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Are High School Students Accurate in Predicting Their AP Exam Scores?: Examining 
Inaccuracy and Overconfidence of Students’ Predictions  

We examined whether students were accurate in predicting their test performance two 

testing contexts (low-stakes and high-stakes). The sample comprised U.S. high school 

students enrolled in an advanced placement (AP) statistics course during the 2017-2018 

academic year (N=209; Mage=16.6 years). We found that even two months before taking 

the AP exam, a high stakes summative assessment, students were moderately accurate in 

predicting their actual scores (κweighted=.62). When the same variables were entered into 

models predicting inaccuracy and overconfidence bias, results did not provide evidence 

that age, gender, parental education, number of math classes previously taken, or course 

engagement accounted for variation in accuracy. Overconfidence bias differed between 

students enrolled at different schools. Results indicated that students’ predictions of 

performance were positively associated with performance in both low- and high-stakes 

testing contexts. The findings shed light on ways to leverage students’ self-assessment for 

learning. 
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Introduction 
Self-assessment is thought to be highly subjective. It requires a one to accurately monitor and 
appraise their performance (Andrade, 2019) and such abilities can vary substantially from person 
to person (Winne, 1996). Past research on the accuracy of self-assessment among students in 
particular is mixed (Panadero et al., 2016; Sanchez et al., 2017). From early work in this area, 
Shaughnessy (1979) developed a metric for calibration derived from a ratio of judgements of 
performance relative to an estimate derived from actual performance on a task. While the earlier 
work of Shaughnessy (1979) found a positive association between students who were more 
confident in their actual and judged performance, more recent works suggests students generally 
suffer from some hubris in their estimates of performance. Foster et al. (2017) examined college 
students’ accuracy of performance prediction across 13 exams and found that students not only 
tended to be overconfident but that the tendency to be overconfident in their predictions 
generally did not decline over each successive exam. One explanation for this effect is that 
students’ desired performance appears likely to influence the accuracy of judgements (Händel & 
Bukowski, 2019). So robust is this effect that even when students are trained to reflect on their 
performance as a means to promote a more accurate calibration, there is little effect of such 
training (Nederhand et al., 2020). Importantly, most of these previous studies have considered 
judgments of performance in the contexts where the assessments of learning would like be 
considered low-stakes in that they have a relatively small bearing on decisions concerning 
students’ academic progress.  

Some research on judgements of performance in higher stakes contexts has provided 
evidence that students’ self-monitoring skills are related to improved performance on final exam 
and overall course grades (Smith & Was, 2019). However, evidence has also found that student 
self-assessment, particularly in contexts where assessment is used for summative or high-stakes 
purposes, is considerably less reliable (Dunning et al., 2004). To the best of our knowledge, 
however, few studies to date have examined students’ calibration of future performance on a 
high-stakes exam in an authentic academic context. Thus, there is reason to speculate whether 
self-assessment is accurate and associated with performance outcomes, and if so, whether it 
remains after accounting for other factors associated with performance. In the present study we 
sought to examine whether high school students are accurate in predicting their performance on 
the advanced placement (AP) Statistics exam. We further sought to determine whether additional 
factors related to the students and their learning environment might predict variation in 
performance, both in a low- and high-stakes testing context. 
Factors Associated with Self-assessment and Performance 

Accuracy of self-assessment is defined as the extent to which an individual is capable of 
predicting their knowledge or skills in relation to some criterion. Past research indicates that 
among certain factors related to an individual’s demographic background (e.g., age, gender, 
parental education), the classroom learning environment (e.g., prior educational experience, 
interactions with teachers, engagement in learning), as well as the assessment context (e.g., low- 
or high-stakes) also influence self-assessment accuracy. Individuals’ background knowledge 
(e.g., subject matter experience) and current behaviors (e.g., course engagement) are thought to 
influence both the inaccuracy and overconfidence bias of self-assessment, as well as 
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performance, on a given task.  
Background characteristics 

Age. Metacognitive abilities required for accurate self-assessment appear to develop 
progressively during childhood and adolescence (Paulus et al., 2014; Schneider, 2008; Weil et 
al., 2013). Though children as young as 7 years of age are capable of making decisions based on 
metacognitive judgements of learning, adults may be more skilled at clearly differentiating 
between types of strategies for their metacognitive monitoring (Tsalas et al., 2015). These 
findings implicate age as a predictor of self-assessment accuracy given evidence for the 
development of metacognitive ability.  

Gender. Differences in the accuracy of self-assessment with respect to performance has been 
found to vary as a function of students’ gender. Though some evidence suggests that males and 
females on average perform similarly in science subject areas, far fewer females tend to enroll in 
STEM courses or pursue a post-secondary STEM career path (Cheryan et al., 2017). The 
expectations and choices that drive this discrepancy is thought to emerge prior to college 
enrollment and may be related to an individual’s interest and motivations (Wang & Degol, 
2013), formed within the context of societal expectations (Stoet & Geary, 2018). For example, 
past research has found that female students tend to perceive that teachers have lower 
expectations of their math learning performance compared to male classmates (Lazarides & 
Watts, 2015). These perceptions potentially become internalised, leading female students to have 
lower expectations about their academic performance in math subject areas (MacPhee et al., 
2013) which is likely to lead to decreased performance (Greene et al., 2004). As such, gender 
may be related to differences in both self-assessment accuracy and performance on exams in 
math and related subject areas.  

