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CAN QUASI-EXPERIMENTAL EVALUATIONS THAT RELY ON STATE 
LONGITUDINAL DATA SYSTEMS REPLICATE EXPERIMENTAL RESULTS? 
FINDINGS FROM A WITHIN-STUDY COMPARISON 
 
 
Fatih Unlu, Douglas Lee Lauen, Sarah Crittenden Fuller, Tiffany Berglund, and Elc 
Estrera 
 
 
 
Abstract 
 
Do quasi-experimental (QE) studies conducted with baseline covariates that are typically 
available in the longitudinal administrative state databases yield unbiased effect estimates? This 
paper conducts a within-study comparison (WSC) study that compares experimental impacts of 
early college high school (ECHS) attendance with QE impacts drawn from the state and locales. 
We find that (1) QE models for outcomes with natural (matching) pretests replicated the 
randomized benchmarks quite well; (2) the replication bias is not sensitive to type of propensity 
score model or method; and (3) imposing locational restrictions (i.e., local matching) on the 
comparison students––specifically choosing them from among non-treatment students who came 
from the same feeder middle schools as the treatment students––does not decrease the QE bias; 
on the contrary, it performed worse than the models that did not impose this restriction for most 
outcomes. The first two findings are generally consistent with other education WSCs while the 
third one is not, suggesting that in cases where selection may be driven by individual-level 
factors, such as this one, local matching may yield biased treatment effect estimates by greatly 
reducing the pool of potential comparison units and distorting balance on unobservable 
confounders while prioritizing balance on observable factors. 
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INTRODUCTION 

 

Randomized controlled trials (RCTs) are considered the strongest research design for estimating 

causal impacts of programs. They result in statistically equivalent groups and well designed and 

implemented RCTs yield unbiased impact estimates in expectation. Despite their popularity 

among empirical researchers, RCTs are not always ethical, feasible, or cost-effective. The 

primary challenge to conducting RCTs is to get program implementers, potential participants, 

and other stakeholders to agree to randomization, which requires all parties to give up control 

over who does and does not get access to the intervention. Feasibility challenges associated with 

RCTs often limit external validity and statistical power because conducting an RCT is sometimes 

possible only with a small and selective sample of volunteers who agree to random assignment. 

Additional analyses or design features are needed to assess the generalizability of results beyond 

such a study sample (Tipton & Olsen, 2018). In addition, most RCTs are conducted 

prospectively; therefore, the cost and time required to design and implement all study 

components (e.g., creating recruitment and data collection protocols and data analysis plans, 

recruitment of participants, conducting random assignment, monitoring the integrity of random 

assignment, collecting data, and conducting analysis) can preclude conducting large scale and 

longitudinal RCTs.  

Fortunately, we are living in a time in which the digital revolution has produced a great deal of 

administrative data. This “data tsunami” (Decker, 2014) makes both RCTs and quasi-

experimental (QE) studies easier to conduct. QE approaches involve an intervention that 

precedes measurement of an outcome, but with nonrandom selection of treatment and 
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comparison groups. These types of designs can be prospective or retrospective. In addition, they 

tend to face fewer feasibility challenges and often have more statistical power than RCTs.  

While the theoretical underpinnings of the conditions that lead to biased QE results are generally 

well understood (Shadish, Cook, & Campbell, 2002), there is still a significant gap in the 

research base about the practical aspects of internal validity concerns associated with the use of 

QE methods. Emerging first in the job training literature and then spreading to other fields 

including education, design replication studies or within study comparisons (WSCs) aim to fill 

this gap and inform the designs and analyses of QE studies by comparing plausibly unbiased 

impact estimates from an RCT to multiple QE effect estimates for the same intervention using 

the same data and measures (Dehejia & Wahba, 1999; Franker & Maynard, 1987; Heckman, 

Ichimura & Todd, 1997, 1998; LaLonde, 1986; Smith & Todd, 2005). In short, WSCs assess the 

correspondence between the treatment-control contrast from an RCT with a treatment-

comparison contrast from a QE. In most WSCs (known as “dependent arm” WSCs; Wong & 

Steiner, 2018), the two contrasts involve the same treatment group. The only difference is that 

the QE arm includes a nonexperimentally generated comparison group in the place of the 

experimentally generated control group. These studies empirically investigate whether it is 

possible to replicate results of RCTs using QE methods, the magnitude and direction of bias in 

QE estimates of program effects, and the specific design features or analysis methods that 

minimize bias in QE designs and support causal inferences.  

WSC research in education is rapidly developing but there are still some important gaps in the 

existing knowledge base (Wong, Valentine, & Miller-Bain, 2017). One outstanding question 

pertains to whether researchers should expect to obtain accurate (i.e., unbiased) effect estimates 

from QE studies conducted with the baseline covariates typically available in the state 
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longitudinal data systems (SLDSs). The existing WSCs in education highlight that the 

pretreatment version of the outcome (pretest) is the most important covariate for minimizing QE 

bias (Cook & Steiner, 2010; Dong & Lipsey, 2018;  Hallberg et al., 2018; Wong et al., 2017). 

But some educational outcomes do not have natural pretests because they are one-time events. 

This specifically applies to many important outcome measures that are examined by 

interventions targeting high school and postsecondary students, such as high school graduation, 

being academically prepared for college, and college enrollment, persistence, and graduation. 

Therefore, whether QE analyses for these types of outcomes obtained from extant administrative 

data could produce valid effect estimates remains an important and unanswered question. A 

related question is concerned with whether augmenting the extant set of covariates with 

geographical restrictions on the set of comparison units influences the magnitude of QE bias. 

Acknowledging the wide variety of QE analysis options available to researchers, another 

question examines the role of the specific QE analytic method (propensity score matching, 

weighting, etc.) in minimizing QE bias (Bifulco, 2012; Cook, Steiner, & Pohl, 2009; Fortson et 

al., 2012). 

The present paper reports findings from a within-study comparison study by combining student-

level data from an ongoing longitudinal RCT that evaluates early college high schools in North 

Carolina (Edmunds et al., 2017; Edmunds et al., 2020) with rich administrative data from North 

Carolina that include pre- and posttreatment longitudinal information on students who did not 

participate in this intervention. Our analyses contribute to all three of the open questions 

concerning the WSC literature listed above. First, we examine three outcomes with natural 

pretests (English 1 test scores, high school absences, and ACT scores) and three that we consider 

lacking natural or matching pretests (9th-grade retention, being on-track for college in twelfth 
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grade, and high school graduation). Second, we inform the ongoing discussion regarding the 

extent to which imposing locational restrictions on the composition of QE comparison groups 

reduced/eliminated QE bias by implementing two sets of QE approaches. One set restricted QE 

comparison students to come from the same feeder middle schools as the treatment students 

(“local” analyses) while the other set did not impose any such restrictions (“global” or 

“statewide” analyses). Finally, we implemented various propensity scoring techniques (nearest 

neighbor matching, radius matching, and weighting) to compare the roles of these analytic 

techniques in reducing QE bias. 

We found that for the three outcomes we consider having natural pretests, multiple QE models 

replicated empirical benchmarks. For the three outcomes we considered to lack natural pretests, 

the results were less encouraging. For high school graduation, only one model yielded a 

sufficiently close QE estimate to the benchmark. For retained in ninth grade, none of the QE 

models replicated the experimental estimate, and for being on track for college, the imprecision 

of the QE estimates led to indeterminacy.  

In addition, we found that the statewide QE models had smaller (in absolute value) biases than 

local models for all six outcomes. It was also striking that statewide models replicated the 

experimental benchmarks for two outcomes (absences and ACT scores) for which local models 

performed very poorly. An important feature of the early colleges is that they are schools of 

choice and most attract many more applicants than they can enroll. This suggests that student-

level factors may drive the selection process for this intervention and local QE models, which 

substantially limited the pool of potential comparison students, may have distorted balance on 

unobservable confounders while prioritizing balance on unobservable covariates. This underlines 

the principle that QE models should carefully consider the selection processes, local conditions, 
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and the possibility that imposing geographic restrictions may in same cases cause harm more 

than help.   

Among the different QE analytic techniques we implemented, propensity score weighting tended 

to outperform the other methods in local analyses. For statewide models, a specific method did 

not stand out in terms of yielding better correspondence. Finally, the direction of the QE bias was 

generally positive, i.e., QE estimates tended to favor the early colleges more than the 

experimental benchmark. This result is consistent with the existence of unobserved confounders 

that are positively associated with attending an early college and outcomes we examined. 

The rest of the paper is structured as follows. The following section provides background 

information on the ECHS initiative as implemented in North Carolina, the early college RCT 

used in this WSC, and a summary of WSCs conducted in education. The third section presents an 

overview of data sources and measures. The fourth section describes the design of the WSC and 

introduces our statistical framework. The fifth section presents the results from the WSC and the 

sixth section provides a discussion of the implications of our findings.  

 

BACKGROUND 

This section of the paper provides background information on the early college initiative in 

North Carolina. It also summarizes the existing education WSCs that have assessed the 

commonly used QE design and analysis features (e.g., employing matching to construct 

comparison groups and using multivariate regression models to estimate program impacts) that 

are relevant for the QE methods examined in this paper.i 
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Early College High Schools (ECHS) 

Early colleges are small schools (that typically enroll between 100 and 400 students) primarily 

located on campuses of two- or four-year colleges or universities. Students can earn, at no 

financial cost to them, up to two years of transferable college credit or an associate degree while 

simultaneously satisfying state high school graduation requirements. Early colleges are designed 

to ease the transition from high school to college for students who face barriers on the path to 

enrolling in college (Roderick et al., 2009). As part of their mission, early colleges seek to serve 

historically disadvantaged populations, including first-generation college students and students 

at-risk of dropping out of high school. 

