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Comments Regarding Numerical Estimation Strategies Are Correlated with Math Ability in

School-Age Children

In the target article, Xing and colleagues (2021) claimed that 6- to 8-year-olds who

spontaneously referenced the midpoint of 0-100 number lines made more accurate magnitude

estimates and scored higher on a standardized math achievement test than other children. Unlike

previous studies, however, the authors found no relation between accuracy on the number line

estimation task and a dot discrimination task used to asssess the Approximate Number System

(ANS). These findings, the authors claim, constitute evidence against the idea that children’s

numerical magnitude understanding entails representational change. We disagree.

In the literature on the development of numerical magnitude understanding, the “gold

standard” assessment is the number-line estimation task (Schneider et al., 2018; Siegler & Opfer,

2003; Siegler et al., 2009). Unlike numerical comparisons (“Which is larger--N1 or N2?”) or

numerical orderings (“Can you put N1, N2, and N3 in order from smallest to largest?”),

number-line estimates tell us how much larger the person understands the numbers to be. For

example, when placing 15 on a 0-100 number line, the child’s estimate tells us how large they

think 15 is in comparison to 0 and 100.

Proponents of the representational change approach (e.g., Opfer et al., 2011; Siegler &

Opfer, 2003) argue that number-line estimation reflects understanding of how numerical

magnitudes relate to one another. In contrast, proponents of the proportion judgment approach

(e.g., Barth & Paladino, 2011; Slusser et al., 2013) argue that number-line estimation

performance reflects children’s ability to place estimates on a number line relative to the 0
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endpoint (i.e., unbounded model) , the 0 and right-most endpoint (i.e., 1-cycle model), or the1

endpoints and the midpoint of the number line (i.e., 2-cycle model).

Proponents of both approaches agree that estimates improve over the course of

development, becoming less variable and more accurate. However, they disagree on how best to

interpret patterns of data arising from number-line estimation. Are young children’s estimates

best fit by a mixed log-linear model (representational change approach; Opfer et al., 2016; Kim

& Opfer, 2017, 2020) or one of several cyclical power functions (proportion judgment approach;

Barth & Paladino, 2011; Slusser et al., 2013) when model complexity (e.g., number of free

parameters) is taken into consideration?

In this rebuttal to Xing et al.’s target article, Numerical estimation strategies are

correlated with math ability in school-age children, we argue that:

1. Number-line estimates reflect numerical magnitude representations, some

task-specific features, and strategic behavior.

2. Proportional reasoning and representational change accounts must be compared

head-to-head.

3. Whole numbers are ratios, too. Therefore, research on fractions can clarify

mechanisms of developmental change in number-line estimation.

1. Number-line Estimates Reflect Numerical Magnitude Representations, Some

Task-Specific Features, and Strategic Behavior

1.1 The Number-Line Estimation Task Aligns with the Mental Number Line.

Humans, and many other animals (Dehaene, 2011), appear to possess a mental number line. In

1 The unbounded model is hard to reconcile with findings from Siegler and Opfer (2003). Virtually every second
grader estimated two-digit numbers linearly in the 0-100 context and logarithmically in the 0-1,000 context. The
only way that could happen is if the children noticed the right endpoint.
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cultures with orthographies that are oriented left-to-right, the mental number line is oriented with

smaller numbers on the left and larger numbers on the right (Dehaene, 2011; Opfer et al., 2010),

and this left-to-right orientation aligns with the analogous orientation of the number-line

estimation task. Further, size (i.e., when participants compare two symbolic or non-symbolic

numerosities that are equidistant from one another, participants are quicker and more accurate

when the numerosities are smaller versus larger) and distance effects (i.e., when participants

compare numerosities that are more distant from one another, they are quicker and more accurate

because these numerosities are easier to discriminate from one another), which have been

observed in humans and other animals, follow the Weber-Fechner Law. The Weber-Fechner Law

is characterized by overestimates at the low end of the numerical range and compression at the

high end of the numerical range (i.e., is logarithmic in nature). Because of this, proponents of the

representational change approach argue that the number-line estimation task is a good proxy for

measuring underlying representations of magnitude.