Parental education. The influence of parental educational attainment on the development of self-
assessment and performance in primary and secondary school appears to be complex. The parent 
socialization model describes how parents’ expectations and behaviors indirectly influence the 
academic achievement of their children by way of early emerging differences in the child’s 
expectations of ability (Davis-Kean, 2005; Eccles, 2005). Parents with higher educational 
attainment are more inclined to promote a set of values that emphasise higher academic 
achievement among children (Faas et al., 2013). Parental educational attainment is often treated 
as an indicator of family socio-economic status since it is associated with higher family income 
and earning potential (Sirin, 2005), as well as access to social capital and educational resources 
that increase access to opportunities for academic achievement (Faas et al., 2013). Thus, for 
several reasons, parental educational attainment is thought to be predictive of academic 
achievement and students’ expectations of their performance. 
Classroom learning environment 

In addition to the factors related to the individual student, the classroom learning environment 
may influence the students’ performance, as well as their ability to accurately self-assess. Such 
factors include students’ prior experience in the subject area and engagement in the course. 

Prior math experience. Some evidence indicates that greater math attainment correlates with 
more accurate self-assessment of math performance (Hosein & Harle, 2018). Past experience in 
the subject matter may influence the association between self-assessment and actual performance 
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in several ways. Early experience in a subject area such as math may provide the background 
knowledge necessary to make more accurate predictions of performance (Watts et al., 2014). As 
an alternative explanation, past course experience may influence one’s self-efficacy in 
understanding the content knowledge. This may lead a student to either overpredict or 
underpredict their performance (Hendy et al., 2014). Therefore, prior experience in math and 
related subject areas is likely to uniquely contribute to the accuracy of self-assessment, as well as 
performance on a statistics exam. 

Engagement in the course. The extent to which students are actively engaged in learning is also 
thought to influence their ability to self-assess performance. Greater engagement in a course 
appears to be closely linked with greater motivation for learning. Motivational beliefs, which 
encompasses self-efficacy beliefs, appear to be associated with efficiency in problem-solving 
(Hoffman & Spatariu, 2008). Prior research has shown that students’ engagement is linked with 
performance in learning mathematics, even after accounting for prior math experience (Stevens 
et al., 2004) and other classroom processes (Greene et al., 2004). As such, course engagement is 
likely to influence both self-efficacy and self-assessment accuracy, as well as performance 
indicators of learning. 

Assessment context. The assessment context can also have a distinctive influence on the accuracy 
of students’ self-assessment and performance. High-stakes testing contexts are characterized by 
an evaluation that has some bearing on the examinee’s progress, and are typically associated 
with a summative decision based on the examinee’s score. By contrast, low-stakes testing 
contexts are most often not associated with formative decision-making such that examinee’s 
scores are used to inform the examinee of individual progress. Students may be more inclined to 
experience undue worry in evaluative contexts (i.e., test anxiety; Brown, Forman, Herbert et al., 
2011) that are high-stakes as opposed to low-stakes (Putwain, 2008), and greater levels of test 
anxiety are associated with diminished performance (Cassady & Johnson, 2002). Students’ self-
efficacy has also been found to be more strongly associated with achievement in low-stakes 
compared to high-stakes testing contexts for mathematics knowledge (Simzar et al., 2015). Past 
research also indicates that test anxiety is moderately associated with math anxiety (Dew & 
Galassi, 1983; Hembree, 1990), another negative correlate of math achievement (Namkung et al., 
2019). While students completing tests in a low-stakes context may experience less test anxiety 
compared with high-stakes contexts, they may also experience lower levels of engagement 
knowing that there are minimal consequences associated with their performance (Wise & 
DeMars, 2005). However, some evidence indicates that effort on a low-stakes test may be 
independent of its perceived importance, and thus should be unaffected by the lack of 
consequences resulting from testing in a low-stakes context (Barry & Finney, 2016; Barry et al., 
2010). 
The Current Study 

Though past work has contributed to an understanding of the accuracy of self-assessment and 
performance in math and related subject areas (see Schneider & Artelt, 2010, for a review), few 
studies have considered the association between self-assessment and performance on indicators 
of learning (see Tanner & Jones, 1994, for a qualitative inquiry). In the present study, we were 
particularly interested in examining the accuracy of self-assessment within a sample of high 
school students enrolled in AP Statistics. We further sought to determine whether students’ 
predictions of performance was associated with their actual performance in both contexts after 
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accounting for variation attributable to certain background characteristics of the student, as well 
as the classroom learning context. While it is not clear the extent to which the findings from this 
particular context could generalize to other courses, even AP or statistics courses in particular, 
the setting of the present study is advantageous for studying self-assessment for three main 
reasons.  

Firstly, advanced placement courses, such as those offered through the College Board AP 
or International Baccalaureate (IB) programs, offer high school students the opportunity to enroll 
in courses taught with college-level curriculum over the span of an academic year. Many 
students who enroll in advanced placement coursework are within one to two years from high 
school graduation and typically intend to pursue a college degree (Judson & Hobson, 2015). 
Students who receive a certain grade or above on the AP exam, offered once at the end of each 
academic year in May, may be eligible for college credit equivalent to a semester’s coursework 
in the subject area. As of 2021, AP exams scores were recognized as college credit transfer 
eligible by nearly 2000 colleges and universities in the U.S., as well as over 60 institutions 
throughout the world (CollegeBoard, 2021). Depending on the college/university transfer policy, 
a score of either a 4 (“well-qualified”) or 5 (“extremely qualified”) is considered acceptable as 
transfer credit. Thus, the AP exam is considered high-stakes by many who complete it as it may 
have an influence on the coursework students complete during college.  

