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Abstract 

Longitudinal studies can produce biased estimates of learning if children miss tests. In an application 

to summer learning, we illustrate how missing test scores can create an illusion of large summer learning 

gaps when true gaps are close to zero. We demonstrate two methods that reduce bias by exploiting the 

correlations between missing and observed scores on fall and spring tests taken by the same child. One 

method uses those correlations to multiply impute missing scores. The other method models the 

correlations implicitly, using child-level random effects. Widespread adoption of these methods would 

improve the validity of summer learning studies and other longitudinal research in education. 

 

 

Note: Data and code used in this paper are available at https://osf.io/3qd76/  
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Estimating Learning When Test Scores Are Missing: 
The Problem and Two Solutions 

Learning is a central topic in education, and estimating learning requires testing student’s skills at 

two or more points in time. Yet the problem of estimating learning becomes challenging if some students 

miss tests. When tests are missed, the children who are tested on different occasions may not be 

comparable, and straightforward techniques—such as graphing changes in the mean score over time, 

subtracting pretest scores from posttest scores, or fitting ordinary linear regression models—may produce 

biased and misleading impressions of learning. Different investigators analyzing the same data can arrive at 

different conclusions about which students learn fastest and when gaps in skills between different students 

grow. 

The problem of missing test scores is widespread in education research, particularly in longitudinal 

studies that try to test the same students repeatedly over a period of years. Test scores can be missing for a 

variety of reasons. Students drop out of studies, transfer out of tested schools, or simply don’t show up or 

log in for tests. Schools switch from one test vendor to another. During the COVID-19 pandemic, so many 

children missed tests that some observers simply didn’t believe estimates of learning loss until schools 

reopened and testing became more widespread. 

Methods exist that can obtain unbiased estimates from longitudinal data with missing test scores. 

One of the best methods is multiple imputation, which fills in missing scores with a distribution of plausible 

values (Allison, 2002; Rubin, 1987; Schafer, 1997). Yet few education researchers are trained to use multiple 

imputation skillfully, and some researchers even regard imputation with suspicion (“making up data”). Othe 

researchers believe that multiple imputation is not worth the trouble because it “never makes a difference,” 

or use it only with reluctance, as a “robustness check,” hoping that it merely confirms the results they obtain 

from simpler methods—and unsure what to do if it doesn’t. 
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Another method that can produce unbiased estimates from longitudinal data with missing test scores 

is maximum likelihood estimation with random effects at the student level and, when relevant, the school 

level as well (Molenberghs & Kenward, 2007). Random effects models are popular among education 

researchers trained in psychology, sociology, and schools of education, who typically describe random 

effects models as multilevel or hierarchical growth models (Raudenbush & Bryk, 2001; Singer & Willett, 

2002), yet researchers trained in the econometric tradition often regard random effects with suspicion. 

When random effects models are used in educational research, missing values are never offered as a point in 

their favor. 

In this article, we demonstrate that missing values can introduce serious biases into estimates of 

learning. Comparing the learning of students in public and private schools, we show that casual treatment of 

missing data can create an illusion that skill gaps between public and private students grow dramatically 

during summer vacation when in fact they grow very little, if they grow at all. The illusion of summer 

learning gaps is visible in simple trend graphs of mean test scores, and also shows up in regression estimates 

obtained by ordinary least squares.  

We then show that the illusion dissipates when we use multiple imputation or random effects 

models, both of which suggest that the true summer learning gaps between public and private students are 

negligible. Yet not all learning gaps disappear when we use better methods for missing data. In particular, 

there is a persistent finding that public students gain on private students during kindergarten—a finding that 

deserves more thorough investigation. 

The example of summer learning 

The problems and solutions in this article should interest all researchers who are trying to estimate 

learning from longitudinal data. While the problems and solutions are general, our demonstration focuses on 

their application to summer learning. In recent years, several researchers have noticed that the results of 

summer learning studies are disturbingly “mixed” on nonreplicable. Most examples involve results obtained 
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from one dataset failing to replicate in another (Kuhfeld & Lewis, 2023; Quinn & Polikoff, 2017; von 

Hippel et al., 2018; von Hippel & Hamrock, 2019; Workman et al., 2023), but there are also examples where 

different analyses of the same or similar data can lead to different conclusions (Quinn, 2015). A variety of 

issues can make estimates of summer learning biased or non-replicable. Test dates are often far from the 

first and last day of summer (Burkam et al., 2004; Cooper et al., 1996; Downey et al., 2004; Heyns, 1987; 

Klibanoff & Haggart, 1981; Phillips & Chin, 2004); tests often change content or format over the summer 

(Reed et al., 2021; von Hippel & Hamrock, 2019); and the scaling of test scores can affect whether score 

gaps appear to grow or shrink as children get older (von Hippel, 2019; von Hippel et al., 2018; von Hippel 

& Hamrock, 2019). Even when analyzing the same data, researchers’ choice of statistical model or 

operational definitions can affect whether score gaps appear to widen or narrow during summer or during 

school (Quinn, 2015; Quinn & McIntyre, 2017).  

In this article, we show that missing data, too, can make summer learning estimates biased or hard to 

replicate. Missing data in summer learning studies is often substantial. For example, in the Early Childhood 

Longitudinal Studies of the Kindergarten classes of 1998-99 and 2010-11 (ECLS-K:1999 and ECLS-

K:2011), only one-third of schools that were tested in the spring before summer vacation were also tested in 

the fall afterward. In summer learning studies that rely on tests given by vendors (such as Renaissance 

Learning or NWEA), about a quarter of children who have test scores one year do not take tests from the 

same vendor the next year (Johnson & Kuhfeld, 2020; Workman et al., 2023). Vendor tests can be missing 

for a variety of reasons: some students are absent during the testing window; others are exempted from tests 

or opt out; some students transfer to a school that does not use the same test vendor; others remain at the 

same school, but the school’s vendor contract expires. In addition to test scores, student and school 

characteristics can be missing as well; for example, in test data collected by Renaissance Learning, student 

race and gender are optional, and many schools choose not to report them (Workman et al., 2023). 

Like other longitudinal studies, summer learning studies often treat missing data casually, deleting 

missing values by default (a practice known as listwise deletion) without considering how deletion might 
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affect the estimates. There are a handful of summer learning studies that fill in missing values using multiple 

imputation (Alexander et al., 2007b, 2007a; Davies & Aurini, 2013; Downey et al., 2004, 2008; von Hippel & 

Hamrock, 2019), one study where the data were reduced to a subset with fewer missing values (Workman et 

al., 2023), and one study that investigated the differences between students with complete and incomplete 

data (Kuhfeld et al., 2021), but these are more the exception than the rule. In addition, some summer 

learning included random effects in the context of multilevel growth models (e.g., Borman & Dowling, 

2006; Condron et al., 2021; Downey et al., 2004; Kuhfeld et al., 2021; Olson, 2004; von Hippel et al., 2018), 

but this was pure good fortune, as missing data was never mentioned as a justification for the model. In 

addition, there are a number of summer learning studies that did not include random effects (or use multiple 

imputation), even though they were quite careful with respect to other methodological issues (e.g., Davies et 

al., 2022; Gershenson & Hayes, 2017; Quinn, 2015; and every summer learning study conducted before 

2004). 