Like magnet or charter schools, students choose whether to apply to an ECHS, so these schools 

have no set admission pool although generally only students from the host county may apply. 

Many early colleges have slots for all who apply, though some are oversubscribed. In these 

cases, lotteries are often, but not always, used to select which of the applicants will be invited to 

enroll. Many schools conduct screening interviews with students and their families. Due to the 

rigorous nature of the curriculum at early colleges, schools may also seek to recruit students who 

are interested in and academically prepared to complete a college-prep course of study. These 

two arguably conflicting aims—to serve economically and academically disadvantaged youth 

and students prepared to succeed in college-level coursework—combined with the fact that these 

are schools of choice, raises the strong possibility of differences in the student populations 

served by early colleges and traditional public high schools. To the extent that priorities and 

recruitment techniques differ across sites, it is also possible that these student background 

differences themselves could even differ across ECHS sites.  



 8 

Nationally, there are over 240 early colleges in 28 states. North Carolina (NC), with its strong 

community college and state university systems, is home to 78, which is approximately 30 

percent of all ECHSs in the nation, and more than any other state. Each ECHS in North Carolina 

currently receives a $310,000 grant in addition to the standard per-pupil funding from state, 

local, and federal sources. In total, the North Carolina General Assembly allocates more than $20 

million in additional funding to support this innovative educational approach. Figure A1 in the 

Appendix at the end of this article shows that about two-thirds of North Carolina counties have 

an ECHS and that they are spread across all regions of the state. Early colleges that are part of an 

existing lottery study (Edmunds et al., 2010, 2012) and those that are not part of an existing 

lottery study are in all parts of the state, but there are very few lottery study participant early 

colleges in the coastal plain (eastern North Carolina).  

Early colleges spread rapidly under the auspices of North Carolina New Schools (NCNS), a 

nonprofit organization that supported early colleges and STEM-oriented high schools in North 

Carolina, with seed funding from the Gates Foundation. NCNS guided early colleges in North 

Carolina to implement a core set of design principles: college readiness, powerful teaching and 

learning, personalization, redefined professionalism, leadership, and purposeful design 

(Edmunds et al., 2013). A unique feature of NC early colleges is that this intermediary 

organization delivered initial and ongoing technical assistance to staff starting ECHSs on how to 

implement these design principles, which increased the fidelity of the intervention relative to 

what it might be without intensive technical assistance. After NCNS filed for bankruptcy in May 

of 2016, plans for supporting ECHS sites were picked up by other entities including the North 

Carolina Department of Public Instruction (NCDPI).  
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Edmunds et al. (2013) theorize that the success of early colleges stems in part from a school 

culture of “mandated engagement,” which permeates relationships among students, teachers, and 

administrators. As new small schools of choice for both students and teachers, designed around a 

shared mission, early college staff include highly committed teachers who believe in the mission 

and design principles and students who were recruited in part based on the mission. Early 

colleges raise academic rigor by enrolling students in college-level courses starting in freshman 

year. To help students meet these higher expectations, early colleges are staffed with teachers, 

counselors, and administrators who understand that personalization and academic support are 

critical for student and organizational success.  

Case studies and survey research provide a flavor of the unique organizational culture of early 

colleges. They highlight caring relationships, support, academic identity, and high expectations 

(McDonald & Farrell, 2012). Students report that they felt prepared for postsecondary education, 

valued relationships with teachers, and benefited from the small learning communities (Edmunds 

et al., 2010, 2012; McDonald & Farrell, 2012). Survey analysis reveals that relative to students in 

traditional public high schools, ECHS students reported statistically significantly higher levels of 

expectations, more rigorous and relevant instruction, better staff-student relationships, and more 

frequent and varied types of support. Effect sizes ranged from 0.37 to 1.07, computed on mean 

differences in survey responses between students who entered an ECHS lottery and were 

randomly assigned to treatment and control groups (Edmunds et al., 2013). 

 

The Early College RCT in North Carolina  

The RCT that provided the empirical benchmarks used in this paper is an ongoing prospective 

study covering 19 early colleges in North Carolina.ii The study sample includes more than 4,000 
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students who applied to one of the 19 participating schools in eighth grade between the 

2005/2006 and 2010/2011 school years. The research team implemented lotteries to divide the 

applicants into two groups: those offered admission (treatment group) and those denied 

admission (control group). The majority of control students ended up enrolling in regular high 

schools in their district. For some schools, lotteries were stratified to meet school administrators’ 

priorities for admitting specific subgroups at higher rates (e.g., low-income and underrepresented 

minorities). The study has reported evidence of treatment-control equivalence on baseline 

characteristics, suggesting successful randomization (Edmunds et al., 2012). 

 

Lessons Learned from Existing Within-Study Comparisons in Education   

Although earlier WSC studies in education reported weak correspondence in RCT- and QE-

based impact estimates (Agodini & Dynarski, 2004; Wilde & Hollister, 2007), more recent 

WSCs that had access to larger and more diverse sets of potential comparison group members 

and more extensive sets of potential covariates reported very similar experimental and QE 

impacts on test score outcomes (e.g., Abdulkadiroglu et al., 2011; Bifulco, 2012; Cook et al., 

2020; Dong & Lipsey, 2018; Fortson et al., 2012; Steiner et al., 2010). Following the highly 

influential qualitative synthesis of the existing WSCs at that time by Cook, Shadish, and Wong 

(2008), most of these recent WSCs typically go beyond the question of whether it is possible to 

replicate experimental impact estimates via QE methods and examine the role of three design 

and analysis features inherent to QE approaches in the bias of the resulting estimates: (1) 

whether any locational or setting-based restrictions were imposed for the selection of comparison 

group members, i.e., whether the comparison cases were local as they were drawn from the same 

locations or settings as the treatment cases (Bifulco, 2012; Cook et al., 2020; Wong et al., 2017); 
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(2) whether the covariates used to account for the nonrandom selection of cases into treatment 

were focal, i.e., good predictors of selection into treatment and outcomes of interest (Cook et al., 

2020; Dong & Lipsey, 2018; Hallberg et al., 2018); and (3) the specific statistical or econometric 

analysis techniques used in the construction of the comparison group or modeling the 

relationship between the outcome and program participation to estimate the program effects 

(Bifulco, 2012; Fortson et al., 2012). Below we describe these studies in detail and outline the 

existing gaps in the line of research that have motivated our study.    

Bifulco (2012) measured the bias produced by a dozen quasi-experimental approaches using an 

experimental study of the impact of attendance in a magnet school on children’s reading 

performance. This work suggests that the pool from which comparison units are drawn for the 

QE analyses has a substantial impact on the accuracy of the replication. In this study, drawing 

comparison cases from the same districts or districts with similar student characteristics 

substantially reduced bias. When comparisons were drawn from districts with different student 

characteristics than the treatment students’ districts, the addition of pretreatment test scores to a 

set of existing demographic covariates that include race/ethnicity and socioeconomic status was 

insufficient to reduce treatment selection bias.  

Three evaluations of charter schools conducted by researchers from Mathematica Policy 

Research have included sub-studies to validate QE models. All of these studies reported close 

correspondence between RCT and QE estimates and included very similar QE models: focal 

covariates, including baseline test scores, and local matching from feeder elementary and middle 

schools (Fortson et al., 2012; Furgeson et al., 2012; Tuttle et al., 2013). One of these studies 

(Fortson et al., 2012) tested the validity of four QE methods: (1) OLS regression modeling that 

controlled for pretest measures and demographic characteristics; (2) exact matching on a 
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specified set of baseline characteristics including grade level, demographics, and pretest; (3) 

propensity score matching using the pretest and demographic characteristics and higher-order 

terms and interactions between the baseline characteristics; and (4) fixed effects modeling. This 

study found that OLS regression modeling yielded estimates that were statistically significantly 

different from the experimental benchmarks and they led to a different policy conclusion 

(positive program effects) than the benchmarks (null effects). The other QE approaches, 

however, produced QE estimates that were not statistically distinguishable from the RCT 

benchmarks.  

Hallberg et al. (2018) assessed the role of the pretest measure of the outcome in the reduction of 

bias inherent to observational studies summarizing results from three within-study comparisons. 

Their analysis suggests that controlling for one pretest measure would substantially reduce QE 

bias, using two waves of a pretest is expected to reduce bias more than a single pretest, and 

employing a large and heterogeneous set of covariates that includes one or more pretest measures 

is likely to perform the best.  

A recent WSC (Cook et al., 2020) tested the role of the three QE design elements (local 

matching, using a pretest measure of the outcome as a covariate, and using a rich set of 

multidimensional covariates other than the pretest) in reducing QE bias in the evaluation of a 

prekindergarten mathematics curriculum. This study found that the QE model that combined all 

three elements yielded the minimum bias (less than .10 standard deviations) and nearly all bias 

reduction was due to local matching and not to the pretest or other covariates.  

Finally, Wong, Valentine, and Miller-Bains (2017) conducted a qualitative synthesis of 12 

within-study comparisons in education that used achievement outcomes. They summarized the 

empirical evidence on the role of three types of covariates and statistical controls—pretest 
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measures, local geographic matching, and rich covariates with a strong theory of selection—in 

bias reduction in QE studies. They conclude that the pretest can substantially reduce bias and 

almost completely eliminate it when it is highly correlated with the outcome and selection into 

treatment and has a linear baseline trend for both groups (no adjustment for trend effects is 

needed in that case). Some bias remains in cases where there are differential baseline trends for 

the treatment and comparison units (i.e., selection is based on differences in baseline trends) or 

there are other important selection covariates. In those cases, trend effects or additional selection 

covariates should be controlled for to reduce bias. They did not find an added advantage of local 

comparison group matches over nonlocal matches when the treatment and comparison groups are 

balanced on covariates. However, they found that using local comparison cases that differ from 

the treatment cases on covariates may lead to substantial bias. They also noted that observational 

methods perform well when used with a rich covariate set organized around a unifying theory of 

factors that may be related to selection into treatment.  

