64.1
2 800 80 0.4 �25.2 �25.2 33.1
2 800 150 �0.0 �19.1 �20.9 55.8
2 1,500 15 �0.6 �43.1 �42.8 53.9
2 1,500 80 0.5 �43.6 �43.9 56.9
2 1,500 150 �0.2 �7.8 �8.8 56.6
5 50 15 �0.8 �71.5 �75.3 �74.8 �73.0 72.0
5 50 80 1.4 �73.0 �78.2 �78.0 �74.5 64.3
5 50 150 2.5 �66.0 �71.0 �70.7 �66.4 57.1
5 200 15 �0.1 �80.5 �83.6 �82.1 �80.1 73.3
5 200 80 0.5 �67.5 �71.8 �73.5 �67.2 63.0
5 200 150 �0.4 �43.8 �50.2 �50.7 �43.4 45.8
5 800 15 �0.5 �81.3 �85.5 �83.7 �81.3 71.2
5 800 80 0.9 �41.8 �47.4 �51.0 �40.1 53.3
5 800 150 0.0 �8.7 �14.7 �16.9 �7.9 27.4
5 1,500 15 �0.0 �81.7 �85.3 �84.3 �81.6 71.3
5 1,500 80 0.2 �22.8 �28.9 �27.7 �22.7 45.6
5 1,500 150 0.4 2.5 �9.4 �10.2 4.4 20.7

Note. OLS = ordinary least squares; K = number of topics; D = number of documents; Nd = average document length (words); hX = regression coeffi-
cient for predictor X; gZ 1

= regression coefficient for topic 1; gZ 2
= regression coefficient for topic 2; gZ 4

= regression coefficient for topic 4; gZ 5
=

regression coefficient for topic 5; r2 = residual variance. Note that for gZ 3
= 0, relative bias is undefined so it is not included.

Table 3
Relative Bias (%) for SLDAX

K D Nd hX gZ 1
gZ 2

gZ 4
gZ 5

r2

2 50 15 0.7 �93.2 �93.9 76.6
2 50 80 5.9 �20.1 �18.9 26.9
2 50 150 3.4 �7.4 �8.6 13.4
2 200 15 0.0 �82.6 �82.9 68.9
2 200 80 �0.6 �8.7 �9.7 13.4
2 200 150 0.5 �4.3 �4.5 7.7
2 800 15 �0.2 �43.3 �42.9 48.1
2 800 80 �0.3 �6.5 �6.4 9.2
2 800 150 �0.2 �3.5 �3.7 4.6
2 1,500 15 �0.4 �35.0 �34.8 40.7
2 1,500 80 0.0 �6.5 �6.6 8.8
2 1,500 150 0.2 �3.4 �3.3 4.9
5 50 15 �3.5 �91.0 �92.5 �91.4 �90.6 79.9
5 50 80 1.5 �78.3 �81.9 �82.7 �79.4 71.9
5 50 150 1.1 �61.0 �68.1 �70.5 �60.2 62.1
5 200 15 �0.5 �97.0 �97.4 �97.7 �96.9 74.7
5 200 80 �1.5 �65.5 �73.8 �73.6 �65.0 61.7
5 200 150 0.1 �29.4 �28.8 �30.1 �28.1 34.3
5 800 15 �0.1 �97.7 �97.7 �98.5 �98.2 71.6
5 800 80 0.8 �33.7 �32.7 �34.3 �33.3 39.3
5 800 150 �0.8 �17.4 �15.9 �17.4 �16.6 21.5
5 1,500 15 1.0 �97.1 �97.7 �97.8 �97.4 70.6
5 1,500 80 0.3 �28.3 �29.2 �30.0 �28.3 34.3
5 1,500 150 �0.5 �15.8 �15.5 �16.2 �15.3 20.0

Note. K = number of topics; D = number of documents; Nd = average document length (words); hX = regression coefficient for predictor X; gZ 1
= regres-

sion coefficient for topic 1; gZ 2
= regression coefficient for topic 2; gZ 4

= regression coefficient for topic 4; gZ 5
= regression coefficient for topic 5; r2 =

residual variance; SLDAX = supervised latent Dirichlet allocation with covariates. Note that for gZ 3
= 0, relative bias is undefined so it is not included.
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interpersonal stress and nonsuicidal self-injury (NSSI; Ammerman
et al., 2021). NSSI is the deliberate, self-inflicted damage of body tis-
sue without suicidal intent (Nock, 2009). We also compare results
from a two-stage approach with fixed a and OLS regression. Partici-
pants were 41 undergraduate students with ages between 18 and 39
(M = 20.8, SD = 3.9); themajority (84%) identified as female; 23 par-
ticipants (56%) reported a history of NSSI. Participants completed a
semistructured interview regarding a recent upsetting (“negative”)
interpersonal interaction that occurred with someone with whom
they have an ongoing relationship—the same procedure has been
previously utilized on research examining interpersonal distress
among high-risk populations (Gratz et al., 2011). Participants were
asked to describe details of the interaction such as the other person(s)
involved, the environment, and their feelings and thoughts. History
of NSSI was determined using the Inventory of Statements about
Self-Injury (ISAS; Klonsky & Glenn, 2009). Emotional dysregula-
tion was measured by the Difficulties in Emotion Regulation Scale
(DERS; Gratz & Roemer, 2004) where higher scores indicate greater
dysregulation (M = 85.9, SD = 22.6). Participants were also asked to
rate how upsetting or distressing the described interaction was on a

Likert scale from 1 (not at all upsetting or distressing) to 10 (most
upset or distressed I’ve been; M = 6.5, SD = 1.5).

The narratives were preprocessed before further analysis follow-
ing standard practices in computational linguistics (e.g., Manning
et al., 2008; M. E. Roberts et al., 2014). First, punctuation, numbers,
and other nonletter characters were removed. Second, in order to
focus the analysis on informative content words instead of highly
common but topic-irrelevant words (e.g., “and,” “the”), stop words
from the NLTK Python library list available in the stopwords (Ver-
sion 2.0; Benoit et al., 2020) R package were removed. Finally, any
words that only occurred once in the corpus were removed. After
preprocessing, the median narrative length was 63 words (M = 64,
SD = 17, range = 40–114) and included 318 unique words.

The number of topics for the measurement model of the narratives
was chosen by evaluating model fit for a sequence of LDA models
with two to five topics. Each model was fit with a fixed equal to 1.
Model fit was assessed using two metrics, coherence and exclusivity.
Coherence (Mimno et al., 2011) measures how frequently the most
probable words for a given topic co-occur within each document rel-
ative to their marginal prevalence in the corpus (i.e., how often the

Figure 3
Relative Bias for the First Topic Regression Coefficient

Note. The left, center, and right columns correspond to average document lengths of 15, 80, and 150
words, respectively. Horizontal dashed lines provide reference for 610% relative bias. Note that the scale
of the ordinate axis varies across the three modeling approaches. Two-stage results using ordinary least
squares regression are shown. Two-stage results using Bayesian regression were virtually identical.
SLDAX = supervised latent Dirichlet allocation with covariates.
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most representative words for each topic co-occur relative to their
overall frequency). Coherence is a popular metric because it has
been shown to be positively associated with higher human ratings of
topic quality (Mimno et al., 2011). However, M. E. Roberts et al.