Number-line estimation performance is typically operationalized as Percent Absolute

Error (PAE) -- the absolute value of the linear deviation of a person’s number line estimate from

the location of the to-be-estimated number divided by the scale of the line (Siegler & Booth,

2004). For example, if a child attempts to estimate the number 15 on a 0-100 number line, but

places the mark at the location for 45, PAE = |45-15|/100 * 100 = 30%. Because PAE is a

measure of error, lower PAE means that the estimates are more accurate.

Barth and Paladino (2011, p. 134), proponents of the proportion judgment model, claimed

that, “Number-line tasks can only be properly understood as proportion judgments.” However, in

the same paper (p. 126), they also said that the ‘bias’ parameter (β) in their model (described
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below) was an index of the “function relating psychological to actual magnitude,” and that

“participants in a [number-line estimation] task must recall the proper magnitudes associated

with the presented numerals.” If not from mental representations of magnitudes, from where are

these magnitudes recalled?

Oscillating back to their stance that the number-line estimation task does not tap

underlying numerical magnitudes, the target paper by Xing and colleagues maintains that

“number-line placements are quite far removed from mental representations of numerical

magnitude (p. XX),” yet acknowledge that to successfully perform on the number-line estimation

task, “participants must interpret symbols representing numerical quantities and map them to a

bounded linear space (p. XX),” and that “accurate performance requires not just estimating the

magnitude of one number, but judging the size of the target number relative to the entire interval

(p. XX)." These latter claims are consistent with our view that the number-line estimation task

taps relative magnitude understanding.

1.2 Context Also Matters. Although both accounts model performance on the

number-line estimation task as a measure of numerical magnitude understanding, Xing and

colleagues claim that proponents of the representational change approach believe that children’s

number line estimates are solely due to directly mapping between the internal representation of

numerical magnitude and the external representation (i.e., placing a hatch mark to indicate the

location of a number on a line). This characterization of our position is simply incorrect; we have

never made this claim. Nothing of psychological interest only has a single cause. Of course,

children’s number-line estimates also reflect task features and strategic behavior on the part of
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the child. We have never believed or claimed that number-line estimates are solely due to such

direct mapping from the mind to paper or computer screen.

Indeed, our studies (often replicated by Barth and colleagues) have shown that

performance on the number-line estimation task is associated with many factors including (a)

transformation of magnitudes into easier-to-estimate numbers (e.g., decimals, percentages,

“round” numbers; Siegler et al., 2011), (b) spontaneous, and task-supported, segmentation of the

number line (Siegler & Opfer, 2003; Siegler & Thompson, 2014), (c) proportional scaling to the

physical length of the line (Boyer et al., 2008; Kim & Opfer, 2020; Möhring et al., 2014;

Möhring et al., 2018), (d) the number line’s numerical endpoints (Barth & Palladino, 2011;

Siegler & Opfer, 2003; Thompson & Opfer, 2010), (e) instruction about the number line’s

midpoint (Opfer et al., 2016; Zax et al. 2019), (f) position of the to-be-estimated number over the

midpoint of the line (Dackerman et al., 2018), (g) practice trials (Barth et al. 2016; Opfer &

Siegler, 2007; Opfer & Thompson, 2008; Thompson & Opfer, 2016), (h) length of the implied

unit (Kim & Opfer, 2020), and (i) order of to-be-estimated numbers (Kim & Opfer, 2018).

Proponents of the proportion judgment approach claim that proponents of the

representational change approach believe that the number-line task is a pellucid, direct window

into participants’ underlying numerical representation. But, this is not our view. From the first

study using number-line estimation to examine knowledge of magnitudes (Siegler & Opfer,

2003), we have shown and argued that the experimental context (e.g., numerical range in which

children are estimating) influences number-line estimation performance, just as context

influences every cognitive process from color perception to scientific reasoning.
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Although contextual factors can impact number-line estimation, the critical point is that

the representational change approach is at the right level of abstraction. That is, it is both the

most generalizable model (i.e., there is a logarithmic-to-linear shift across all variants of the

whole-number estimation task) and the best-fitting model of children’s estimates (i.e., the mixed

log-lin model fits children’s estimation data better than competing models). Moreover, accuracy

on the number-line estimation task (PAE and degree of logarithmic compression in the mixed

log-lin model) generalizes far beyond the task at hand to other numerical tasks purported to tap

magnitude understanding. PAE is strongly related to measures of performance on other symbolic

and non-symbolic numerical tasks, such as magnitude comparison (Braithwaite & Siegler, 2020;

Fazio et al., 2017; Ratcliff & McKoon, 2020; Sidney, et al., 2018; Siegler & Thompson, 2014),

ordering (Yu et al., 2020), arithmetic (Siegler et al., 2011), categorization (Laski & Siegler, 2007;

Opfer & Thompson, 2008), memory for numbers (Thompson & Siegler, 2010), and standardized

achievement test performance (Booth & Siegler, 2006; Fazio et al., 2014; Siegler & Pyke, 2013;

Schneider et al. 2017; Siegler & Thompson, 2014).