Secondly, the opportunity to examine high school students’ learning within the context of 
an AP course is particularly intriguing. Past research has indicated students' metacognitive and 
self-monitory abilities develop gradually during childhood and adolescence, and even continue to 
develop into adulthood (Weil et al., 2013). Thus, we may reasonably expect that typical high 
school students are still acquiring the abilities to apply metacognition for accurate self-
assessment of performance. Given that many students enrolled in AP coursework are preparing 
for college entry, their accuracy in self-assessment in the context of an AP course may be 
reflective of their ability to self-assess upon first-semester college enrollment.   

Thirdly, statistical literacy is regarded as an essential set of knowledge and skills which 
enable a person to critically evaluate and make informed decisions based on data and statistical 
arguments (Weiland, 2017). Statistical literacy is increasingly seen as an essential component of 
a grade school education (Ben-Zvi & Garfield, 2008). While formal mathematics education is 
widely acknowledged as an essential component of K-12 education, the extent of instruction 
students receive to aid their understanding of statistics may still be quite inconsistent (Jones et 
al., 2007). Thus, for many students enrolled in such a course, there is likely to be great 
unfamiliarity in applying a formal approach to interpret statistical phenomenon. As such, 
students may be less reliant on their background knowledge of the subject matter and may rely to 
a greater extent on their metacognitive abilities to accurately gauge progress in learning. 
Research Questions  

Within the context of an AP Statistics course, we sought to address the following research 
questions: 

1. What influences the accuracy of students’ self-assessment? Specifically, to what extent 
do factors associated with the individual’s demographic background (age, gender, 
parental education) and the classroom learning environment (school, number of previous 
math classes taken, engagement in the course) account for variation in the accuracy of 
students’ self-assessment, as indicated by the absolute distance between predicted and 
actual scores, and bias in terms of over- and under-confident predictions? 
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2. Are students predictions associated with actual performance, as measured in both a low- 
and high-stakes test context? Specifically, to what extent do students’ predictions account 
for variation in actual test performance in both a low- and high-stakes test context, after 
taking into account the aforementioned variables?  

A better understanding in this regard may provide insights such that instructors can reliably 
interpret student self-assessment for formative purposes.  

Methods 
Participants 

Participants included students enrolled in AP Statistics courses during the 2017-2018 academic 
year who were invited to take part in a year-long study to develop an adaptive assessment of 
statistics (N = 209, Mean age = 16.6 years, SD age = 0.9 years, 53.5% female). Recruitment of 
students occurred by way of participating teachers. In order to be eligible to participate, students 
were required to provide documentation of assent/consent prior to study enrollment.  
Measures 
Background questionnaire 

A self-report demographics questionnaire was administered which asked respondents to provide 
information such as their current age, gender, and parents’ education. The respondents entered 
their age in years as a numeric response and indicated whether they were “male” or “female.” In 
conducting the analysis, male was coded as “0” and female was coded as “1.” 

Respondents also indicated their parents’ approximate level of education by selecting one 
of seven responses to a multiple-choice question (“What is the highest level of education 
completed by your parent(s) or legal guardian(s)?”). Response options were treated as ordinal 
factors and included the options shown in Table 1. Given the relatively small proportion of 
participants who indicated their parents had less than a four-year degree, we re-grouped 
categories of responses into ordered levels follows: (1) Did not obtain Bachelor’s degree; (2) 
Bachelor's degree (B.A., B.S., etc.); (3) Master's degree (M.A., M.S., etc.); (4) Doctoral or 
professional degree (Ph.D., J.D., M.D., etc.). In the U.S., professional degrees are defined as 
those which meet the following criteria: (1) two or more years of college must be completed 
before entering the program; (2) a total of at least six academic years of college work (including 
both prior college work and that required during the length of the program) to complete the 
degree program; and (3) completion of all academic requirements is necessary to begin practice 
in a profession (NCES, 2021). 

School. Information about the students’ schools was collected during participant recruitment. 
Given that participants were enrolled in the same courses taught within the same schools, we 
were interested in accounting for this effect. Students were enrolled from six different high 
schools in the Midwestern United States. 

Prior math experience. Respondents reported the number of mathematics classes they had 
previously taken in high school, not including the current statistics course in which they were 
enrolled. Responses greater than “8” were treated as outliers and removed from the data prior to 
analysis. Three cases indicated completing 21, 25, or 32 math courses in high school and were 
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thus removed from the sample. Given that very few participants indicated they had taken more 
than five math classes in high school (0 had taken six, 2 had taken seven, 1 had taken eight), 
these participants were binned into the same category as those who had responded they had taken 
five (n = 8). 

Student engagement. Students’ engagement in the course was measured with an instrument 
based on the Scale of Student Engagement in Statistics (SSE-S; Whitney et al., 2019). The term 
‘micro-engagement’ is used to refer to engagement within the context of a specific course 
(Handelsman et al., 2005). The SSE-S consists of 24 items, of which eight items each reflect 
affective, behavioral, and cognitive dimensions of engagement. Given the present sample, the 
scale appeared to have acceptable reliability, a = .89 (95% CI = .87, .91). The sum score (after 
reverse coding negatively keyed items) was used as an indication of students’ overall 
engagement within the context of the course. 

Low-stakes test performance. Low-stakes exam performance consisted of a score derived from a 
practice comprehensive assessment suitable for AP or an introductory college-level statistics 
curriculum. The scores were computed based on a Rasch model, a type of item-response theory 
model that can be used to compute estimates of performance based on their responses and item 
parameters, such as the item’s difficulty (see Embretson & Reise, 2000). The scores ranged 
between –2.62 and 1.88, with more positive values indicating greater ability.  