(2014) pointed out that coherence does not consider how different
topics are from one another and, therefore, suggest simultaneously
examining exclusivity. Exclusivity (M. E. Roberts et al., 2019)meas-
ures the extent to which the probabilities of words in a given topic

Table 4
NRMSE (%) for the Two-Stage Approach With Estimated a and OLS Regression

K D Nd hX gZ 1
gZ 2

gZ 4
gZ 5

r2

2 50 15 37.75 89.29 86.43 75.94
2 50 80 32.79 65.68 67.28 56.60
2 50 150 30.96 154.16 157.54 54.54
2 200 15 16.55 87.37 86.43 69.89
2 200 80 17.11 211.35 211.27 64.68
2 200 150 18.18 451.25 451.05 61.96
2 800 15 8.13 84.17 84.53 69.42
2 800 80 8.43 532.18 531.87 65.97
2 800 150 8.13 634.81 634.50 63.17
2 1,500 15 6.63 102.80 102.61 69.84
2 1,500 80 6.21 544.37 544.89 65.97
2 1,500 150 6.31 709.11 708.75 60.73
5 50 15 36.10 81.15 84.13 86.47 80.71 80.77
5 50 80 34.89 78.04 82.58 83.38 79.59 71.50
5 50 150 37.15 73.39 78.35 78.90 73.05 68.67
5 200 15 16.58 87.91 90.63 89.24 86.68 74.94
5 200 80 15.21 444.65 421.77 413.85 424.00 68.33
5 200 150 16.96 1,095.52 1,069.10 1,004.01 1,096.82 64.89
5 800 15 7.85 223.38 205.36 201.65 221.05 71.85
5 800 80 8.80 1,242.54 1,174.10 1,207.70 1,295.82 67.97
5 800 150 8.41 1,926.22 1,951.85 1,836.34 1,985.50 66.48
5 1,500 15 6.39 326.60 308.01 294.20 326.23 71.71
5 1,500 80 5.80 1,289.53 1,155.55 1,158.40 1,287.04 68.01
5 1,500 150 6.35 2,112.34 2,004.36 2,098.87 2,131.45 64.32

Note. NRMSE = normalized rootmean squared error; OLS = ordinary least squares regression; K = number of topics; D = number of documents; Nd =
average document length (words); hX = regression coefficient for predictor X; gZ 1

= regression coefficient for topic 1; gZ 2
= regression coefficient for

topic 2; gZ 4
= regression coefficient for topic 4; gZ 5

= regression coefficient for topic 5; r2 = residual variance. Note that for gZ 3
= 0, NRMSE is unde-

fined so it is not included.

Table 5
NRMSE (%) for the Two-Stage Approach With Fixed a and OLS Regression

K D Nd hX gZ 1
gZ 2

gZ 4
gZ 5

r2

2 50 15 37.75 87.24 87.75 75.77
2 50 80 32.22 61.47 62.86 54.28
2 50 150 29.59 33.27 35.63 28.71
2 200 15 16.67 84.68 83.80 69.37
2 200 80 13.96 20.12 20.34 19.00
2 200 150 15.29 27.13 26.88 31.17
2 800 15 8.05 72.92 72.72 65.02
2 800 80 7.43 44.68 44.29 44.78
2 800 150 7.97 49.71 49.40 60.22
2 1,500 15 6.16 54.57 54.32 55.69
2 1,500 80 5.94 55.72 55.26 61.53
2 1,500 150 6.54 49.43 50.01 59.59
5 50 15 36.84 73.13 78.69 78.39 74.30 81.32
5 50 80 36.69 74.09 80.90 80.29 75.48 71.39
5 50 150 36.77 67.61 74.95 75.38 68.14 66.64
5 200 15 16.18 80.98 84.78 83.03 80.53 75.33
5 200 80 15.16 68.88 74.73 76.04 68.64 65.20
5 200 150 16.53 47.28 59.24 59.92 47.61 49.34
5 800 15 7.86 81.78 86.15 84.64 81.83 71.74
5 800 80 9.04 47.02 58.84 60.89 46.06 54.29
5 800 150 7.28 23.86 43.50 44.46 23.80 30.52
5 1,500 15 6.39 82.00 85.95 84.90 82.10 71.55
5 1,500 80 5.38 34.15 47.51 44.90 32.38 47.06
5 1,500 150 5.35 20.22 39.23 42.22 19.58 23.27

Note. NRMSE = normalized rootmean squared error; OLS = ordinary least squares; K = number of topics; D = number of documents; Nd = average document
length (words); hX = regression coefficient for predictor X; gZ 1

= regression coefficient for topic 1; gZ 2
= regression coefficient for topic 2; gZ 4

= regression
coefficient for topic 4; gZ 5

= regression coefficient for topic 5; r2 = residual variance. Note that for gZ 3
= 0, NRMSE is undefined so it is not included.

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

1192 WILCOX, JACOBUCCI, ZHANG, AND AMMERMAN



differ from those in other topics. Taken together, an optimal model
should maximize both coherence and exclusivity without favoring
one metric over the other (i.e., high coherence with low exclusivity
or low coherence with high exclusivity). For these data, a four-topic
LDA model optimized coherence and exclusivity—this is consistent
with the dimensionality of the topic space in other applications of
topic modeling in psychology (e.g., three-topic solutions were found
to be optimal by Finch et al., 2018; Kim, Kwak, Cardozo-Gaibisso,
et al., 2017;M. E. Roberts et al., 2014).
The most strongly representative words measured by term score

(i.e., a more interpretable summary of topics than the original word
probabilities that reweights the word probabilities per topic to
emphasize words that “load” more strongly on a given topic over
words that have similar probabilities across all topics; Blei & Laff-
erty, 2009) associated with each topic are shown in Figure 5—
because the word probabilities were similar for LDA and the
SLDAX model we discuss below, we only present the SLDAX-
based word term scores. Topic 1 corresponded to interpersonal con-
flict regarding romantic relationships; Topic 2 corresponded to
interpersonal conflict with and/or concern regarding family mem-
bers; Topic 3 corresponded to interpersonal conflict with friends
and peers; and Topic 4 corresponded to interpersonal conflict
regarding shared living spaces. Here, we consider whether these
topics are significant predictors of emotional dysregulation above
and beyond the participant self-ratings of distress and NSSI history.
Having chosen the number of topics for the measurement model

of the free response, we fit an SLDAX model with subjective rat-
ing (mean-centered) and NSSI history (coded as “no” = �.5,
“yes” = .5) and four topics to model emotional dysregulation. For
comparison, we used the topic proportion estimates Ĥ from the

four-topic LDA model as predictors in an ordinary least squares
regression model along with the subjective ratings and NSSI his-
tory to model emotional dysregulation. We used the same diffuse
priors for the SLDAX model as were used in the simulation
study.19 Convergence was evaluated using trace plots and the
Geweke (1992) and Heidelberger and Welch (1983) statistics for
each parameter. We used a burn-in of 15,000 iterations and a thin-
ning period of 10, resulting in a total of 18,500 posterior samples.
The posterior samples were permuted using Stephens (2000) algo-
rithm and trace plots were examined to address possible label
switching before posterior summary statistics were computed.

Example excerpts from participant narrative transcripts are pro-
vided in Table 7 along with their corresponding topic proportion
estimates to further aid interpretation of the topics. Each narrative
is assigned its own set of topic proportions, allowing different
parts of a given narrative to be modeled by an appropriate topic.