Number-line estimation is also related to later algebra performance (Bailey et al., 2012;

Booth & Newton, 2012; Siegler et al., 2012), which, in turn, is key to successful educational and

financial outcomes (NMAP, 2008). Indeed, unlike the cyclic measures used by proponents of the

proportion judgment approach, PAE has been shown to be related to measures that have

real-world importance, including measures in educational contexts (i.e., understanding of course

grading schemes: Scheibe et al., 2021; Thompson et al., in press), health knowledge (Lau et al.,

2021; Mielicki et al., 2021; Scheibe et al., 2021; Thompson, Mielicki, et al., 2021; Thompson,

Taber, et al., in press, Thompson, Taber, et al., 2021; Woodbury et al., 2021), and financial
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acumen (Furlong & Opfer, 2009; Kanayet et al., 2014; Taber et al., 2021). This type of predictive

validity provides a meaningful way of comparing the usefulness of measures and underlying

theories.

1.4 Purported Lack of Relation Between ANS Acuity and PAE. Xing et al. claim,

“number-line placements are not primarily determined by the kinds of internal representations of

magnitude that are thought to be probed by typical ANS tasks” (p. XX). The basis for their claim

was that PAE and the measures of the ANS that they used were not significantly correlated in

their study. However, the task they used was limited in that the authors only analyzed 29 of the

administered trials, which included numerosities in a truncated range (9 to 14). Such trials are

quite easy for children between the ages of 6 and 8.5; even preschoolers are able to reason about

numbers in this numerical range (Thompson & Siegler, 2010), and first graders are quite accurate

in judging whether non-symbolic arrays of asterisks are greater than or less than 50 (Thompson

et al., 2016). Appropriate assessment requires the numerical range of stimuli to match children’s

estimation abilities (Thompson & Opfer, 2010, 2016; Wall et al., 2016).

Previous studies by researchers not associated with the representational change approach

have shown that Approximate Number System acuity and PAE are related (Halberda et al.,

2012). Our own research has similarly shown that children’s performance on measures of ANS

acuity, such as dot discrimination, is related to PAE in the 0-1,000 range with correlations

ranging from r = .41 to r = .68 (Booth & Siegler, 2006; Fazio et al., 2014; Thompson & Siegler,

2010). In both Booth and Siegler (2006) and Thompson and Siegler (2010), the dot

discrimination task also correlated with another non-symbolic estimation task, the “zips” task, in

which children produced line segments of specified lengths.
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Beyond data from our own labs, a recent meta-analysis (Schneider et al., 2017) showed

reliable associations between non-symbolic and symbolic tasks as well as math achievement.

The take-home message from Schneider and colleagues’ meta-analysis, similar to the take-home

message in work by Fazio and colleagues (2014), was that accuracy on the number-line

estimation task, as measured by PAE, is fairly strongly related to outcomes of educational

importance. No such evidence, prior to this target article, existed for any measure associated with

proportion judgment models.

Replication is crucial to overcome the reproducibility crisis in psychological science.

Given the prior contrary findings and the methodological limitations of their study, Xing et al.

should, at minimum, replicate their findings with a larger sample of children and more

appropriate matching of problem difficulty to age of participants before drawing strong

conclusions from them.