This literature demonstrates that QE impacts on test score outcomes from authentic educational 

settings can have high internal validity. However, there are still some open questions: To what 

extent does imposing geographic restrictions on the QE comparison groups matter? When used 

with a comprehensive set of focal covariates and large number of potential comparison students, 

do QE methods that differ by how selection into treatment is modeled and how many students 

included in the comparison group yield different answers? Building on the existing WSCs in 

education, the present study tackles these questions by assessing the bias of a variety of QE 

methods that differ by the locational restrictions placed on potential comparison group members, 

the propensity score model specifications, and how propensity scores are used to construct the 

comparison groups. As noted earlier, two important contributions of this paper to the research 
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base in education WSCs are assessing the performance of QE methods when outcome measures 

and covariates exclusively come from administrative SLDSs and for one-time outcome measures 

that do not have natural pretests.  

 

DATA SOURCES AND MEASURES 

We use a rich longitudinal student-level data set constructed from administrative elementary and 

secondary public school data from the North Carolina Department of Public Instruction 

(NCDPI). These data include the full population of students who attended any public school in 

North Carolina during the 2004/2005 to 2015/2016 school years, and individual students only 

become unobserved if they leave the public system. For this paper, we focus on six high school 

outcomes—English I test scores, average attendance through high school, ACT test scores 

(administered to all eleventh graders in North Carolina since 2012), 9th-grade retention, being on 

track (or prepared) for college in twelfth grade,iii and five-year high school graduation. This is a 

comprehensive set of outcomes that not only represents important academic and engagement 

measures for high school students but also includes potential predictors of longer-term outcomes 

such as attainment of postsecondary credentials, employment, and wages.  

In addition to data on student outcomes, the data set includes many student and school-level 

variables measured prior to entry into high school that can be used as covariates to control for 

potential confounding.  At the student level, the data include demographic variables, such as 

student ethnicity, gender, economic disadvantage, old for grade (defined based on students’ age 

and current grade level), limited English proficiency, disability status, and gifted identification as 

well as data on prior performance in middle school including 6th- to 8th-grade math and reading 
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test scores, 8th-grade science test scores, taking and passing Algebra I in middle school, middle 

school attendance, and mobility during middle school. 

Based on the available baseline covariates, we can reasonably argue that three outcome 

measures—English 1 test scores, average high school attendance, and ACT scores—have natural 

(i.e., matching) pretests (middle school attendance and test scores). Two outcomes—high school 

graduation and being on track for college—are one-time events. While we expect that the 

demographic covariates and middle school achievement measures should be correlated with 

these two outcomes, we do not consider them to have natural pretests as both measures reflect 

students’ entire high school experiences and may be influenced by potential unobserved traits 

such as motivation. For 9th-grade retention, we do have a covariate (old for grade) that may be 

considered as a natural pretest since it reflects retention in elementary and middle school. But it 

may also reflect other factors such as kindergarten redshirting,iv therefore we treat 9th-grade 

retention as an outcome without a natural pretest. 

The current data set consists of four cohorts of high school students who entered ninth grade for 

the first time in the 2007/2008, 2008/2009, 2009/2010, and 2010/2011 school years.v  These 

students are expected to graduate from high school between the 2010/2011 and 2014/2015 

school years. Table 1 provides an overview of these cohorts. In order to be included in these 

cohorts, students must have been enrolled in North Carolina public schools in ninth grade and 

also have been enrolled in eighth grade in North Carolina public schools in the prior school year.  

This sample restriction is necessary in order to ensure that students have pretreatment 

demographic and performance data. Across the three cohorts, approximately 15 percent of 

students who appear in ninth grade do not appear in eighth grade in the prior year and 

approximately 10 percent of eighth graders do not appear in ninth grade in the subsequent year. 
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These excluded students consist of those who were not enrolled in North Carolina public schools 

during one of the two years and students who were retained in either eighth or ninth grade as 

well as a small number of students who could not be matched across time based on name, 

birthdate, and other administrative identifying variables. 

INSERT TABLE 1 HERE 

In addition to the exclusion of students who do not appear in both eighth and ninth grades, some 

students are not included in some analyses due to either attrition from the sample over time or 

missing data. Because the study utilizes administrative data, attrition rates are fairly low. 

Students who leave the sample may have dropped out of high school, transferred out of the North 

Carolina public schools, or failed to be matched in subsequent years. Attrition in each year of 

high school is 7 percent or less and appears similar across the ECHS and non-ECHS students.vi  

Missing data rates are also fairly small. Overall, relatively few students are missing outcome data 

for the outcomes included in this paper. Missingness for the outcomes ranges from 0 percent 

missing for five-year graduation ratevii to 9 percent of students missing English I test scores.  

Somewhat larger percentages of students are missing one or more covariates. Very few students 

(less than 1 percent) are missing demographic information, but up to 15 percent are missing 

some prior test scores.  Missing covariates are imputed for these students using the “dummy 

variable” method that entailed (1) replacing missing values for a given covariate with the sample 

mean and (2) including an indicator for the imputed records in the propensity score and impact 

estimation models (Stuart, 2010).  

The full data set includes a total of more than 450,000 students across the four cohorts across the 

entire state, but the size of the analytic samples varies for different analyses due to analysis 

details such as matching techniques (which are described in more detail in the next section). The 
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WSC includes 19 ECHSs, with an original randomized sample that included a total of 3,473 

students of whom 2,044 were randomized into treatment and 1,429 were randomized into 

control. Overall, the compliance rate is 90 percent, with 1 percent of crossovers (students who 

were assigned to the control group but ended up enrolling in the ECHS to which they applied) 

and 9 percent no-shows (students who were assigned to the treatment group but did not enroll in 

any ECHS). The comparison group in the within-study comparison ranges from about 2,266 to 

409,185 students, depending on the QE analysis method. Characteristics of these samples are 

described in detail below when we discuss results. 

 

DESIGN OF THE WSC AND STATISTICAL METHODS 

A naïve comparison of the outcomes of students who applied and were accepted to an ECHS to 

students who did not apply to an ECHS and enrolled in a regular high school would provide a 

misleading picture of the effect of attending an ECHS due to baseline differences between the 

two groups. First, these two types of students may have different motivational and cognitive 

characteristics as well as parental involvement and support, which may be directly related to 

differences in their interest in ECHS and their high school and postsecondary outcomes. We will 

refer to such confounders as “individual self-selection factors.” Second, the two student types 

may have been raised in different neighborhoods and had different elementary and middle school 

experiences. For instance, early college applicants may have had more academic support during 

middle school that helped them prepare for high school and pursue postsecondary education 

thereafter. We will refer to these confounders as “geographical or locational factors.” Both sets 

of confounders may also account for differences in the outcomes of interest between the two 

groups, which should not be attributed to attending an ECHS. 
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Utilizing data from the RCT, the WSC explores whether it is possible to replicate the 

experimental impact estimates that are not subject to any biases due to the confounders described 

above using QE estimators. These replication exercises replace the control group of the RCT 

with a selected group of non-ECHS students such that the treatment group of the RCT and the 

resulting comparison group are balanced to the extent possible in terms of the two types of 

confounders described above. This section of the paper describes in detail the design of the WSC 

and statistical properties of the QE estimators. 

  

Assessment of WSC Assumptions 

Wong and Steiner (2018) present a comprehensive theoretical framework for the design and 

implementation of different types of WSCs. Per their definition, we conduct a “dependent 

simultaneous WSC,” in which the early college RCT constitutes the benchmark and the 

observational comparisons are obtained from the administrative databases in North Carolina. 

This design is considered dependent as the RCT and QE analyses share the same treatment 

group. For dependent simultaneous WSCs, Wong and Steiner (2018) list the following four 

assumptions to ensure that the RCT and QE analyses identify the same treatment effect: 

1. There is no interference between units in the RCT and QE analyses, i.e., the RCT and QE 

members’ potential outcomes depend only on their treatment assignment status but not on the 

assignment of others. 

2. There are no systematic differences between the QE and RCT control conditions. 

3. Potential outcomes are independent of treatment assignment in the RCT, i.e., the RCT 

produces internally valid effect estimates. 
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4. In the QE analysis, participants’ potential outcomes are independent of the treatment 

assignment status conditional on observed covariates.  

We argue that the first three assumptions are highly plausible in our WSC because the QE 

comparison group students did not participate in the RCT, were not exposed to the treatment, and 

had similar high school experiences as the RCT control group. In addition, identical outcome 

measures were collected from the QE comparison students using identical procedures to those 

used in the RCT. Therefore, if a given QE estimator does not replicate the experimental 

benchmarks in our WSC, we will conclude that the fourth assumption must have been violated 

because of unobserved confounders in the QE analyses. 