The results of the SLDAX and two-stage approaches are summar-
ized in Table 8. First, participants with a history of NSSI reported
significantly higher emotional dysregulation than those with no his-
tory using both methods. While the estimated topic regression coef-
ficients varied around the marginal mean of 84.6, the two-stage
estimates tended to be further from the marginal mean than the
SLDAX estimates, which is consistent with our simulation results,
and the corresponding standard errors were smaller for SLDAX, as
expected. As a consequence of the difference in coefficient esti-

mates, the Piepel (1982) contrast estimates ĉðPÞk were smaller using
SLDAX than the two-stage approach. The associated standard
errors for the Piepel contrasts were larger using SLDAX because

Table 6
NRMSE (%) for the SLDAX Model

K D Nd hX gZ 1
gZ 2

gZ 4
gZ 5

r2

2 50 15 37.26 94.26 94.88 82.44
2 50 80 29.44 29.01 28.97 36.26
2 50 150 29.36 21.21 22.28 26.69
2 200 15 16.35 83.21 83.67 70.88
2 200 80 13.15 13.18 13.15 17.09
2 200 150 13.34 10.92 10.97 12.96
2 800 15 7.20 44.11 43.71 48.75
2 800 80 6.99 8.26 8.02 10.88
2 800 150 5.94 6.12 6.24 6.86
2 1,500 15 5.29 35.51 35.31 41.17
2 1,500 80 4.81 7.60 7.43 9.63
2 1,500 150 4.88 5.01 4.88 5.99
5 50 15 36.98 91.48 93.67 92.64 90.98 88.45
5 50 80 34.00 79.17 83.63 85.17 80.34 77.88
5 50 150 35.48 63.30 71.47 74.94 62.83 70.67
5 200 15 14.68 97.22 98.08 97.81 96.90 75.91
5 200 80 15.81 66.92 75.33 74.55 67.15 63.06
5 200 150 15.04 31.44 37.77 38.72 31.31 36.34
5 800 15 7.98 97.74 97.71 98.70 98.24 72.16
5 800 80 7.51 34.72 35.05 36.80 34.17 39.92
5 800 150 6.59 18.45 20.83 21.94 17.94 22.19
5 1,500 15 6.43 97.06 97.64 97.90 97.39 70.96
5 1,500 80 5.53 28.83 30.03 31.27 28.90 34.67
5 1,500 150 4.92 16.55 17.82 18.23 16.10 20.54

Note. NRMSE = normalized rootmean squared error; SLDAX = supervised latent Dirichlet allocation with covariates; K = number of topics; D = number
of documents; Nd = average document length (words); hX = regression coefficient for predictor X; gZ 1

= regression coefficient for topic 1; gZ 2
= regres-

sion coefficient for topic 2; gZ 4
= regression coefficient for topic 4; gZ 5

= regression coefficient for topic 5; r2 = residual variance. Note that for gZ 3
= 0,

NRMSE is undefined so it is not included.

19 Results were robust to other prior specifications.
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SLDAX uses the full posterior of the empirical topic proportions
whereas the two-stage approach treats the topic proportion esti-
mates as fixed. For SLDAX, this manifested as a larger range of
proportions which can increase the standard error estimates of the
Piepel topic effects. Taken together, the smaller estimates and larger
standard errors of the topic effects for SLDAX yielded nonsignifi-
cant individual relationships among the topics and emotional dysre-
gulation whereas the two-stage approach yielded two significant
relationships although the direction of the effects is the same.
Although we do not know the “truth” in this empirical example,

the direction of both sets of estimates are consistent. Because our sim-
ulation results suggested that the two-stage fixed a approach can yield
inconsistent estimates of the topic regression coefficients, it is possible
that the two-stage estimates here may be incorrect. Given that the sim-
ulation results for similar conditions suggest that the SLDAX topic
regression coefficient estimates may be attenuated, we suspect that the
SLDAX topic effect estimates in this case may be underestimated; the
number of participants is limited, so the credible intervals are wide.
However, we see that narratives whose language had higher preva-
lence of Topic 1 (T1)—work conflict—and Topic 3 (T3)—peer

conflict—were associated with higher emotional dysregulation
whereas higher prevalence of Topic 2 (T2)—family conflict—and
Topic 4 (T4)—living space conflict—was associated with lower emo-
tional dysregulation. Finally, we examined the joint contribution of
the topics to modeling emotional dysregulation above and beyond the
other predictors. The self-ratings and NSSI history variables only
explained 24% of the variability in emotional dysregulation while the
four topics explained an additional 15%, with an overall R2 (Gelman
et al., 2019) of 39% for the SLDAX model.

Finally, as suggested by a reviewer, we fit (a) a SLDA model
with only four topics as predictors and (b) a regression model with
only subjective rating and NSSI history as predictors. This allowed
us to empirically demonstrate differences in estimates, standard
errors, and inferences that can occur if a simpler model (SLDA or
regression with manifest variables only) is used instead of the full
SLDAX model. Results are shown in Table 8.

First, suppose a researcher only used an SLDA model in this
example. The topic regression coefficients estimates (T1–T4) were
comparable with the inclusion of the two manifest predictors in
the SLDAX model yielding slightly smaller (i.e., closer to the

Figure 4
NRMSE (%) for the First Topic Regression Coefficient

Note. The left, center, and right columns correspond to average document lengths of 15, 80, and 150
words, respectively. Two-stage results using ordinary least squares regression are shown. Two-stage
results using Bayesian regression were virtually identical. SLDAX = supervised latent Dirichlet allocation
with covariates; NRMSE = normalized rootmean squared error.
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overall mean of the outcome) coefficient estimates by .2%�2.8%.
However, the more important and interpretable topic effects (T1
effect–T4 effect) differed more substantially between the two
approaches. The adjusted effects of Topics 2, 3, and 4 were
1.7%�21.6% smaller using the SLDAX model compared with the
unadjusted topic effects of the SLDA model; the adjusted effect of
Topic 1 from the SLDAX model was 1.6% larger than the unad-
justed effect from the SLDA model. The standard error estimates
of the topic coefficient and topic effect estimates also differed
between the SLDAX and SLDA models. Both the standard error
estimates of the topic coefficient estimates and the topic effect esti-
mates were smaller (9.9%�13.7% for the topic coefficients and
18.9%�24.5% for the topic effects) using the SLDAX model.
These results illustrate that the inclusion or omission of manifest
predictors can impact the estimated topic coefficients, effects, and
standard errors as SLDAX yields adjusted estimates and standard
errors whereas SLDA yields unadjusted estimates and standard
errors. Consequently, the SLDAX model can yield greater power
than SLDA as in this example.
Second, suppose a researcher only used the manifest predictors

without including information from the narratives. As in the previous
case, the manifest-only regression coefficient estimates differ from the
corresponding estimates from the SLDAX model (which are adjusted

for the topics). SLDAX provides greater power than the manifest-only
model by yielding 32.1% and .5% smaller standard error estimates.

The differences between the SLDA, manifest-only, and SLDAX
estimates may be explained by the correlation among topics and
manifest variables or the reduction of residual variance. The abso-
lute value of correlations between subject rating and topics ranged
from .02 to .14 while absolute correlations between NSSI history
and topics ranged from .01 to .06, which could account for the dif-
ference between sets of regression coefficient estimates and stand-
ard errors. If these two sets of predictors were perfectly
uncorrelated, standard regression results show that the regression
coefficient estimates will be asymptotically equivalent (see, e.g.,
Rencher & Schaalje, 2008). In this empirical example, even rela-
tively small correlations between manifest predictors and topics
yielded noticeable differences in coefficient and standard error
estimates. It is important to note that the interpretation of these
regression relationships also changes between model specifica-
tions. SLDA yields topic regression effects that are unadjusted for
manifest predictors, whereas SLDAX yields topic regression
effects that are adjusted for the manifest predictors. Similarly, a
manifest-only regression model yields estimates that are unad-
justed for the topic effects whereas SLDAX yields estimates that
are adjusted for the topic effects.