2. Proportional Reasoning and Representational Change Accounts Must be Compared

Head-to-Head

2.1 Percent Absolute Error as a Measure of Estimation Accuracy. Xing and

colleagues claim that an individual’s β parameter (i.e., bias), which is a value extracted from the

cyclical power-function fit of participants’ number-line estimation performance, is associated

with math achievement. However, if the authors of the target article make this claim, then the

burden of proof is on them to demonstrate that β is a better predictor of children’s overall

mathematics achievement than simple error (PAE) or degree of logarithmic compression (i.e., the

lambda parameter in the mixed log-lin model, Opfer et al., 2016). In previous studies (Kim &

Opfer, 2017), lambda was a much better predictor of addition and subtraction performance than
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any of the model parameters of the mixed cyclic power models. This head-to-head model

comparison (Opfer et al., 2016)--even if it was not the authors’ goal in their study, and we

believe it should have been--is especially important given that it has been established from many

studies that PAE is strongly correlated with mathematics achievement for both whole numbers

and fractions (for a comprehensive review of this literature, see Schneider et al., 2018). Including

a correlation table showing how and whether PAE, lambda, math achievement, and β are

interrelated would be helpful for readers to establish whether the current sample of children

performed similarly to the multitude of children described in other published samples.

If Xing and colleagues do not directly compare theoretical accounts, their claim that the

proportion judgment framework accounts for “the exact nature of” (abstract, p. XX) children’s

developing number-line estimation skills is highly questionable. As Xing et al. point out, most

children who are classified as using multiple reference points (i.e., best fit by the 2-cycle model)

in the target article would also be well fit by the linear function. This begs the question of

whether the authors’ regression analyses predicting math achievement from the best-fitting

estimation model (i.e., unbounded vs. 1-cycle vs. 2-cycle) add much beyond another

demonstration that ‘more accurate or linear estimates are related to math achievement,’ which

has already been well-documented by proponents of the representational change approach.

Moreover, since any complex model with enough free parameters can fit noise

(Vanderckhove et al., 2015), absolute model fits often are not very informative (Opfer et al.,

2011). A mixed log-lin model (e.g., Opfer et al., 2016) avoids the problem of averaging over

different estimation patterns, thereby providing a more robust test of alternate model fits. When

the log-lin model has been pitted head-to-head against cyclical power models, it has consistently
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been favored as the most likely data-generating model (Kim & Opfer, 2020; Opfer et al., 2016).

The present study presents no data inconsistent with this finding.

3. Whole Numbers are Ratios, Too

The ages at which the unbounded versus 1-cycle versus 2-cycle models offer best fits of

children's estimates seem to be task-specific. There has been no attempt by proponents of the

proportion judgment account to explain the causal mechanisms underlying developmental

changes. Rather than basing our understanding of the development of proportional reasoning

skills on the shaky foundation of an ill-specified model, a simple model of explicit proportional

reasoning (i.e., estimating fraction magnitudes on number lines) has been enormously

productive.

Any general theoretical account of the development of numerical estimation

understanding must integrate development of both whole numbers and fractions (McCrink &

Wynn, 2007; Siegler et al., 2011; 2013). Whole numbers are inherently proportional (e.g., 18/3 =

6/1 = 24/4 = 6; Opfer et al., 2011; Sidney et al., 2017), and whole-number knowledge can be

used to improve children’s fraction knowledge (Yu et al., 2020). Therefore, research about

fractions and other rational numbers should be considered when attempting to understand causal

mechanisms underlying the development of estimation skills.

3.1 Research on Fraction Magnitudes Can Clarify Mechanisms of Developmental

Change in Number-Line Estimates. According to the proportion judgment approach, as

detailed by Slusser and colleagues (2013), performance on the number-line estimation task is

driven by β and the number of spontaneous reference points participants employ during

estimation. This analysis raises the question: What underlies bias and the number of reference
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points used during estimation? Unfortunately, the proportion judgment account does not address,

much less answer, this question. Xing et al. simply say, “...from ages 6-8, the ability to

spontaneously partition the bounded number line (where “spontaneous partitioning” means

partitioning in the absence of any useful cues built into the task) when making proportion

estimates...is a key correlate of math competence (p. XX).”

The open questions are, how and why do children and adults develop additional

subjective anchor points over time? Xing et al. claim that, “the link between midpoint strategy

use and math scores is clearly attributable to children’s own spontaneous strategies that support

more accurate proportion estimation (p. XX),” but they do not discuss the mechanism underlying

this relation. The representational change account proposes that increasingly precise magnitude

understanding, stemming from children’s increasing experience with ever larger numerical

ranges and types of numbers in addition to use of advanced strategies, explains improved

accuracy and production of linear patterns of number-line estimates (Siegler & Opfer, 2003;

Thompson & Opfer, 2010). Experimental studies have tested and yielded evidence supportive of

this account (e.g., Opfer & Siegler, 2007; Thompson & Opfer, 2010).

