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Abstract 

In mathematics, learners often spontaneously draw on prior knowledge when learning 

new ideas. In this study, we examined whether the specific diagrams used to represent more 

familiar (i.e., whole number division) and less familiar ideas (i.e., fraction division) shape 

successful transfer. Undergraduates (N = 177) were randomly assigned to demonstrate fraction 

division in a 3 (Diagram: Number Line, Circle, None) x 3 (“Warm-up” Example: Whole Number 

Division, Fraction Addition, None) between-subjects design. We hypothesized that transfer from 

whole number division would be greatest in the number line condition. When using number lines 

and warming up with whole number division, students generated more accurate conceptual 

models of fraction division. However, both number lines and circles supported transfer from 

whole number concepts to fraction concepts, whereas having no diagrams did not. Diagrams may 

play a critical role in helping learners make use of their vast prior knowledge.  

Word Count: 146 

 

Keywords: fraction learning; analogical transfer; diagram; conceptual understanding; number 

line 
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Diagrams Support Spontaneous Transfer across Whole Number and Fraction Concepts 

1 Introduction 

When engaging with new mathematical tasks, learners often have a wealth of prior 

knowledge of more familiar concepts that can shape their construal of, and approaches to, novel 

tasks. For example, by the time children are first introduced to fractions and their operations, 

they have considerable experience with prerequisite whole numbers, measurement, and division 

concepts (see NGA & CCSSO, 2010). Also, they have experience with the types of visual 

representations used to represent fractions, including shapes such as circles, rectangles, and lines 

(see NGA & CCSSO, 2010). A growing body of work demonstrates that learners often 

spontaneously transfer from prior knowledge, or draw on their understanding of previously-

encountered problems and concepts, when tackling new problems. We define spontaneous 

transfer as learner-initiated transfer, in contrast to transfer that is explicitly directed by another 

(i.e., through hints, see Gick & Holyoak, 1980, or direct instruction, see Sidney, 2020). 

Spontaneous transfer shapes learning and problem-solving across the lifespan. For example, 

infants (Chen et al., 1997) and older children (Sidney & Alibali, 2017) apply strategies from 

previously-solved problems to new problems that immediately follow, even when subsequent 

problems are perceptually dissimilar. In doing so, they leverage prior experiences to solve later 

problems more efficiently. Similarly, when adults solve conceptually-similar, but perceptually-

dissimilar problems, earlier strategies influence later ones (Day & Goldstone, 2011), even across 

a 24-hour delay (Schunn & Dunbar, 1996).  

Several aspects of learners’ prior experiences, and the relationship between prior 

experiences and the task at hand, can shape whether spontaneous transfer is likely to occur. 

Indeed, many studies of cognition and learning have demonstrated that features of the prior 
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learning episode increase the likelihood of spontaneous transfer to new tasks. Opportunities to 

compare multiple exemplars (e.g., Gentner et al., 2003), using both concrete and abstract 

instantiations (e.g., McNeil & Fyfe, 2012), and using linguistic cues that highlight conceptual 

structure (e.g., Gentner & Hoyos, 2017) during the learning episode can contribute to the 

likelihood of transfer to later problems. Much less research in cognition and learning has focused 

on features of new tasks that support, or hinder, productive transfer from learners’ prior 

experiences (see Sidney & Thompson, 2019). However, several researchers have proposed 

theoretical frameworks for transfer (Barnett & Ceci, 2002; Klahr & Chen, 2011; Nokes-Malach 

& Mestre, 2013) that suggest that the context of the transfer task itself can facilitate, or fail to 

facilitate, productive transfer. For example, Klahr and Chen (2011) proposed a 3-dimensional 

model of “transfer distance” to account for how similarities between familiar and novel tasks, 

similarities in the contexts and settings in which those tasks occur, as well as the intervening 

time between them all shape the likelihood of spontaneous transfer amongst learners. 

The goal of the current study was to examine one aspect of context in mathematical tasks 

that may facilitate spontaneous transfer from learners’ familiar prior knowledge: visual 

representation. Here, we examined whether the nature of the visual representations used to 

represent more familiar and less familiar mathematical ideas contribute to the likelihood of 

successful spontaneous transfer across them. First, we review the role of visual representations in 

mathematics learning, and fraction learning in particular. Then, we turn to a discussion of the 

role that visual representations may play in inviting transfer from learners’ familiar whole 

number concepts to more challenging fraction concepts. 
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1.1 Visual Representations 

 External visual representations, such as diagrams, illustrations, and manipulatives, often 

support students’ learning, performance, and transfer to new situations (Butcher, 2006; Cooper et 

al., 2018; Moreno et al., 2011; Sidney et al., 2019, see Mayer, 1999, 2005). In particular, 

diagrams that represent key mathematical relationships as spatial relationships can support 

learners’ conceptual understanding (e.g., Hamdan & Gunderson, 2017; Kellman et al., 2008; 

Larkin & Simon, 1987; Moreno & Mayer, 1999; Moss & Case, 1999; Rau et al., 2014; Sidney et 

al., 2019). “Conceptual understanding” refers to a deep understanding of the meanings of 

symbols and the mathematical relationships between elements within a mathematics problem1 

(see Crooks & Alibali, 2014). For example, visual representations can improve learners’ 

conceptual understanding of fraction division. Although few American adults can articulate what 

it means to divide by a fraction (e.g., Ball, 1990; Bentley & Bosse, 2018; Luo et al., 2011; Ma, 

1999; Sidney et al., 2015; Yao et al., 2021), diagrams such as those in Figure 1 can help learners 

to conceptualize fraction division as the number of times the second operand “fits” into the first 

(Sidney et al., 2015; Sidney et al., 2019).  

In the U.S., recommendations for instructional practice, such as the Common Core State 

Standards for Mathematics (NGA & CCSSO, 2010) and several practice guides from the 

Institute of Education Sciences (IES) aimed at improving math instruction (e.g., Fuchs et al., 

2021; Siegler et al., 2010; Woodward et al., 2012), often include specific recommendations for 

using visual representations during teacher instruction and student practice. However, research in 

math and science learning demonstrates that not all visual representations are equally effective at 

supporting learners’ understanding of conceptual relationships within a domain. Even very subtle 

perceptual differences between diagrams can elicit different mathematical processes. Children’s 
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(e.g., Alibali & Sidney, 2015; Shrager & Siegler, 1998; Siegler & Alibali, 2004) and adults’ 

(e.g., Fazio, DeWolf et al., 2016; Sidney et al., 2019) mathematical thinking is inherently 

variable--people use multiple strategies within a domain. Problems with different features often 

elicit different ways of thinking and learning  (e.g., Boyer et al., 2008; De Bock et al., 2011; 

Hurst, Shaw et al., 2020; Kaminski et al., 2008; Rau & Matthews, 2017; Schnotz, & Kürschner, 

2008). 

 

Figure 1. These number lines demonstrate quotative models of whole number division (a) and 
fraction division (b). In both cases, division is represented by the number of times the dividend, 
6, can be partitioned into sections as large as the divisor, either 2 in panel (a) or ½ in panel (b). In 
the current study, participants in the Whole Number Division Example condition “warmed up” 
with an example problem similar to that shown in panel (a). Figure adapted from Sidney & 
Thompson (2019). 
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For example, Siegler and Ramani (2009) contrasted children’s learning from number-

line-like linear board games and circular board games that emphasized the relative magnitudes 

(i.e., size) of the number of whole numbers. Their prior research (Siegler & Ramani, 2008) 

demonstrated that linear board games improved low-income children’s understanding of whole 

number magnitudes, leading them to consider whether the perceptual structure of the board game 

representation was a critical feature of the intervention. Siegler and Ramani found that indeed it 

was. Children who played linear board games were better able to precisely estimate the 

magnitude of whole numbers and had more success on later whole number arithmetic problems. 

Given that children in both conditions were instructed to play the number games in identical 

ways, differences in the perceptual structure of the representations themselves (i.e., linear vs. 

circular) likely caused these differences in learning. 

 Similarly, research on analogical transfer from an experimenter-taught “source” problem 

to a later, conceptually-similar “target” problem demonstrates that the nature of diagrams 

appears to matter. In one study, Gick and Holyoak (1983) found that including a diagram of the 

solution for the source problem did not support spontaneous transfer to a target problem among 

adult university students. In contrast, Beveridge and Parks (1987) demonstrated that both 

children and adults were more likely to spontaneously transfer across problems when the source 

problem included a visual representation than when it did not. Importantly, both studies taught 

learners the same classic analogy (see Duncker, 1945) but with different visual representations. 

This suggests that some visual representations may be more likely to facilitate spontaneous 

transfer to a later target problem than others. 

These lines of research clearly demonstrate that diagrams can shape how learners engage 

with mathematical problems, and in some cases improve learning and subsequent transfer to new 
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problems. However, the studies of learning and transfer reviewed thus far focus on the use of 

visual representations during the prior learning episode and observe transfer on an untrained task 

on which a diagram was not provided. Much less research has focused on when, and how, visual 

representations facilitate transfer from learners’ existing prior knowledge when they are learning 

something new. In other words, although we know a great deal about how to use visual 

representations today that makes transfer more likely tomorrow, we know little about how 

instructors should use visuals in a learning context today to make spontaneous transfer more 

likely from what was learned yesterday. 

A handful of studies have empirically examined learners’ spontaneous and directed 

transfer from their own prior knowledge in mathematics. However, many include visual 

representations in every condition (e.g., Hattikudur et al., 2016; Richland & Hansen, 2013; 

Schwartz & Bransford, 1998; Sidney, 2020; Sidney & Alibali, 2015; Thompson & Opfer, 2010). 