 

Estimation of the Experimental Benchmarks 

Two features of the longitudinal RCT that provided the experimental benchmarks for the WSC 

are important for the estimation of these benchmarks. First, the presence of no-shows and 

crossovers led to at least two different estimands that could be estimated with experimental data: 

intent-to-treat (ITT), which represents the impact of receiving the offer to enroll in an ECHS and 

treatment-on-the-treated (TOT) or local average treatment effect (LATE), which captures the 

effect of actually enrolling in early colleges on students who complied with the random 

assignment results. Wong and Steiner (2018) argue that for experimental studies with non-

compliance, ITT is the causal estimand of interest because compliers cannot be distinguished 

from always-takers in the treatment group and from never-takers in the control group, which 

complicates the identification of the LATE/TOT in the QE arm of WSC. Following their advice, 

the current WSC analyses use the ITT estimates as the empirical benchmarks.    
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The second issue stems from the fact that some schools identified priority populations (e.g., first-

generation college attendees) for their incoming cohorts. To include these schools in the analysis, 

the research team stratified the eligible pool of applicants by the priority characteristics and more 

students from the priority groups were assigned to the ECHS through these stratified lotteries, 

which led to unequal probabilities of treatment assignment within the study sample. This should 

be taken into account when calculating experimental benchmarks; otherwise, the resulting 

treatment and control groups in the RCT would not be balanced in terms of the characteristics 

used for stratification. For example, stratifying the applicants by their first-generation status and 

assigning a larger proportion of first-generation students to the treatment group would lead to a 

higher proportion of first-generation students in the treatment group than the control group.  

For the purposes of the WSC, we adopted a weighting strategy that took into account the 

stratified lotteries. When obtaining the experimental benchmarks, this strategy involved 

weighting each treatment student by 1 and weighting each control student by the ratio of his or 

her probability of getting into the treatment group to the probability of getting into the control 

group. Using these weights allowed us to balance the treatment and control groups on the 

stratification characteristics by overweighting the control students in strata where higher 

proportions of the students were assigned to the treatment group and underweighting the control 

students in strata where lower proportions were assigned to the control group. An advantage of 

this weighting is that it is directly relevant to the QE arm of the WSC where all treatment 

students were weighted by 1 and the control students were weighted according to their matching 

frequency. This ensures that the RCT and QE estimands are comparable.  

These weights are used in the following model to estimate the experimental benchmarks: 

𝑌𝑌𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑇𝑇𝑖𝑖 + ∑ 𝛾𝛾(1+𝑙𝑙)𝑆𝑆𝑖𝑖𝑙𝑙𝐿𝐿−1
𝑙𝑙=1 + ∑ 𝛾𝛾(𝐿𝐿+𝑚𝑚)𝑋𝑋𝑖𝑖𝑚𝑚𝑀𝑀

𝑚𝑚=1 + 𝜀𝜀𝑖𝑖,    (1) 
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where: 

𝑌𝑌𝑖𝑖 = outcome measure for student i.  

𝑇𝑇𝑖𝑖 = treatment indicator for student i, which equals one if student i is randomized to the 

ECHS group and zero otherwise. 

𝑆𝑆𝑖𝑖𝑙𝑙 =indicator variable for the lottery l, which equals one for students who participated in 

lottery l and zero for other students (l = 1...L).viii 

𝑋𝑋𝑖𝑖𝑚𝑚 =m-th covariate for student i. Note that the model controlled for all of the covariates used 

in the QE analyses described below. 

𝜀𝜀𝑖𝑖 = random error term for student i. 

The coefficient 𝛾𝛾1 on the treatment indicator denotes the experimental impact estimate. We 

clustered the standard errors at the high-school level (early colleges for treatment students and 

regular high schools for control students) to account for the potential clustering of student 

outcomes within schools.  

 

Properties of Quasi-Experimental Estimators 

We compared the RCT-based impact estimate for each outcome with estimates from a variety of 

QE models. The QE estimators differed by how the comparison groups were constructed but 

they all used the same set of student-level covariates to account for the potentially systematic 

differences between students who enrolled in early colleges through lotteries and students who 

did not participate in those lotteries. These covariates, all of which were measured before the 

treatment commenced, include:  
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• Demographics: Gender, race/ethnicity, socioeconomic status, limited English proficiency 

status, disability status, whether the student is gifted, mobility in middle school (as a proxy 

for family stability), whether the student is old for grade;ix  

• Middle school academic achievement: Averages of 6th- through 8th-grade state test scores in 

reading and math,x 8th-grade test scores in science, and taking and passing Algebra 1 in 

eighth grade; and 

• Attendance in middle school: Average absenteeism in sixth through eighth grade is used as a 

proxy for motivation and academic engagement. 

Students who attend early colleges tend to be high performing and highly motivated students 

who have postsecondary aspirations in middle school. The combination of the covariates listed 

above would be expected to capture most of these traits, especially the individual self-selection 

factors described above. Notable omitted variables that could potentially act as confounders 

through their joint relationship with selection into early colleges and outcomes we examined 

include parental engagement and students’ and their parents’ perceptions about the value of 

postsecondary education. Such characteristics, however, are rarely available in administrative 

data sources that are typically accessible to education researchers.  

The covariates we used cover the typical covariates available to education researchers in extant 

databases; therefore, this paper provides a fair assessment of the possibility of replicating 

experimental estimates with such secondary education data found in administrative data sets.  

The QE estimators we assessed varied across the following dimensions:  

• Geographic restrictions placed on potential comparison group members (local vs. statewide);  

• Whether and how propensity scores were utilized in the analysis (OLS regressions that do not 

use propensity scores, propensity score weighting, or propensity score matching).  
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Table 2 summarizes the features of the different QE estimators we used, which are described in 

more detail in the following subsections. 

INSERT TABLE 2 HERE 

 

Identifying Potential Comparison Group Members 

 Existing WSCs are inconsistent about the role of imposing locational restrictions on the 

selection of potential comparison group members. Some WSCs showed that choosing 

comparison units from “local” untreated units that share the same school, neighborhood, or 

district with the treatment units was critical for replicating experimental results (e.g., Bifulco, 

2012; Cook, Shadish, & Wong, 2008; Steiner et al., 2010). Three WSCs included in the Wong, 

Valentine, Miller-Bain (2017) synthesis, however, suggest that such locational restrictions were 

not influential for bias reduction when the treatment and comparison groups are balanced on 

focal covariates. Furthermore, they showed that such restrictions may limit the pool of potential 

comparison groups and yield inadequately balanced treatment and comparison groups, thereby 

leading to more biased estimates than QE approaches without such restrictions that can form 

more tightly balanced groups. Therefore, the bias implications of imposing any geographical or 

locational restrictions on the construction of the QE comparison group is still an open question.  

In the case of early colleges, students who attended middle schools that emphasized 

postsecondary education may have been more likely to pursue postsecondary education and more 

likely to apply to an ECHS than their peers without such supports. However, these locational 

factors may not be fully captured by the student-level covariates available in the extant data. To 

examine the extent to which controlling for such factors was instrumental for reducing bias, we 
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used a set of QE approaches that implemented a variant of local propensity score analysis as 

follows: For the QE models that used propensity score matching, we conducted the matching 

process separately within blocks where each block included treatment and potential comparison 

students from the same cohort who attended the same middle school (local matching). For those 

that used propensity score weighting, non-ECHS students who attended different middle schools 

than treatment students were dropped from the analyses (local weighting).   

On one hand, this restriction may allow us to account for locational confounders. On the other 

hand, it may yield groups that are unbalanced on unobserved/omitted student-level variables 

because it forces us to compare students who applied to an ECHS with those who did not apply 

despite the two groups attending the same middle school, which presumably led them to have 

similar exposure to institutional factors that would influence students’ and their parents’ 

motivation towards pursuing postsecondary education. To examine the role of feeder middle 

schools in the self-selection of students into early colleges and the possibility of imposing 

locational restrictions yielding treatment and comparison groups that are balanced on 

observables but inadequately balanced on omitted variables, we tested an additional set of QE 

models that implemented global or statewide propensity score analyses such that no restrictions 

with respect to the feeder middle schools were imposed on the QE comparison groups. That is, 

potential comparison groups for the statewide analyses included all non-ECHS students from the 

relevant 9th-grade cohorts in North Carolina. Contrasting results from these analyses with results 

from local models allows us to assess the benefits and potential drawbacks of imposing 

locational restrictions on QE comparison groups. 
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All QE comparison groups excluded non-ECHS students who were in the original control group 

of the RCT so there is no overlap between the QE comparison groups and the experimental 

control group.  

 

Estimation of Propensity Scores 

Propensity scores were estimated using probit models specified with the covariates listed above. 

Separate models were estimated for local and statewide analyses. Propensity score estimates 

capture the probability of applying and receiving the offer to attend to an ECHS conditional on 

the covariates included in the model.  

 

Details on How Estimated Propensity Scores Were Used: Matching and Weighting  

Matching is the most common application of propensity score analysis, with many variants 

(Stuart, 2010). For parsimony, we are reporting results from three matching methods:xi  

(1) One-to-One matching: each treatment student is matched with one potential comparison 

student with the closest propensity score within the pre-specified caliper (±.2 of the standard 

deviation [SD] of the propensity score set per Stuart, 2010).  

(2) Four-to-One nearest neighbor matching: each treatment student is matched with the closest 

four comparison students within his or her caliper (±.2 of the SD of the propensity score).  

(3) Radius matching: each treatment student is matched with all potential comparison students 

whose propensity scores are within the specified caliper of his or her score (±0.2 of the SD of the 

propensity score).  



 26 

In all cases, a comparison student can be matched with multiple treatment students (matching 

with replacement) and the frequency of being used as a matched comparison was captured via 

weights. Treatment students who did not have any comparison students within their caliper were 

unmatched and excluded from the estimation of early college effects. This is a version of 

enforcing “common support,” which is used by some propensity score applications to ensure the 

overlap of the range of the propensity scores between the treatment and matched comparison 

groups (Caliendo & Kopeinig, 2008; Garrido et al., 2014). We track the number of unmatched 

treatment students because the exclusion of a large proportion of treatment students from the QE 

analyses can raise concerns about the comparability of the experimental and QE estimands.  