Figure 5
Fifteen Largest Estimated Word Term Scores per Topic From the SLDAX Model
of the Interpersonal Narratives

Note. SLDAX = supervised latent Dirichlet allocation with covariates.
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Discussion

Despite the growing interest in and availability of text data in psy-
chological research (e.g., Garten et al., 2018; Obeid et al., 2019;
Popping, 2015; Schwartz et al., 2013), the development of appropri-
ate statistical models to connect text data to psychological theory
has been limited. Recently, topic models have been particularly pop-
ular, especially when researchers are interested in using the latent
topic estimates as predictors of other psychological constructs (Finch
et al., 2018; Kim, Kwak, Cardozo-Gaibisso, et al., 2017; Kim,
Kwak, & Cohen, 2017; Packard & Berger, 2020; Rohrer et al.,
2017; Schwartz et al., 2013). However, the two-stage approach used
in these applications has not been systematically evaluated and alter-
native modeling approaches have been unavailable. This article
demonstrated through a simulation study that two common two-
stage approaches can have undesirable statistical behavior: If the a
hyperparameter governing the topic proportions is estimated, esti-
mates of the topic regression coefficients can be substantially biased,
whereas if the a hyperparameter is fixed, the estimates of the topic
regression coefficients can be unpredictably biased depending on

model complexity and sample size. Further, the choice of OLS and
Bayesian regression with diffuse priors in the two-stage framework
did not significantly impact the accuracy or precision of the two-
stage methods. To resolve these problems, we introduced a novel
generalization of the LDA topic model, SLDAX, as a one-stage alter-
native to the two-stage approaches. We described a Gibbs sampling
algorithm to estimate the SLDAXmodel for continuous and dichoto-
mous outcomes. The SLDAX model has several advantages over
two-stage procedures: It (a) has a fully Bayesian foundation; (b) can
be easily extended to model other data characteristics and prior infor-
mation; (c) yields Bayesian posterior estimates of model parameters
and functions of model parameters; (d) accounts for the uncertainty
in the topic proportions used to predict the outcome; and (e) simulta-
neously provides ameasurement model of text and a structural model
of relationships between an outcome and both the latent topics and
manifest covariates. Furthermore, the computation time for SLDAX
is comparable with the two-stage procedures because the computa-
tional complexity of both approaches is dominated by estimating the
topic proportion and topic-word probability matrices, whereas the
estimation of the regression parameters is negligible in comparison.

Table 7
Representative Responses for SLDAX Topics

NSSI DERS Self-rating Narrative transcript excerpts T1 Pr. T2 Pr. T3 Pr. T4 Pr.

No 73 7 Dad came to visit her at work at retail place; didn’t tell
her, just showed up; . . . had a conversation with her
boss about politics for 30 min; embarrassed and an-
gry he did that at work . . . she tried to be distant stay
engrossed in the work.

0.71 0.11 0.06 0.12

Yes 107 6 Her and boyfriend had argument about being in a long
distance relationship; . . . for his job he will need to
be away for months at a time; . . . she wants to move
after school and he has to stay for his job.

0.60 0.11 0.09 0.20

Yes 59 2 Watching TV with brother; he saw something on the
TV he didn’t like; let that get inside his head and
upset him; annoyed . . . that he let TV change his
mood; . . . too wrapped up in his head to listen; . . . at
their parents’ house, brother started talking about it.

0.10 0.81 0.04 0.06

No 85 9 Mom and dad just got a divorce; brother was put in an
awkward situation with another guy her mom is see-
ing; brother talked to her and then she had a discus-
sion/argument with mom; . . . mom wasn’t really
reacting, was pretty upset by it with mom.

0.17 0.65 0.06 0.11

No 83 7 Friend will always make jokes about her [body]; . . .
female friend said this to two of their mutual friends
. . . in class; . . . don’t like when people comment on
bodies, class was starting so didn’t say anything . . .
a little sad and hurt.

0.11 0.09 0.70 0.11

Yes 108 7 Hanging out with roommate and best friend and other
friends; all trying to give advice to other friend about
her roommate; [friend] . . . cracked a joke that felt
more like a jab; . . . felt very insulting.

0.09 0.05 0.80 0.07

Yes 63 7 Came home and his roommates had friends over and
they . . . left a mess and never cleaned it; . . . mess
still in the kitchen; sort of a typical thing.

0.07 0.07 0.08 0.78

No 53 6 Her ex-roommate was really messy; . . . he trashed the
house and she was pissed; the bathroom was really
dirty and there was a lot of bad food in the fridge;
fridge smelled bad.

0.06 0.04 0.06 0.83

Note. Partial excerpts from participant narrative transcripts with high probabilities (..6) for one of the four topics are shown along with participants’ NSSI his-
tory (NSSI), emotional dysregulation (DERS), self-rating (Self-rating) of distress, and the estimated topic proportions (e.g., T1 Pr.) are shown. The first two rows
correspond to narratives with a high proportion for Topic 1, the third and fourth rows correspond to narratives with a high proportion for Topic 2, the fifth and sixth
rows correspond to narratives with a high proportion of Topic 3, and the last two rows correspond to narratives with a high proportion of Topic 4. SLDAX = super-
vised latent Dirichlet allocation with covariates; NSSI = nonsuicidal self-injury; DERS = Difficulties in Emotion Regulation Scale.
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We showed by simulation that the SLDAX estimates were less bi-
ased and more efficient than the two-stage approaches. Furthermore,
the SLDAX estimates were ignorably biased when the average
document length and number of subjects were both “large” when the
two-stage estimates could be unacceptably biased. We also describe
methodology for correctly interpreting, estimating, and testing relation-
ships between latent topics and an outcome that differ from standard
applied practice (see, e.g., Blei & McAuliffe, 2008; Packard & Berger,
2020; Rohrer et al., 2017; Schwartz et al., 2013). Our empirical exam-
ple demonstrated the use of the SLDAX model as a means of jointly
assessing several research questions. First, we obtained a concise per-
son-specific measurement model of free responses. Second, we were
able to estimate and test the relationships between the latent topics
from interpersonal participant narratives and emotional dysregulation
while controlling for other clinical factors and vice versa. Importantly,
the use of the SLDAXmodel allows both tasks to be completed simul-
taneously, avoiding the limitations of a two-stage procedure. As an
added advantage, we demonstrated that the unexplained variance in
the outcome can be reduced by incorporating the topics.
This article was a first step in developing the SLDAX model

and evaluating the statistical performance of SLDAX and two-

stage approaches, so it was necessarily limited in scope. First, par-
ticularly for more complex models and shorter documents, we
found that the topic regression coefficient estimates can be attenu-
ated using either SLDAX or the fixed a two-stage approach. The
attenuation of the topic regression coefficients is an interesting
phenomenon that has gone unstudied within the topic modeling lit-
erature. This suggests that the reliability of the topic regression
coefficient estimates is governed by the average document length.
Consistent with our simulation results, we expect reliability to
improve as the amount of available information in a given docu-
ment grows larger, thereby improving the estimation of the topic
regression relationships. We suspect that the attenuation of the
topic regression coefficients may be a result of latent classification
error as seen in other latent class models (Croon, 2002). We con-
jecture that when the average document contains few construct-
relevant words, it is difficult to accurately estimate the underlying
topics, which can lead to misclassification of the topics.