Our demonstration focuses on comparing school year and summer learning in public and private 

schools—a comparison that, while less popular than comparisons of children of different racial, ethnic, or 

socioeconomic groups, has received some attention in the summer learning literature (Carbonaro, 2003; 

Dallavis et al., 2021; Downey et al., 2008). The results speak to the substantive question of whether private 

schools do more or less than public schools to increase children’s learning—a topic that has inspired 

considerable research, with mixed findings, since the 1980s (Coleman et al., 1982; Lubienski & Lubienski, 

2013; Reardon et al., 2009; Shakeel et al., 2016). Separating summer and school learning sheds light on the 

differences between schools because learning differences during summer reflect family effects—that is, 

differences between the types of families who send their children to public or private school—while 

learning differences during the school year reflect the combined effects of families and schools. For 

example, if private students learn faster during summer but public students learn faster during school, then 

it would seem that the higher achievement of children in private schools is due to families, and public 

schools may actually be more effective at increasing student learning, at least on average. 
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We present the data, methods, and results in two passes. First, we ignore the problem of missing 

data and analyze the data using methods that would be appropriate if the data were complete. Then we 

acknowledge the problem of missing data and analyze the data using methods appropriate for incomplete 

data. The results, we will show, are strikingly different. 

First Pass, Ignoring the Problem of Missing Data 

We used data from the ECLS-K:2011, a study funded by the US Department of Education. The 

ECLS-K:2011 began in the 2010-11 school year with a nationally representative probability sample of 18,174 

kindergartners in 796 public and 154 private schools. The ECLS-K:2011 was a two-stage cluster sample, in 

which children were sampled at random within schools, and schools were sampled at random within 90 

primary sampling units, each of which was a single large county or a contiguous group of small counties. In 

keeping with the sample design, our analyses treat children as clustered within the schools where they were 

first sampled, even if they moved to a different school or left the school system later. 

Children were tested in the fall and spring of kindergarten, first grade, and second grade. Scores on 

these six occasions enable us to estimate learning separately during each of the three school years and the 

two summers between. Children were also tested in the spring of fourth and fifth grade, but without fall 

tests in those years, there is no way to separate school year learning from summer learning. 

The ECLS-K:2011 has been used in several previous studies of summer learning (e.g., Quinn et al., 

2016; Quinn & Le, 2018; von Hippel et al., 2018; Workman et al., 2023). However, previous studies of 

summer learning in the ECLS-K:2011 have not compared public and private schools, as we do here. 

Test Timing and Scaling 

There are several issues that might affect estimates of summer learning in the ECLS-K:2011. One 

issue is the timing of tests. Tests were not given on the first and last day of school; instead, test dates varied 

from school to school, with average fall test dates in mid-October, nearly two months after school started, 
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and average spring test dates in late April, more than a month before school ended. What this means is that 

we cannot estimate summer learning just by subtracting spring tests from fall tests, because some of the 

time between spring and fall tests was spent in school. By comparing test dates to dates for the first and last 

day of school, we estimate each child’s school exposure, and our models adjust for school exposure, as we 

explain later. 

It is also important to describe the scaling of test scores, as scaling can affect summer learning 

estimates as well. Test scores were scaled using a 3-parameter logistic item response theory (IRT) model that 

estimated children’s reading and math skill controlling for test items’ difficulty, guessability, and sensitivity1 

(Tourangeau et al., 2017). Tests were scored on a “theta scale” that represented the child’s log odds of 

correctly answering a question of reference difficulty, guessability, and sensitivity. On the theta scale, test 

scores could take positive or negative values, which can confuse some readers, but higher test scores still 

represent greater skill.  

Descriptive results 

Figure 1 plots the average of public and private students’ observed reading and math scores on the 

fall and spring tests in kindergarten, first grade, and second grade. The dates on the horizontal axis are the 

average of the observed test dates. 

It appears that private students pull away from public students during summer vacation. The 

opening of the gap between private and public students is evident in both subjects and both summers, but it 

is especially striking during the first summer in reading and the second summer in math. It also appears that 

public students gain on private students during each school year. The relative gains of public students 

 
1 In IRT, sensitivity refers to the steepness of the item response function—i.e., how quickly the probability of a 

correct answer rises as a function of student ability. Sensitivity can also be called “discrimination,” but we avoid that term to 
avoid confusion with discrimination in the legal or sociological sense. Similar, a student’s current skill level is often known 
in IRT as “ability,” but we prefer “skill” because ability can connote skills that are fixed or innate.  
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appear especially large in first grade, where it appears that the gap between public and private students might 

be wiped out if the school year were approximately twice as long. 

Model 

A popular model in summer learning studies is the piecewise linear growth model, which equation 

(1) represents in both scalar and vector form: 

𝑌௖௦௧ = 𝛼଴ + 𝛾଴𝐺𝑟𝑎𝑑𝑒଴,௖௦௧ + 𝛽ଵ𝑆𝑢𝑚𝑚𝑒𝑟ଵ,௖௦௧ + 𝛾ଵ𝐺𝑟𝑎𝑑𝑒ଵ,௖௦௧ + 𝛽ଶ𝑆𝑢𝑚𝑚𝑒𝑟ଶ,௖௦௧ + 𝛾ଶ𝐺𝑟𝑎𝑑𝑒ଶ,௖௦௧ + 𝑒௖௦௧  

= 𝛼଴ + 𝜸 𝑮𝒓𝒂𝒅𝒆𝒔௖௦௧ + 𝜷 𝑺𝒖𝒎𝒎𝒆𝒓𝒔௖௦௧ + 𝑒௖௦௧  

 

(1) 

Here 𝛼଴ represents the starting point: the average score that would be obtained on a test given the first day 

of kindergarten. The vector 𝜸 = [𝛾଴ 𝛾ଵ 𝛾ଶ]  represents monthly learning rates during grades 0 

(kindergarten), 1, 2, and 2, and the vector 𝜷 = [𝛽ଵ 𝛽ଶ] represent monthly learning rates during summer 

vacations 1 and 2. The model allows for different learning rates during each school year and summer, while 

assuming that learning within a given school year or summer proceeds at a constant rate—i.e., that scores 

increase in a linear fashion. By assuming linearity the model implicitly extrapolates beyond the observed test 

scores to the scores that would have been obtained on the first and last day of each school year.  