Furthermore, researchers (Richland et al., 2007; Sidney & Thompson, 2019) have suggested that 

visual representations are a critical component of analogical instruction aimed at leveraging 

learners’ prior knowledge. However, to our knowledge, no study has tested this prediction. Thus, 

the role that including visual representations versus not plays in supporting spontaneous transfer 

from learners’ prior knowledge remains unclear. Theoretically, this issue is important for fully 

understanding the role of visual representations in transfer. Practically, this issue is important for 

making clear, evidence-based recommendations for how to best draw on learners’ prior 

knowledge during instruction. 

1.2 Visual Representations in Fraction Learning 

We focus on the role of visual representations and transfer in learners’ understanding of a 

challenging fraction concept, understanding the conceptual structure of fraction division. 
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Understanding fraction operation concepts is difficult for both children (e.g., Mack, 1990, 1995, 

2001; Sidney & Alibali, 2015, 2017; Siegler et al., 2011) and adults (e.g., Ball, 1990; Bentley & 

Bosse, 2018; Luo et al., 2011; Ma, 1999; Sidney et al., 2015; Yao et al., 2021), despite being a 

critical aspect of children’s development of deep understanding of mathematics. The National 

Mathematics Advisory Panel (NMAP) considers fraction understanding to be foundational for 

algebra learning (NMAP, 2008). Moreover, children’s understanding of fractions predicts later 

algebra success and mathematics achievement more broadly, even when controlling for other 

individual differences in cognition (Bailey et al., 2012; Siegler et al., 2012).  

Visual representations are a key component of recommendations for fraction instruction 

(e.g., Siegler et al., 2010). They are also a component of many empirically-tested interventions 

for supporting students’ fraction learning (Cramer et al., 1997; Cramer et al., 2002; Fazio, 

Kennedy et al., 2016; Fuchs et al., 2013; Kellman et al., 2008; Moss & Case, 1999; Rau et al., 

2014). However, many recent studies have demonstrated variation in learners’ strategies (Hurst, 

Massaro et al., 2020; Sidney et al., 2019) and instructional effectiveness (Gunderson et al., 2019; 

Hamdan & Gunderson, 2017; Kaminski, 2018) when different types of visual representations are 

used during fraction instruction. In line with this prior research, here we focus on two types of 

diagrams commonly used to support learners’ fraction concepts: circle diagrams and number line 

diagrams.  

Critically, these two types of diagrams have different affordances for thinking about 

fraction concepts. Circle diagrams represent the magnitude of fractions, and other rational 

numbers, as areas (e.g., 1 as one whole circle, and ½ as half of the area of a circle), and have 

been shown to support children’s part-whole thinking about fractions (e.g., thinking of ⅔ as 2 out 

of 3 parts in a whole; Cramer et al., 1997; Cramer et al., 2002; Cramer et al., 2008; Hurst, Shaw 
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et al., 2020; Kieren, 1976; Pitsolantis & Osana, 2013). In contrast, number lines afford thinking 

about fractions as measurements (Kieren, 1976; Moss & Case, 1999) and can afford learners’ 

thinking about the relative magnitude of two numbers represented on the same number line 

(Sidney et al., 2019; Siegler et al., 2011). Furthermore, several theoretical accounts of the 

development of children’s rational number understanding (Moss & Case, 1999; Siegler et al., 

2011) have emphasized the utility of number-line-like representations for understanding fraction 

concepts. Linear visual representations of number, such as number lines, have been shown to 

support children’s whole number (e.g., Booth & Siegler, 2008; Siegler & Ramani, 2009) and 

fraction (e.g., Fazio, Kennedy, et al., 2016) reasoning. In addition, children’s ability to place 

rational numbers on a number line strongly predicts their fraction arithmetic performance 

(Siegler et al., 2011; Siegler  & Pyke, 2013). Given this evidence, Siegler and colleagues (Siegler 

et al., 2010; Siegler et al., 2011) have proposed that number lines are a critical visual 

representation for students’ understanding of all rational numbers. 

In line with these theoretical accounts, and recommendations from the IES practice guide 

(Siegler et al., 2010), several recent studies have demonstrated a number line advantage over 

circle diagrams for both simple and more complex fraction concepts. For example, Gunderson 

and colleagues (Gunderson et al., 2019; Hamdan & Gunderson, 2017) have demonstrated 

empirically that when children learn how to interpret fraction symbols while referencing a 

number line diagram, they are better able to reason about the magnitude of symbolic fractions 

when no diagram is present than those who learned with circle diagrams. Similarly, Sidney and 

colleagues (2019) demonstrated a number line advantage for reasoning about fraction division. 

Children who were asked to model fraction division problems with number lines were both more 

likely to generate a correct solution to problems and more likely to demonstrate conceptual 
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understanding of the division relationship than those who modeled problems with circles, 

rectangles, or no diagram at all. Furthermore, qualitative analyses suggested that, as 

hypothesized by Siegler et al. (2011), number lines afforded representing both operands in a 

problem relative to a single endpoint, 0, allowing learners to better compare the relative 

magnitudes of both numbers. This may afford a key division concept: thinking about the quotient 

as how many times the second operand “fits” into the first.  

1.3 Transfer for Fraction Learning 

Although representing, understanding, and problem-solving with fractions pose 

challenges for many people, several recent studies have demonstrated that learners can leverage 

their more familiar whole number knowledge to bootstrap fraction learning. For example, when 

learning about the magnitudes associated with fraction symbols, Yu and colleagues (2020) 

presented third- through fifth-grade students with analogies to familiar whole number 

magnitudes (e.g., the location of 3/8 on a 0-1 number line is analogous to the location of 3 on a 

0-8 number line). Children who saw the whole number and fraction number lines spatially 

aligned on the same screen made more precise fraction magnitude estimates than did those 

children who did not view aligned whole number and fraction number lines. These findings 

suggest that young learners can effectively draw on their prior knowledge of placing whole 

number magnitudes on number lines to increase the precision of their estimates of fraction 

magnitudes.  

Furthermore, a growing number of studies (Sidney, 2020; Sidney & Alibali, 2015, 2017; 

Sidney et al., 2015) provide evidence for spontaneous transfer from learners’ prior knowledge of 

whole number division concepts to their conceptual understanding of fraction division. In these 

studies, some learners practice with whole number division problems immediately before 
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engaging in fraction division learning or problem-solving. Other learners either practice with 

fraction addition, subtraction, or multiplication (Sidney & Alibali, 2015, 2017) or do not practice 

with any previously-learned problem (Sidney, 2020). Across studies, when learners first practice 

with whole number division, their conceptual knowledge of fraction division is enhanced in 

comparison to practice conditions involving other operations. These findings suggest that when 

learners’ relevant prior knowledge is activated immediately before new learning, spontaneous 

transfer from whole number division to fraction division is more likely.  

Importantly, Sidney and Thompson (2019) have suggested that activities that include 

visual representations that are consistent with activities in the target instruction (e.g., Day & 

Goldstone, 2012; Sidney, 2020; Thompson & Opfer, 2010) further increase the likelihood of 

spontaneous transfer from prior knowledge concepts. In line with this argument, many studies of 

transfer have included external representations including diagrams and physical manipulatives. 

However, as discussed in section 1.1, the nature of diagrams used to invite transfer from more 

familiar concepts to less familiar ones vary across studies, including both number lines and circle 

diagrams.  

Importantly, in proposing that number line representations support both whole number 

(e.g., Booth & Siegler, 2008; Siegler & Ramani, 2009) and fraction learning (e.g.,  Fazio, 

Kennedy et al., 2016; Gunderson et al., 2019; Hamdan & Gunderson, 2017; Sidney et al., 2019; 

Yu et al., 2020), Siegler and colleagues’ (2011) Integrated Theory of Numerical Development 

implies that number line representations should also afford better integration of knowledge 

across whole number and fraction concepts. Furthermore, given that the physical actions of 

dividing with whole numbers of circles do not match the physical actions of dividing with 

fractions of circles (see Sidney & Thompson, 2019), circle diagrams could actively hinder 



 

14 

transfer. If these predictions are borne out, they would have educational implications for how 

visual representations should be used in the classroom - that numbers lines, but not circles, 

should be used to make connections during instruction. Thus, in the current study, we test 

whether number lines are more effective at facilitating spontaneous transfer from a whole 

number division concept to a fraction division concept as compared to either circle diagrams or 

no diagram at all. 

1.4 Current Study and Hypotheses 

The primary goal of the current study was to examine whether number lines facilitate 

conceptual understanding of fraction division because they better allow learners to draw on their 

relevant, familiar prior knowledge of whole number division concepts than circle diagrams. 

Despite the importance of number lines for linking between whole number and fraction concepts 

(Siegler et al., 2011; Yu et al., 2020), to our knowledge, no study has examined whether number 

lines uniquely support learners’ ability to effectively and spontaneously draw on their prior 

knowledge of whole numbers. Although Sidney and colleagues (2019) found that number lines 

facilitated conceptual understanding, they included a warm-up example of a whole number 

division problem in all conditions. Given that activating learners’ prior knowledge makes 

spontaneous transfer more likely, it remains unclear whether the number line advantage was 

solely due to differences in how number lines and circles afford thinking about fraction division, 

or due to differences in how they afford transfer from whole number division. Thus, in the 

current study, we manipulate both the type of diagram and support for spontaneous transfer from 

learners’ whole number knowledge. Furthermore, we examine the role of visual representations, 

in general, on transfer for learners’ own prior knowledge. No study has empirically tested 

whether visual representations are necessary for transfer from learners’ prior knowledge, despite 
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recommendations to include visual representations to support such transfer (Richland et al., 

2007; Sidney & Thompson, 2019). We hypothesized that number lines would support 

spontaneous transfer more often than circle diagrams or no diagram at all. 

To test this hypothesis, we manipulated the type of diagram that learners used to 

demonstrate conceptual models for fraction division and whether or not learners’ prior whole 

number knowledge was activated with a “warm-up” example. As in Sidney et al. (2019), 

students solved a set of fraction division problems. For some students, problems were presented 

with number line diagrams, some students solved problems with circle diagrams, and some 

students solved problems with no diagram at all. However, in contrast to Sidney et al. (2019), 

prior to solving fraction division problems, only one third of learners warmed up with a relevant 

whole number division example. One third of learners warmed up with fraction addition 

example, thus activating their prior knowledge of a less relevant fraction operation concept (see 

Sidney & Alibali, 2015, 2017). The last third did not warm up with any example, thus we did not 

activate any specific facet of learners’ prior knowledge.  