Additionally, Xing and colleagues say (p. XX), “Once an age is reached at which most or

all participants in the sample have the ability to use such a strategy, of course, the presence of the

strategy will not indicate a difference in math competence.” This was precisely the conclusion

drawn by Siegler and Thompson (2014) when they found that fifth graders did not benefit from a

labeled landmark at the midpoint of a 0-1 fraction number line. Siegler and Thompson’s

explanation was that these children already spontaneously segmented the line at its midpoint to

aid in making their estimates, and therefore the midpoint landmark was redundant. Furthermore,
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those children who were randomly assigned to the 0-5 whole-number landmarks group who

knew how to transform improper fractions into mixed numbers had higher standardized math

achievement scores than those who did not use the strategy. This was not the case for those

children who made estimates in the 0-5 no landmarks condition. Taken together, these results

indicated that spontaneous strategy use, in conjunction with researcher-generated landmarks, was

associated with higher math achievement. If Xing and colleagues consider findings from

research involving children’s and adults’ use of landmarks to make more precise fraction

estimates, their own findings regarding the effects of using midpoints on estimation accuracy

would not seem as novel. Likewise, if they only consider findings from research involving whole

numbers relevant, research dating back nearly two decades (Siegler & Opfer, 2003) indicated

that participants were more accurate on estimates that were close to subjective landmarks.

Xing et al. take it as evidence that the 2-cycle model fits children’s data better than the

representational change account because children spontaneously use landmarks. But, given the

substantial overlap in the linear model and the 2-cycle model, the fit of the cyclical power

function seems to be a statistical artifact. In fact, the authors did not disclose the percentage of

children who were best fit by the linear function. Proponents of the representational change

approach have generated a plethora of evidence (see Supplemental Table) consistent with the

idea that children spontaneously segment the number line when estimating whole-number and

fraction magnitudes. The two approaches are in agreement that such subjective landmarks

influence children's whole-number estimation performance.

4. Conclusions
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Numbers are inherently relational (Sidney & Thompson, 2019); there are intricate links

connecting space and number (Geary et al., 2021; Opfer et al., 2010; McCrink & Opfer, 2014;

McCrink & Wynn, 2009; Thompson et al., 2017); use of segmentation strategies is linked to

number-line estimation precision (Ashcraft & Moore, 2012; Fitzsimmons et al., 2021;

Fitzsimmons et al., 2020; Opfer & Siegler, 2007; Schneider et al., 2009; Siegler & Opfer, 2003;

Sidney et al., 2018); and estimation performance is correlated with overall math achievement

(Fazio et al., 2014; Sidney et al., 2018; Siegler & Pyke, 2013; Siegler & Thompson, 2014;

Siegler et al., 2011), health knowledge (Lau et al., 2021; Mielicki et al., 2021; Scheibe et al.,

2021; Thompson, Mielicki, et al., 2021; Thompson et al., in press; Thompson, Taber, et al., 2021;

Woodbury et al., 2021), and financial acumen (Furlong & Opfer, 2009; Kanayet et al., 2014;

Taber et al., 2021). To fairly assess whether the proportion judgment model provides added value

to the literature beyond what has already been published by proponents of the representational

change approach, the two approaches must be compared head-to-head in future research, and

models must account for the large body of data generated by proponents of both approaches.
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Supplemental Table 1: Non-exhaustive list of relevant studies involving the relation between

number-line estimation PAE and its association with math achievement, dot discrimination, and

segmentation strategies

Citation Whole Numbers

(WN), Fractions

(FR), or Decimal

(D) Stimuli and

Numerical

Ranges

Ages of

Participants

Relevant Findings

Rittle-Johnson et al.,

2001

D (0-1) 11 yrs (5th

grade)

Researcher-generated landmarks and

reminders helped children find the location of

decimals on number lines

Siegler & Opfer, 2003 WN (0-100,

0-1,000)

7-11 yrs (2nd,

4th, 6th grades),

college-age

adults

Participants were the most accurate around

subjective quartile landmarks

Booth & Siegler, 2006 WN (0-100,

0-1,000)

5-9 yrs (K-4th

grade)

PAE correlated with math achievement;

number line estimation was correlated with

dot discrimination and production of line

segments

Opfer & Siegler, 2007 WN (0-1,000) 8-10 yrs

(2nd-4th grade)