High-stakes test performance. High stakes exam performance was indexed by the students’ 
actual scores on the AP exam administered in May of the academic year in which students were 
enrolled in the course. The AP scores were provided to researchers by participating teachers. The 
AP exam scores consisted of numerical values ranging from 1 (lowest) to 5 (highest). 

Predicted scores. Students were asked to predict their score on the high-stakes AP exam by 
responding numerically to the following question: “Even if you are not taking the AP statistics 
exam, what do you think your score will be on the AP statistics exam?” The question was asked 
approximately two months prior and within a two-week window of completing the actual exam. 
The scores consisted of numerical values ranging from 1 (lowest) to 5 (highest). 
Procedure 
Data Collection 

During the 2017-2018 academic year, participants completed a series of self-report 
questionnaires along with a computerised practice assessment of statistics knowledge. Prior to 
data collection activities, Institutional Review Board approval was sought and granted by the 
corresponding authors’ institution. The practice assessment was created to mimic the content 
composition and item types in the actual AP exam. Data from the background questionnaire and 
self-reported number of math classes previously taken were collected between late September 
and early November of the academic year. The self-reported measures for course engagement 
and students’ predictions of their AP exam scores were collected in early March until early April. 
Finally, students’ practice assessments were completed in early May and their final AP exam 
was completed in mid-May.  
Analyses 

We sought to determine which of the demographic and classroom variables accounted for the 
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inaccuracy of predictions, based on the distance between the actual and predicted scores, as well 
as the overconfidence bias in predictions. Inaccuracy was estimated as the absolute value of the 
distance between the actual and predicted AP score (| actual – predicted |). Overconfidence bias 
was indicated by predictions of AP scores that exceeded actual performance (–1), under-
confidence bias was indicated by a predicted score that was less than actual performance (1), and 
instances of no bias where predictions were accurate was also coded (0). Two separate regression 
analyses were conducted with participants’ inaccuracy and overconfidence bias scores as 
outcomes. Predictor variables consisted of those related to the individual background 
characteristics (i.e., age, gender, parental education), the classroom learning context (i.e., school, 
number of math classes previously taken, course engagement), and scores on the practice AP 
exam, which served as an estimate of students’ proficiency in statistics.  

We then examined factors that predict performance in a low-stakes test context and in a 
high-stakes test context, both before and after taking into account students' predictions of 
performance. Separate analyses were conducted using practice assessments scores as a 
performance outcome in a low-stakes test context, and scores from the actual AP exam as 
outcomes in a high-stakes test context. Block one variables consisted of those related to the 
individual background characteristics (i.e., age, gender, parental education) and the classroom 
context (i.e., school, number of math classes previously taken, course engagement). The 
students’ prediction of their score two months prior to the exam was entered as the only 
additional predictor in block two. Tukey posthoc contrasts were conducted to compare the 
marginal means for each level of the ordinal predictors using the emmeans package in R (Lenth 
et al., 2019). All analyses were conducted in R version 3.6.1 (R Core Team, 2019). 

Results 
We were interested in examining the relation between students’ predictions of their scores and 
their actual performance on the AP exam.  
Descriptive Statistics 

Table 1 shows the descriptive statistics for each of the measures based on a sample size of 209 
respondents. The mean age of the sample was 16.6 years, with participants ranging between 14 
to 18 years of age. The majority of participants indicated they were in their senior (64.7%) or 
junior (10.7%) year of high school, with approximately one quarter indicating they were in their 
sophomore year (24.6%). The sample was approximately evenly split between female (53.5%) 
and male (46.5%) participants. The majority of participants in the sample indicated they came 
from a household with parents who had obtained a four-year college degree or above (88.8%), 
with approximately a quarter indicating a parent had a doctoral or professional degree (25.2%). 

	
Table 1. Descriptive sample characteristics 
Variable Levels 

(Factors Only) 

M (SD) / 

Frequency (%) 

Age (years) N=187 

   M (SD)    M=16.6 (SD=0.9) 



	

 
8 

Biological Sex N=187 

   N (%) Female    100 (53.5%) 

  Male    87 (46.5%) 

Parent Educational N=325 

   N (%) Did not finish high school    6 (3.2%) 

 High school diploma / G.E.D.    8 (4.3%) 

 Attended college, no degree    1 (0.5%) 

 Associate degree    6 (3.2%) 

 Bachelor's degree    70 (37.4%) 

 Master's degree    51 (27.3%) 

 Doctoral/professional degree    45 (24.1%) 

Math Classes Previously Taken N=184 

   M (SD)      M=2.9 (SD=1.3) 

Course Engagement (SSE-S sum) N=209 

   M (SD)      M=80.9 (SD=12.5) 

Practice AP Exam Score (z-score) N=182 

   M (SD)      M= –.03 (SD=.79) 

 

Table 2 shows the relative proportion of scores for predictions made approximately 2 
months prior and within 2 weeks of the actual AP exam date, respectively, both before actual 
scores were known, along with the actual scores received on the AP exam. Compared with the 
sample size 2-months prior (N = 209), the sample size for predicted scores within a 2-week 
window (N =154) was smaller by 55 participants. Over half (56.4%) of those 55 with missing 
values at the second time were from the same school. Despite a presumed missing not-at random 
mechanism, besides school, none of the other participant demographic, predicted scores, nor 
learning outcomes significantly differed between the sample with predicted scores 2-months 
prior to the exam and the subsample with predicted scores at the later time point.  