These manipulations allowed us to test the following hypotheses about learners’ 

conceptual models of fraction division: 

H1) We expected a main effect of diagram condition such that learners who demonstrated their 

conceptual understanding of fraction division with number lines would be more successful than 

those who used circle diagrams or no diagram at all.  

H2) We expected a main effect of example condition such that learners who demonstrated their 

conceptual understanding of fraction division after their prior knowledge of whole number 

division was activated would be more successful than those who warmed up with fraction 

addition or did not engage in a warm-up activity at all. 
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H3) Most importantly, we expected an interaction between diagram and example condition. If 

number lines uniquely support transfer from learners’ prior knowledge, then the effect of 

activating learners’ prior knowledge of whole number division prior to demonstrating fraction 

division would be larger in the number line condition than the circle or no diagram conditions. 

The study was designed to also shed light on two alternative hypotheses for H3. One 

possibility is that any visual representation would afford transfer from prior knowledge, in line 

with recommendations for analogical instruction (Richland et al., 2007; Sidney & Thompson, 

2019). If so, we would observe an equally large effect of example condition in both the number 

line and circle diagram conditions but a smaller effect of example condition in the no diagram 

condition. A second possibility is that visual representations do not affect a learners’ likelihood 

or ability to transfer from their prior knowledge of whole number division to fraction division. 

Instead, using visual representations and activating prior knowledge could affect conceptual 

understanding via distinct, non-overlapping mechanisms. In this case, we would expect main 

effects but no interaction between diagram and example condition. 

Although much of the research reviewed above involves children (e.g., Sidney et al., 

2019), we used an adult undergraduate student sample to test our hypotheses. Although children 

and adults have many differences, their understanding of fraction division has several 

similarities. Similar to children, few adults have robust conceptual understanding (Bently & 

Bosse, 2018; Sidney et al., 2015), even among preservice teachers (Ball, 1990; Luo et al., 2011; 

Ma, 1999; Yao et al. 2021). Given that undergraduate students do display transfer from recently 

activated prior knowledge (e.g., Day & Goldstone, 2011; Schunn & Dunbar, 1996) and learn 

from instruction connecting whole number division and fraction division (Sidney et al., 2015), 

we expected that adults would also demonstrate spontaneous transfer from whole number to 
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fraction division concepts. Additionally, given that the number line is theorized to affect learning 

due to affordances of the representation rather than properties of the learner, we expected the 

number line advantage to hold for adults. However, the effects of visual representations are often 

moderated by learners’ prior knowledge (e.g. Butcher, 2006; Cooper et al., 2018). Thus, circles 

may provide some advantages for undergraduate students to the extent that their math and 

diagram-relevant knowledge differs from children. Although understanding age differences is 

not a focal aim of the study, using an adult college student sample allows us to empirically 

examine whether key findings with children generalize to adult learners who often demonstrate 

many of the same misconceptions about fractions and fraction division. 

Finally, although we were primarily interested in conceptual models, we also examined 

learners’ fraction division problem-solving accuracy. There are many paths to accuracy in 

symbolic problem solving, including using symbolic procedures (e.g., invert-and-multiply) and 

generating a division model on a diagram. Number line diagrams likely support children’s 

accuracy due to increased rates of generating correct conceptual models that include the correct 

quotient.  In contrast to fifth- and sixth-grade children, undergraduate students are likely to know 

well-practiced symbolic procedures for solving fraction division problems (Ma, 1999; Sidney et 

al., 2015; Yao et al., 2021) that do not depend on conceptual understanding. Thus, we expected 

that simple accuracy may be similar across conditions for undergraduate students, but had no 

strong a priori hypothesis concerning accuracy rates. 

2 Method 

All aspects of this method were approved by the Human Subjects Institutional Review 

Board at the University of Kentucky under protocol #48308. 
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2.1 Power Analysis 

To determine the necessary sample size to test our hypothesis that the nature of provided 

diagrams would moderate the effectiveness of warming-up with a relevant whole number 

concept, we conducted an a priori power analysis to ensure adequate power to detect the 

interaction effect. Using G*Power, we assessed the number of participants needed to detect an 

effect size of !p2 = .08 for a 4 df test, the test of the interaction. This reflects our expectation of a 

medium-sized effect based on prior research on the effects of diagrams on learning (e.g., 

Butcher, 2006; Moreno et al., 2011; Sidney et al., 2019) and effects of whole number warm-up 

activities on fraction division conceptual understanding (Sidney, 2020; Sidney & Alibali, 2017) 

that suggest that the use of effective diagrams and warm-up activities can account for 

approximately 6% to 10% of the unique variability in learners’ transfer outcomes. Though our 

power analysis revealed that we would require N = 143 participants in our nine conditions, we 

planned to recruit n = 20 participants in each condition with the expectation that some participant 

data may need to be excluded. 

2.2 Participants 

Participants were N = 177 college students at a large public university in the southern 

United States recruited through their psychology courses to participate for partial course credit. 

The sample was primarily composed of non-Hispanic White women, as is typical of the 

university pool of Psychology participants (M age = 19.23y, SD = 1.42y; 82% women, 18% men; 

76% non-Hispanic White, 11% Black, 6% Hispanic/Latinx, 3% Asian, 4% other/not specified). 

There was no missing data for the focal task, and no participants were excluded. 
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2.3 Design 

As in Sidney et al. (2019), participants were assigned to solve and demonstrate fraction 

division problems in one of three diagram conditions: showing work with number line diagrams, 

showing work with circle diagrams, and showing work with no provided diagrams. Additionally, 

one-third of the participants were randomly assigned to view a whole number division example 

problem to activate learners’ familiar prior knowledge as in Sidney et al. (2019). In contrast to 

Sidney et al. (2019), the remaining participants were assigned to view a fraction addition 

example problem or no example problem at all. Fraction addition was chosen as a comparison 

case following Sidney and Alibali (2015). Although activating knowledge of fraction magnitudes 

may prepare students to represent fractions using diagrams, it has not been found to support 

understanding of division (Sidney & Alibali, 2015; 2017). 

Thus, participants experienced one of nine experimental conditions, in a 3 (Diagram: 

Number Line, Circle, No Diagram) x 3 (Example: Whole Number Division, Fraction Addition, 

No Example) between-subjects design (see Figure 2). Sample size for each condition can be 

found in Table 1. Below, we describe the manipulation of Diagram and Example in each of the 

two focal tasks; a full set of materials for each task is available on OSF: 

https://osf.io/nru2d/?view_only=8321f053d3fe4a06958878a7bfb4ad87 [this link will need to be 

updated upon publication].
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Figure 2. This figure represents the factorial design of the study. We manipulated both the 
example presented during the “warm-up” and the type of diagram used in during the task in a 3 
(Diagram: Number Line, Circle, No Diagram) x 3 (Example: Whole Number Division, Fraction 
Addition, No Example) between-subjects design.
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2.3.1 Fraction division diagram task. The set of fraction division problems included 12 

problems drawn from the diagram task in Sidney et al. (2019). These problems were originally 

designed to represent the range of fraction division problems covered in 5th and 6th grade math, 

including problems with proper fraction, whole number, and mixed number dividends and unit 

fraction and proper fraction divisors (see Supplementary Material, Table SM1). For this study, 

we omitted the easiest items (i.e., a whole number divided by a unit fraction) and the items 

eliciting partitive division (i.e., a fraction divided by a whole number). Thus, the remaining 

problems included a larger dividend divided by a smaller divisor, eliciting quotative division 

(Sidney et al., 2019). Furthermore, accuracy on the problems was highly reliable across 

participants, Cronbach’s alpha = 0.95. In the number line and circle diagram conditions, each 

problem was presented with a single diagram representing six whole units partitioned into the 

denominator units of the divisor (e.g., into eighths for ¾ ÷ ⅜ = ?). Providing a helpful unit 

structure in the diagram eases the drawing demands of representing fraction magnitudes exactly, 

thus better allowing measurement of learners’ understanding of the division relationship itself. 

Each problem was presented on a separate page of a paper packet in one of two 

predetermined random orders. The structure of these pages was identical to the materials in 

Sidney et al., (2019). The fraction division problem was presented at the top of the page, and the 

diagram or an equivalently large blank space (in the No Diagram condition) was presented 

directly below the problem. On the bottom half of the page, participants were asked to report 

their confidence (How confident are you that you solved the problem correctly? 0% definitely did 

not - 100% definitely did) and perceived difficulty level of each problem (How difficult was it to 

answer this problem? not difficult at all [1] to very difficult [4]). Findings from the confidence 
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ratings are not a focus of this manuscript, however, analyses of confidence rating data can be 

found on this project’s OSF page. 

2.3.2 “Warm-up” example problems. We introduced the fraction division diagram task 

using a separate example problem packet. The cover page of the packet for all participants 

included general instructions about the study, that they would “be asked to show how to solve 

some math problems, and answer some questions about math”. For participants in the Whole 

Number Division and Fraction Addition example conditions, the packet demonstrated “an 

example of how you can show your work”. Each participant viewed one example problem based 

on their assigned condition. Example problems for both example conditions consisted of four 

steps, with each step printed on a separate page. The whole number division example (6 ÷ 2), 

demonstrated quotative division and was modeled after Sidney et al., (2019). In step 1, 

participants were told that they could “show how big six is”. In step 2, participants were told they 

could “show how big two is” and “make a group of two.” In step 3, participants were told that 

dividing six by two is “like asking how many times a group of two goes into a group of six.” 