 These methods allow us to assess the potential bias-precision trade-off between balance of the 

treatment and comparison groups and effective sample size. One-to-one matching takes the “best 

match” for each treatment student within the specified caliper; therefore, it places a higher 

priority on generating closely matched treatment and comparison pairs to minimize bias. Radius 

matching, on the other hand, uses all potential comparison students within the specified caliper, 

placing a higher priority on maximizing the size of the comparison group and precision of the 

effect estimates, but this can come at the cost of less balanced groups and more bias. Four-to-one 

nearest neighbor matching is a more balanced approach as it does not prioritize bias or precision 

as strongly as the other approaches.   

As an alternative to matching, we used the estimated propensity scores to create weights 

(propensity weighting or PW). Following Stuart (2010), treatment students were weighted by 1, 

comparison students were weighted by 𝑃𝑃�

1−𝑃𝑃�
  (i.e., odds of selection) where 𝑃𝑃� is the estimated 

propensity score. An advantage of weighting over the three matching approaches is that the 

analysis retains all treatment and potential comparison students.  
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Assessing Quality of Matches 

Following Rosenbaum and Rubin (1985) and What Works Clearinghouse (2018), we assessed 

the quality of the matches using standardized treatment-comparison differences (aka effect sizes) 

calculated as follows. For each covariate, we first fit a weighted regression model that used the 

covariate as the dependent variable, and the treatment group indicator and indicators for cohort 

by feeder middle school interactions for local models and cohort indicators for statewide models 

as independent variables.  The standardized difference was then calculated as the ratio of the 

coefficient on the treatment indicator to the pooled standard deviation of the covariate across the 

treatment and potential comparison students. We required the standardized differences to be less 

than 10 percent of a SD in absolute value for all covariates. Our threshold is more stringent than 

the 0.25 SD threshold used by the WWC.  

 

Estimation of the QE Effects 

The following model was used to estimate the ECHS effect: 

𝑌𝑌𝑖𝑖 = 𝜋𝜋0 + π1𝑇𝑇𝑖𝑖 + ∑ π(1+𝑏𝑏)𝐼𝐼𝑖𝑖𝑏𝑏𝐵𝐵−1
𝑏𝑏=1 + ∑ π(𝐵𝐵+𝑚𝑚)𝑋𝑋𝑖𝑖𝑚𝑚𝑀𝑀

𝑚𝑚=1 + 𝜖𝜖𝑖𝑖,    (2) 

where: 

𝑌𝑌𝑖𝑖 = outcome measure for student i.  

𝑇𝑇𝑖𝑖 = treatment indicator for student i, and equals one if student i is an ECHS student and 

zero otherwise. 

 𝐼𝐼𝑖𝑖𝑏𝑏 =indicator variable for the b-th analysis block for student i. It equals one if student i is a 

member of the b-th block and zero otherwise. As shown in Table 2, local analyses used 
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interactions between cohort indicators and feeder middle schools as analysis blocks while 

statewide analyses used cohort indicators as analysis blocks. 

𝑋𝑋𝑖𝑖𝑚𝑚 =m-th covariate for student i. We controlled for all of the covariates used in the 

estimation of the corresponding propensity score to increase the precision of the QE impact 

estimates and be doubly-robust (Bang & Robins, 2005).xii 

𝜖𝜖𝑖𝑖 = random error term for student i.  

The coefficient π1 denotes the estimated ECHS effect. Standard errors were clustered at the 

high-school level (early colleges for treatment students and regular high schools for comparison 

students). In addition to the QE models that utilized the various propensity score analysis 

methods described above, we also estimated ECHS effects using “naïve” OLS models that used 

all potential comparison group members for local and statewide analyses. These models were 

specified as in equation (2) but essentially weighted all potential comparison group students by 

1. These analyses yielded 12 QE impact estimates for each outcome measure.  

 

Assessing Which QE Models Replicated Experimental Results 

The final step of the WSC study was to assess which (if any) of the 12 QE effect estimates 

replicated the RCT-based benchmark for each outcome. Historically, the WSC studies used 

different approaches to do this assessment. For example, Fortson et al. (2012) examined whether 

the experimental and QE estimates had the same sign and statistical significance, and similar 

magnitudes (i.e., both estimates led to the same policy conclusions).  Hill, Reiter, and Zanutto 

(2004) required the 95 percent confidence intervals of the two estimates to overlap while 

Hallberg et al., (2018) required the difference between two estimates (i.e., bias in the QE 
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estimates) to be less than 0.15 standard deviations and not statistically significant (assessed using 

the bootstrapped standard error of the difference).  

More recently, Steiner and Wong (2018) proposed a comprehensive framework to assess the 

correspondence between experimental benchmarks and QE estimates. This framework entails 

formally assessing the insignificance of the difference between two estimates (“insignificant 

difference”) and statistical equivalence of the two estimates (“significance of equivalence”). The 

null hypothesis for the first assessment states that the QE bias is zero, i.e., 𝐻𝐻0𝑑𝑑: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄 = π1 −

𝛾𝛾1 = 0 where π1 is the QE effect from equation (2) and 𝛾𝛾1 is the RCT effect from equation (1). 

Failing to reject the null hypothesis indicates that the difference between the QE and RCT effect 

estimates is statistically insignificant, i.e., providing support that the two effects are equivalent.  

It is important to note that one may fail to reject the null hypothesis above if the precision of the 

QE or RCT effect estimates are low even when 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄 is sizable.xiii Therefore, we complement 

this assessment with an additional assessment that formally tests the equivalence of the two 

effects. This test uses a composite null hypothesis that states that the difference between the two 

estimates is larger than a threshold, 𝛿𝛿𝐸𝐸, which accounts for the fact that the point estimates of the 

two effects could slightly differ because of sampling error: 𝐻𝐻0𝑒𝑒: |π1 − 𝛾𝛾1| ≥ 𝛿𝛿𝐸𝐸. Rejecting this 

null hypothesis suggests that the difference between two effects is negligible, which provides 

statistical support for the equivalence of the effects.  

Steiner and Wong (2018) conceptualize the composite null hypothesis 𝐻𝐻0𝑒𝑒 as two one-sided 

hypotheses: 𝐻𝐻01𝑒𝑒 : π1 − 𝛾𝛾1 ≥ 𝛿𝛿𝐸𝐸 and 𝐻𝐻02𝑒𝑒 : π1 − 𝛾𝛾1 ≤ −𝛿𝛿𝐸𝐸. Rejecting both of these null hypotheses 

suggests that the two effects are equivalent. Failing to reject at least one provides evidence that 

the two effects are not equivalent.  
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The statistical correspondence of the QE and RCT effects is determined by these two 

assessments, as Figure 1 illustrates in the four possible scenarios. “Equivalence” is indicated if 

both assessments suggest correspondence (i.e., 𝐻𝐻0𝑒𝑒 is rejected but 𝐻𝐻0𝑑𝑑 is not) and “Difference” is 

indicated if both assessments point to noncorrespondence (i.e., 𝐻𝐻0𝑑𝑑 is rejected but 𝐻𝐻0𝑒𝑒 is not). If 

the equivalence test supports correspondence but the difference test does not, this is considered 

to be “Trivial difference.” This may happen if both the QE and RCT estimates are highly precise 

or 𝛿𝛿𝐸𝐸 is large so even a small difference between QE and RCT effects is detected. Finally, 

“Indeterminacy” captures cases where the difference test supports correspondence, but the 

equivalence test does not. This may occur when either test does not have sufficient power 

because of small sample sizes and imprecise effect estimates.  

INSERT FIGURE 1 HERE 

For both assessments, we set the significance level (𝛼𝛼) to 0.05 and we used bootstrapping (with 

500 bootstrapped samplesxiv) to account for the covariance between the RCT and QE estimates 

because the treatment group was used in both estimation procedures.  When testing the 

equivalence of the two estimates, we set 𝛿𝛿𝐸𝐸 to 0.10 SDs. This thresholdxv (which corresponds to 

3 to 4 percentage points for the binary outcomes we examined in this paper) was suggested by 

Steiner and Wong (2018) and seemed appropriate for our outcomes because education 

evaluations typically use it as the minimum detectable effect size in power calculations for these 

outcomes, i.e., 0.10 effect size is considered as substantively meaningful.  

 

RESULTS 

We start with describing the characteristics of the samples used in the WSC analyses. Table 3 

presents the means of the covariates for three groups of students: treatment students, potential 
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comparison (i.e., non-ECHS) students used in local models, and potential comparison students 

used in statewide models. Table 3 shows that while treatment and local and statewide 

comparison groups had similar race/ethnicity and mobility rates, there were considerable 

differences between the treatment and comparison students on the other characteristics. 

Treatment students were less likely to have disabilities; more likely to be female, eligible for 

free/reduced priced lunch, and gifted; and they had higher test scores and attendance rates in 

middle school. While these differences had similar magnitudes across the two comparison 

groups for the demographic variables, educational status variables, and attendance rates, 

statewide comparison students had slightly better average test scores in End of Grade tests in 

math, reading, and science than the local comparison students.  

INSERT TABLE 3 HERE 

Table 4 presents coefficient estimates from local and statewide probit regressions that used the 

treatment indicator (=1 if treatment student, =0 if local or statewide potential comparison 

student) as the dependent variable and the three sets of covariates (demographics, achievement, 

and attendance) as the independent variables or predictors. Estimates of the probit coefficients 

shown in Table 4 suggests that in both local and statewide models being female, being eligible 

for free/reduced price lunch, higher scores on middle school reading, math, and science tests, and 

passing Algebra 1 in eighth grade were positively associated being in the treatment group. Being 

African American, having gifted status, and higher absenteeism are negatively associated with 

being in the treatment group for the local models while being American Indian, Asian, Hispanic, 

having a disability, and having lower absenteeism were negatively associated with the treatment 

in the statewide models.    