The proportions of predicted scores at each level did not appear to vary extensively 
between the two time points. There was considerable agreement between the two score 
predictions, as evidenced by a moderate-to-large kappa (κ) statistic (see McHugh, 2012), κ with 
quadratic weight (κweighted) = .78, z = 9.78, p < .001. The correlation between the two predictions 
was also high (rpolychoric = .87; see Table 3).  
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Table 2. Frequency of predicted and actual AP Statistics scores 
Score Predicted AP Score 

(2 months prior) 

Predicted AP Score 

(2-week window) 

Actual AP Score 

 N = 209 N = 154 N = 209 

1 2 (1.0%) 1 (0.6%) 6 (2.9%) 

2 7 (3.3%) 10 (6.5%) 29 (13.9%) 

3 73 (34.9%) 47 (30.3%) 50 (23.9%) 

4 75 (35.6%) 54 (34.8%) 54 (25.8%) 

5 52 (24.9%) 43 (27.7%) 70 (33.5%) 

 
Relations Between Predicted Scores and Learning Outcomes 

Correlations between predicted and actual AP scores were moderate-to-strong, see Table 3. A 
Williams test (Steiger, 1980; Williams, 1959), which is used to evaluate differences between two 
polychoric correlations derived from one common variable, did not find a significant difference 
between correlations (t = .94, p = .34) of actual and predicted AP scores when predictions were 
made 2 months (rpolychoric = .73) prior to testing, or actual and predicted AP scores within a 2-
week window of the exam (rpolychoric = .69). Note that a polychoric correlations are used for 
estimating the correlation between two presumably normally distributed continuous latent 
variables and tend to be larger than Pearson correlation coefficients. 

 
Table 3. Polychoric correlations between predicted and actual AP scores 
 1. 2. 

1. Predicted AP Score (2 months prior) -  

2. Predicted AP Score (2-week window) .87 - 

3. Actual AP Score .73 .69 

Note: All correlations significant at the 𝛼 = .05 level with Bonferroni adjusted critical value = 
.017.  

Figure 1 and Figure 2 present confusion matrices of the predicted and actual scores, with darker 
shading indicating a cell that represents a greater proportion of response tendencies. Weighted 
(squared) kappa revealed moderate agreement between predicted scores and actual scores both 2 
months prior (κweighted = .64, z = 21.27, p < .001) and within 2 weeks of the actual test (κweighted = 
.61, z = 13.42, p < .001).  

Figure 1. Confusion matrix with cell values representing outcome frequencies showing predicted 

score 2 months prior (predicted score) and actual exam score (actual score) 
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Figure 2. Confusion matrix with cell values representing outcome frequencies showing predicted 

score within 2 weeks of exam (predicted score) and actual exam score (actual score). 

 

In light of the agreement between the two predictions and their similar correlations to actual 
performance, we opted to use the earlier predicted score to examine associations with 
performance indicators in the following analyses for at least two reasons. Firstly, many teachers 
dedicate substantial time in the spring semester review course material in preparation for the AP 
exam, and thus understanding the accuracy and bias earlier prediction of performance could be 
more useful to teachers and students. Secondly, due to attrition in the present sample, there was 
more data available for predicted scores measured at the earlier time point. 
Prediction Inaccuracy and Bias 
Inaccuracy: Distance between actual and predicted scores 

To examine the association between predictors and the distance between actual and predicted 
scores, an ordinal logistic regression was conducted with Hessian approximation using the MASS 
package (Venables & Ripley, 2002) in R. None of the predictors were significant in accounting 
for variation in the distance between predicted and actual scores, see Table 4. Only two 
participants had distance scores of 3 or 4, with 4 being the maximum distance possible, and thus 

Predicted Score (2 months prior) 
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were considered as potentially influential points. The results were robust, both with and without 
these two influential points. Excluding these two points, nearly half of the participants were 
accurate in predicting their scores and had a distance value of 0 (49.8%), others were off by 1 
(44.5%) and a very small percentage were off by 2 points (5.7%)  
Bias: Over- and under-confidence 

We subsequently examined whether the same set of predictors explained students’ 
overconfidence biases such that they either over- or under-estimated their performance. As 
noted, nearly half of participants were accurate, with a bias of 0 (49.8%) and the remainder were 
about equally split between tending towards overconfidence with a positive bias value (27.8%) 
or underconfidence with a negative bias value (22.5%). The results indicated a significant effect 
of enrolment within the same school, LR 𝜒! = 29.52, p < .001, suggesting that there is some 
commonality in prediction bias among students enrolled in the same schools, see Table 4. The 
effect of course engagement was not statistically significant, LR 𝜒! = 3.72, p = .054.  

	
Table 4. Variables accounting for prediction inaccuracy and bias (N=161) 

  Inaccuracy  Bias 

 df LR 𝜒!  p  LR 𝜒!  p 

1. School 5 1.84  .870  29.52 *** <.001 

2. Age (years) 1 <.001  .985  .15  .700 

3. Gender (1=Female) 1 .04  .847  .86   .354 

4. Parent Education 3 1.92  .590  1.49   .684 

5. Math Classes Taken 4 4.55  .337  4.60  .331 

6. Course Engagement (sum) 1 .61  .436  3.72 † .054 

7. AP Practice Exam Score 1 .15  .701  .77  .380 

*** p < .001, † p < .10 
 
Associations between Predicted Score and Test Scores 
Low-stakes test performance 