Finally, in step 4, participants were told to count the total number of groups and the answer was 

stated. In the fraction addition example (6 + ½), step 1 was identical. In step 2, participants were 

told to “make a group of one half.” In step 3, participants were told that adding was “like asking 

how many we have all together.” In step 4, the answer was stated. 

In the diagram conditions, a diagram matching the participants’ assigned condition was 

used to demonstrate each step. On the bottom half of each page, a blank diagram was provided 

for participants to recreate the provided diagram. On the bottom of the final page, participants 

were told that they would “be given some new problems. Please use the diagram to come up with 

the answers to the new problems.” In the No Diagram condition, each step was demonstrated 
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with number symbols only, instead of modeling operands as an area or length, and in the whole 

number division problem the quotient was represented by writing “2” down three times. On the 

final page, participants were asked to “use any method”. 

In all three No Example conditions, participants were not provided with any example. 

Instead, the cover page included the instruction to “use the diagram” or “use any method” to 

solve the problems, according to the participants’ assigned diagram condition. 

2.3.4 Other tasks. Participants were asked to write down three numbers and completed a 

math attitude questionnaire. Data from these tasks are not a focus of this report; data from the 

attitude questionnaire are reported in Sidney et al. (2021). 

2.4 Procedure 

Students participated in the study in groups of one to five, M = 3.61, under the 

supervision of one or two experimenters. Groups were randomly assigned to conditions such that 

all students in a group experienced the same condition to avoid spill-over effects. Upon entering 

the room, participants were told to find a desk with a consent form, instructed to review the 

consent form, and provided the opportunity to ask questions about the study. As the 

experimenters collected consent forms, they distributed an example problem packet to each 

participant, and read aloud the instructions. Participants were instructed to raise their hand when 

they were ready for the next part of the study, at which point an experimenter collected the 

example packet and distributed the fraction division diagram problems. When the fraction 

division problems were completed, those were collected and participants received the math 

attitude questionnaire and demographic questions to complete. Each participant worked through 

both packets individually, though the experimenters were present to answer questions. 

Experimenters did not provide feedback, nor additional instructions, but did encourage 
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participants to do their best and show their work. The entire study took approximately 30 to 40 

minutes to complete. 

2.5 Coding Participants’ Work 

Each participant’s conceptual understanding and accuracy on each problem was coded by 

two independent coders following the coding scheme outlined in Sidney et al. (2019). To 

examine participants’ conceptual understanding of fraction division, their written work (e.g., 

drawings or computations) was coded to characterize the conceptual model used to demonstrate 

the problem. Most importantly, participants’ work was categorized as reflecting a quotative 

model of division, a partitive model of division, or no model of division. Quotative models were 

coded when participants represented division as the number of times the dividend could be 

partitioned into sections as large as the divisor (see Figure 3 for examples). Partitive division 

could be coded when participants represented the quotient as the magnitude of the whole unit 

where the divisor indicates the number of units within the dividend. Note that partitive models of 

fraction division tend to be less intuitive than quotative models (e.g., Fischbein et al., 1985) and 

were never used by our sample. No disagreements occurred for division model coding. 

Percentage of conceptually-accurate division models was calculated for each participant, and 

used as the outcome of conceptual understanding of fraction division. 

Accuracy was defined as whether the participant had written the final correct answer 

anywhere on the page, and was coded with high agreement (agreement on 98% of trials). 

Percentage accuracy was calculated for each participant and used as the measure of problem-

solving accuracy. All disagreements were flagged and discussed with the first author until 100% 

agreement was reached. 
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Figure 3. Examples of accurate conceptual models of quotative division from each diagram 
condition: no diagram (top), circle (middle), and number line (bottom). 
 

3 Results 

3.1 Condition Assignment 

 Prior to conducting the focal analyses, we examined whether participants’ age and gender 

were systematically related to condition assignment using simple linear and logistic regressions. 

As expected, participants’ age, F(4,168) = 1.71, p = .150, and gender, X2(4) = 5.62, p = .230, 
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were not associated with condition assignment, suggesting that random assignment was 

successful. Furthermore, problem accuracy, F(1,175) = 0.67, p = .413 and conceptual 

understanding, F(1,175) = 0.01, p = .922, did not differ by gender. These demographic variables 

were not included in the focal analyses. 

3.2 Conceptual Understanding 

On average, participants generated accurate conceptual models of division on M = 25% 

(SD = 39%) of problems (3 out of 12) demonstrating undergraduate students’ poor conceptual 

understanding of fraction division, in general. However, variability was considerable with some 

participants generating accurate conceptual models of division on all of the problems and others 

on none. To examine whether participants’ fraction division conceptual understanding varied as 

a function of diagram and example condition, we conducted a linear regression on the percentage 

of conceptually-accurate division models across the 12 trials and included diagram condition, 

example condition, and their interaction as fixed factors. Note that this is equivalent to fitting a 

between-subjects 3 x 3 ANOVA.  Regression was preferred for ease of testing and interpreting 

contrasts and simple effects.  

In the regression model, diagram condition was represented by a set of centered Helmert 

contrasts comparing 1) any diagrams (number line and circle) to the no diagram condition and 2) 

the number line and circle conditions to each other. This allowed us to examine whether any 

diagram would support conceptual understanding, and transfer, and examine support for a 

number line advantage. Example condition was represented by a set of centered Helmert 

contrasts comparing 1) the whole number division example with the other two example 

conditions and 2) the fraction addition example with no example. This allowed us to examine 

whether spontaneous transfer from learners’ whole number division knowledge occurred. 
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Models were re-run with dummy coded variables to describe and test individual contrasts 

between conditions. No covariates were entered into the model. Dataset and analysis script are 

available on OSF: https://osf.io/nru2d/?view_only=8321f053d3fe4a06958878a7bfb4ad87. 

The regression model revealed significant main effects of both diagram condition, F(2, 

168) = 46.66, p < .001, ηp2 = .36, and example condition, F(2, 168) = 15.74, p < .001, ηp2 = .16. 

The Helmert contrasts revealed that participants who showed their work with any diagram were 

better able to generate accurate conceptual models of fraction division than those who were not 

provided with a diagram, M = 1% of trials, b = 0.38, t(168) = 8.33, p < .001. Among those in the 

diagram conditions, those who modeled fraction division with a number line, M = 54%, were 

more likely to generate accurate conceptual models than those in the circle condition, M = 25%, 

b = 0.28, t(168) = 5.17, p < .001, see Figure 4, all means and SEs are presented in Table 1. 

Furthermore, participants who were shown a whole number division example problem, M = 

42%, were also more likely to generate accurate conceptual models than those in the other two 

conditions, b = 0.26, t(168) = 5.54, p < .001; the fraction addition example, M = 19%, provided 

no benefit over no example at all, M = 14%, b = -0.05, t(168) = -0.98, p = .328. 

Table 1 
 
Average Percentage of Accurate Conceptual Models by Diagram and Example Condition 

 No Example Fraction Addition Whole Number Division 

No Diagram 0% (6%), n = 21 2% (6%), n = 21 0% (7%), n = 20 

Circle 13% (7%),  n = 20 9% (7%), n = 20 53% (8%), n = 20 

Number Line 32% (7%),  n = 17 50% (7%), n = 19 78% (7%), n = 18 
Note. The standard error of each mean is provided in parentheses. 

These main effects were qualified by a significant interaction, F(2, 168) = 4.93, p < .001, 

ηp2 = .11. The positive effect of the whole number division example on conceptual understanding 
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was greater in the diagram conditions than in the no diagram condition, b = 0.40, t(168) = 4.08, p 

< .001. To further probe the simple effects of example condition, we re-coded diagram condition 

with each condition as the reference level, refitting the model each time. There was no simple 

effect of example condition within the no diagram condition, F(2, 168) = 0.02, p = .981. In 

contrast, the simple effects of example condition within the circle condition, F(2, 168) = 13.88, p 

< .001, ηp2 = .14, and number line condition, F(2, 168) = 10.88, p < .001, ηp2 = .11, were 

considerable. In both the circle and number line conditions, participants with the whole number 

division example had greater average conceptual understanding than the other example 

conditions. The positive effect of the whole number division example in the number line 

condition did not differ significantly from the effect of the whole number division example in the 

circle condition, b = -0.05, t(168) = -0.47, p = .642. These results suggest that number lines and 

circle diagrams both afforded spontaneous transfer from learners’ prior knowledge of whole 

number division. Finally, we examined the contrast between the fraction addition and no 

example conditions in each diagram condition. As expected, there was no significant difference 

in conceptual understanding between the fraction addition example and no example within the 

circle condition, b = 0.04, t(168) = -0.40, p = .687, or the number line condition, b = 0.18, t(168) 

= 1.85, p = .066. 



 

29 

 
Figure 4. Average percentage of conceptual models of fraction division by diagram and example 
condition.  

 

3.3 Accuracy 

 On average, participants generated correct answers on M = 64% (SD = 38%) of problems 

(between 7 and 8 out of 12), but variability in accuracy was considerable with some participants 

answering none correctly and some answering 100% correctly. As with conceptual 

understanding, to examine whether participants’ fraction division problem-solving accuracy 

varied as a function of diagram and example condition, we conducted a linear regression on 

percentage accuracy scores including diagram condition, example condition, and their interaction 

as fixed factors, with Helmert contrasts specified as described above. 
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The model revealed a significant interaction between diagram and example condition on 

participants’ problem-solving accuracy, F(4,168) = 2.72, p = .031, ηp2 = .06. There were no main 

effects of diagram condition, F(2,168) = 1.40, p = .250, ηp2 = .02, or example condition, F(2,168) 

= 0.19, p = .830, ηp2 = .00, see Figure 5, Table 2. As with conceptual understanding, our Helmert 

contrasts revealed that the whole number division warm-up example had greater positive effects 

on accuracy in the diagram conditions than the no diagram condition, b = 0.38, t(168) = 3.00, p = 

.003. 

