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ABSTRACT 

Computational thinking (CT) is an important 21st-century skill. This paper aims at investigating predictors of CT  

self-efficacy among high-school students. The hypothesized predictors are grouped into three areas: (1) student 

characteristics, (2) home environment, and (3) learning opportunities. CT self-efficacy is measured with the 

Computational Thinking Scales (CTS) that comprises five dimensions: creativity, algorithmic thinking, cooperativity, 

critical thinking, and problem solving. N = 202 high-school students act as the sample, linear regression as the analysis 

method. The best prediction is possible for algorithmic thinking (R2 = .511). For cooperativity, the explanatory power of 

our model it is weak (R2 = .146). Across all five CTS dimensions, CT self-concept is the best predictor for CT  

self-efficacy. 
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1. INTRODUCTION 

Computational thinking (CT) has emerged as a promising resource for solving problems across various 

subjects and work environments (Buitrago Flórez et al., 2017; D. Barr et al., 2011). Wing (2006, p. 33) 

conceptualized CT as “solving problems, designing systems, and understanding human behavior, by drawing 

on the concepts fundamental to computer science”. As a concept, CT may still be in its infancy (Shute et al., 

2017; Tsarava et al., 2022). To contribute to a better understanding of CT, the purpose of our research is 

prediction (Newman et al., 2007), i.e., we test the association of CT with variables that might predict CT. 

In previous work, we relied on a performance test to operationalize CT (Guggemos, 2021). Performance 

tests are often regarded as superior to self-assessment instruments. However, self-assessments are not by 

nature inferior to performance tests (Scherer et al., 2017). Rather, the validity of a measurement depends on 

its intended use (AERA et al., 2014). Self-assessment instruments tend to capture self-efficacy, which could 

be a good predictor for behavior (Scherer et al., 2017). Moreover, CT is a complex construct. Focusing solely 

on its cognitive nature may be an oversimplification (Kafai & Proctor, 2022). Román-González et al. (2019) 

argue that it is unlikely to capture a complex construct such as CT with a single measurement instrument.    

Durak and Saritepeci (2018) utilized a cross-sectional sample of 156 students from grades 5 to 12 for 

investigating predictors of CT. To measure CT, Durak and Saritepeci (2018) relied on the Computational 

Thinking Scales (CTS) (Korkmaz et al., 2017). CTS is an established self-assessment instrument (Shute et 

al., 2017). Following ISTE (2015), it comprises five dimensions: creativity, algorithmic thinking, 

cooperativity, critical thinking, and problem solving. As multidimensionality implies, it may be problematic 

to aggregate the five dimensions using an overall (sum) score. This assertion is supported by (Guggemos et 

al., 2023). Using confirmatory factor analysis, they showed that a higher-order model with an overall  

CT-factor does not converge. Furthermore, the correlations among the five dimensions vary substantially; in 

some cases, they are not significantly different from zero, e.g., between algorithmic thinking and 

cooperativity. Durak and Saritepeci (2018) reported educational level (grade), mathematics and science class 

performances, and ways of thinking as significant predictors of CT. Building on this study, it is beneficial to 

also consider students’ CT motivation and family background because those factors may be important when 

investigating CT (del Olmo-Muñoz et al., 2020; Fraillon et al., 2019; Repenning et al., 2015).  
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Overall, investigating the association of each of the five CTS-dimensions with potential predictors may 

contribute to a better understanding of CT. Our research question is: 

What are the predictors of high-school students’ CT self-efficacy, i.e., creativity, algorithmic 

thinking, cooperativity, critical thinking, and problem solving, at the individual level? 

To answer this research question, section 2 presents hypotheses on predictors of CT. These hypotheses 

are identical to those in (Guggemos, 2021). We focus on high school students and the individual level, i.e., 

we do not consider the classroom or school context. 

2. THEORETICAL BACKGROUND AND HYPOTHESES 

2.1 Conceptual Framework 

The conceptual framework of the International Computer and Information Literacy Study 2018 (ICILS) 

structures our hypotheses (Fraillon et al., 2019). It distinguishes antecedents and processes. “Antecedents are 

exogenous factors that condition the ways in which (…) learning takes place” (Fraillon et al., 2019, p. 6). 