The dependent variable 𝑌௖௦௧ is the reading or math score of child c in school s on occasion t=1,…6. 

There are six test occasions, from the fall of kindergarten (t=1) to the spring of second grade (t=6). On each 

occasion, the 𝐆𝐫𝐚𝐝𝐞𝐬ୡୱ୲ = ൣ𝐺𝑟𝑎𝑑𝑒଴,௖௦௧, 𝐺𝑟𝑎𝑑𝑒ଵ,௖௦௧, 𝐺𝑟𝑎𝑑𝑒ଶ,௖௦௧൧ and 𝐒𝐮𝐦𝐦𝐞𝐫𝐬ୡୱ୲=ൣ𝑆𝑢𝑚𝑚𝑒𝑟ଵ,௖௦௧,

𝑆𝑢𝑚𝑚𝑒𝑟ଶ,௖௦௧൧ vectors2 contain variables representing the number of months that the child has spent in 

grade 0 (kindergarten), 1, and 2, and on their first and second summer vacations. For example, on test 

occasion t=3, in the fall of first grade, children have typically spent about 𝐺𝑟𝑎𝑑𝑒଴ =9.33 months in 

 
2 We adopt the convention that the elements of column vectors are separated by commas and the elements of row 

vectors are not. For example, 𝑺𝒖𝐦𝐦𝐞𝐫𝐬ୡୱ୲=ൣ𝑆𝑢𝑚𝑚𝑒𝑟ଵ,௖௦௧ , 𝑆𝑢𝑚𝑚𝑒𝑟ଶ,௖௦௧൧ is a column vector, and 𝜷 = [𝛽ଵ 𝛽ଶ] is a row 
vector. 
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kindergarten, 𝑆𝑢𝑚𝑚𝑒𝑟ଵ =2.67 months on summer vacation 1, 𝐺𝑟𝑎𝑑𝑒ଵ =1.5 months in grade 1, and 0 

months in grade 2 or summer vacation 2. Months of school and summer exposure are updated for each 

child on each test occasion. 

To estimate differences between students in public and private students, we add a dummy variable 

for private schools and let it interact with the 𝐆𝐫𝐚𝐝𝐞𝐬ୡୱ୲ and 𝐒𝐮𝐦𝐦𝐞𝐫𝐬ୡୱ୲ variables: 

𝑌௖௦௧ = 𝛼଴ + 𝜸 𝑮𝒓𝒂𝒅𝒆𝒔௖௦௧ + 𝜷 𝑺𝒖𝒎𝒎𝒆𝒓𝒔௖௦௧ + 𝛥𝛼଴𝑃𝑟𝑖𝑣𝑎𝑡𝑒௦ + 𝛥𝜸 𝑃𝑟𝑖𝑣𝑎𝑡𝑒௦ × 𝑮𝒓𝒂𝒅𝒆𝒔௖௦௧

+ 𝛥𝜷 𝑃𝑟𝑖𝑣𝑎𝑡𝑒௦ × 𝑺𝒖𝒎𝒎𝒆𝒓𝒔௖௦௧ + 𝑒௖௦௧ 

 

(2) 

Here the coefficients Δ𝛼଴, Δ𝛄, and Δ𝛃 represent the difference between the average starting point and 

learning rates during in private and public schools. Differences between private and public learning rates can 

be different in each school year and summer. The error term 𝑒௖௦௧ is clustered by school to get cluster-robust 

standard errors (SEs). 

We will call model (2) the OLS analysis model. 

Observed-data OLS estimates with school-clustered SEs 

Observed-data estimates from the OLS model appear in Table 1. In both reading and math, the 

average skill level at the start of kindergarten was significantly higher in private schools than in public 

schools (p<0.05). During the school years—kindergarten, grade 1, and grade 2—public school students 

shrink the gap by learning faster than private students; the difference between private and public students’ 

learning is significant and favors public students in every school year. (p<.05). During summer vacations, 

however, the gap opens again as private students learn faster than public students. In reading, the summer 

difference is significant in both summers; in math, the difference is only significant in summer 2. Per month, 

the learning differences between public and private students are estimated to be larger in every summer than 

they are in any school year.   



Estimating learning when test scores are missing—9 

From these observed-data OLS estimates, it is tempting to conclude that public students learn faster 

than private students during the early school years, but private students learn faster than public students 

during the summers. If so, this would imply that public schools are more effective than private schools at 

raising test scores, at least in the early years, and that private students score higher only because of out-of-

school advantages that are evident on the first day of kindergarten and during summer.  

Second Pass, Acknowledging the Problem of Missing Data 

The OLS estimates in the previous section would be unbiased if the data were complete, but in fact many 
test scores were missing. 78 percent of children missed at least one reading test, and one percent missed all 
six. As *p<0.05, **p<0.01, ***p<0.001. School-clustered standard errors in parentheses. The summer 
differences between public and private students are highlighted to draw attention. 

Table 2 shows, the percentage of missing reading scores varied substantially across rounds and 

school types. In private schools, 3 percent of students missed tests in round 2, but 81 percent missed tests in 

round 3. Compared to private schools, public schools had higher rates of missing tests in kindergarten, but 

lower rates in first and second grade.  

Many test scores were missing by design. One feature of the survey design was that recruitment of 

schools continued throughout the kindergarten year. In the fall of kindergarten, the sample included 16,464 

children in 859 schools, but by the spring of kindergarten the sample included 18,174 children in 950 

schools. That is, 10 percent of the spring kindergarten students were not in the fall kindergarten sample. 

Another feature of this survey design was that fall testing in grades 1 and 2 was limited to a one-

third random subsample of schools. This largely explains why over two-thirds of test scores were missing in 

the fall of grades 1 and 2. Some summer studies have limited these data to the one-third subsample, which, 

because it was random, was still representative of the kindergarten population in 2010-11.  

Within the one-third subsample, rates of missingness were lower but still substantial in some rounds. 

For example, in round 5 (the fall of grade 2), the one-third subsample was missing scores for 21 percent of 

public students and 34 percent of private students. 
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In addition to scores that were missing by design, children missed test scores for a variety of 

reasons, known and unknown, that were beyond the study’s control. For example, among the 1,031 students 

who missed the math test in the spring of kindergarten, 26 percent had moved to a county that was not part 

of the original sample, 9 percent could not be located, and 2 percent were being home-schooled. The 

remaining 64 percent were still attending sampled schools but missed the tests anyway, presumably because 

they were absent during the test window or refused to take the test, which was voluntary. 

Listwise deletion 

In our first pass, we handled missing data simply by dropping rounds with missing test scores from 

each child’s data. For example, if a child was missing scores only in rounds 3 and 5, we dropped those 

rounds but retained the observed scores from rounds 1, 2, 4, and 6.  