INSERT TABLE 4 HERE 
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The coefficient estimates from the probit models were used to create the propensity scores. Table 

5 presents an overview of the sizes of the treatment and comparison groups by analysis method. 

Weighting analyses utilized all treatment and potential comparison students by the nature of this 

analytic strategy while matching analyses excluded some treatment and potential comparison 

students from the estimation of effects because they were not used as matches. Table 5 shows 

that large proportions of treatment students were included in the matching analyses. Eighty-nine 

treatment students (4.3 percent) were unmatched in local matching analyses (for lack of any 

potential comparisons within their caliper) and only nine treatment students were unmatched in 

statewide matching analyses. Table 5 also shows that percentage of potential comparison 

students included in the matching methods varied by the analysis approach. Local radius 

matching utilized half of the potential comparison students while statewide radius matching 

matched almost all of the potential comparison students with treatment students. As expected, 

these proportions were much smaller for one-to-one methods at 5 percent for local analyses and 

1 percent for statewide analyses.  

INSERT TABLE 5 HERE 

Next, we assessed the extent to which matching or weighting worked by examining the balance 

of the matched treatment and comparison groups. We first examined the distribution of the 

propensity scores in the matched groups before and after matching/weighting. Comparing Figure 

A2 (which displays propensity score distributions for the treatment and potential comparison 

students before matching) to Figures A3 through A5 (which depict the distributions after 

matching) shows that matching removed most, if not all, of the differences in the propensity 

score distributions of the treatment and comparison groups. The literature on propensity score 

matching suggests that having similar propensity score distributions across the matched groups is 
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a necessary but not sufficient condition for balance (King & Nielsen, 2016). Therefore, we also 

assessed to what extent matching or weighting improved the covariate balance by examining the 

standardized differences of each covariate between the treatment and potential comparison 

students prior to matching or without weights and the two groups after matching or with weights. 

Consistent with the sample means in Table 3, the first and sixth columns in Table 6 show that 

there were substantial differences between the treatment students and either of the local or 

statewide potential comparisons. For example, the average math and reading scores were 0.47 

and 0.52 standard deviations (SDs) larger for the treatment students than the local potential 

comparisons. The differences were smaller for statewide comparison students but were still 

sizeable (0.37 and 0.45 SDs for math and reading, respectively).  

INSERT TABLE 6 HERE 

The other columns in Table 6 shows that matching and weighting generally reduced these 

differences substantially. Columns 5 and 10 suggest that weighting yielded closely matched 

groups on all covariates in both local and statewide analyses with all differences being less than 

0.02 SDs. Columns 7 through 9 suggest that all statewide matching methods also yielded closely 

matched groups on all covariates. For local matching, while all standardized differences were 

smaller than our preset threshold of 0.1 SD, some differences—especially on achievement 

measures—are larger than their statewide counterparts. For example, for one-to-one and radius 

matching, the differences for middle school test scores and passing Algebra 1 were larger than 

0.05 SDs while statewide matching reduced the differences for the same measures to 0.01 SDs or 

less. This result is likely driven by the local matching requirement that each treatment student 

could only be matched with non-ECHS students from the same middle school, which may have 

reduced the potential set of tight matches for some treatment students with respect to baseline 
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achievement measures. Regardless, it is important to note that even the largest differences for 

local methods were still within the acceptable thresholds employed by most QE applications 

(Stuart, 2010; What Works Clearinghouse, 2018). Next, we examine the extent to which these 

differences influence the bias of the QE effect estimates. 

Figure 2 shows the estimated experimental benchmarks (labeled “RCT”) and the local QE effect 

estimates (labeled to show the specific analytic method) along with their 95 percent confidence 

intervals (CI) for the six outcome measures. Next to each QE point estimate is the estimated bias 

for that estimator and its 95 percent confidence interval. Figure 3 presents the corresponding 

results of statewide QE analyses. Table 7 presents these results in another format, showing the 

point estimates and standard errors as well as the sizes of the analytic samples used in each 

analysis. The final column in this table shows the unadjusted effect estimates yielded by local 

and statewide models that do not control for any covariates, which allow us to assess the extent 

to which each QE method has reduced selection bias.xvi In these figures and tables, effect 

estimates, standard errors, and 95 percent confidence intervals are in effect sizes units. 

Furthermore, Table A1 in the Appendix shows the estimated bias, its bootstrapped standard 

error, and the p-values of the hypothesis tests conducted for the correspondence assessment.  

Table 8 shows the correspondence assessment we conducted following Steiner and Wong 

(2018). Recall that this framework concludes correspondence only if the equivalence test rejects 

the null that the difference between the two estimates is larger than the threshold (0.1 SDs in this 

case) and the difference test fails to reject that difference is zero.  

INSERT FIGURES 2 and 3 HERE 

INSERT TABLES 7 and 8 HERE 



 35 

We summarize the results by examining the correspondence between the experimental 

benchmarks and QE estimates across the different matching and weighting methods. We start 

with the three outcomes we consider having natural pretests. For English 1 test scores, Table 8 

suggests that all local and statewide matching and weighting methods replicated the experimental 

benchmarks. For two of these outcomes—absences in high school and ACT scores—all 

statewide QE methods replicated the experimental estimates. This is remarkably different from 

the results for local weighting methods, except weighting for high school absences. Table 8 

shows that the local OLS model and one-to-one matching failed to replicate the benchmarks for 

both outcomes while local four-to-one and radius matching missed the benchmarks for absences 

and ACT scores, respectively. Examining the point estimates and standard errors for these two 

outcomes in Table 7 suggests that this result is primarily driven by substantially larger 

differences between the QE and experimental estimates for local models than statewide models.  

Next, we describe the results for three outcomes that lack natural pretests. For being retained in 

ninth grade, none of the local or statewide QE models replicated experimental results. Table 7 

shows that the experimental estimate was 3.8 percent and insignificant. The local QE estimates 

were around -6 percent and -7 percent, and all were statistically significant. While estimates from 

the statewide models were somewhat closer to the experimental benchmark, all were negative, 

and the statistical tests do not reject that the differences are significant and larger than our 0.1 SD 

threshold. The direction of the bias is consistently negative (i.e., suggesting better outcomes for 

the early college students) for all QE models. An omitted confounder that is positively correlated 

with attending early college and negatively correlated with being retained, such as motivation or 

parental supports, can explain such negative bias in the QE estimates.   
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For being on track for college, the result of the correspondence assessment was indeterminacy 

for all QE models, indicating that we did not reject that the difference between the QE and RCT 

estimates is insignificant, but we rejected that the difference is smaller than the 0.1 threshold (or 

we did not reject the alternative hypothesis that sampling error can explain the observed 

difference between the two sets of estimates). Steiner and Wong (2018) argue that this may occur 

when the statistical tests are underpowered because of small samples or large standard errors for 

the experimental or QE estimates. Indeed, Table 7 shows that the standard errors for the RCT 

estimate and all QE estimates are much larger than the other outcomes. Table 7 also shows the 

statewide estimates were closer to the RCT benchmarks than the local models but the former also 

had larger standard errors. This is not very surprising as this outcome does not have a natural 

pretest and available covariates may not do a good job of predicting it.  

Finally, for high school graduation, only the four-to-one statewide matching model replicated the 

experimental benchmark. Local and statewide one-to-one, local four-to-one, and local radius 

matching methods failed to replicate the benchmark. For the remaining approaches—local and 

statewide weighting and OLS and statewide radius matching—the correspondence assessment 

yielded “trivial difference,” which means that we did not reject the equivalence test (i.e., the 

observed difference between the two sets of estimates is trivial) but rejected that the difference is 

insignificant. Table 7 indicates that the differences between QE and experimental estimates were 

around 5 percent for the five approaches so it is reasonable to consider these differences as 

trivial.  

To summarize, for the three outcomes with natural pretests (English 1 test scores, absences, and 

ACT scores), multiple QE models that replicated empirical benchmarks and for high school 

graduation, only one model yielded a sufficiently close QE estimate to the benchmark. For 
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retained in ninth grade, none of the QE models replicated the experimental estimate, and for 

being on track for college, the imprecision of the QE estimates led to indeterminacy. It is striking 

that statewide models had smaller (in absolute value) biases than local models for all six 

outcomes (Table 7, Figures 1 and 2) and replicated the benchmarks for two outcomes (absences 

and ACT scores) for which local models performed poorly. Along the same lines, for four 

outcomes—ACT scores, being retained in ninth grade, being on track for college at the end of 

high school, and high school graduation––local QE estimates were positive and statistically 

significant while the experimental estimates were not significant, and this result does not seem to 

be driven by differences in the precision of effect estimates. This suggests that relying on local 

models for policy decisions regarding these outcomes may be misleading. 

A few other observations are worth noting. Among the local models, propensity score weighting 

resulted in correspondence for absenteeism while the other methods did not, and it generally had 

smaller bias (in absolute value) than the other methods. Among the statewide models, a specific 

method does not stand out in terms of yielding better correspondence. Second, the direction of 

the QE bias is generally positive for all outcomes, i.e., QE estimates tended to favor the early 

colleges more than the experimental estimates. As mentioned above, this is consistent with the 

existence of unobserved confounders that are positively associated with attending an early 

college and other outcomes. Finally, local QE estimates were generally more precise than 

statewide estimates. This is because the cohort and feeder middle school interactions included in 

the local models explain a considerable proportion of the outcome variance that is not explained 

by the other covariates. 