Antecedents comprise student variables, such as gender, and home environment variables, such as parents’ 

socioeconomic status. “Processes are those factors that directly influence (…) learning” (Fraillon et al., 2019, 

p. 6). Such CT learning opportunities can be either formal or informal in nature (Grover & Pea, 2013; Wing, 

2008). 

2.2 Antecedents – Student 

CT research has consistently underscored the significance of gender differences (Shute et al., 2017). Such 

differences in CT may be due to differences in self-efficacy and interest, which might be attributed to gender 

stereotypes (Master et al., 2016). The ICILS reports significantly higher CT scores for males in comparison 

to females for the overall sample. Román-González et al. (2017), using Spanish secondary students as a 

sample, found an increasing gender CT gap in favor of males as students age. Since our study is in the realm 

of high-school education, we expect: H1. The gender ‘male’ positively predicts CT. 

CT is conceptualized as a problem-solving methodology across subjects (V. Barr & Stephenson, 2011; 

Wing, 2006). In light of this, it may be strongly related to reasoning skills (Ambrosio et al., 2015; Buitrago 

Flórez et al., 2017; Wüstenberg et al., 2012). Román-González et al. (2017) reported a medium correlation of 

CT with reasoning ability. We assume: H2. Reasoning skills positively predict CT. 

According to Wing (2006, p. 33), CT may be an analytical ability, like “reading, writing, and arithmetic”. 

In terms of mathematics skills, Wing (2008) claimed that CT and mathematical thinking share the same 

general way of approaching problems. Durak and Saritepeci (2018) reported higher CT levels for students 

with higher academic success in mathematics. Concerning language skills, V. Barr and Stephenson (2011) 

argued that CT concepts are also present in the language arts. In their literature review, Zhang and Nouri 

(2019) showed that reading is regularly regarded as a part of CT. Román-González et al. (2018) reported a 

medium positive correlation between CT and verbal ability. In sum, we hypothesize: H3. Mathematics skills 

positively predict CT; H4. Language skills positively predict CT. 

The relationship between programming and CT is often thematized. Israel et al. (2015) regard the use of 

computers to model ideas and programming as an integral part of CT. Buitrago Flórez et al. (2017), as well as 

Lye and Koh (2014), argue that by means of programming, several core facets of CT can be addressed. Shute 

et al. (2017) concluded there is a close relationship between CT and programming skills due to similar 

underlying cognitive processes. Hsu et al. (2018) reported, based on their review of the literature, that 

programming is widely used to teach CT.  We expect: H5. The ability to program positively predicts CT. 

Many authors, including Wing (2006), emphasize that computer literacy is distinct from CT. However, 

the question remains whether computer literacy is conducive to CT or not. Since CT aims to represent a 

problem in such a way that a computer can solve it (Israel et al., 2015; Wing, 2006), knowledge about the 

capabilities of computers may be beneficial. Moreover, CT is often taught using computers and technology 

(Hsu et al., 2018). The ICILS also found a strongly positive correlation between information and computer 

literacy and CT. Against this background, we hypothesize: H6. Computer literacy positively predicts CT. 

ISBN: 978-989-8704-52-8  © 2023

52



According to the expectancy-value model (EVM) by Wigfield and Eccles (2002), the expectation of 

success and subjective task value drive the level of achievement motivation. The expectation of success 

depends on the person’s self-concept, which can be broadly defined as the perception of oneself (Shavelson 

et al., 1976). Drawing from this, CT self-concept could be defined as the perception about oneself in the area 

of CT. A core element of self-concept is the perceived competence (Bong & Skaalvik, 2003). As such, it may 

be closely related to self-efficacy. Indeed, domain specific self-concept and self-efficacy are often hard to 

separate (Bong & Skaalvik, 2003). The main difference might be the time orientation: self-concept is 

relatively stable whereas self-efficacy is malleable. In line with Retelsdorf et al. (2011), we rely on the  

self-concept and hypothesize: H7. CT self-concept positively predicts CT. 