This approach is called listwise deletion, or complete case analysis. It is the most common approach to 

missing data, and the default in most software. But combining OLS with listwise deletion is not the best 

approach in general, and here it is strongly biased, as we will see. 

Could scores be missing at random? 

Missing test scores Y make estimates less precise, but do they also bias the OLS estimates? It 

depends. In data where the X variables are complete, as ours approximately3 are, OLS regression estimates 

are unbiased if Y values are missing at random (MAR) (Little, 1992; von Hippel, 2007), meaning that the 

probability that a test score Y is missing is independent of the value of Y, controlling for X. Note that the 

probability that a test score Y is missing can depend on X; for example, more scores could be missing in 

some rounds than in others; or more scores in could be missing in public schools than in private schools. 

 
3 The private school dummy is complete, and the test date is observed whenever the test score is observed. Some 

schools are missing the start and end dates that are needed to calculate school and summer exposures, but we analyzed the 
data as though every school began on August 25 and ended on June 5. In other papers, we have imputed missing school 
dates, but it has never affected the estimates because school dates vary so little. In this paper, we treated school dates as a 
constant to keep the focus on missing test scores. 
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But the probability of a missing score cannot depend on the score itself cannot depend on the score itself 

once those X variables are controlled. 

We cannot test the MAR assumption directly, for the simple reason that if a score Y is missing its 

value cannot be observed. In longitudinal data, however, we can test the plausibility of the MAR assumption 

indirectly by asking whether observed test scores in one round predict whether scores are missing in the 

next round. The serial correlation between scores from consecutive rounds is strong (between 0.75 and 0.89, 

depending on the subject and round), so if children with low scores in one round were more likely to miss 

tests in another round, it is almost sure that their scores in the missed round would also have been low if 

they were not missing. 

Table 3 exploits this observation to test the MAR assumption indirectly. Using logistic regression, it 

predicts the probability of a missing score in round 3 (fall of grade 1) as a function of the score in round 2 

(spring of kindergarten), a dummy for private schools, and an interaction between the private school 

dummy and the round 2 score.  

The results suggest that test scores are not MAR, because round 2 scores predict whether scores are 

missing in round 3. The round 2 score has a small positive coefficient, meaning that, in public schools, 

children with high round 2 scores were more likely to miss round 3 tests. But the interaction between the 

round 2 score and the private school dummy has a larger negative coefficient, meaning that, in private 

schools, children with low round 2 scores were more likely to miss round 3 tests.  

Think about what that means. In round 2, before summer vacation, nearly all children were tested, 

so average test scores were close to unbiased. But in round 3, after summer vacation, high-scoring children 

were more likely to miss tests in public schools, and low-scoring children were more likely to miss tests in 

private schools. In other words, the average score in private schools was biased high, and the average score 

in public schools was biased low. Therefore the round 3 gap between private and public schools was 

exaggerated (positively biased), and so was the growth in that gap over summer vacation. This bias or 

exaggeration affected the OLS estimates in Table 1. 
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Before moving on, we should make a couple of points about the logistic regression estimates in 

Table 3. First, although the estimates highlight the possibility of bias from missing data, missing data does 

not bias the results of the logistic regression itself—at least not much. In fact, the variables that are used in 

the logistic regression are nearly complete. The private school dummy is 100 percent complete, and the 

round 2 test scores are 94 percent complete. The round 3 test scores are incomplete, of course, but they are 

not in the model; instead, the model uses a dummy variable for whether the round 3 test score is missing, 

and that dummy variable is observed for every child, whether they have a round 3 test score or not. We 

could have fit similar logistic regression models using different rounds of test scores as predictors, but we 

chose to predict with round 2 test scores, because those have the fewest missing values. 

Second, to conclude that Y values are not MAR, we must show that missingness depends on the Y 

values net of the X variables in the OLS regression. Does the logistic regression model control adequately 

for those X variables? It does. Like the OLS regression, the logistic regression includes a dummy for private 

schools. Like the OLS regression, the logistic regression involves the private school dummy in an 

interaction. The OLS regression includes school and summer exposures, which the logistic regression model 

does not include explicitly. But the logistic regression does control for exposures implicitly—by limiting 

analysis to rounds 2 and 3. Controlling for round effectively controls for exposure, because exposure varies 

little within rounds. 

To sum up: net of the X variables in the OLS regression model, test scores Y are not MAR. 

Therefore the OLS regression estimates are biased, substantially overestimating the summer learning gaps 

between private and public schools. 

How to make the MAR assumption more plausible 

What can we do to improve estimates of school and summer learning? We must do something to 

increase the plausibility of the MAR assumption. Stated generally, MAR means that the probability a test 

score is missing does not depend on that test score, net of other variables in the model. As we have seen, the 
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MAR assumption is not plausible in the OLS regression model, which only conditions test scores Y on X 

variables such as school sector and school and summer exposures. But the MAR assumption would be more 

plausible if the model also conditioned test scores from one round on test scores from other rounds. As we have 

already pointed out, test scores from different rounds are strongly correlated, and scores from one round 

predict whether scores are missing from other rounds.  

Estimates from incomplete data can improve dramatically when models include variables that 

strongly predict both whether values are missing and what the missing values are. Better prediction of 

missing values reduces the standard error of estimates, and better prediction of whether values are missing 

reduces bias by increasing the plausibility of the MAR assumption. When predictive variables that are not in 

the analysis model are pulled in just to help with missing values, they are called auxiliary variables (Collins et 

al., 2001; von Hippel & Lynch, 2013). In our situation, test scores from other rounds were already in the 

analysis model, but we will respecify the model to take better advantage of the correlations among test 

scores and the fact that test scores from one round predict whether test scores from another round are 

missing. We will refer to test scores used in this way as quasi-auxiliary variables.  

Before respecifying our models, we should acknowledge that even skillful use of test scores as quasi-

auxiliary variables cannot guarantee that the data will become MAR. Like other statistical assumptions (e.g., 

normality, linearity, or exogeneity), the MAR assumption is not always fully attainable, but our estimates can 

be expected to improve as we come closer to satisfying it. It remains possible that the probability a test 

score is missing will depend on that score, even after scores from other rounds are taken into account. But 

the dependency should be much weaker, and the resulting bias should be much smaller, than it would be if 

the model neglected the relationship among test scores from different rounds, as the OLS regression model 

did. 

We used two approaches to improve estimates by using scores from different rounds.  
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Approach 1. Multiple imputation of wide data 

Our first approach was to pre-process the incomplete data with an imputation model that estimated the 

relationship between scores from different rounds. Once the imputation model was estimated, we used it to 

impute missing scores with values drawn at random from the conditional distribution of the missing scores 

given the observed scores. After imputation, we used OLS to fit the imputed data to the same analysis 

model (2). 