Feedback on important landmarks (e.g., 5,

150, 725) improved estimation precision
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Booth & Siegler, 2008 WN (0-100) 7 yrs (1st grade) PAE correlated with novel arithmetic

problem performance

Opfer & Thompson,

2008

WN (0-1,000) 7 yrs (1st - 2nd

grade)

Feedback on an important landmark (i.e.,

150) improved estimation precision and

transferred to magnitude categorization;

children were most accurate around the point

of feedback

Schneider et al., 2008 WN (0-100) 6-8 yrs (1st -

3rd grade)

Eye-tracking data indicated that young

children’s attention was spontaneously

directed to the midpoint and endpoints of

number lines

Thompson & Opfer,

2008

WN (0-1,000) and

FR (1/1 -1/1,440

min)

6-8 yrs (1st -

3rd grade)

Feedback on an important landmark (i.e.,

150) improved estimation precision and

transferred to fraction number line estimation

precision

Thompson & Opfer,

2010

WN (0–1,000,

0–10,000,

0–100,000_

7-12 yrs (2nd -

6th grade),

college-age

adults

Progressive alignment of increasingly larger

numerical ranges allows children to scale up

their number line estimates

Thompson & Siegler,

2010

WN (0-20,

0-1,000)

5 - 8 yrs (pre-K

- 2nd)

Number line estimation correlated with

magnitude comparison, memory for numbers,

dot discrimination, and production of line

segments
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Siegler, Thompson, &

Schneider, 2011

FR (0-1, 0-5) 11-13 yrs (6th

and 8th grades)

Estimation precision was related to

spontaneous segmentation of number lines,

magnitude comparison, and arithmetic

performance

Ashcraft & Moore, 2012 WN (0-100,

0-1000)

6-10 yrs (1st -

5th grade),

college-age

adults

Spontaneous use of midpoint strategy

Siegler & Pyke, 2013 FR (0-1, 0-5) 12-14 yrs (6th

and 8th grades)

Estimation precision was related to

standardized math achievement

Fazio et al., 2014 WN (0-1,000) and

FR (0-1)

10 yrs (5th

grade)

Symbolic and non-symbolic number line

estimation and magnitude comparison was

correlated with overall math achievement

Siegler & Thompson,

2014

FR (0-1) 10 yrs (5th

grade)

Estimation precision was related to

magnitude comparison and standardized

math achievement; researcher-generated

landmarks as well as spontaneous

segmentation was related to more precise

estimates

Fazio et al., 2016 FR (0-1) 10 yrs (4th - 5th

grade)

Researcher-generated landmarks to help

children find the location of fractions on

number lines

Opfer, Thompson, & WN (0-1,000) 7 yrs (1st - 2nd Feedback on important landmarks (e.g., 500)
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Kim, 2016 grade) resulted in cyclical power function fit of

estimation data

Thompson & Opfer,

2016

WN (0-1,000) 5-8 yrs (K-2nd

grade),

college-age

adults

Feedback on an important landmark (i.e.,

150) improved estimation precision and

transferred to memory for numbers

Fazio et al., 2017 FR (0-5) College-age

adults

Spontaneous segmentation strategies related

to precise number line estimates and

magnitude comparison

Thompson, Morris, &

Sidney, 2017

WN (0-100) 7 yrs (1st grade) Estimation precision was related to a

non-symbolic estimation task (i.e., finding a

page in a book without page numbers)

Sidney, Thalluri, et al.,

2018

FR (0-5) College-age

adults

Spontaneous segmentation strategies related

to precise number line estimates

Sidney, Thompson, &

Rivera, 2019

FR (no endpoints

labeled)

11 yrs (5th - 6th

grade)

Researcher-generated landmarks on number

lines helped children solve fraction division

problems relative to other visual models

Braithwaite & Siegler,

2020

FR (0-1) 9-12 yrs (4th -

6th grade)

Segmenting number lines into unit fractions

was related to magnitude comparison

accuracy

Fitzsimmons,

Thompson, et al., 2020

FR (0-1_ College-age

adults

Spontaneous segmentation strategies related

to precise number line estimates
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Fitzimmons, Morehead,

et al., 2021

WN (0-1,000,

1,000-1,000,000,0

00)

7 yrs (1st - 2nd

grade),

college-age

adults

Spontaneous segmentation strategies related

to precise number line estimates
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