The second component of the EVM addresses the perceived task value. Following Wigfield and Eccles 

(2002), the individual perception of usefulness plays a central role. Students who regard CT as more 

important for their academic and personal success are expected to put more effort into CT learning. This is 

also expected from students who enjoy engaging in CT tasks and are interested in them, regardless of 

external incentives. The described elements of perceived task value are consistent with the self-determination 

theory (Ryan & Deci, 2000); they may be manifestations of self-determined motivation. We hypothesize: H8. 

‘Self-determined motivation’ positively predicts CT. 

2.3 Antecedents – Home Environment 

Educational outcomes have often been linked to the home environment (Rutkowski & Rutkowski, 2013). An 

important aspect of home environment is ‘Socioeconomic and Cultural Status’ (SECS), which comprises 

parental income, parental education, parental occupation, and the availability of cultural goods at home. The 

rationale is that families with a higher SECS are able and willing to provide more favorable learning 

environments (Retelsdorf et al., 2011). In terms of empirical evidence, the ICILS consistently reported higher 

CT scores for students from families with a higher SECS. We hypothesize: H9. SECS positively predicts CT. 

Another important aspect of home environment might be migration (OECD, 2015). Reasons for the lower 

performances of students from families with migration background could be due to language-related issues. 

The ICILS reported a significantly lower CT score for students from immigrant families in comparison to 

those from non-immigrant families. Hence, we hypothesize: H10. A migration background is negatively 

associated with CT. 

2.4 Processes – Learning Opportunities 

Both formal and informal learning opportunities may be necessary to foster CT (Grover & Pea, 2013; Wing, 

2008). Although CT could be part of every subject, it is deeply rooted in computer science education (Grover 

& Pea, 2013) and draws on basic concepts of computer science (Wing, 2006). Hence, we regard computer 

science instruction as a formal learning opportunity for CT and hypothesize: H11. Computer science 

instruction positively predicts CT. 

Besides formal learning opportunities, CT could also be fostered in informal settings, i.e., outside of 

school courses. Durak and Saritepeci (2018) hypothesized that the use of information and communication 

technology (ICT) and the internet has a positive influence on CT. However, both hypotheses were rejected. A 

reason for this could be that students use digital devices like smartphones to a great extent for leisure 

activities (Fraillon et al., 2019). These activities might not be conducive to CT. In light of this, the use of 

computers (PC and laptop) may be a better indicator for informal learning opportunities. We therefore 

hypothesize: H12. Duration of computer use positively predicts CT. 

3. METHOD 

3.1 Sample and Data Collection Process 

Our sample comprises N = 202 students from the 11th (second last) grade of three ‘Gymnasium Helveticum’ 

(high schools) in German-speaking Switzerland. The students are nested in twelve classes. Data were 
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collected using Questback Unipark. The class teachers supervised the students and ensured a suitable test 

environment. The allotted time was 90 minutes, but all students were allowed to finish their work. All 

students fully answered the questions. On average, the students were aged 17.23 years (SD = 0.85 years); 

56% were female. They reported 2.89 hours (SD = 1.20 hours) of computer science instruction in the past. Of 

the student, 77% claimed to be able to program in languages such as Java or Python. 

3.2 Measures 

We operationalize CT self-efficacy using a validated short German version of CTS. The short version 

comprises three items for each of the five CTS dimensions. Table 1 reports sample items for all five 

dimensions of this short version. For all CTS items in the short version, refer to Guggemos et al. (2023). 

Table 1. Sample items of the used CTS short version. 

Creativity “I believe that I can solve possible problems that may occur when I encounter a new 

situation.” 

Algorithmic thinking “I can mathematically express the solutions for the problems I face in daily life.” 

Cooperativity “I like solving problems related to a group project together with my friends in cooperative 

learning.” 

Critical thinking “I make use of a systematic method while comparing the options at hand and while reaching 

a decision.” 

Problem solving “I cannot apply the solutions I plan respectively and gradually.” (R) 

Note. Items taken from Korkmaz et al. (2017, p. 565). Measured on a 7-point rating scale ranging from ‘not true at all’ to 

‘entirely true’. R = reverse coding.  