Imputation Model 

To prepare data for imputation, we reshaped the data into a wide format, with one row per child and 

a column for each math score, reading score, and test date in each of 6 different rounds—18 columns in all 

(Table 4). Putting the data in wide format made it more convenient to estimate the correlations between 

scores on the tests taken by the same students in different rounds. 

To estimate those correlations, we fit a multivariate normal model—a popular imputation model 

that assumes variables are normally distributed and the relationships among variables is linear (King et al., 

2001; Schafer, 1997). The multivariate normal model is characterized by a mean vector µ, which contains the 

means of all the variables, and a covariance matrix Σ, which contains the variances of all the variables and 

the covariances among pairs of variables. Note that this is equivalent to estimating the standard deviation of 

each variable and the correlations among pairs of variables, because the standard deviation is just the square 

root of the variance, and the correlation between two test score variables, say Y1 and Y2, is a function of 

their variances and covariances: 𝐶𝑜𝑟𝑟(𝑌ଵ, 𝑌ଶ) = 𝐶𝑜𝑣(𝑌ଵ, 𝑌ଶ)/ඥ𝑉𝑎𝑟(𝑌ଵ)𝑉𝑎𝑟(𝑌ଶ). 

We fit the model separately to public and private schools, so that the mean and covariance matrix 

could differ across public and private schools. This made the imputation model compatible with the analysis 

model (Bartlett et al., 2015). Specifically, since the analysis model (2) allowed public and private schools to 

have different intercepts and slopes, it was important for the imputation to allow public and private schools 

to have different means and covariance matrices. Since the means and covariance matrices of a multivariate 
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normal model can be transformed into the intercepts and slopes of a regression model, if the regression 

parameters can vary across school sectors, then the means and covariance matrix must be allowed to vary as 

well (von Hippel, 2009). 

Most imputation models are at least slightly misspecified, but the misspecification does not matter 

unless it causes the imputation model to be incompatible with the analysis model . For example, our 

multivariate normal model assumes that test scores are normally distributed, which they are not, but this 

should not cause bias since there is nothing in the analysis model that assumes normality (von Hippel, 

2013). 

We used multiple imputation, imputing and analyzing the data multiple times, then combining the 

results using specialized formulas to obtain valid and replicable inferences (Rubin, 1987). Specifically, we 

imputed the data 100 times, which according to a well-justified formula was more than enough to ensure 

that the estimated standard errors would likely change by less than 5 percent if the data were multiply 

imputed again (von Hippel, 2020). Following standard Bayesian practice (Rubin, 1987), in each imputation 

we drew the parameters of the imputation model at random from the posterior parameter distribution; then 

imputed missing values at random conditionally on the imputation model with the drawn parameters.  

After imputation, we fit the OLS regression model (2) to each of the 100 imputed data sets. We then 

combined the estimates using formulas developed for multiply imputed data. The formulas averaged the 100 

point estimates, and calculated standard errors by combining variation within and between the 100 imputed 

datasets (Rubin, 1987). 

Results 

The top row of Figure 2 graphs the mean of the imputed scores from the fall of kindergarten 

through the spring of second grade. Notice that the summer gaps that seemed so obvious in Figure 1, which 

used only observed scores, simply disappear when imputed scores are included in the averages. In the 

imputed data, there is no visible summer learning gap between private and public schools. Evidently the 
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summer learning gap apparent in the observed scores was due almost entirely to high-scoring private 

students and low-scoring public students missing the fall test. 

OLS regression estimates from the multiply imputed data appear in the second column of Table 5 

(reading) and Table 6 (math). The estimates confirm the visual impression we got from Figure 2. When OLS 

was applied to observed data, there appeared to be large and significant differences between the summer 

learning rates of private and public students (the estimates from Table 1 are repeated in the first column of 

Table 5 and Table 6). But when OLS is applied to the imputed data, those summer differences become non-

significant—statistically and substantively indistinguishable from zero. 

Although imputation made the learning differences between public and private students disappear 

during summer, during the kindergarten school year the imputed data still suggest that public students 

gained on private students. The rate at which public students gained on private students during kindergarten 

was similar whether the data were imputed or not. In later school years, by contrast, imputation substantially 

reduced the estimated learning difference between public and private students; in fact, in first grade math 

and second grade reading, these learning differences became statistically indistinguishable from zero. 

Although it may seem surprising that imputation could make summer learning gaps disappear, we 

did know that gaps estimated from the observed data were biased, and we expected that the bias would be 

reduced or eliminated by imputation. There are two ways to think about how imputation reduced bias here. 

A theoretical explanation is that the imputation model, because it conditioned imputed test scores on 

observed test scores from other rounds, brought the data much closer to satisfying the MAR assumption. A 

more concrete explanation is that the imputation model filled in scores from the missing part of the test 

score distribution, so that the distribution was more representative after imputation than before. For 

example, in round 3 (the fall of kindergarten), the imputation model filled in the scores of low-scoring 

private students and high-scoring public students who missed the test. After missing scores were imputed, 

the distribution of scores became more representative, and artificial differences that resulted from observed 

scores being non-representative disappeared. 
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Approach 2. Maximum likelihood with random effects 

A second approach to missing test scores is to add random effects to the analysis model. While random 

effects models, more often called hierarchical or multilevel growth models, are popular in the summer 

learning literature, it is not widely appreciated that random effects models, at least when they are fit using 

maximum likelihood, are relatively robust to missing values of the dependent variable (Molenberghs & 

Kenward, 2007). We will now illustrate the advantages of random effects. 

Method 

A two-level random-effects model can be written as 

𝑌௖௦௧ = 𝛼଴ + 𝜸 𝑮𝒓𝒂𝒅𝒆𝒔௖௦௧ + 𝜷 𝑺𝒖𝒎𝒎𝒆𝒓𝒔௖௦௧ + 𝛥𝛼଴𝑃𝑟𝑖𝑣𝑎𝑡𝑒௦ + 𝛥𝜸 𝑃𝑟𝑖𝑣𝑎𝑡𝑒௦ × 𝑮𝒓𝒂𝒅𝒆𝒔௖௦௧

+ 𝛥𝜷 𝑃𝑟𝑖𝑣𝑎𝑡𝑒௦ × 𝑺𝒖𝒎𝒎𝒆𝒓𝒔௖௦௧ + 𝑢௦ + 𝑟௖௦ + 𝑣௖௦௧ 

 

(3) 

This is identical to our linear regression model (2), except that the random effects model splits the error 

term, which the linear regression represented with a single term 𝑒௖௦௧, into three components: a random 

school effect 𝑢௦, a random child effect 𝑟௖௦, and a test-level residual 𝑣௖௦௧ . 