Second, it is difficult to quantify what constitutes “small” text
data. In the cross-sectional context explored in this article, we
emphasized two features of data quantity: the number of subjects
and the length of the documents. We considered a reasonable set
of values for both factors consistent with empirical text data in
psychological applications, but the performance of SLDAX and
other models for text should be further evaluated under a wider va-
riety of data and model conditions. Our results suggested that both
factors of data size are important. When faced with temporal and
financial constraints, however, researchers may need to optimize
one or the other. For the SLDAX model, our simulation suggests
that the average document length may be the more critical of
the two for obtaining accurate regression estimates. However,
although not emphasized in this paper, power for testing these
regression relationships will depend on the number of subjects.
Whether SLDAX and related models are appropriate in practice
will depend on the length of documents or responses and the com-
plexity of the underlying latent topic structure. In low-stakes appli-
cations (e.g., survey responses), responses may be too short to
support a topic model, so analysis of a small subset of word fre-
quencies may be preferable. In high-stakes applications like stand-
ardized testing or clinical interviews, responses may be longer and
could support a richer analysis by topic modeling. Therefore, it is
crucial during study design to have a sense of the length and com-
plexity of text that can be collected given the population and item
prompts of interest before a particular statistical method is chosen.
One potential solution to these small-sample limitations is readily
available within the SLDAX framework. Bayesian methods have
been advocated for handling small-sample problems (Baldwin &
Fellingham, 2013; Depaoli, 2014; Mio�cevi�c et al., 2017; van de
Schoot et al., 2015; Zondervan-Zwijnenburg et al., 2017) because
well-chosen prior distributions can improve model estimation. In
our simulation study, we only studied diffuse priors in order to (a)
match the default choice in most Bayesian software applications
and (b) focus on model performance as a function of the data char-
acteristics, not the prior specification. Some studies have evaluated
the impact of alternative prior specifications for topic models (Blei
& McAuliffe, 2008; Magnusson et al., 2020; Perotte et al., 2011;
Zhu et al., 2013), but further study is needed.

Third, we note that the proposed Gibbs sampling algorithm may
not scale well to massive text data sets. Our experience in fitting
SLDAX models to several psychological data sets suggests that the
proposed MCMC algorithm can be fit in minutes on a personal com-
puter for the data characteristics explored in this article. However,

Table 8
SLDAX, Two-Stage, SLDA, and Manifest Variable Model
Estimates of Emotional Dysregulation

Method Variable ĝ j SE 95% CI

SLDAX Self-rating 0.66 2.22 [�3.73, 5.01]
NSSI history 21.66 6.48 [8.84, 34.45]
T1 92.31 10.42 [71.45, 112.58]
T2 66.98 11.94 [43.19, 90.72]
T3 100.95 10.30 [80.74, 121.76]
T4 75.39 11.52 [52.09, 97.83]
T1 effect 9.72 12.29 [�15.12, 33.71]
T2 effect �20.44 13.31 [�46.32, 6.39]
T3 effect 19.48 11.57 [�3.47, 42.33]
T4 effect �10.80 13.06 [�36.75, 14.87]

Two-stage Self-rating 0.25 1.91 [�3.64, 4.13]
NSSI history 21.30 5.61 [9.91, 32.69]
T1 109.70 12.06 [85.21, 134.20]
T2 49.70 12.51 [24.32, 75.09]
T3 108.02 9.96 [87.81, 128.23]
T4 65.18 11.98 [40.85, 89.50]
T1 effect 32.42 9.96 [12.20, 52.64]
T2 effect �20.78 11.39 [�43.91, 2.35]
T3 effect 35.24 9.13 [16.72, 53.77]
T4 effect �6.20 11.33 [�29.19, 16.80]

Manifest only Self-rating 1.20 3.27 [�3.17, 5.54]
NSSI history 21.94 6.51 [9.11, 34.91]

SLDA T1 92.46 11.96 [68.17, 115.89]
T2 67.71 13.53 [41.17, 94.34]
T3 103.91 11.94 [80.14, 127.05]
T4 77.04 12.78 [51.30, 101.80]
T1 effect 9.57 16.06 [�23.43, 40.44]
T2 effect �23.42 16.75 [�55.62, 10.36]
T3 effect 24.84 15.05 [�5.54, 53.82]
T4 effect �10.99 16.10 [�42.90, 20.59]

Note. Parameter posterior mean estimates (ĝ j), posterior standard devia-
tions (SE), 95% credible intervals (BCI) for supervised latent Dirichlet
allocation with covariates (SLDAX) or 95% confidence intervals for two-
stage estimation. Topic effect estimates cðPÞk were obtained using Piepel’s
(1982) method with empirical topic proportions for SLDAX and the topic
proportion estimates for two-stage estimation. SLDA = supervised latent
Dirichlet allocation model; NSSI = nonsuicidal self-injury.
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the computational complexity scales directly with both the number
of subjects and, in particular, the document lengths. For massive data
sets, alternative strategies such as parallelization of the sampler or
algorithms such as variational EMmay be preferable.
Fourth, much like a distal outcome mixture model or structural

equation model, the choice of a one-stage versus. two-stage esti-
mation approach can affect the latent topic space that is estimated.
Including an outcome predicted by the topics in a one-stage model
like SLDAX can affect the estimated topic measurement parame-
ters, potentially resulting in interpretational confounding (Burt,
1973). This can be avoided by fixing the measurement model of
the topics by estimating an unsupervised topic model and using a
two-stage approach. However, as our simulation results demon-
strated, currently available two-stage approaches for topic models
can lead to biased regression coefficient estimates and incorrect
standard errors. It would be useful to develop adjustments to cor-
rect the two-stage approach estimates, for example, along the lines
of Bakk et al. (2013) and Vermunt (2010).
Finally, it is important to carefully consider the choice of model

within the topic modeling family. In this article, we discussed sev-
eral extensions of the original LDA model including SLDA, STM,
the model proposed by Ansari et al. (2018), and SLDAX. While
model selection approaches such as Bayes factors or information
criterion could potentially be developed to assist with model selec-
tion among these models, this is a methodological line of research
beyond the scope of this article. Notably, these models answer fun-
damentally different research questions. Focusing on STM and
SLDAX, SLDAX is a cross-sectional model in which both covari-
ates and topics (whose measurement by text is not assumed to be
affected by the covariates) are used to predict an outcome. In effect,
the research questions afforded by SLDAX involve the contribution
of the topics above and beyond that of the covariates when trying to
model an outcome and vice versa, not whether the covariates pre-
dict the topical content of the text data. STM is comparable with an
MIMIC model (Joreskog & Goldberger, 1975) in which multiple
covariates are used to predict latent topics and the topics, in turn,
predict or cause multiple words. The two models also imply a dif-
ferent temporal or causal order of relationships. In SLDAX, the
covariates and the topics are assumed to act concurrently as antece-
dents of the outcome. In STM, the predictors enter the model as
antecedents of the topics. In psychological research, it may be diffi-
cult to obtain an appropriate temporal order to justify a causal
model like STM as it is common for multiple measures to be col-
lected concurrently. In this case, an SLDAX model may be more
appropriate. If, however, text is collected after the antecedent cova-
riates, then the STM would be preferable. Ultimately, the choice of
model should reflect the research questions and design.