Scores on a practice exam were used as indicators of performance in a low-stakes testing context, 
see Table 5. For 𝜂"#$%&#'! , thresholds for small, moderate and large are 0.01, 0.06, and 0.14 
(Cohen, 1988; Miles & Shevlin, 2001). Several notable effects were significant and suggested a 
weak-to-moderate effect size. Course engagement was significant (F(1,145) = 4.16, 𝜂"#$%&#'!  = 
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.03, p = .038), indicating that course engagement was associated with performance in a low-
stakes testing context. The students’ gender also appeared to explain some variation in test 
performance (F(1, 145) = 5.24, 𝜂"#$%&#'!  = .04, p = .023), with evidence suggesting that males (M 
= .17, SD = .80) tended to receive slightly higher scores on average than their female 
counterparts (M = –.11, SD = .82) when controlling for other factors. There was also a main 
effect for the categorical variable for school, indicating that differences in students’ practice 
scores could partly be explained by the school they attended (F(1, 145) = 11.90, 𝜂"#$%&#'!  = .29, p 
< .001). The effect of the number of math classes previously taken was not significant (F(4,145) 
= 2.28, 𝜂"#$%&#'!  = .06, p = .063).  

With the inclusion of students’ predictions of their performance in block two, the pattern 
of significant effects changed slightly. Course engagement (F(1, 141) = 5.12, 𝜂"#$%&#'!  = .04, p = 
.025), gender (F(1, 141) = 6.09, 𝜂"#$%&#'!  = .04, p = .015), and school (F(1, 141) = 13.82, 𝜂"#$%&#'!  
= .33, p < .001), remained significant predictors. The number of math classes previously taken 
emerged as a significant predictor (F(1, 141) = 2.65, 𝜂"#$%&#'!  = .07, p = .036). Contrasts revealed 
a significant difference in practice scores between students who had taken 2 (estimated marginal 
means =emm = .23) as compared to 3 (emm = –.41, t = 3.16, p = .016) or 4 previous math 
courses (emm = –.44, t = 2.90, p = .035). This indicates that students who reported only 2 
previous high school math classes tended to perform better on the practice exam than those who 
reported taking either 3 or 4 high school math classes. Several factors may be driving this effect, 
including the requirements and recommended course sequence set by the schools. In support of 
this explanation, we found that the number of math courses previously taken was not 
independent of the effect of school (𝜒2(df = 24) = 127.68, p < .001). Students who struggle with 
learning the material may also opt to enroll in more math classes for additional support. Age 
appeared to correlate significantly with number of math classes previously taken (rpolyserial(df = 
183) = .757, p < .001), lending support for the explanation that younger and more accelerated 
students tended to perform better on the practice exam. Alternatively, the inclusion of predicted 
AP scores and the subsequent increased magnitude of the effect of math classes on the practice 
score is likely to indicate a suppression effect (see MacKinnon et al., 2000). Thus, the number of 
math classes, which may remain an indicator of subject matter background, is not necessarily a 
good indicator of better test performance. 

Students’ predictions of performance were significantly and positively associated with 
practice scores (F(1, 141) = 6.86, 𝜂"#$%&#'!  = .04, p <.001). Contrasts revealed a significant 
difference in practice scores between students who predicted they would receive a 5 on the AP 
exam (emm = .34) compared with those who predicted receiving a 2 (emm = –.83, t = 3.34, p = 
.009), or 3 (emm = –.43, t = 4.86, p < .001) on the actual AP exam. The difference between 
students who predicted receiving a 5 as opposed to those who predicted receiving a 4 (emm = –
.02, t = 2.70, p = .056) was not statistically significant. There was also a significant difference in 
the practice scores between students who predicted receiving a 4 on the AP exam (emm = –.02) 
as compared with a 3 (t = 3.12, p = .019). The contrasts generally showed that students who 
predicted doing well (i.e., a 4 or 5) tended to do better on the practice exam than their 
counterparts who predicted receiving a 3 or lower. At many selective colleges and universities, 
enrollees who receive of a score of a 4 or 5 on an AP exam may be eligible to transfer subject 
area college credit. Therefore, the significant contrast between students predicting a 4 or 5 and 3 
or lower can suggest qualitative differences in their statistical literacy and motivation to do well 
on a practice exam.  
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Table 5. Predictors of AP practice exam score (N = 161) 
  Block 1: 

AP Practice 

 Block 2: 

AP Practice 

 df F  p  F  p 

Block 1         

1. School 5 11.90 *** <.001  13.83 *** <.001 

2. Age (years) 1 .76  .384  .89  .348 

3. Gender (0=Female, 1=Male) 1 5.24 * .023  6.09 * .015 

4. Parent Education 3 .09  .965  .11  .957 

5. Math Classes Taken 4 2.28 † .063  2.65 * .036 

6. Course Engagement (sum) 1 4.41 * .038  5.12 * .025 

Block 2         

7. Predicted AP Score (2 mo. prior) 4 -  -  6.86 *** <.001 

Block 1 R2 = .33, Block 2 R2 = .43, DR2 = .10 
*** p < .001, ** p < .01, * p < .05, † p < .10 
 
High-stakes test performance 

We next examined the set of predictors in relation to performance on an exam in a high-stakes 
testing context, see Table 6. Given the outcome being ordinal, an ordinal logistic regression 
model was tested with Hessian approximation using the MASS package in R. The same model 
building procedure was followed with entry of variables used to examine scores from the low-
stakes testing context. In the first model, we included variables related to individual background 
characteristics and the classroom learning context. There was a significant effect of school (LR 
𝜒! = 53.04, p < .001). Gender was also significant (𝛽 = 1.00, SE = .30, LR 𝜒! = 11.21, p < .001), 
indicating that males (M = 4.05, SD = 1.10) tended to perform slightly better on the actual test 
than their female (M = 3.58, SD = 1.21) classmates. The number of math classes previously 
taken (LR 𝜒! = 10.48, p < .001) appeared to account for variation in test performance, though 
course engagement did not (LR 𝜒! = 1.86, p = .173). Contrasts revealed significantly lower 
actual AP exam scores for students who had taken 4 (emm = .37) than 1 (emm = 2.71) previous 
math classes (z = 2.79, p = .042).  