Table 2 
 
Average Percentage of Correct Answers (Accuracy) by Diagram and Example Condition 
 No Example Fraction Addition Whole Number Division 

No Diagram 74% (8%), n = 21 70% (8%), n = 21 50% (8%), n = 20 

Circle 47% (8%),  n = 20 57% (8%), n = 20 72% (0%), n = 20 

Number Line 72% (9%),  n = 17 61% (9%), n = 19 79% (9%), n = 18 
Note. The standard error of each mean is provided in parentheses. 
 

To better examine the interaction, we refit the model after dummy coding example 

condition with whole number division as the reference category and dummy coding diagram 

condition with no diagram condition as the reference category. This allowed us to examine how 

the whole number division advantage differed in the no diagram condition as compared to each 

diagram condition. First, we interpret the interactions between the contrast variables. Then, we 

interpret the simple effects of example condition within the no diagram condition. 

 In contrast to the no diagram condition, the whole number division example had more 

positive effects on accuracy relative to fraction addition in both the number line, b = -0.37, t(168) 

= -2.20, p = .029, and circle, b = -0.34, t(168) = -2.06, p = .041, conditions. In contrast to no 

diagram, the whole number division example also had more positive effects on accuracy relative 
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to no example at all in the circle condition, b = -0.49, t(168) = -2.91, p < .001, though this 

interaction contrast was not significant in the number line condition, b = -0.31, t(168) = -1.81, p 

= .07. Interestingly, in the no diagram condition, the whole number division example led to 

lower accuracy as compared to the no example condition, b = 0.24, t(168) = 2.06, p = .041, 

though similar accuracy as compared to the fraction addition condition, b = 0.19, t(168) = 1.69, p 

= .092. Overall, the interaction contrasts and pairwise comparisons suggest that while the whole 

number division example may have been advantageous, or at least neutral, in the diagram 

conditions, the whole number division example decreased accuracy in the no diagram condition. 

 

Figure 5. Average percentage of correct answers on fraction division problems by diagram and 
example condition.  
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Given the unexpected finding that the whole number division example decreased 

accuracy in the no diagram condition, we more closely examined the problem-solving 

approaches in the no diagram condition for each example condition. A thorough description of 

our qualitative analyses of participants’ strategies and errors can be found in Supplementary 

Material, section 2. The strategy analyses suggested that when we attempted to activate 

participants’ whole number division knowledge without a supporting diagram (no diagram, no 

example condition), participants less often relied on a known symbolic procedure (i.e., invert-

and-multiply) for fraction division and instead sometimes attempted to draw on their whole 

number division knowledge. Participants’ may have found it difficult to adapt the symbolic 

version of the “warm up” problem, and instead committed a variety of symbolic errors, some of 

which suggest negative transfer from whole number division. 

4 Discussion 

4.1 Overall Effects of Visual Representations and Activating Knowledge  

In this study, undergraduate students were asked to solve fraction division problems with 

and without diagrams and after either warming up with relevant familiar concepts or not. In line 

with prior research (e.g., Butcher, 2006; Cooper et al., 2018; Sidney et al., 2019), 

undergraduates’ work more often reflected conceptual understanding of fraction division when a 

diagram was present during problem-solving. Furthermore, we replicated the number line 

advantage (e.g., Hamdan & Gunderson, 2017; Sidney et al., 2019); those who used number lines 

were better at representing the conceptual structure of fraction division than those who used 

circle diagrams. Note that the overall effect sizes for diagram conditions are quite large. Without 

any diagram to support student work, learners almost never generated conceptual models for 

fraction division. Solving problems with circles provided some support, as students drew 
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accurate conceptual models of fraction division on 25% of trials, averaging across example 

condition. More strikingly, the presence of a number line doubled the rate at which students were 

able to correctly conceptualize fraction division. Thus, a number line advantage for 

conceptualizing fraction arithmetic relationships is clear. 

Also in line with prior research (Sidney, 2020; Sidney & Alibali, 2015, 2017), adults 

were more than twice as successful at representing the fraction division concept when their 

knowledge of an analogous, familiar whole number division concept was recently activated, as 

compared to either fraction addition or no warm up activity at all. Again, the size of this overall 

effect of activating prior knowledge is large. For example, in the circle condition, when learners 

did not practice with whole number division, the average percentage of accurate conceptual 

models was quite low at 13% and 9% for the other two example conditions. When learners in the 

circle condition did practice with whole number division first, they generated accurate 

conceptual models of fraction division on 53% of models, despite no instructions or other 

explicit support for transfer. Effects were similar in the number line condition though with higher 

rates of conceptual understanding due to the number line advantage. This finding suggests 

learners did spontaneously transfer from their prior knowledge of more familiar concepts when 

that knowledge was activated with a warm-up activity, and often did so successfully. 

4.2 Visual Representations and Transfer 

The primary goal of this current study was to examine the interaction between diagram 

use and activating learners’ prior knowledge, and to test whether number lines uniquely facilitate 

learners’ spontaneous transfer from their relevant prior knowledge of whole numbers when asked 

to demonstrate a challenging fraction concept. We expected that the effect of activating learners’ 

relevant prior knowledge would be greatest in the number line condition. Instead, we found that 
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both types of visual representations, circles and number lines, supported transfer from learners’ 

prior knowledge of whole numbers. While there is an overall number line advantage, even across 

the conditions in which learners’ prior knowledge of whole number division was activated, the 

number line likely confers its advantage through a different mechanism. 

We did find support for an alternative hypothesis: the presence of visual representations 

does support spontaneous transfer from learners’ prior knowledge of whole numbers in 

comparison to no visual at all. Moreover, the effect of including visual representations along 

with a warm-up example that activates learners’ relevant prior knowledge was very large and 

practically meaningful. In the no diagram condition, we saw no evidence of successful 

spontaneous transfer from learners’ whole number division understanding (i.e., that dividing is 

like asking how many times a group as big as the second operand goes into the first operand), 

despite providing identical linguistic information in all conditions. Whether a whole number 

division example was provided or not, no students generated accurate conceptual models of 

fraction division when no diagram was present. In contrast, when number lines or circle 

diagrams were present, activating learners’ whole number division knowledge prior to engaging 

with fraction division had a large effect on conceptual understanding relative to the other 

example conditions. This suggests that the diagrams themselves facilitated spontaneous transfer 

from learners’ prior knowledge. 

Many related studies of spontaneous transfer (e.g., Day & Goldstone, 2011; Schunn & 

Dunbar, 1996; Sidney, 2020; Sidney & Alibali, 2017; Sidney et al., 2015) have included visual 

representations, and the use of visual representations has been recommended to support transfer 

from more familiar concepts to newer ones during instruction (see Richland et al., 2007; Vendetti 

et al., 2015). The current study is the first to provide empirical evidence that including visual 
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representations during mathematics instruction may be necessary to facilitate such transfer. 

However, these findings cannot provide evidence for the specific mechanism of this effect. One 

possibility is that diagrams better serve to activate learners’ existing conceptual knowledge, as 

spatial relationships in diagrams may aid in highlighting the key mathematics relationships (e.g., 

Hamdan & Gunderson, 2017; Kellman et al., 2008; Larkin & Simon, 1987; Moss & Case, 1999; 

Rau et al., 2014; Sidney et al., 2019). A second possibility is that diagrams facilitate transfer 

itself; that familiar actions on a diagram, or other external visual representation, can easily be 

applied to or adapted for less familiar problems (see Sidney & Alibali, 2017). A third possibility 

is that successful conceptual transfer occurred in all conditions, but providing diagrams better 

allowed us to measure conceptual understanding of fraction division.  

The analyses of accuracy and strategy use in the no diagram condition provide reasons to 

be skeptical of the third possibility. If participants in the no diagram condition benefited from the 

whole number division example, but simply did not demonstrate conceptual understanding due 

to the absence of the diagram, we should have still observed a positive effect of the whole 

number division example on accuracy, which did not depend on drawing a diagram. Instead, the 

post-hoc qualitative coding of participants’ strategies in the no diagram condition suggested that 

some participants in the no diagram condition may have attempted to spontaneously transfer 

from the whole number division example, but did so ineffectively (see Supplementary Material, 

section 2). Note that the propensity to rely on whole number knowledge while solving fraction 

problems is a common phenomenon called the whole number bias (Alibali & Sidney, 2015; 

Bently & Bosse, 2018; Bottge et al., 2014; Malone & Fuchs, 2017; Mohyuddin & Khalil, 2016; 

Ni & Zhou, 2005), and can result in either correct or incorrect reasoning depending on the nature 

of the task.   
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Unexpectedly, we did not find evidence that number lines uniquely supported 

spontaneous transfer. Even though, in line with evidence from children (Hamdan & Gunderson, 

2017; Sidney et al., 2019), adults who used number lines were overall better able than those who 

used circles to demonstrate their conceptual understanding of fraction operations, number lines 

did not enhance the transfer effect as expected. These findings are in direct contrast to evidence 

from children (Sidney et al., 2019) showing no advantage of using circles over no diagram at all. 

Sidney and colleagues (2019) observed that the physical actions needed to generate an accurate 

quotative model of division for whole number and fraction division are closely analogous when 

representing problems on the number line (i.e., represent the first magnitude starting from 0, 

represent the second magnitude starting from 0, and iterate the second magnitude across the 

number line), but need to be adapted for circle diagrams (i.e, grouping circles in whole number 

division vs. partitioning circles for fraction division). These subtle differences may have caused 

children to have difficulty with spontaneous transfer with circle diagrams, but may not have 

posed as much difficulty to adults. Perhaps adults’ conceptual understanding of quotative whole 

number division (e.g., “make groups as big as”) is more abstract and easier to adapt across subtle 

perceptual differences. The nature of learners’ prior knowledge likely matters considerably for 

the success of spontaneous transfer (see Sidney & Thompson, 2019), and it may matter for the 

role of diagrams in transfer as well; future research is needed. Alternatively, adults may be more 

familiar with using circle diagrams for fractions than children, due to the relatively recent 

emphasis on using a number line in early and middle grades (e.g., Siegler et al., 2010). 