3.3 Data Analysis 

We use linear regression to predict CT self-efficacy. Measurement error can bias the results. Therefore, we 

adopt the approach of Savalei (2019) to consider measurement error. We calculate sum scores for each of the 

five CT dimensions. Then we restrict the residual variance of these five dependent variables to an error 

variance corresponding to a reliability of .9. Such reliability might be a reasonable upper limit. This aligns 

with the actual observed values of  and , as presented in Table 2. We employ manifest variables for the 

independent variables (Retelsdorf et al., 2011). The analyses are performed with the package lavaan 0.6-9 

(Rosseel, 2012). 

4. RESULTS 

4.1 Quality of Measurement Instrument – Dependent Variables 

Table 2 displays the reliability as well as convergent validity of the five dimensions:  and AVE > .5. 

Discriminant validity is also ensured as the heterotrait-monotrait ratio is smaller than 0.71. Overall, these 

figures indicate a decent quality of the measurement instrument (Hair et al., 2019). 

Table 2. Validity and reliability assessment of the German CTS short version (N = 202) 

Construct M (SD)   AVE 

 Manifest correlations, square root 

of AVE on diagonal 

(1) (2) (3) (4) (5) 

(1) Creativity (3 items) 5.4 (1.2) .87 .87 .75  .87     

(2) Algorithmic thinking (3 items) 3.9 (1.7) .90 .90 .73  .28 .85    

(3) Cooperativity (3 items) 4.5 (1.6) .89 .80 .70  .19 .13 .84   

(4) Critical thinking (3 items 4.9 (1.2) .80 .80 .57  .59 .53 .19 .75  

(5) Problem solving (3 items) 5.3 (1.6) .78 .78 .54  .17 -.00 -.14 .13 .73 

Note. Items measured on a 7-point rating scale. standardized loadingCronbach’s alpha, Revelle’s Omega 

Total, AVE = average variance extracted. Figures in bold represent correlations significant at the 5% level. 
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4.2 Quality of Measurement Instrument – Independent Variables 

Table 3 summarizes the used variables and instruments for operationalizing the predictors. Sample items are 

provided. As can be seen, (where applicable) internal consistency reliability is achieved. 

Table 3. Operationalization of predictors, assessment of reliability, and taken actions 

Predictor Instrument Scale Reliability (Sample) item 

Gender self-report (Konsortium 

PISA.ch, 2018) 

male = 1,  

female = 0 

n/a What is your gender? 

Reasoning ability 6-items performance test 

(Heydasch et al., 2017) 

binary,  

multiple-choice 




Preview available here: 

https://ww2.unipark.de/uc

/HOT_preview/ospe.php?

SES=39f1d2b152f885e49

4fd8ea5c6bd3fb6  

Mathematical skills self-report grade 1 (worst) –  

6 (best)  

n/a What was your grade in 

Mathematics last school 

year? 

Language skills self-report grade 1 (worst) –  

6 (best) 

n/a What was your grade in 

German last school year? 

Ability to program 1-item self-evaluation binary n/a  

(single-item) 

Are you able to program 

(e.g., Java or Python)? 

Computer literacy 20-item performance test 

(Richter et al., 2010) 

binary, 

multiple-choice 


 

You want to prevent other 

people from following 

your navigation behavior 

on the Internet. What 

measure contributes to 

this? 

CT Self-concept 6-item self-evaluation 

(Köller et al., 2000) 

rating 1 – 7 

 

Generally, solving that 

kind of tasks is easy for 

me.  

(Samples are provided) 

Self-determined CT 

motivation 

9-item self-evaluation 

(Prenzel et al., 1998) 

rating 1 – 7 

 

Performing such tasks is 

fun for me 

(Samples are provided) 

Parents’ 

socioeconomic and 

cultural status 

(SECS) 

self-report (Konsortium 

PISA.ch, 2018): scaled to 

M = 50, SD = 10 

3 components:  

ISEI father, 

ISEI mother, no. 

books 

n/a (formative 

measurement) 

What does your mother 

do for a living?  

(open-ended question) 

Migration 

background  

self-report: at least one 

parent born outside of 

Switzerland (Retelsdorf et 

al., 2011) 

yes = 1,  

no = 0 

n/a Were both your parents 

born in Switzerland? 