  

DISCUSSION 
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Existing WSCs in education highlight that a matching pretest is the most important covariate for 

minimizing QE bias. In addition, there are very few education WSCs that examine interventions 

targeting high school and postsecondary students; for example, none of the 12 WSCs included in 

the Wong, Valentine, and Miller-Bain (2017) review evaluated a high school intervention. QE 

studies of high school interventions that aim to boost students’ access to postsecondary education 

are challenging because many key outcomes do not have natural pretests at the student level 

(e.g., high school graduation, being academically prepared for college). Therefore, this paper 

makes an important contribution to the education WSCs concerning evaluations of high school 

and postsecondary education interventions. We conclude that researchers examining a similar 

high school intervention with a similar selection mechanism can expect to produce QE results 

with minimal bias for outcomes with natural pretests using variables that are typically available 

in extant longitudinal databases. This conclusion is generally consistent with the existing 

education WSCs that examined elementary and middle-grade interventions. For outcomes 

without a natural pretest, however, our results suggest that the researchers need to be cautious 

and the covariates typically found in administrative data sets may not adequately capture all 

potential confounders. It would be interesting to see whether supporting the covariates used in 

our analyses with additional covariates at the student or school level would decrease or eliminate 

the QE bias. For example, one could create additional middle school-level covariates for prior 

cohorts of students including school climate, participation in dual-enrollment in high school, and 

college enrollment post high school. While local models may control for these factors implicitly, 

this may be offset by the locational restriction they place on the comparison groups.  

Indeed, one of the striking results of our analyses is that local models generally failed to 

replicate experimental benchmarks. This was true even for two of the three outcomes with 
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natural pretests. This result can partially be explained because local matching and weighting 

methods did not yield well-balanced treatment and comparison groups in this WSC. However, 

given that the treatment-comparison group differences were smaller than the conventionally used 

thresholds and statewide models replicated benchmarks for at least some outcomes, it is likely 

that, compared to the statewide approach, the geographical restriction imposed by the local 

approach yielded inferior comparison groups. The implications of this for applied researchers are 

that local restrictions may do more harm than good if good local matches are small in number. It 

is possible that prioritizing balance on observable covariates among a relatively small number of 

good matches may have distorted balance on unobservable confounders such as motivation 

(Wong, Valentine, & Miller-Bain, 2017). A promising avenue for future research is to combine 

local and non-local matches as suggested by Stuart and Rubin (2008).  

Another important result is that QE bias did not vary by how the estimated propensity scores 

were used in the analysis, which was especially relevant for statewide analyses. This may be a 

direct result of the doubly robust approach as all QE methods utilized the same set of covariates. 

Related to this observation is that among the statewide approaches, the OLS approach (which 

used all available potential comparison students with equal weights) yielded generally similar 

coefficient estimates and standard errors to the other approaches. This creates some ambiguity 

about the need to conduct matching and weighting as a data preprocessing step prior to analysis. 

A limitation of this study is that it conceives of the selection problem as one of individual 

choice rather than institutional constraints or facilitation. Future work should examine whether 

individual and school predictors may combine to push students into early colleges or other high 

school interventions. An important methodological step that would make this investigation more 

feasible is a recent approach to match on an optimal mix of student and school factors to achieve 
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good balance on observable baseline covariates (Pimentel et al., 2018; Zubizareeta & Keele, 

2017).  

Finally, this paper showed the promises and pitfalls of replication with a large sample and 

many covariates. Future research could investigate more limiting cases. For example, how small 

does the pool of potential comparison cases need to get before it is extremely unlikely to 

replicate the RCT result? Or, in models with matching pretests, what is the minimum set of focal 

covariates necessary to replicate the RCT result?  
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Test of Insignificant 
Difference between RCT 
and QE Estimates 

Test of Equivalence of RCT and QE Estimates 
Insignificant Equivalence 

(Noncorrespondence) 
Significant Equivalence 

(Correspondence) 
Significant Difference 
(Noncorrespondence) Difference Trivial Difference 

Insignificant Difference 
(Correspondence) Indeterminacy Equivalence 

 
Notes: This figure is adapted from Table 1 in Steiner and Wong (2018). It shows the four potential conclusions of 
the correspondence assessment. The rows show the results of the test that assesses whether the difference between 
the RCT and QE estimates (i.e., QE bias) is statistically significant. A significant difference provides evidence for 
noncorrespondence while an insignificant difference provides evidence for correspondence. The columns show the 
results from the test that assesses the equivalence of the RCT and QE estimates by testing whether the difference 
between the RCT and QE estimates is larger than a threshold that represents a negligible difference (e.g., a tolerable 
effect size difference that can be caused by sampling error). A significant equivalence result provides evidence for 
correspondence and an insignificant equivalence result provides evidence for noncorrespondence. Please see the text 
for a more in-depth description of the underlying hypotheses tested in each assessment. 
 

Figure 1.  Correspondence of RCT and QE Estimates. 
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Notes:  ^ Indicates outcomes with a matching pretest.  Black and red lines show 95 percent confidence intervals for effect and bias estimates. 
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Figure 2. Within-Study Comparison (WSC) Results—Local QE Estimates in Effect Sizes. 



 50 

 

   
Notes:  ^ Indicates outcomes with a matching pretest.  Black and red lines show 95 percent confidence intervals for effect and bias estimates. 



 51 

Figure 3. Within-Study Comparison (WSC) Results—Statewide QE Estimates in Effect Sizes.
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Table 1. Cohorts included in study.  

  
2006-
2007 

2007-
2008 

2008-
2009 

2009-
2010 

2010-
2011 

2011-
2012 

2012-
2013 

2013-
2014 

8th grade 1 2 3 4         
9th grade  1 2 3 4       
10th grade   1 2 3 4     
11th grade    1 2 3 4   
12th grade      1 2 3 4 
Postsecondary/13th grade        1 2 3 
Postsecondary/14th grade           1 2 
Postsecondary/15th grade            1 

Notes: This table shows the grade progression of the four student cohorts included in the study sample. Each cell corresponds to a school year and grade level 
combination and the number in a given cell shows the student cohort covered by cell. For example, the first student cohort consisted of students who were in 
eighth grade during the 2006/2007 school year.  
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Table 2. Quasi-experimental models. 
Label Geographical 

Restriction for 
Potential 

Comparisons 

Propensity 
Score 

Estimation 

Details on 
Matching 

Additional 
Controls In 

Impact 
Regressions 

Local OLS 
Non-ECHS students 
(excluding those in 
the RCT control 
group) from same 
feeder middle 
schools as treatment 
students 

N.A N.A. 

Cohort by 
feeder middle 

school 
interactions 

Local 1-to-1 Matching 

Probit 
 

1-to-1* with 
replacement 

Local 4-to-1 Matching 4-to-1* with 
replacement  

Local Radius Matching Radius* 
Local Propensity 
Weighting N.A. 

     
Statewide OLS 

All non-ECHS 
students (excluding 
those in the RCT 
control group) in NC  

N.A N.A. 

Cohort 
indicators 

Statewide 1-to-1 Matching 

Probit 
 

1-to-1* with 
replacement  

Statewide 4-to-1 Matching 4-to-1* with 
replacement  

Statewide Radius 
Matching Radius* 

Statewide Propensity 
Weighting N.A. 

Notes: *Local 1-to-1, 4-to-1, and radius matching estimators implemented exact matching on cohort and feeder 
middle schools while statewide matching estimators implemented exact matching on only cohort.  
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Table 3. Means of covariates for WSC samples.    

  
Treatment 

Group 

RCT 
Control 
Group 

Potential 
Local 
Comp. 
Group 

Potential 
Statewide 

Comp. 
Group 

(1) (2) (3) (4) 
Demographics     

Male 39.90% 39.63% 51.90% 51.50% 
Asian 1.30% 1.41% 1.50% 2.20% 
Black 28.50% 26.17% 27.40% 28.80% 
Hispanic 8.00% 7.71% 7.60% 9.00% 
American Indian 0.30% 0.83% 0.60% 1.50% 
Multiracial 3.76% 2.56% 3.20% 3.10% 
White 58.20% 61.32% 59.62% 55.36% 
8th Grade Free/Red. Price Lunch Eligibility 52.10% 50.86% 49.80% 45.80% 
8th Grade ELL Status 3.70% 3.25% 4.50% 5.20% 
8th Grade Disability Status 4.20% 5.51% 12.70% 12.90% 
8th Grade Gifted Status 21.10% 21.67% 14.80% 16.30% 
Old for Grade 11.60% 12.81% 22.50% 20.50% 
Moved Middle Schools 24.00% 25.51% 25.90% 25.90% 
Cohorts 
1st cohort (8th grade in 2006-07) 12.10% 12.05% 13.20% 25.10% 
2nd cohort (8th grade in 2007-08) 23.30% 24.04% 26.30% 25.10% 
3rd cohort (8th grade in 2008-09) 35.80% 34.53% 33.00% 25.00% 
4th cohort (8th grade in 2009-10) 28.90% 29.38% 27.50% 24.90% 
Achievement 
Middle School Avg. Math Score (z-score) 0.26 0.28 -0.12 -0.02 
Middle School Avg. Reading Score (z-score) 0.31 0.33 -0.1 -0.02 
Passed Algebra 1 in Middle School 22.80% 25.40% 19.60% 22.20% 
8th Grade Science Score (z-score) 0.19 0.20 -0.11 -0.07 
Absences 
Middle School Avg Days Absent 6.52 6.82 8.01 7.81 
Number of Observations 2,053 1,437 44,073 411,521 

Notes: Middle school average test scores and days absent are simple averages of these measures in the sixth, 
seventh, and eighth grades. A student could be old for grade if he or she was retained in a prior grade or because of 
kindergarten redshirting.  
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Table 4. Coefficients from probit regressions.  
 