Why do random effects in the error term matter? Because they imply correlations among the test 

scores. And as we noted earlier, a model that incorporates correlations among the test scores will come 

much closer to making the data MAR.  

While the imputation model modeled the correlations among test scores explicitly, the random 

effects model does so implicitly. The fact that all tests taken by the same child share the same random effect 

𝑟௖௦ implies that tests taken by the same child in different rounds have a residual correlation equal to 

𝑉𝑎𝑟(𝑟ୡୱ)/(𝑉𝑎r(𝑟௖௦) + 𝑉𝑎𝑟(𝑒௖௦௧)). Likewise, the fact that each school had a characteristic random effect 𝑢௦ 

implies that tests taken by children in the same school are correlated as well.  
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When random effects are estimated by maximum likelihood, the likelihood effectively integrates 

over the distribution of possible values for the missing scores. In large samples, is something like imputing 

the data an infinite number of times (Rubin, 1987; von Hippel & Bartlett, 2021; Wang & Robins, 1998).  

Note that including school random effects is not the same as using OLS and clustering standard 

errors at the school level. Both approaches model the within-school correlations, but school-clustered 

standard errors only use those correlations to adjust the estimated standard errors around OLS estimates 

that were obtained as if the errors were uncorrelated. In random-effects models, the modeled correlations 

affect the point estimates as well as the estimated standard errors. 

Results 

Random effects estimates from listwise deleted data appear in the last two columns of Table 5 

(reading) and Table 6 (math). Unlike the OLS estimates, the random effects estimates are very similar 

whether values are imputed or not. This confirms the intuition that maximum likelihood estimation of a 

random-effects model is like implicitly imputing the data an infinite number of times. Nothing is gained if 

the data are explicitly imputed as well. 

During summer vacations, the random-effects estimates confirm that there is little or no learning 

difference between private and public students. Most of the summer differences are nonsignificant, and 

even when significant they are several times smaller than the differences estimated by applying OLS to 

listwise deleted data. During kindergarten, though, all models continue to suggest that public students gain 

on private students. The estimated kindergarten learning difference is statistically significant and similar in 

size whether random effects are included or not, and whether values are imputed or not. 

Approach 3. Restricting to the one-third subsample 

Although multiple imputation and maximum likelihood with random effects are the best general-

purpose approaches to longitudinal data with missing values of the dependent variables, there is a third 
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option that is specific to the ECLS-K:2011. That option is to restrict the data to the one-third random 

subsample of schools where tests were given in rounds 3 and 5. While this sample is smaller and will 

produce less precise estimates, it is still a random sample of the population and would produce unbiased 

estimates if it were complete. The one-third subsample does have missing test scores, and we have already 

seen that they are not missing at random, but since a smaller fraction of scores are missing, any estimates 

obtained from it will be less sensitive to how missing data is handled. 

The bottom of Figure 2 graphs the mean of observed test scores from the one-third subsample from 

the fall of kindergarten through the spring of second grade. The results look very much like those for the 

full sample with imputed data. Summer learning gaps between private and public schools are not visible for 

either subject (math or reading) or any summer vacation (summer 1 or summer 2).   

Table 7 and Table 8 give reading and math estimates obtained from the one-third subsample. In 

general the results are very similar whether values are imputed or not, and whether parameters are estimated 

using random effects or OLS. This confirms our intuition that, because the one-third subsample has fewer 

missing values than the full sample, estimates from the one-third subsample will be less sensitive to the 

treatment of missing data. 

Conclusion 

Our results show that estimates of summer learning can be sensitive to missing test scores. When we 

analyzed the data in the easiest and most casual way—simply dropping missing test scores and calculating 

means and OLS regressions from the observed values only—it appeared that there were substantial summer 

learning gaps between private and public schools. But when we treated the incomplete data using more 

appropriate methods—multiple imputation or maximum likelihood with random effects—the summer 

learning gaps shrank dramatically, in most cases to nothing. 

This finding raises concerns about past summer learning studies that did not use multiple imputation 

or random effects, and it suggests that future summer learning studies should be alert to the challenges 
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posed by missing values. Future summer learning studies should describe their missing value problems 

carefully and handle it using either multiple imputation or random-effects models, or both. 

Fortunately, random effects models are already popular in longitudinal studies of learning, though 

many studies do not use random effects, and those that do have never previously cited the advantages of 

random effects models for incomplete data. That said, random effects models do have limitations. First, 

random effects models only address missing values in the dependent variable (test scores). If a substantial 

number of values are also missing from the independent variables (e.g., race, SES, gender), then they will 

need to be filled in using multiple imputation. 

Another issue with random effects models is that, unlike OLS, random effects estimates of learning 

rates do not represent simple changes in the mean score. Instead, random effects estimates estimates 

represent a weighted average of within- and between-school variation, with the within-school variation 

dominating the estimates if the number of children sampled per school is large (Greene, 2011; Wooldridge, 

2002). In our study, only between-school variation contributed to the point estimates, because the X 

variable of interest was school sector, which varied only between schools. But in another study, comparing 

the learning of children whose characteristics vary both within and between schools (such as children of 

different ethnicities or family SES), within-school variation will dominate random effects estimates, and 

researchers should consider carefully whether within-school variation is what interests them. Researchers 

who are also interested in between-school variation will need to estimate that explicitly. A common 

recommendation is to fit a within-between model that includes both school-level averages of child 

characteristics and individual child characteristics, perhaps centered around their school-level averages 

(Allison, 2009, 2017; Raudenbush & Bryk, 2001).  

There are some costs associated with using multilevel random effects models or multiple imputation. 

Multiple imputation increases runtime, both because the data need to be imputed and because the data then 

need to be analyzed multiple times. There are ways to make the process faster, but they are not widely 

implemented (von Hippel et al., 2023). Investigators using multiple imputation must also make sure that the 
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imputation and analysis models are compatible. In longitudinal studies, this typically means imputing test 

scores in wide format, and imputing separately any subgroups (e.g., public vs. private students) whose 

learning rates will be compared in the analysis model.  

Multilevel random effects models can also run slowly and have convergence trouble, but this 

depends on the package. HLM and MPlus run these models much faster than SAS’s MIXED procedure, R’s 

lme4 package, or especially Stata’s mixed command (McCoach et al., 2018). If you like the missing-data 

properties of random effects models, you may wish to use a different package than you ordinarily do. The 

runtime issues are real, and more effort should be spent on implementing faster, more robust algorithm in 

packages that do not already use them.  