Conclusion

Our article proposed a new measurement and structural modeling
approach to allow researchers model an outcome using both qualita-
tive and quantitative data as predictors. Our simulation study sug-
gested that the proposed model offers more accurate and efficient
estimates than conventional two-stage approaches, and, conse-
quently, better inferences to psychological researchers interested in
studying the predictive relationships from text-based latent topics
and an outcome while controlling for other covariates of interest
and vice versa. The psychtm R package (Wilcox, 2021) provides a
free, open-source software implementation of the SLDAX model.
We hope that this article stimulates further development of statistical

methodology for mixed-methods research that is tailored to the
unique challenges and goals of psychological science.
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Appendix A

Metropolis-in-Gibbs Algorithm for SLDAX With a Dichotomous Outcome

When y is dichotomous, we use the canonical logit link func-
tion to specify a linear relationship between the predictor and
the log-odds for the SLDAX model,

log
pd

1� pd

� �
¼~rd

0~g; (A1)

where pd ¼ Pr½Yd ¼ 1 j �� and ~rd ¼ ð~xd;~�zdÞ is a (p þ K) 3 1
vector of the p predictor values for observation d and the K em-
pirical topic frequencies for observation/document d.
Assuming that the outcomes yd, documents, and the words

are conditionally independent, the likelihood function is

Lð~H;~B; ~gÞ ¼
YD
d¼1

expfyd~rd 0~gg

3 ð1þ expf~rd 0~ggÞ�1
YNd

n¼1

hdzdnbzdnwdn
:

(A2)

Combining the priors and the likelihood, the posterior distri-
bution is

f ð~g; ~H;~B;~z1; . . . ;~zD j~y; ~X ; ~w1; . . . ; ~wDÞ
¼ Lð~H;~B; ~gÞf ð~gÞQD

d¼1 f ð~hdÞ
QK

k¼1 f ð~bkÞ
f ð~y; ~X ; ~w1; . . . ; ~wDÞ

:
(A3)

Collapsed Metropolis-in-Gibbs Sampler Algorithm

As in the case of a normally distributed outcome, we margin-
alize over ~H and ~B to obtain a collapsed sampling algorithm.
With a dichotomous outcome, however, we can no longer
directly sample the regression coefficients ~g from a known full
conditional distribution. Instead, we use a Metropolis step to
sample the regression coefficients (Gelman et al., 2014;
Metropolis et al., 1953). We use independent normal distribu-
tions as proposal distributions for the regression coefficients,

gj � Nðlj; sjÞ; (A4)

where the proposal variance sj for each coefficient is tuned dur-
ing the burn-in period of sampling to yield desirable acceptance
ratios (G. O. Roberts et al., 1997). Alternative proposal distri-
butions can be used (e.g., t distributions) if desired.

To sample each coefficient gj; j ¼ 1; . . . ; pþ K, a candidate

draw gðcÞ
j at iteration t is drawn from N

�
gðt�1Þ
j ; sj

�
where gðt�1Þ

j

is the previous draw for that coefficient. Second, we compute

the acceptance ratio R ¼ f ð~y j~Z ; ~X ; ~gðcÞÞf ð~gðcÞÞ
f ð~y j~Z ; ~X ; ~gðt�1ÞÞf ð~gðt�1ÞÞ. Third, we

sample u � Uð0; 1Þ. Finally, if R. u, we accept gðcÞ
j as a draw

from the desired full conditional distribution and set gðtÞ
j ¼ gðcÞ

j .

If R # u, we set gðtÞ
j ¼ gðt�1Þ

j . While the tuning parameters sj
can be initialized to any positive number, we initialize sj = s =
2.38 for all proposal variances as this has been shown to yield
optimal acceptance ratios near .25 (G. O. Roberts et al., 1997).

The computational steps of the Metropolis-in-Gibbs algo-
rithm are as follows. For iteration t, t = 1, . . . , T:

1. Draw ~gðtÞ from f ð~g jr2ðt�1Þ
;~zðt�1Þ

1 ; . . . ;~zðt�1Þ
D ;~y; ~X ;

~w1; . . . ; ~wDÞ using the Metropolis algorithm.

2. For n, n = 1, . . . , Nd and d, d = 1, . . . , D:

(a) Draw zðtÞdn from f ðzdn j~gðtÞ;~zðt�1Þ
1 ; . . . ; zðt�1Þ

dð�nÞ; . . . ;
~zðt�1Þ
D ;~y; ~X ; ~w1; . . . ; ~wDÞ.

3. For document d, d = 1, . . . , D:

(a) Draw topic proportions~hðtÞd from f ð~hd j~gðtÞ;~zðtÞ1 ;
. . . ;~zðtÞD ;~y; ~X ; ~w1; . . . ; ~wDÞ.

4. For topic k, k = 1, . . . , K:

(a) Draw topic–vocabulary distributions~bðtÞ
k from f ð~bk

j ~HðtÞ; ~gðtÞ;~zðtÞ1 ; . . . ;~zðtÞD ;~y; ~X ; ~w1; . . . ; ~wDÞ.

If ~H and/or ~B are not of interest, Steps (3) and/or (4) can be
omitted. The derivations of the necessary conditional distribu-
tions are provided in Appendix C.

(Appendices continue)
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Appendix B

Derivation of the Gibbs Sampler for SLDAX With a Normally Distributed Outcome

If the outcome yd, d = 1, . . . , D is assumed to follow a nor-
mal distribution, then the full-data joint posterior distribution
for the SLDAX model has the form of

f ð~g;r2; ~H;~B;~Z j ~W ; ~X ;~yÞ / f ð~y j~Z ; ~X ; ~g;r2Þ
3
YD
d¼1

f ð~wd j~zd;~BÞf ð~zd j~hdÞ3
YK
k¼1

f ð~bkÞ

3
YD
d¼1

f ð~hdÞ3 f ð~g jr2Þ3 f ðr2Þ;

(B1)

which can be written explicitly as

f ð~g;r2; ~H;~B;~Z j ~W ; ~X ;~yÞ
/ r�Dexp � 1

2r2
ð~y �~R~gÞ0ð~y �~R~gÞ

� �

3
YD
d¼1

YNd

n¼1

bzdnwdn
hdzdn 3

YK
k¼1

YV
v¼1

bc�1
kv 3

YD
d¼1

YK
k¼1

ha�1
dk

3 exp � 1
2
ð~g �~l0Þ0~R�1

0 ð~g �~l0Þ
� �

3 ðr2Þ�
a0
2
� 1

exp � b0
2r2

� �
; (B2)

where ~R ¼ ð~X ;~�ZÞ is a D 3 (p þ K) augmented matrix, bzdnwdn

is the probability of observing word n in document d given the
corresponding topic, hdzdn is the probability of drawing topic
zdn for word n in document d, bkv is the probability of observing
the v-th element of the vocabulary, v = 1, . . . , V from topic k,
k = 1, . . . , K, and hdk is the probability of observing the k-th
topic in document d.
We obtain samples from the posterior by repeatedly sam-

pling in sequence from the full conditional distributions
obtained from the full-data joint posterior:

(1) Draw the regression coefficients ~g from f ð~g j �Þ:

f ð~g j �Þ / f ð~y j~g;r2;~Z ; ~XÞ3 f ð~g jr2Þ
/ exp � 1

2r2
ð~y �~R~gÞ0ð~y �~R~gÞ

� �

3 exp � 1
2
ð~g �~l0Þ0~R�1

0 ð~g �~l0Þ
� �

/ exp � 1
2
ð~g � ~g1Þ0~R�1

1 ð~g � ~g1Þ
� �

(B3)

where ~R1 ¼
�
~R�1

0 þ~R0~Rðr2Þ�1
��1

assuming ~R0 and ~R�1
1 are

invertible. A generalized inverse can be used if ~R�1
1 is singular.