The second model included student’s predicted scores two months prior to the exam, in 
addition to the variables entered into the previous model, see Table 6. Gender was no longer a 
significant predictor (LR 𝜒! = 2.23, p = .135). School remained significant (LR 𝜒! = 42.37, p < 
.001), as did the number of math classes previously taken (LR 𝜒! = 9.77, p = .045). In the second 
model, contrasts still revealed a significant difference in the actual AP exam scores between 
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students who had taken 4 previous high school math class (emm = –.38) compared with those 
who had taken 1 previous high school math classes (emm = 2.07, z = 2.80, p = .045).  

Student’s prediction of their exam score was significant (LR 𝜒! = 76.75, p < .001). 
Contrasts revealed a significant difference in actual AP exam scores between students who had 
predicted receiving a 5 (emm = 4.34) as compared to those who predicted receiving 4 (emm = 
2.78, z = 3.21, p = .012), 3 (emm = .39, z = 6.87, p < .001), 2 (emm = –1.30, z = 4.71, p < .001), 
or 1 (emm = –2.10, z = 4.18, p < .001) on the actual exam. There was also a significant difference 
between students who predicted receiving a 4 compared with those who predicted receiving a 3 
(z = 5.78, p < .001), 2 (z = 3.64, p = .003), or 1 (z = 3.31, p = .008). These findings indicate that 
students who predict receiving a score of a 4 or 5 also tend to perform better in both contexts, 
even after accounting for the other factors, likely for the same reasons outlined above.  

 
Table 6. Predictors of actual AP exam score (N = 184) 
  Block 1: 

AP Exam 

 Block 2: 

AP Exam 

 df LR 𝜒! p  LR 𝜒! p 

Block 1         

1. School 5 53.04 *** <.001  42.37 *** <.001 

2. Age (years) 1 <.001  .976  <.001  .956 

3. Gender (0=Female, 1=Male) 1 11.21 *** <.001  2.23  .135 

4. Parent Education 3 2.18  .537  .91  .824 

5. Math Classes Taken 4 10.48 * .033  9.77 * .045 

6. Course Engagement (sum) 1 1.86  .173  1.49  .222 

Block 2         

7. Predicted AP Score (2 mo. prior) 4 -  -  76.75 *** <.001 

*** p < .001, ** p < .01, * p < .05 
 

Discussion 
In the present study, we sought to examine whether students are accurate in their self-assessment, 
and whether their predictions of performance on a standardized AP Statistics exam was related to 
their actual scores. We examined self-assessment accuracy two months prior to taking the exam 
and within two weeks of the actual exam. Our results did not produce evidence that predictions 
differed between the two time points, suggesting that the predictions were relatively stable within 
the two-month window prior to the exam. This finding appears consistent with past research with 
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low-stakes assessments that found stability in students’ predictions of performance (Foster et al., 
2017). One explanation for such stability in students’ predictions is that much of the course 
content had already been covered two months prior to the exam to provide an extended exam 
preparation period. Thus, at the two time points, students were reflecting on their knowledge of 
about the same amount of course material. Alternatively, such stability could be influenced by 
other factors, such as students’ unwavering aspiration to achieve a particular level of mastery and 
thus receive a particular exam score (Händel & Bukowski, 2019). 

The association between students’ predictions of performance and actual performance 
was also examined in a low-stakes and high-stakes testing context. We sought to determine 
whether students’ predictions of performance were associated with performance in both testing 
contexts after accounting for variation in certain background characteristics of the individual 
student, as well as the classroom learning context. We found that in both low- and high-stakes 
testing contexts, students’ prediction of their performance on the AP exam was significantly 
associated with performance, even after accounting for other factors, such as their backgrounds 
and learning contexts. 

We also sought to examine how these individual factors were associated with 
achievement in statistics. We did not find associations between either age of the participant or 
their parents’ educational attainment with respect to their performance in either testing context. 
Unlike age, gender appeared to correlate with students test scores, at least when not accounting 
for variation in scores related to students’ predictions of performance. The findings with respect 
to the present sample indicate that males tended to perform slightly better than female classmates 
with respect to the practice exam and the actual AP exam. Such findings, while troubling, may 
point towards the beginning of a gender achievement gap in STEM courses and subsequent 
career paths (Wang & Degol, 2016; You, 2010).  

Prior math attainment has been shown to explain variation in the accuracy of students' 
prediction of performance in math education (Hatami, 2015; Hosein & Harle, 2018). The number 
of previous math courses accounted for variation in the high-stakes testing context both with and 
without accounting for students’ predictions of performance. In both contexts, the association 
appeared to be non-linear, with contrasts indicating that a lower number of math classes 
previously taken was associated with high scores on both the practice and actual exam. Prior 
math experience, as indicated by the number of previous math classes taken, may also be 
confounded with students’ age (Boud et al., 2013) as well as the requirements or course sequence 
students must meet for graduation at their schools. Furthermore, the effects found in the present 
analysis may be partly driven by other factors that may influence results in regression models, 
such as the general lack of variability in the number of math classes taken or a suppression 
effect. 