 Local Statewide 

Covariates Demographics + 
Achievement + Absences 

Demographics + 
Achievement + Absences 

Number of Observations 46,117 409,185 

  Coeff. P-value Coeff. P-value 

American Indian -0.166 0.32 -0.465 0.00 
Asian -0.119 0.21 -0.261 0.00 
Black 0.185 0.00 0.034 0.11 
Hispanic 0.088 0.08 -0.080 0.03 
Multiracial 0.093 0.11 0.029 0.49 
Male -0.198 0.00 -0.143 0.00 
Gifted  -0.108 0.00 -0.021 0.39 
Have Disability  -0.085 0.09 -0.158 0.00 
8th Grade Free/Red. Price Lunch  0.213 0.00 0.242 0.00 
8th Grade ELL Status 0.120 0.09 0.043 0.40 
Moved Middle Schools 0.004 0.88 0.010 0.61 
Old for Grade 0.002 0.96 -0.010 0.80 
Old for Grade * Free Lunch -0.116 0.08 -0.063 0.21 
Cohort 2 -0.099 0.43 0.052 0.58 
Cohort 3 -0.017 0.90 0.197 0.04 
Cohort 4 -0.006 0.96 0.135 0.15 
Middle Sch. Avg Math Scr. (z-
score) 0.179 0.00 0.068 0.00 
Middle Sch. Avg Reading Scr. (z-
score) 0.186 0.00 0.110 0.00 
8th Grade Science Scr. (z-score) 0.061 0.00 0.076 0.00 
Passed Algebra in 8th Grade -0.303 0.00 -0.239 0.00 
Middle Sch. Avg Absences (days) -0.008 0.00 0.007 0.00 

Notes: Entries in the table show the probit regression coefficients. Middle school average test scores and days absent 
are simple averages of the same measures in the sixth, seventh, and eighth grades. 
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Table 5. Overview of matching and weighting.  
 

 Local Statewide 

  Demographics + Test Scores + Absences Demographics + Test Scores + Absences 

  1-to-1 
matching 

4-to-1 
matching 

Radius 
matching 
(0.2 SD) 

PW 1-to-1 
matching 

4-to-1 
matching 

Radius 
matching 
(0.2 SD) 

PW 

                 
Matched Treatment Students 1964 1964 1964 2053 2044 2044 2044 2044 
Non-Matched Treatment Students 89 89 89 0 9 9 9 0 
% Treatment Students Unmatched 4.3% 4.3% 4.3% - 0.4% 0.4% 0.4% - 
QE Comparison Group 2266 6061 22216 44073 3946 8205 406733 409185 
% Potential Comparisons Matched 5.1% 13.8% 50.4% 100.0% 1.0% 2.0% 99.4% 100.0% 

Notes: PW stands for propensity weighting. Radius matching used a caliper of 0.2 standard deviation of the propensity score.  
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Table 6. WSC balance statistics.  

 
Notes: The entries in the table show the standardized differences in effect size units, which are calculated by dividing the difference between the treatment and 
matched comparison units by the pooled standard deviation of a given measure.
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Table 7. Experimental benchmarks and QE estimates. 
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Table 7.  Experimental benchmarks and QE estimates (continued). 

 
Notes: This table shows RCT and the several QE estimates for each outcome. Point estimates and standard errors are 
in effect size units. Standard deviations used in the effect size transformation can be found in Table A1 in the 
Appendix.
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Table 8.  Results of the correspondence assessment. 
  English 1   Absences   ACT Score 
  Local Statewide   Local Statewide   Local Statewide 
1-to-1 Equivalence Equivalence 

 
Difference Equivalence 

 
Difference Equivalence 

4-to-1 Equivalence Equivalence 
 

Difference Equivalence 
 

Indeterminacy Equivalence 
Radius Equivalence Equivalence 

 
Trivial Diff. Equivalence 

 
Difference Equivalence 

PW Equivalence Equivalence 
 

Equivalence Equivalence 
 

Indeterminacy Equivalence 
OLS Equivalence Equivalence 

 
Difference Equivalence 

 
Difference Equivalence 

                  
  Retained   On Track   HS Graduation 
  Local Statewide   Local Statewide   Local Statewide 
1-to-1 Difference Difference 

 
Indeterminacy Indeterminacy 

 
Difference Difference 

4-to-1 Difference Difference 
 

Indeterminacy Indeterminacy 
 

Difference Equivalence 
Radius Difference Difference 

 
Indeterminacy Indeterminacy 

 
Difference Trivial Diff. 

PW Difference Difference 
 

Indeterminacy Indeterminacy 
 

Trivial Diff. Trivial Diff. 
OLS Difference Difference 

 
Indeterminacy Indeterminacy 

 
Trivial Diff. Trivial Diff. 

 
Notes:  This table shows the correspondence assessment results for each outcome and quasi-experimental method. PW stands for propensity weighting. 
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APPENDIX  
 

 
 

 
Note: RCT ECHS sites are those Early Colleges that have at least one cohort in the experiment used in the WSC.  
 

Figure A1. Locations of Early College High Schools (ECHS) in North Carolina. 
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Figure A2. Propensity Score Distributions Before Matching, Local and Statewide Models. 
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Figure A3. Propensity Score Distributions with 1-to-1 Matching, Local and Statewide. 
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Figure A4. Propensity Score Distributions with 4-to-1 Matching, Local and Statewide. 
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Figure A5. Propensity Score Distributions with Radius Matching, Local and Statewide. 



 66 

 
 

Figure A6. Propensity Score Distributions with Propensity Score Weighting, Local and Statewide.
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Table A1. Quasi-experimental bias estimates and correspondence test results. 
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Notes: This table shows the estimated bias and its bootstrapped standard error (in effect sizes) for each QE method. 
“P-value 𝐻𝐻0𝑑𝑑" shows the p-value of the null hypothesis that states the bias is zero (𝐻𝐻0𝑑𝑑 : 𝑄𝑄𝑄𝑄 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0. “P-value 
𝐻𝐻01𝑒𝑒 " and “P-value 𝐻𝐻02𝑒𝑒 " are p-values from two one-sided “equivalence” tests with the following null hypotheses: 
𝐻𝐻01𝑒𝑒 : 𝑄𝑄𝑄𝑄 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≥ 𝛿𝛿𝐸𝐸 and 𝐻𝐻02𝑒𝑒 : 𝑄𝑄𝑄𝑄 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤ −𝛿𝛿𝐸𝐸. 𝛿𝛿𝐸𝐸 is set to 0.1 standard deviations. Please see the text for a more 
detailed description of these tests. 

 
 
i The related line of research that uses WSCs to assess the internal validity of regression discontinuity designs (e.g., 
Chaplin et al., 2018) is not included in this discussion as RDDs are not relevant for this paper. 
ii Details on the study design and results can be found in Edmunds et al. (2012, 2013, 2017, and 2020).  
iii The on-track or college readiness outcome is defined as taking and succeeding in the courses that students would 
need for college. See Edmunds et al. (2017) for a detailed description of how this measure is constructed.   
iv Kindergarten or academic redshirting is the practice of delaying age-eligible kids’ enrollment to kindergarten. Its 
primary aim is to allow for further social-emotional, academic, and physical growth (Katz, 2000).  
v The 2005/2006 and 2006/2007 cohorts of the RCT (which included about 400 students who applied to two early 
colleges) are excluded from the WSC due to issues with obtaining baseline data for the potential comparisons in 
these years. The WSC analysis includes 3,473 students from the 2007/2008 through 2010/2011 cohorts included in 
the RCT.  
vi Between ninth and twelfth grades, we lost about 9 percent of the treatment sample as opposed to 19 percent of the 
potential comparison students. The weighted attrition rate for the comparison group, which is calculated using the 
propensity score weights and constitutes a better counterpart for the treatment group, is 11 percent.  
vii We only have lists of high school graduates in each year. A student who is included in our sample but did not 
appear in these lists was coded as zero for not graduating. 
viii Per our definition, a lottery includes all students who applied to enroll in an early college in a given year. As 
explained before, some lotteries were stratified based on priority characteristics determined by early colleges.   
ix A student could be old for grade if he or she was retained in a prior grade or because of kindergarten redshirting.  
x We considered controlling for 6th-, 7th-, and 8th-grade math and reading test scores separately to capture 
individual achievement trajectories through middle school but this led to higher missing rates for these measures.  
xi Stuart (2010) suggests 0.2 standard deviations (SD) as a reasonable caliper for propensity score analyses but 
beyond that, there is little empirical or theoretical guidance for choosing an optimal caliper. We also implemented 1-
to-1 matching without replacement, 1-to-1 matching without a caliper, 4-to-1 matching without a caliper, and all 
three methods with a narrower caliper (±0.1 of the standard deviation of the propensity scores). These methods 
yielded similar results to those discussed in the paper. These additional results are available upon request. 
xii Using the baseline characteristics in the matching process and using them as covariates in the estimation of 
impacts gives the analyst two chances to get the “right” model specification (once in the propensity model and 
another time in the impact model for the outcome measure). Therefore, these estimators are called “doubly-robust.”    
xiii This was the case for some of the existing WSC studies in education (Wong, Valentine, & Miller-Bain, 2017).  
xiv The bootstrapping procedure accounted for our nested data structure by using nonparametric bootstrapping at the 
high-school level (i.e., random sampling of high schools with replacement and random sampling of students within 
high schools without replacement), which is shown to be optimal with hierarchical data (Ren et al., 2010).   
xv It corresponds to about 4 percent for a binary outcome with a mean of 80 percent (such as high school graduation 
in our sample) and about 3 percent for a binary outcome with a mean of 10 percent (such as 9th-grade retention).  
xvi It is easy to notice that bias of the unadjusted estimator is substantially larger than each of the QE estimators. It is 
also interesting that the bias of the unadjusted local estimator is larger (in absolute value) than the statewide 
unadjusted estimator for all outcomes. 
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