Let ~g1 ¼ ~R1

�
~R�1

0 ~l0 þ~R0~yðr2Þ�1
�
. Therefore, the full condi-

tional distribution of ~g is a multivariate normal distribution,

~g j � � Nð~g1; ~R1Þ: (B4)

(2) Draw the residual variance r2 from f ðr2 j �Þ:

f ðr2 j �Þ / f ð~y j~Z ; ~X ; ~g;r2Þ3 f ðr2Þ
/ ðr2Þ�

D
2exp � 1

2r2
ð~y �~R~gÞ0ð~y �~R~gÞ

� �

3 ðr2Þ�
a0
2
� 1exp � b0

2r2

� �

/ ðr2Þ�
a0 þ D

2
� 1

exp � 1
2r2

�
b0 þ ð~y �~R~gÞ0ð~y �~R~gÞ

�� �
(B5)

Therefore, the full conditional distribution of r2 is an
inverse-gamma distribution,

r2 j � � IG
a0 þ D

2
;
1
2
½b0 þ ð~y �~R~gÞ0ð~y �~R~gÞ�

� �
(B6)

(3) Draw topic assignment zdn for d ¼ 1; . . . ;D; n ¼ 1; . . . ;Nd

from f ðzdn j �Þ: Griffiths and Steyvers (2004) derived the full
conditional distribution20 f ðzdn j �Þ whenH and B are margi-
nalized out of the joint posterior distribution of an LDA
model,

(Appendices continue)

20We omit a constant term in the denominator for simplicity because it
does not affect the sampling of zdn.
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f
�
zdn ¼ k j~Z ð�dnÞ; ~W

�
/
�
nð�dnÞ
wdnk

þ c
��

nð�dnÞ
dk þ a

�
nð�dnÞ
k þ Vc

; (B7)

where ~Z ð�dnÞ denotes the topic assignments for the corpus
excluding the topic assignment for position n in document d,

nð�dnÞ
wdnk

is the number of co-occurrences of word wdn with topic k

excluding position n in document d, nð�dnÞ
dk is the number of

assignments of topic k in document d excluding the topic

assignment for position n in document d, nð�dnÞ
k is the number

of assignments of topic k in the corpus excluding position n in

document d, and nð�dnÞ
d is the number of words in document d

excluding position n. Using Equation B7, the full conditional
distribution f ðzdn j �Þ is

f ðzdn ¼ k j �Þ / f ðyd j~�zd ;~xd; ~g;r2Þf ðzdn ¼ k j~Z ð�dnÞ; ~WÞ

/ exp � 1
2r2

ðyd �~rd
0~gÞ2

� �
3

�
nð�dnÞ
wdnk

þ c
��

nð�dnÞ
dk þ a

�
nð�dnÞ
k þ Vc

;

(B8)

where~rd ¼ ð~xd;~�zdÞ is a (p þ K) 3 1 vector of the p predictor
values for observation d and the K empirical topic frequencies
for observation/document d.

(4) Optionally, draw the topic proportions ~hd for d = 1, . . . ,
D from f ð~hd j �Þ:

f ð~hd j �Þ / f ð~zd j~hdÞf ðhd jaÞ
/
YK
k¼1

YNd

n¼1

hdkIðzdn ¼ kÞ
" #

ha�1
dk ¼

YK
k¼1

hndkþa�1
dk ;

(B9)

where Ið�Þ is in an indicator function equal to one if its predi-
cate is true and zero otherwise and ndk is the number of assign-
ments of topic k in document d. Therefore, the full conditional
distribution of~hd is a Dirichlet distribution,

~hd j � � Dirðnd1 þ a; . . . ; ndK þ aÞ: (B10)

(5) Optionally, draw the topic-word probabilities ~bk for k =
1, . . . , K from f ð~bk j �Þ:

f ð~bk j �Þ / f ð~W jB;~ZÞf ð~bk j cÞ
/
YD
d¼1

YNd

n¼1

bzdnwdn

YV
v¼1

bc�1
kv

¼
YV
v¼1

bnkvþc�1
kv ;

(B11)

where nkv is the number of co-occurrences of topic k and word
v in the corpus. Therefore, the full conditional distribution of
~bk is a Dirichlet distribution,

~bk j � � Dirðnk1 þ c; . . . ; nkV þ cÞ: (B12)

Appendix C

Derivation of the Gibbs Sampler for SLDAX With a Bernoulli-Distributed Outcome

The Gibbs sampling algorithm in appendix can be modified
to handle a dichotomous outcome. In this case, the outcome
yd 2 f0; 1g; d ¼ 1; . . . ;D is assumed to follow a Bernoulli dis-
tribution. The full-data joint posterior distribution for the
SLDAX model becomes

f ð~g; ~H;~B;~Z j ~W ; ~X ;~yÞ / f ð~y j~Z ; ~X ; ~gÞ
3
YD
d¼1

f ð~wd j~zd;~BÞf ð~zd j~hdÞ3
YK
k¼1

f ð~bkÞ

3
YD
d¼1

f ð~hdÞ3 f ð~gÞ;

(C1)

which can be written explicitly as

f ð~g; ~H;~B;~Z j ~W ; ~X ;~yÞ
/
YD
d¼1

expfyd~rd 0~gg
1þ expf~rd 0~gg

 !yd
1

1þ expf~rd 0~gg
� �1�yd

3
YD
d¼1

YNd

n¼1

bzdnwdn
hdzdn 3

YK
k¼1

YV
v¼1

bc�1
kv 3

YD
d¼1

YK
k¼1

ha�1
dk

3 exp � 1
2
ð~g �~l0Þ0~R�1

0 ð~g �~l0Þ
� �

: (C2)

We obtain samples from the posterior by repeatedly sam-
pling in sequence from the full conditional distributions
obtained from the full-data joint posterior:

(1) Draw the regression coefficients ~g from f ð~g j �Þ:

(Appendices continue)
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f ð~g j �Þ / f ð~y j~g;~Z ; ~XÞ3 f ð~gÞ

/
YD
d¼1

expfyd~rd 0~gg
1þ expf~rd 0~gg

 !yd
1

1þ expf~rd 0~gg
� �1�yd

3 exp � 1
2
ð~g �~l0Þ0~R�1

0 ð~g �~l0Þ
� �

(C3)

This proportional density function does not have a known
distributional form, so we instead use the Metropolis algorithm
(Gelman et al., 2014; Metropolis et al., 1953) to sample from
this full conditional distribution. We use independent normal
proposal distributions to draw candidates gðcÞ

j for the regres-
sion coefficients at iteration t,

gðcÞ
j � N

�
gðt�1Þ
j ; sj

�
; (C4)

where gðt�1Þ
j is the jth regression coefficient drawn in the pre-

vious iteration of the sampler and the proposal variance sj for
each coefficient is tuned during the burn-in period of sam-
pling to yield desirable acceptance ratios. We have found that
initializing sj = s = 2.38 for all proposal variances (G. O.
Roberts et al., 1997) and then tuning the proposal variances
yields good acceptance ratios around .25 (e.g., Gelman et al.,
2014). We use normal proposal distributions because they are
a common choice in Bayesian modeling (Gelman et al., 2014;
Lynch, 2007), but alternative proposal distributions can be
used.