4.3 Accuracy  

Although our primary goal was to examine spontaneous transfer of conceptual 

understanding, we also assessed problem-solving accuracy (i.e., calculating the right answer). As 



 

37 

we noted, there are many paths to calculation accuracy including representing the conceptual 

structure and identifying the quotient as well as using symbolic procedures. Many undergraduate 

students are able to calculate quotients to fraction division problems without any conceptual 

understanding of the problems (see Ball, 1990; Ma, 1999; Sidney et al., 2015). Thus, as 

expected, there were few significant differences in accuracy across conditions. However, there 

were differences in strategy use across warm-up conditions when no diagram was present. 

Unexpectedly, participants in the no diagram condition correctly solved fewer problems when 

their familiar whole number division knowledge was activated using the example problem. Post-

hoc strategy coding (see Supplementary Material, section 2) revealed that participants in this 

condition were less likely, compared to those in the fraction addition or no warm-up conditions, 

to use an otherwise common symbolic procedure, invert-and-multiply. In contrast, in the fraction 

addition and no-warm up conditions, participants were very likely to use invert-and-multiply, 

and as long as the students knew this procedure, they could have high accuracy despite poor 

conceptual understanding. The whole number division example appeared to prompt students to 

use a different strategy than the standard invert-and-multiply procedure, but without a diagram to 

support the analogy, participants failed to generate an equally good alternative strategy. 

This finding is in line with observations from Sidney (2020) that sometimes learners 

explicitly attempt to apply strategies demonstrated on earlier problems to later ones despite 

having poor conceptual understanding of those strategies and knowing a correct symbolic 

procedure. Although activating learners’ prior knowledge is often helpful for new learning, 

successful spontaneous transfer is not guaranteed, and continuing research is needed to further 

develop a comprehensive theory of how to support learners’ use of relevant prior knowledge 
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without inviting reliance on aspects of prior knowledge that do not enhance new learning and 

problem-solving. 

4.4 Limitations and Future Directions 

As noted in section 4.2, one limitation of the current study is that the findings from this 

study do not reveal the specific mechanisms of diagrams’ effect on spontaneous transfer. One 

possibility is that diagrams better serve to activate learners’ existing conceptual knowledge, as 

spatial relationships in diagrams may aid in highlighting the key mathematics relationships (e.g., 

Hamdan & Gunderson, 2017; Kellman et al., 2008; Larkin & Simon, 1987; Moss & Case, 1999; 

Rau et al., 2014; Sidney et al., 2019). Thus, we may have observed greater rates of successful 

spontaneous transfer due to more robust activation of learners’ prior knowledge because we used 

a diagram in the whole number division warm-up example. A second possibility is that diagrams 

facilitate transfer itself; that familiar actions on a diagram, or other external visual representation, 

can easily be applied to or adapted for less familiar problems (see Sidney & Alibali, 2017). In 

this possibility, transfer may be facilitated by the match between diagrams used for the familiar 

and novel problems. 

Future research is needed to further disentangle whether diagrams support conceptual 

transfer because they better serve to activate adults’ conceptual understanding or because they 

better facilitate transfer itself. Instead of varying diagrams of both the familiar problem and 

novel problems in conjunction, varying them independently of one another may shed light on the 

specific mechanism. If diagrams serve to better activate prior knowledge, then using a diagram 

for familiar problems (compared to no diagram) may have a greater effect on conceptual 

understanding than using a diagram for novel problems (compared to no diagram). On the other 

hand, if diagrams facilitate transfer itself, then matching the diagrams between the familiar and 
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novel problems (e.g., number lines for both as compared to numbers for familiar problems and 

circles for novel ones) may have the largest effect on conceptual understanding. 

A second limitation is that our findings may or may not generalize to children who are 

still learning about fraction division. In some ways, the adults in our sample are similar to 

children in prior research on fraction learning (e.g., Hamdan & Gunderson, 2017; Richland & 

Hansen, 2013; Sidney & Alibali, 2015, 2017; Sidney et al., 2019). Both groups show very poor 

conceptual understanding of fraction division without intervention, number lines support 

conceptual understanding for both, and both benefit from activation of prior knowledge. 

However, one key difference from prior research with children (Sidney et al., 2019) is that adults 

in our sample benefitted from circle diagrams whereas children did not. Thus, additional research 

with children is needed to examine whether the number line would uniquely support transfer 

when prior knowledge of whole number concepts is less fully developed. 

Finally, this study does not address other individual differences that might moderate the 

effectiveness of using visual representations during learning. For example, several researchers 

have proposed that learners’ motivation plays an important role in their learning from external 

representations (e.g., Mayer, 2014; Moreno, 2005). For example, in one study of college 

students’ trigonometry problem solving, students with greater interest in mathematics benefited 

more from diagrams than those with lower interest (Cooper et al., 2018). Additionally, Hegarty 

(2004) has argued that learners’ spatial ability and working memory capacity may moderate the 

nature of the relationship between external representations and their internal representations. In 

other words, external representations may play different roles for different learners. As such, it is 

possible that spontaneous transfer may be more or less likely to occur. 
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4.5 Educational Implications 

This study has several practical educational implications for college-level learners. First, 

this study adds to the literature documenting undergraduate students’ widespread and persistent 

difficulties with fraction concepts, despite often knowing procedures for solving fraction 

problems (Ball, 1990; Bently & Bosse, 2018; Lee & Boyadzhiev, 2020; Luo et al., 2011; Ma, 

1999; Sidney et al., 2015; Yao et al. 2021). As with children (Bailey et al., 2012), adult students’ 

understanding of fractions predicts their success and persistence in college mathematics courses 

(Ngo, 2018). Observing poor conceptual understanding in undergraduate learners at a selective 

university is concerning though not surprising. 

 Encouragingly, this study provides evidence for dramatic improvement in understanding 

with a simple, easy-to-implement intervention. The overall level of conceptual understanding in 

the whole number example + number line condition in our study was astonishingly high (78%). 

Although many studies have examined children’s thinking using number lines (e.g., Booth & 

Siegler, 2008; Fazio, Kennedy, et al., 2016; Moss & Case, 1999; Siegler et al., 2011), there are 

fewer with college-aged adult learners. In line with the number line advantage observed in this 

study, Schiller and colleagues (2021) have recently used a number line intervention to improve 

undergraduate students’ understanding of equivalent fraction, decimal, and percentage 

magnitudes. This emerging evidence suggests that, like children, university students in 

developmental mathematics courses may benefit from learning about, and practicing, key 

rational number concepts using number line diagrams. 

 Furthermore, even though simple whole number division (e.g., 6 ÷ 2) is highly familiar 

and well-practiced for adults, our findings suggest that in the absence of the example problem, 

adults were not likely to spontaneously, or successfully, draw on this knowledge to support their 
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ideas about fraction division. This is in line with prior research with adults suggesting that, 

without domain expertise, they may not know what aspects of their prior knowledge are 

conceptually-similar to new topics (see Chi et al., 1981). To make transfer from students’ prior 

knowledge more likely, university instructors should consider how they might draw on adults’ 

familiar knowledge of related, earlier concepts and instantiate these using visual representations 

that are similar to those present in the main lesson. 

4.6 Conclusions 

 When engaging with mathematics, learners often spontaneously draw on their prior 

knowledge to make sense of new mathematical ideas. This is especially important in 

mathematics, a domain in which earlier-learned topics are often directly related to later-learned 

topics, though sometimes related topics are separated by years of intervening instruction (see 

Sidney & Thompson, 2019). In line with common recommendations (e.g., Richland et al., 2007; 

Sidney & Thompson, 2019; Vendetti et al., 2015), we empirically demonstrated that visual 

representations, such as diagrams, play a critical role in helping learners make use of their vast 

prior knowledge. Thus, instruction that is aimed at drawing on learners’ prior knowledge may be 

most effective when instructors activate the most relevant familiar concepts using “warm up” 

activities that include visual representations that are aligned with those used during target 

instruction.  

Though number lines did not uniquely support spontaneous transfer across whole number 

and fraction concepts, using number lines did lead to more accurate conceptual reasoning. 

Although many researchers -- across developmental psychology, cognitive psychology, 

educational psychology, and mathematics education -- agree that number lines and other linear 

representations are critically important for the development of early number and arithmetic 
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concepts, ongoing research is needed to further clarify the mechanisms by which using number 

lines benefits learners’ fraction arithmetic learning and problem-solving. 

Footnotes 

1Note that researchers have defined "conceptual understanding" in many ways (see 

Crooks & Alibali, 2014). Here, we focus on the conceptual models learners' use to make sense of 

the relationships between numbers within a division problem. 

2Both whole number division and fraction division can also be conceptualized with a 

partitive model of division (i.e., the first operand indicates the total amount, the second operand 

indicates the number of groups or segments, and the quotient represents magnitude of each group 

or segment); however, many children (Fischbein et al., 1985) and adults (Ma, 1999) educated in 

the U.S. appear to favor quotative models for fraction division. 

Acknowledgements 

The authors would like to thank Alexandria McDonald and Andrea MacDonald for their 

hard work coding participants’ work. We also thank Gabrielle Eismann, Jessica Blake, Deanna 

Chesser, and Andrea MacDonald for aiding in data collection. 

References 

Alibali, M. W., & Sidney, P. G. (2015). The role of intraindividual variability in learning in 

childhood and adolescence. In M. Diehl, K. Hooker, & M. Sliwinski (Eds.) Handbook of 

intraindividual variability across the lifespan (pp. 84-102). New York, NY: Taylor and 

Francis. 

Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions 

predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 

113, 447-455. https://doi.org/10.1016/j.jecp.2012.06.004 



 

43 

Ball, D. L. (1990). Prospective elementary and secondary teachers' understandings of division. 