The effect of course engagement appeared to be only robustly associated with 
performance in the low-stakes testing context. This effect persisted both with and without 
accounting for students' predictions of performance. Self-efficacy beliefs, which likely influence 
predictions of performance (Pajares, 1996), are believed to influence motivation and engagement 
(Greene, 2015). Such values and beliefs may be more likely to predict variation in performance 
in low-stakes assessment contexts, where intrinsic rewards (e.g., mastery of skills), as opposed to 
extrinsic rewards (e.g., grades), are considered motivators. 

These findings build on earlier work examining the accuracy of predictions of 
performance. Hosein and Harle (2018) conducted a study examining accuracy both with respect 
to the difference between the actual and predicted scores, which they refer to as bias, as well as 
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the absolute value of the difference, which they refer to as inaccuracy. In the present study, we 
operationalized inaccuracy in much the same way; however, we opted to use an overconfidence 
bias estimate derived from the direction of the difference (positive, negative, neither). We felt 
that this approach was a more appropriate operationalization of accuracy and overconfidence 
bias, particularly given that the underlying associations between outcomes and predictors in each 
model is presumed linear. By contrast, if the raw difference between actual and predicted scores 
is presumed to be linearly related to the predictors, then the absolute value of that difference can 
hardly bear a linear association with the predictors and thus fitting linear models for both seems 
inappropriate. In practice, linear methods have been used to model both types of outcomes (e.g., 
Nietfeld & Schraw, 2002). Thus, we believe this study provides some precedent for new ways of 
analyzing self-assessment inaccuracy. 

Our findings provide some evidence in the accuracy of students’ self-assessment within 
the context of an AP Statistics course. These findings raise the possibility that students’ 
judgements of learning may be used for instructional purposes. Though self-assessment is not 
appropriate for summative assessment purposes (Andrade, 2019), it may serve at least two 
practical functions. First, practicing self-assessment may facilitate the development of meta-
cognitive skills, which enable students to actively monitor and evaluate their knowledge and 
performance, and thus achievement in math (Baliram & Ellis, 2019). Students who are 
encouraged to practice self-monitoring and self-regulation on a recurring basis tend to become 
more accurate in judging their performance and adjusting behavior to achieve certain objectives 
(Cleary & Zimmerman, 2004). Second, as students develop such skills, they may become more 
attuned to their understanding of subject matter and be better able to identify strategies that lead 
to improved learning and mastery of the subject matter. Findings from research has indeed 
shown improvements in students’ monitoring accuracy and performance by means of judgment 
training (Händel et al., 2020; Nederhand et al., 2019). Though self-assessment may not have any 
direct use within a classroom learning context, it may support students in developing 
metacognitive skills associated with academic achievement.  
Limitations 

Problems of measurement abound in studying the accuracy of self-assessment. Mabe and West 
(1982) noted that much of the variability in effect size estimates drawn from studies examining 
the relation between predicted and actual performance could be explained by differences in how 
performance was measured. In one meta-analysis examining the relations between student and 
teacher assessments, Falchikov and Boud (1989) found that multiple factors appeared to 
influence the strength of the relation between both forms of assessment, including the level of 
difficulty in the course and subject matter of the course. Not only how the accuracy of self-
assessment is being measured, but also the context in which it is measured appears to influence 
the strength of the association between self-assessment and other measures of performance.  

These matters aside, there are several factors that may have restricted the amount of 
variability in our outcome measures, and thus the reach of our findings. There were very few 
students who made predictions of their performance that were greater than a two-point difference 
(only two participants with difference of 3 or 4 in their inaccuracies). Hence, there may not have 
been sufficient variability in the outcome for our predictors to reach a level of significance. 
Nevertheless, we did find some robust effects of predictors of performance, though not with 
respect to predicting differences in inaccuracy or overconfidence bias estimates. Additionally, 
there is likely to be missing data in the practice and actual AP exams which could bias our 
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results. Students may not have completed the practice exam because it had little bearing on their 
grade, and were unmotivated to do so. Conversely, students may not have completed the actual 
AP exam because they may have estimated that they would receive a low score on it and did not 
feel that it would be productive to sit for the exam. Further analysis should account for effects of 
restricted range on the association between predicted and actual scores on the AP exam due to 
the potential for biased missingness.  

There appeared to be a robust effect of schools, which had been entered as a covariate in 
the model. While it is tempting to examine this effect, conclusions drawn based on the current 
data are likely to have very limited generalizability. Students who enroll in a particular school 
may have other demographic commonalities. Schools may also vary in terms of their 
pedagogical emphasis in preparing students for AP exams. Further work should seek to 
distinguish between individual and school characteristics that may influence accuracy of 
predictions on exams, as well as performance. 
Conclusion 

While past research has raised questions about the use of self-assessment in teaching and 
learning processes, our findings suggest that students’ predictions of performance may not be 
entirely irrelevant to future performance in the subject area. At both time points, student’s 
predictions were associated with actual test performance in both low- and high-stakes testing 
contexts. These findings suggest self-assessment may be accurate in predicting test performance 
in specific contexts, and stable over discrete spans of time. In high-stakes testing contexts, math 
experience also explained variation in test performance, even after accounting for students’ 
predictions. Engagement was found to be associated with performance in low-stakes testing 
contexts. Further research should examine factors that influence prediction inaccuracy and 
overconfidence bias, while taking into consideration that its association with performance may 
be non-linear.  
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