Sampling proceeds for each coefficient gj; j ¼ 1; . . . ; pþ K

by first sampling a candidate draw gðcÞ
j at iteration t according to

Equation C4. Second, we compute R ¼ f ð~y j~Z ;~X ;~g ðcÞÞ3 f ð~gðcÞÞ
f ð~y j~Z ;~X ;~gðt�1ÞÞ3 f ð~gðt�1ÞÞ.

Third, we sample u � Uð0; 1Þ. Finally, if R. u, we accept gðcÞ
j

as a draw from the desired full conditional distribution and set

gðtÞ
j ¼ gðcÞ

j . If R# u, we set gðtÞ
j ¼ gðt�1Þ

j .
(2) Draw topic assignment zdn for d ¼ 1; . . . ;D; n ¼

1; . . . ;Nd from f ðzdn j �Þ: As discussed in Appendix B, a
collapsed Gibbs sampling step for zdn can be obtained
by marginalizing over H and B (Griffiths & Steyvers,
2004). Similar to Equation B8, the full conditional dis-
tribution f ðzdn j �Þ is

f ðzdn ¼ k j �Þ / f ðyd j~�zd ;~xd; ~g;r2Þf ðzdn ¼ k j~Z ð�dnÞ; ~WÞ

/
YD
d¼1

expfyd~rd 0~gg
1þ expf~rd 0~gg

 !yd
1

1þ expf~rd 0~gg
� �1�yd

3

�
nð�dnÞ
wdnk

þ c
��

nð�dnÞ
dk þ a

�
nð�dnÞ
k þ Vc

: (C5)

(3) Optionally, draw the topic proportions~hd for d = 1, . . . ,
D from f ð~hd j �Þ given in Equation B10.

(4) Optionally, draw the topic-word probabilities ~bk for k =
1, . . . , K from f ð~bk j �Þ given in Equation B12.

Appendix D

Derivation of the Regression Coefficients for the Simulation Study

This appendix describes the calculation of the regression
coefficients used in the simulation study using variance decom-
position of the total variance of the outcome Y.
As described in the Simulation Study, the data generation

model was an SLDAX model with one manifest predictor X
and K topics with a normally distributed outcome. The corre-
sponding regression model is

yd ¼ gXxd þ
XK
k¼1

gk�zdk þ ed; (D1)

where the residuals ed, d = 1, . . . , D are independent of xd and
~�zd, and identically distributed as ed �iid Nð0;r2Þ. Without loss
of generality, we set the population marginal variance of Y to 1.
For simplicity, we generated X independently of the topic

assignments Z according to X � N(0, 1). In order to set the
regression coefficients using partial R2 effect size measures, we
decomposed the marginal variance of Y,

V½Y� ¼ V½gXX þ
XK
k¼1

gk
�Zk þ e�

¼ g2
XV½X� þV

XK
k¼1

gk
�Zk

" #
þ r2:

(D2)

Let the model-explained variance be given by

V½f � ¼ V½Y� � r2: (D3)

We can define the proportion of model-explained variance as

(Appendices continue)

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

1204 WILCOX, JACOBUCCI, ZHANG, AND AMMERMAN



R2 ¼ V½f �
V½Y� ; (D4)

which simplifies to R2 ¼ V½f � because V½Y� ¼ 1. Because X
and ~Z are generated independently, we can decompose R2 into
two orthogonal components associated uniquely with X and ~Z ,
respectively,

R2 ¼ R2
X þ R2

Z: (D5)

Regression Coefficient for X

The decomposition in Equation D5 implies that for a desired
partial correlation R2

X, the regression coefficient hX can be
obtained by

jgX j ¼
RXffiffiffiffiffiffiffiffiffiffi
V½X�p ; (D6)

which simplifies to jgX j ¼ RX because V½X� ¼ 1. Without
loss of generality, we let gX ¼ RX. For the desired effect size
R2
X of .15 in this simulation study, gX ¼ ffiffiffiffiffiffiffiffiffi

0:15
p

.

Regression Coefficients for Empirical Topic
Proportions

The decomposition in Equation D5 implies that for a desired
partial correlation R2

Z , the regression coefficients hk, k = 1, . . . ,
K for the empirical topic proportions can be obtained from

R2
Z ¼ V

XK
k¼1

gk
�Zk

" #
: (D7)

Without loss of generality, we let E½Y� ¼ 0. Because

E½X� ¼ 0, then E
PK

k¼1 gk
�Zk

h i
¼ 0. It is useful to recognize

that generative distribution of ~Zd is Dirichlet-multinomial.
Because we specified the hyperparameter a to be 1 when gener-
ating data, then the populating mean and variance of the kth
empirical topic proportion �Zdk for a document of length Nd are

E½�Zdk� ¼ 1=K and V½�Zdk� ¼ K�1
K2ðKþ 1Þ 1þ K

Nd

� �
, and the covari-

ance between two empirical topic proportions (k 6¼ k0) is

Cov½�Zdk; �Zdk0 � ¼ � 1
K2ðKþ 1Þ 1þ K

Nd

� �
. We use these results in

the following subsections to derive effect-size based regression
coefficients for the empirical topic proportions.

Condition 1: K = 2 Topics

Combining the previous assumption that E
PK

k¼1 gk
�Zk

h i
¼

0 with the expected value of �Zdk given above,

E
XK
k¼1

gk
�Zk

" #
¼ 0

XK
k¼1

gkK
�1 ¼ 0

g1 ¼ �g2;

(D8)

we find that the topic regression coefficients must be equal in
magnitude and opposite in sign with K = 2 topics.

Using the variance and covariance results for the empirical
topic proportions given above, Equation D7 can be simplified,

R2
Z ¼ V½

XK
k¼1

gk
�Zk�

¼ g2
1V½�Zd1� þ ð�g1Þ2V½�Zd2� þ 2g1ð�g1ÞCov½�Zdk;�Zdk

�;
(D9)

For simplicity, we assume that Nd ¼ N; d ¼ 1; . . . ;D.21

Equation D9 can then be shown to be equal to

R2
Z ¼ 1

3
1þ 2

N

� �
g2
1; (D10)

which yields

jg1 j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3R2

ZN
p
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 2

p : (D11)

For the desired effect size R2
Z of .35 in this simulation study,

we set g1 ¼ �g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:35Þ3N

p ffiffiffiffiffiffiffiffi
Nþ 2

p where N corresponds to �Nd using

the notation in the Simulation study section.

Condition 2: K = 5 Topics

In addition to the assumption that E
PK

k¼1 gk
�Zk

h i
¼ 0, we

further assume that for a positive constant h*, the topic regres-
sion coefficients are given by

(Appendices continue)

21We observed little difference in a pilot simulation study between
results using this assumption and results for which equal document lengths
were not assumed.
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~gZ ¼ ð�2g � ;�g � ; 0;g � ; 2g � Þ0: (D12)

Using the variance and covariance results for the empirical
topic proportions given above and again assuming for simplic-
ity equal document lengths N, it can be shown that Equation
D7 yields

R2
Z ¼ V

XK
k¼1

gk
�Zk

" #

¼ 2g � 2

6
1þ 5

N

� �
:

(D13)

Solving for h* yields

jg � j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3R2

ZN
p
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 5

p : (D14)

For the desired effect size R2
Z of .35 in this simulation study,

we set g � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:35Þ3N

p ffiffiffiffiffiffiffiffi
Nþ 5

p and calculate the topic regression coeffi-

cients according to Equation D12 where N corresponds to �Nd
using the notation in the Simulation study section.
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