But the extra minutes or hours needed to treat missing data properly pale in comparison to the years 

of readers’ time wasted by publishing seriously misleading results that are biased by casual treatment of 

missing data. Accurate estimates are worth waiting for. 
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Figures  

 

Figure 1. The average of observed scores in public and private schools in the fall and spring of kindergarten, 

first grade, and second grade. 
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Figure 2. Gaps between private and public schools—using imputed data (top) and using a one-third 

subsample where fewer values are missing (bottom). 
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Tables 

Table 1. OLS regression estimates obtained from listwise deleted data with observed test scores only. 

 Reading 
Math 

estimates 
Public schools   
Score, start of kindergarten -1.561*** -1.410*** 

 (0.016) (0.014) 
Monthly learning rates   
Kindergarten 0.158*** 0.126*** 

 (0.002) (0.001) 
Summer 1 -0.018** 0.012 

 (0.007) (0.007) 
Grade 1 0.084*** 0.087*** 

 (0.002) (0.002) 
Summer 2 -0.011* -0.028*** 

 (0.005) (0.007) 
Grade 2 0.038*** 0.062*** 

 (0.001) (0.002) 
Difference between private and public schools   
Score, start of kindergarten 0.343*** 0.350*** 

 (0.041) (0.031) 
Monthly learning rates   
Kindergarten -0.018*** -0.012*** 

 (0.004) (0.003) 
Summer 1 0.059** 0.027 

 (0.019) (0.020) 
Grade 1 -0.022*** -0.016* 

 (0.006) (0.006) 
Summer 2 0.034* 0.046* 

 (0.015) (0.019) 
Grade 2 -0.009* -0.015** 

 (0.004) (0.005) 
Scores 71,726 71,622 

*p<0.05, **p<0.01, ***p<0.001. School-clustered standard errors in parentheses. The summer differences 
between public and private students are highlighted to draw attention. 
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Table 2. Percentage of reading scores that were missing. 

 Full sample One-third subsample 
Round Public Private Public Private 
1. Fall kindergarten 15% 6% 17% 4% 
2. Spring kindergarten 6% 3% 6% 4% 
3. Fall 1st grade 71% 78% 14% 24% 
4. Spring 1st grade 16% 23% 12% 16% 
5. Fall 2nd grade 73% 81% 21% 34% 
6. Spring 2nd grade 23% 31% 16% 21% 
Children  15,953 2,221 5,458 651 
Schools  796 154 275 47 

Note. The percentage of math scores that were missing was practically identical.  
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Table 3. Logistic regression predicting which scores were missing in fall grade 1 

 Missing score, fall grade 1 
Predictors Reading Math 
Score, spring kindergarten 0.09+ 0.11* 

 (0.05) (0.05) 
Private school 0.32 0.32 

 (0.21) (0.21) 
Private school × Score, spring kindergarten -0.50** -0.36+ 

 (0.18) (0.19) 
Constant 0.85*** 0.86*** 

 (0.07) (0.08) 
Observations 17,186 17,143 

*** p<0.001, ** p<0.01, * p<0.05, + p<0.10. School-clustered standard errors in parentheses. 
Note. The model used spring scores to predict which fall scores were missing from the same subject. For 
example, reading scores in spring kindergarten were used to predict which students missed reading tests in 
fall grade 1. 
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Table 4. Twelve children’s incomplete test data in wide format 

Note. Each row contains observed and missing values from 6 rounds of tests on an individual child. These twelve rows are just an aid to 
visualization. In the actual data, there are 18,174 rows and each column has a different name. 

 

  Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 

Child ID Date Reading Math Date Reading Math Date Reading Math Date Reading Math Date Reading Math Date Reading Math 

10000034 12/4/2010 -0.67 -0.79 5/4/2011 -0.08 -0.28 11/11/2011 0.37 0.38 5/11/2012 0.67 0.30 11/15/2012 0.71 0.49 5/15/2013 0.83 0.78 

10000035 10/19/2010 -2.11 -2.78 4/27/2011 -1.87 -2.40                 

10000036 12/4/2010 -0.53 -0.58 5/4/2011 -0.42 -0.10 10/19/2011 0.06 -0.01 5/4/2012 0.64 0.19 10/15/2012 0.84 0.39 4/15/2013 0.93 0.57 

10000037 11/4/2010 -2.10 -2.11 4/11/2011 -1.86 -0.94 9/11/2011 -1.30 -0.85             

10000038 10/4/2010 -1.89 -0.72 4/4/2011 -0.66 -0.09     3/27/2012 0.26 0.55     5/15/2013 0.77 1.21 

10000039 12/19/2010 -2.60  5/27/2011 -1.04 -0.74     5/11/2012 -0.18 -0.54         

10000040 9/11/2010 -1.88 -1.51 4/11/2011 -0.78 -0.44 9/19/2011 -0.05 0.17 3/27/2012 0.53 0.50 9/15/2012 0.89 0.87 3/15/2013 0.91 1.36 

10000041 12/4/2010 0.05 0.14 5/11/2011 0.89 0.74     5/11/2012 0.96 1.44         

10000042 10/4/2010 -2.01 -1.82 4/4/2011 -0.33 -1.04     3/27/2012 0.18 -0.12     4/15/2013 0.59 0.35 

10000043 10/19/2010 -1.92 -2.27 4/4/2011 -0.23 -0.71 10/11/2011 0.00 -0.53 4/19/2012 0.59 0.18             
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Table 5. Reading results, all children 

  OLS regression Random effects regression 

 
Observed 

scores 
Imputed 
scores 

Observed 
scores 

Imputed 
scores 

Public schools     
Score, start of kindergarten -1.561*** -1.576*** -1.577*** -1.576*** 

 (0.016) (0.015) (0.010) (0.009) 
Monthly learning rates     
Kindergarten 0.158*** 0.159*** 0.160*** 0.159*** 

 (0.002) (0.001) (0.001) (0.001) 
Summer 1 -0.018** -0.010** -0.014*** -0.013*** 

 (0.007) (0.003) (0.003) (0.002) 
Grade 1 0.084*** 0.080*** 0.081*** 0.082*** 

 (0.002) (0.001) (0.001) (0.001) 
Summer 2 -0.011* -0.000 0.002 -0.003 

 (0.005) (0.002) (0.003) (0.002) 
Grade 2 0.038*** 0.036*** 0.034*** 0.037*** 

 (0.001) (0.001) (0.001) (0.001) 
Difference between private and public schools     
Score, start of kindergarten 0.343*** 0.367*** 0.329*** 0.341*** 

 (0.041) (0.040) (0.025) (0.023) 
Monthly learning rates     
Kindergarten -0.018*** -0.021*** -0.020*** -0.021*** 