Journal for Research in Mathematics Education, 21(2), 132–144. 

https://doi.org/10.2307/749140 

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy 

for far transfer. Psychological Bulletin, 128, 612–637. https://doi.org/10.1037/0033-

2909.128.4.612. 

Bentley, B., & Bosse, M. J. (2018). College students’ understanding of fraction operations. 

International Electronic Journal of Mathematics Education, 13(3), 233-247. 

https://doi.org/10.12973/iejme/3881  

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic 

learning. Child Development, 79(4), 1016–1031. https://doi.org/10.1111/j.1467-

8624.2008.01173.x. 

Bottge, B. A., Ma, X., Gassaway, L., Butler, M., & Toland, M. D. (2014). Detecting and 

correcting fractions computation error patterns. Exceptional Children, 80(2), 237-255. 

Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: 

Where young children go wrong. Developmental Psychology, 44(5), 1478–1490. 

Butcher, K. R. (2006). Learning from text with diagrams: Promoting mental model development 

and inference generation. Journal of Educational Psychology, 98(1), 182–197. 

https://doi.org/10.1037/0022-0663.98.1.182. 

Chen, Z., Sanchez, R.P., & Campbell, T. (1997). From beyond to within their grasp: The 

rudiments of analogical problem solving in 10- and 13-month-olds. Developmental 

Psychology, 33(5), 790–801. https://doi.org/10.1037//0012-1649.33.5.790 



 

44 

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics 

problems by experts and novices. Cognitive Science, 5(2), 121-152. 

https://doi.org/10.1207/s15516709cog0502_2 

Cooper, J. L., Sidney, P. G., & Alibali, M. W. (2018). Who benefits from diagrams and 

illustrations in math problems? Ability and attitudes matter. Applied Cognitive 

Psychology, 32(1), 24-38. https://doi.org/10.1002/acp.3371 

Cramer, K., Behr, M., Post, T., & Lesh, R. (1997). Rational Number Project: Fraction Lessons 

for the Middle Grades – Level 1. Dubuque, IA: Kendall/Hunt Publishing Co. 

Cramer, K. A., Post, T. R., & del Mas, R. C. (2002). Initial fraction learning by fourth- and fifth-

grade students: A comparison of the effects of using commercial curricula with the 

effects of using the rational number project curriculum. Journal for Research in 

Mathematics Education, 33(2), 111–144. https://doi.org/10.2307/749646  

Cramer, K., Wyberg, T., & Leavitt, S. (2008). The role of representations in fraction addition and 

subtraction. Mathematics Teaching in the Middle School, 13(8). 

https://doi.org/10.5951/MTMS.13.8.0490 

Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in 

mathematics. Developmental Review, 34, 344–377. 

https://doi.org/10.1016/j.dr.2014.10.001. 

Day, S. B., & Goldstone, R. L. (2011). Analogical transfer from a simulated physical system. 

Journal of Experimental Psychology: Learning Memory and Cognition, 37(3), 551-567. 

https://doi.org/10.1037/a0022333  



 

45 

Day, S. B., & Goldstone, R. L. (2012). The import of knowledge export: Connecting findings 

and theories of transfer of learning. Educational Psychologist, 47, 153-176. 

https://doi.org/10.1080/00461520.2012.696438 

De Bock, D., Deprez, J. Dooren, W. V., Roelens, M., & Verschaffel, L. (2011). Abstract or 

concrete examples in learning mathematics? A replication and elaboration of Kaminski, 

Sloutsky, and Heckler’s study. Journal for Research in Mathematics Education, 42(2), 

109-126. https://doi.org/10.5951/jresematheduc.42.2.0109  

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), i–113. 

https://doi.org/10.1037/h0093599 

Fazio, L.K., DeWolf, M., & Siegler, R.S. (2016). Strategy use and strategy choice in fraction 

magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 42(1), 1–16. https://doi.org/10.1037/xlm000015 

Fazio, L. K., Kennedy, C. A., & Siegler, R. S. (2016). Improving children’s knowledge of 

fraction magnitudes. PLoS ONE, 11(10): e0165243. 

https://doi.org/10.1371/journal.pone.0165243 

Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The Role of Implicit Models in 

Solving Verbal Problems in Multiplication and Division. Journal for Research in 

Mathematics Education, 16(1), 3-17. https://doi.org/10.2307/748969  

Fuchs, L.S., Newman-Gonchar, R., Schumacher, R., Dougherty, B., Bucka, N., Karp, K.S., 

Woodward, J., Clarke, B., Jordan, N. C., Gersten, R., Jayanthi, M., Keating, B., and 

Morgan, S. (2021). Assisting Students Struggling with Mathematics: Intervention in the 

Elementary Grades (WWC 2021006). Washington, DC: National Center for Education 



 

46 

Evaluation and Regional Assistance (NCEE), Institute of Education Sciences, U.S. 

Department of Education. Retrieved from http://whatworks.ed.gov/. 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., ... Changas, 

P. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational 

Psychology, 105(3), 683–700. https://doi.org/10.1037/a0032446 

Gentner, D., & Hoyos, C. (2017). Analogy and abstraction. Trends in Cognitive Science, 9, 672–

693. https://doi.org/10.1111/tops.12278  

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for 

analogical encoding. Journal of Educational Psychology, 95(2), 393–408. 

https://doi.org/10.1037/0022-0663.95.2.393 

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 

306–355. https://doi.org/10.1016/0010-0285(80)90013-4 

Gunderson, E. A., Hamdan, N., Hildebrand, L., & Bartek, V. (2019). Number line 

unidimensionality is a critical feature for promoting fraction magnitude concepts. Journal 

of Experimental Child Psychology, 187, 104567. 

https://doi.org/10.1016/j.jecp.2019.06.010 

Hamdan, N., & Gunderson, E. A. (2017). The number line is a critical spatial-numerical 

representation: Evidence from a fraction intervention. Developmental Psychology, 53(3), 

587–596. https://doi.org/10.1037/dev0000252 

Hattikudur, S., Sidney, P. G., & Alibali, M. W. (2016). Does comparing informal and formal 

procedures promote mathematics learning? The benefits of bridging depend on attitudes 

towards mathematics. Journal of Problem Solving, 9(1), Article 2. 

https://doi.org/10.7771/1932-6246.1180 



 

47 

Hegarty, M. (2004). Diagrams in the mind and in the world: Relations between internal and 

external visualizations. In Diagrammatic Representation and Inference (pp. 1-13). 

Springer Berlin Heidelberg. doi.org/10.1007/978-3-540-25931-2_1 

Hurst, M. A., Massaro, M., & Cordes, S. (2020). Fraction magnitude: Mapping between 

symbolic and spatial representations of proportion. Journal of Numerical Cognition, 6(2), 

204-230. https://doi.org/10.5964/jnc.v6i2.285  

Hurst, M. A., Shaw, A., Chernyak, N., & Levine, S. C. (2020). Giving a larger amount or a larger 

proportion: Stimulus format impacts children’s social evaluations. Developmental 

Psychology, 56(12), 2212–2222. https://doi.org/10.1037/dev0001121 

Kaminski, J. A. (2018). Effects of representation on discrimination and recognition of fractions. 

In C. Kalish, M. Rua, J. Zhu, & T. Rogers (Eds.). Proceedings of the 40th annual 

conference of the cognitive science society. Austin, TX: Cognitive Science Society. 

Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract examples 

in learning math. Science, 320, 454–455. https://doi.org/10.1126/science.1154659 

Kellman, P. J., Massey, C. M., Roth, Z., Burke, T., Zucker, J., Saw, A., ... Wise, J. (2008). 

Perceptual learning and the technology of expertise: Studies in fraction learning and 

algebra. Learning Technologies and Cognition: Special issue of Pragmatics & Cognition, 

16(2), 356–405. https://doi.org/10.1075/p&c.16.2.07kel 

Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational 

numbers. In R. Lesh (Ed.), Number and measurement: Papers from a research workshop 

(pp. 101–144). Columbus, OH: ERIC/SMEAC. 

Klahr, D., & Chen, Z. (2011). Finding one’s place in transfer space. Child Development 

Perspectives, 5, 196–204. https://doi.org/10.1111/j.1750-8606.2011.00171.x 



 

48 

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. 

Cognitive Science: A Multidisciplinary Journal, 11(1), 65–100. 

https://doi.org/10.1111/j.1551-6708.1987.tb00863.x 

Lee, J., & Boyadzhiev, I. (2020). Underprepared college students’ understanding of and 

misconceptions with fractions. International Electronic Journal of Mathematics 

Education, 15(3), 1306-3030. https://doi.org/10.29333/iejme/7835 

Luo, F., Lo, J.-J., & Leu, Y.-C. (2011). Fundamental fraction knowledge of preservice 

elementary teachers: A cross-national study in the United States and Taiwan. School 

Science and Mathematics, 111(4), 164–177. https://doi.org/10.1111/j.1949-

8594.2011.00074.x 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of 

fundamental mathematics in China and the United States. Mahwah, N.J: Lawrence 

Erlbaum Associates. 

Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge. 

Journal for Research in Mathematics Education, 21(1), 16–32. 

https://doi.org/10.2307/749454  

Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on 

informal knowledge. Journal for Research in Mathematics Education, 26(5), 422–441. 

https://doi.org/10.2307/749431  

Mack, N. K. (2001). Building on informal knowledge through instruction in a complex content 

domain: Partitioning, units, and understanding multiplication of fractions. Journal for 

Research in Mathematics Education, 32, 267–295. https://doi.org/10.2307/749828 



 

49 

 Malone, A. S., & Fuchs, L. S. (2017). Error patterns in ordering fractions among at-risk fourth-

grade students. Journal of Learning Disabilities, 50(3), 337-352. DOI: 10.1177/0 

Mayer, R. E. (1999). Multimedia Aids to Problem-Solving Transfer. International Journal of 

Educational Research, 31(7), 611-23. 