 (0.004) (0.003) (0.002) (0.002) 
Summer 1 0.059** 0.010 0.018* 0.015* 

 (0.019) (0.007) (0.009) (0.006) 
Grade 1 -0.022*** -0.005* -0.010*** -0.008*** 

 (0.006) (0.002) (0.003) (0.002) 
Summer 2 0.034* -0.007 -0.010 0.002 

 (0.015) (0.005) (0.009) (0.006) 
Grade 2 -0.009* 0.001 0.002 -0.002 

 (0.004) (0.001) (0.003) (0.002) 
Scores 71,726 109,044 71,726 109,044 

*p<0.05, **p<0.01, ***p<0.001. School-clustered standard errors in parentheses. The summer differences 
between public and private students are highlighted to draw attention. 
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Table 6. Math results, all children 

  OLS regression Random effects regression 

 
Observed 

scores 
Imputed 
scores 

Observed 
scores 

Imputed 
scores 

Public schools     
Score, start of kindergarten -1.410*** -1.424*** -1.422*** -1.424*** 

 (0.014) (0.013) (0.010) (0.009) 
Monthly learning rates     
Kindergarten 0.126*** 0.126*** 0.127*** 0.127*** 

 (0.001) (0.001) (0.001) (0.001) 
Summer 1 0.012 0.023*** 0.020*** 0.019*** 

 (0.007) (0.003) (0.002) (0.002) 
Grade 1 0.087*** 0.082*** 0.083*** 0.084*** 

 (0.002) (0.001) (0.001) (0.001) 
Summer 2 -0.028*** -0.011*** -0.012*** -0.015*** 

 (0.007) (0.002) (0.002) (0.002) 
Grade 2 0.062*** 0.058*** 0.057*** 0.058*** 

 (0.002) (0.001) (0.001) (0.001) 
Difference between private and public schools     
Score, start of kindergarten 0.350*** 0.365*** 0.334*** 0.342*** 

 (0.031) (0.029) (0.026) (0.025) 
Monthly learning rates     
Kindergarten -0.012*** -0.013*** -0.014*** -0.014*** 

 (0.003) (0.003) (0.001) (0.001) 
Summer 1 0.027 -0.009 -0.002 -0.000 

 (0.020) (0.007) (0.007) (0.006) 
Grade 1 -0.016* -0.005 -0.008*** -0.009*** 

 (0.006) (0.002) (0.002) (0.002) 
Summer 2 0.046* 0.007 0.014 0.018** 

 (0.019) (0.006) (0.008) (0.006) 
Grade 2 -0.015** -0.006** -0.007** -0.008*** 

 (0.005) (0.002) (0.002) (0.002) 
Scores 71,622 109,044 71,622 109,044 

*p<0.05, **p<0.01, ***p<0.001. School-clustered standard errors in parentheses. The summer differences 
between public and private students are highlighted to draw attention. 
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Table 7. Reading results, one-third subsample 

  OLS regression Random effects regression 

 
Observed 

scores 
Imputed 
scores 

Observed 
scores 

Imputed 
scores 

Public schools     
Score, start of kindergarten -1.591*** -1.608*** -1.604*** -1.607*** 

 (0.028) (0.024) (0.016) (0.016) 
Monthly learning rates     
Kindergarten 0.156*** 0.157*** 0.157*** 0.158*** 

 (0.003) (0.003) (0.001) (0.001) 
Summer 1 0.000 -0.006 -0.006* -0.008** 

 (0.007) (0.006) (0.003) (0.003) 
Grade 1 0.080*** 0.081*** 0.082*** 0.082*** 

 (0.001) (0.001) (0.001) (0.001) 
Summer 2 0.002 0.001 -0.001 -0.001 

 (0.003) (0.003) (0.003) (0.003) 
Grade 2 0.036*** 0.036*** 0.037*** 0.037*** 

 (0.001) (0.001) (0.001) (0.001) 
Difference between private and public schools     
Score, start of kindergarten 0.470*** 0.500*** 0.438*** 0.455*** 

 (0.065) (0.063) (0.044) (0.043) 
Monthly learning rates     
Kindergarten -0.020** -0.024*** -0.023*** -0.024*** 

 (0.006) (0.005) (0.003) (0.003) 
Summer 1 0.015 0.007 0.011 0.010 
  (0.014) (0.011) (0.009) (0.009) 
Grade 1 -0.013* -0.010* -0.012*** -0.011*** 

 (0.005) (0.004) (0.003) (0.003) 
Summer 2 0.004 -0.006 -0.002 0.000 
  (0.010) (0.007) (0.010) (0.009) 
Grade 2 -0.004 -0.001 -0.002 -0.003 

 (0.003) (0.002) (0.003) (0.003) 
Scores 31,261 36,654 31,261 36,654 

*p<0.05, **p<0.01, ***p<0.001. School-clustered standard errors in parentheses. The summer differences 
between public and private students are highlighted to draw attention. 
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Table 8. Math results, one-third subsample 

  OLS regression Random effects regression 

 
Observed 

scores 
Imputed 
scores 

Observed 
scores 

Imputed 
scores 

Public schools     
Score, start of kindergarten -1.455*** -1.466*** -1.465*** -1.468*** 

 (0.025) (0.022) (0.017) (0.016) 
Monthly learning rates     
Kindergarten 0.127*** 0.127*** 0.128*** 0.128*** 

 (0.003) (0.002) (0.001) (0.001) 
Summer 1 0.024*** 0.023*** 0.017*** 0.018*** 

 (0.005) (0.005) (0.002) (0.002) 
Grade 1 0.082*** 0.082*** 0.084*** 0.084*** 

 (0.001) (0.001) (0.001) (0.001) 
Summer 2 -0.010** -0.009** -0.015*** -0.014*** 

 (0.004) (0.003) (0.003) (0.002) 
Grade 2 0.056*** 0.057*** 0.057*** 0.058*** 

 (0.001) (0.001) (0.001) (0.001) 
Difference between private and public schools     
Score, start of kindergarten 0.429*** 0.449*** 0.391*** 0.401*** 

 (0.054) (0.052) (0.046) (0.045) 
Monthly learning rates     
Kindergarten -0.015** -0.017*** -0.016*** -0.016*** 

 (0.005) (0.004) (0.002) (0.003) 
Summer 1 0.006 -0.004 0.002 0.001 

 (0.012) (0.009) (0.008) (0.008) 
Grade 1 -0.007 -0.006 -0.009*** -0.009*** 

 (0.005) (0.003) (0.003) (0.003) 
Summer 2 0.012 0.006 0.012 0.014 

 (0.011) (0.008) (0.008) (0.008) 
Grade 2 -0.005 -0.003 -0.004 -0.005 

 (0.003) (0.003) (0.003) (0.003) 
Scores 31,268 36,654 31,268 36,654 

*p<0.05, **p<0.01, ***p<0.001. School-clustered standard errors in parentheses. The summer differences 
between public and private students are highlighted to draw attention. 

 