Mayer, R. E. (2005). Cognitive Theory of Multimedia Learning. In R. E. Mayer (Ed.), The 

Cambridge handbook of multimedia learning (pp. 31–48). Cambridge University Press. 

https://doi.org/10.1017/CBO9780511816819.004 

Mayer, R. E. (2014). Incorporating motivation into multimedia learning. Learning and 

Instruction, 29, 171–173. https://doi.org/10.1016/j.learninstruc.2013.04.003 

McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of mathematical 

knowledge. Learning and Instruction, 22, 440-448. 

https://doi.org/10.1016/j.learninstruc.2012.05.001 

Mohyuddin, R. G., & Khalil, U. (2016). Misconceptions of students in learning mathematics at 

primary level. Bulletin of Education and Research, 38(1), 133-162. 

Moreno, R. (2005). Instructional technology: Promise and pitfalls. In L. PytlikZillig, M. 

Bodvarsson, & R. Bruning (Eds.) Technology-based education: Bringing researchers and 

practitioners together (pp. 1–19). Greenwich, CT: Information Age Publishing. 

Moreno, R., & Mayer, R. E. (1999). Multimedia-supported metaphors for meaning making in 

mathematics. Cognition and Instruction, 17(3), 215–248. 

https://doi.org/10.1207/S1532690XCI1703_1 

Moreno, R., Ozogul, G., & Reisslein, M. (2011). Teaching with concrete and abstract vi- sual 

representations: Effects on students’ problem solving, problem representations, and 



 

50 

learning perceptions. Journal of Educational Psychology, 103(1), 32–47. 

https://doi.org/10.1037/a0021995 

Moss, J, & Case, R. (1999). Developing children’s understanding of the rational numbers: A new 

model and an experimental curriculum. Journal for Research in Mathematics Education, 

30(2), 122-147. https://doi.org/10.2307/749607  

National Governors Association Center for Best Practices (NGA Center), & Council of Chief 

State School Officers (CCSSO). (2010). Common Core State Standards for Mathematics. 

http://www. corestandards.org/Math 

Ngo, F. (2018). Fractions in College: How basic math remediation impacts community college 

students. Research in Higher Education, 60, 485-520. https://doi.org/10.1007/s11162-

018-9519-x 

NMAP (2008). Foundations for success: Report of the national mathematics advisory board 

panel. Washington, DC: U.S. Department of. Education.  

Nokes-Malach, T. J., & Mestre, J. P. (2013). Toward a model of transfer as sense-making. 

Educational Psychologist, 48(3), 184-207. 

https://doi.org/10.1080/00461520.2013.807556 

Pitsolantis, N., & Osana, H. (2013). Fractions instruction: Linking concepts and 

procedures. Teaching Children Mathematics, 20(1), 18-26. 

https://doi.org/10.5951/teacchilmath.20.1.0018 

Rau, M. A., Aleven, V., Rummel, N., & Pardos, Z. (2014). How should intelligent tutoring 

systems sequence multiple graphical representations of fractions? A multi-methods study. 

International Journal of Artificial Intelligence in Education, 24(2), 125–161. 

https://doi.org/10.1007/s40593-013-0011-7. 



 

51 

Rau, M. A., & Matthews, P. C. (2017). How to make ‘more’ better? Principles for effective use 

of multiple representations to enhance students’ learning about fractions. ZDM - 

Mathematics Education, 49(4), 531-544. https://doi.org/10.1007/s11858-017-0846-8 

Richland, L. E., & Hansen, J. H. (2013). Reducing cognitive load in learning by analogy. 

International Journal of Psychological Studies, 5(4), 69-80. 

https://doi.org/10.5539/ijps.v5n4p69 

Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the 

mathematics classroom. Science, 316(5828), 1128–1129. 

https://doi.org/10.1126/science.1142103 

Schiller, L.K., Siegler, R.S., & Thompson, C.A. (2021). Monster math race: Chasing integrated 

number sense. Manuscript in preparation. 

Schnotz, W., & Kürschner, C. (2008). External and internal representations in the acquisition and 

use of knowledge: visualization effects on mental model construction. Instructional 

Science, 36(3), 175-190. 

Schunn, C. D., & Dunbar, K. (1996). Priming, analogy, and awareness in complex reasoning. 

Memory & Cognition, 24, 271–284. https://doi.org/10.3758/bf03213292  

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4), 

475–522. https://doi.org/10.1207/s1532690xci1604_4 

Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy 

discoveries. Psychological Science, 9(5), 405-410. https://doi.org/10.1111/1467-

9280.00076 



 

52 

Sidney, P. G. (2020). Children’s learning from implicit analogies during instruction: Evidence 

from fraction division. Cognitive Development, 56, 100956. 

https://doi.org/10.1016/j.cogdev.2020.100956 

Sidney, P. G., & Alibali, M. W. (2015). Making connections in math: Activating a prior 

knowledge analogue matters for learning. Journal of Cognition and Development, 16(1), 

160-185. https://doi.org/10.1080/15248372.2013.792091 

Sidney, P. G., & Alibali, M. W. (2017). Creating a context for learning: Activating 

children’s whole number knowledge prepares them to understand fraction division. 

Journal of Numerical Cognition, 3(1), 31-57. https://doi.org/10.5964/jnc.v3i1.71 

Sidney, P. G., Hattikudur, S., & Alibali, M. W. (2015). How do contrasting cases and self-

explanation promote learning? Evidence from fraction division. Learning and 

Instruction, 40, 29-38. https://doi.org/10.1016/j.learninstruc.2015.07.006 

Sidney, P. G., Thalluri, R., Buerke, M. L., & Thompson, C. A. (2019). Who uses more 

strategies? Linking mathematics anxiety to adults’ strategy variability and performance 

on fraction magnitude tasks. Thinking & Reasoning, 25(1), 94-131. 

https://doi.org/10.1080/13546783.2018.1475303 

Sidney, P. G., & Thompson, C. A. (2019). Implicit analogies in learning: Supporting transfer by 

warming up. Current Directions in Psychological Science, 28(6), 619-625. 

https://doi.org/10.1177/0963721419870801 

Sidney, P. G., Thompson, C. A., Fitzsimmons, C., & Taber, J. M. (2021). Children’s and adults’ 

math attitudes are differentiated by number type. Journal of Experimental Education, 

89(1), 1-32. https://doi.org/10.1080/00220973.2019.1653815 



 

53 

Sidney, P. G., Thompson, C. A., & Rivera, F. D. (2019). Number lines, but not area models, 

support children’s accuracy and conceptual models of fraction division. Contemporary 

Educational Psychology, 58, 288-298. https://doi.org/10.1016/j.cedpsych.2019.03.011 

Siegler, R. S., & Alibali, M. W. (2004). Children’s thinking (4th Edition). Upper Saddle River, 

N.J: Pearson Education/Prentice Hall. 

Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L., & 

Wray, J. (2010a). Developing effective fractions instruction for kindergarten through 8th 

grade: A practice guide (NCEE #2010-4039). Washington, DC: National Center for 

Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. 

Department of Education. Retrieved from whatworks.ed.gov/ publications/practiceguides. 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., 

Susperreguy, M. I., & Chen, M. (2012). Early predictors of high school mathematics 

achievement. Psychological Science, 23, 691-697. 

https://doi.org/10.1177/0956797612440101 

Siegler, R. S., Pyke, A. A. (2013). Developmental and individual differences in understanding of 

fractions. Developmental Psychology, 49(10), 1994-2004. 

https://doi.org/10.1037/a0031200 

Siegler, R. S., & Ramani, G. B. (2008). Promoting broad and stable improvements in low- 

income children’s numerical knowledge through playing number board games. Child 

Development, 79, 375-394. https://doi.org/10.1111/j.1467-8624.2007.01131.x  

Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular 

ones—improves low-income preschoolers’ numerical understanding. Journal of 

Educational Psychology, 101(3), 545–560. https://doi.org/10.1037/a0014239 



 

54 

Siegler, R. S., & Thompson, C. A. (2014). Numerical landmarks are useful--except when they're 

not. Journal of Experimental Child Psychology, 120(1), 39-58. 

https://doi.org/10.1016/j.jecp.2013.11.014 

Siegler, R. S., Thompson, C. A., Schneider, M. (2011). An integrated theory of whole number 

and fractions development. Cognitive Psychology. 62, 273–296. 

https://doi.org/10.1016/j.cogpsych.2011.03.001 

Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of 

progressive alignment on representational changes in numerical cognition. Child 

Development, 81, 1768-1786. https://doi.org/10.1111/j.1467-8624.2010.01509.x 

Vendetti, M. S., Matlen, B. J., Richland, L. E., & Bunge, S. A. (2015). Analogical reasoning in 

the classroom: Insights from cognitive science. Mind, Brain, and Education, 9(2), 100–

106. https://doi.org/10.1111/mbe.12080 

Webel, C., DeLeeuw, W.W., (2016). Meaning for fraction multiplication: Thematic analysis of 

mathematical talk in three fifth grade classes. The Journal of Mathematical Behavior, 41, 

123–140. 

Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. 

R., & Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 

8: A practice guide (NCEE 2012-4055). Washington, DC: National Center for Education 

Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of 

Education. Retrieved from 

http://ies.ed.gov/ncee/wwc/publications_reviews.aspx#pubsearch/. 



 

55 

Yao, Y., Hwang, S., & Cai, J. (2021). Preservice teachers’ mathematical understanding exhibited 

in problem posing and problem solving. ZDM - Mathematics Education, 53, 937-949. 

https://doi.org/10.1007/s11858-021-01277-8 

Yu S., Kim D., Mielicki M.K., Fitzsimmons C.J., Thompson C.A. & Opfer J. (2020). From 

integers to fractions: Developing a coherent understanding of proportional magnitude, In: 

Proceedings of the 42nd Annual Meeting of the Cognitive Science Society. Retrieved 

from: https://cognitivesciencesociety.org/wp-content/uploads/2020/07/Full-Program-

Final-v8-for-web-1.pdf 