(reverse coding) 

Past computer sci-

ence instruction 

self-report (Konsortium 

PISA.ch, 2018) 

number of les-

sons 

n/a How many computer 

science lessons have you 

had in the past? 

Duration of com-

puter use 

self-report (Konsortium 

PISA.ch, 2018) 

rating 1 – 7 

ranging  

from 0 – more 

than 6 hours/day 

n/a How long do you use the 

computer (PC or laptop) 

on a normal day? 

Note. ISEI = International Socio-Economic Index of Occupational Status derived from parents’ occupation (Ganzeboom 

et al., 1992). Revelle’s Omega Total,  Cronbach’s Alpha.  sufficient reliability. Self-report = fact is reported. 

Self-evaluation = (subjective) evaluation necessary. Rating scales 1 – 7 ranging from entire disagreement to entire 

agreement. 
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4.3 Regression Analysis 

Table 4 depicts the results of the regression analysis.  

Table 4. Linear regressions with the five CT self-efficacy dimensions as outcome variables (N = 202) 

    CT dimensions 

    Creativity   
Algorithmic 

Thinking 
  Cooperativity   

Critical 

Thinking 
  

Problem 

solving 

H Predictor Est. s.e.a   Est. s.e.a   Est. s.e.a   Est. s.e.a   Est. s.e.a 

1 Male gender -0.19 0.15 
 

0.27 0.19 
 

-0.03 0.20 
 

-0.17 0.14 
 

0.10 0.16 

2 Reasoning ability -0.02 0.04 
 

0.05 0.06 
 

-0.15 0.05 
 

-0.05 0.05 
 

-0.04 0.05 

3 Mathematical skills -0.19 0.09 
 

0.57 0.12 
 

-0.04 0.15 
 

-0.00 0.10 
 

-0.00 0.13 

4 Language skills 0.25 0.16 
 

-0.21 0.15 
 

-0.09 0.19 
 

0.18 0.15 
 

0.23 0.15 

5 Ability to program 0.04 0.16 
 

0.53 0.18 
 

0.36 0.21 
 

0.30 0.17 
 

0.25 0.21 

6 Computer literacy 0.01 0.02 
 

-0.01 0.02 
 

-0.01 0.03 
 

0.02 0.02 
 

0.03 0.02 

7 CT self-concept 0.30 0.08 
 

0.28 0.10 
 

0.09 0.10 
 

0.47 0.08 
 

0.23 0.10 

8 
Self-determined CT 

motivation 

0.08 0.07  0.19 0.08  0.05 0.08  0.13 0.06  -0.22 0.09 

9 Parents’ SECS -0.00 0.01 
 

0.01 0.01 
 

0.02 0.01 
 

0.02 0.01 
 

-0.01 0.01 

10 Migration background -0.12 0.14 
 

0.19 0.16 
 

-0.12 0.17 
 

-0.01 0.14 
 

-0.13 0.16 

11 
Past computer science 

instruction 

-0.08 0.07  -0.07 0.09  0.23 0.11  -0.14 0.08  0.10 0.09 

12 Duration of computer use -0.07 0.05   -0.09 0.06   -0.18 0.08   -0.23 0.05   -0.02 0.06 

  R2  .215   .511   .146   .467   .165 

Note. Figures in bold indicate significance at the 5% level; figures in italic indicate results contradicting the hypothesis.  
a cluster robust standard error (cluster = class). 

 

None of our hypothesis was fully supported. Hypotheses with mixed results are H1, H3, H5, H7, H8, H9, 

and H11. The hypotheses not supported by our evidence are H2, H4, H6, H10, and H12. 

5. LIMITATIONS, DISCUSSION, AND IMPLICATIONS 

5.1 Limitations 

Our study is not without limitations. The associations reported cannot be interpreted as causal since omitted 

variables might account for the relationships. We attempted to mitigate this risk through a comprehensive 

review of variables that influence CT from a theoretical point of view. Our sample has a narrow scope, 

including only students from German-speaking Switzerland and specifically from one school type, the 

Gymnasium Helveticum. The dependent variable, CT, is measured using a short version of CTS. However, 

employing the full version could introduce problems related to discriminant validity (Guggemos et al., 2019). 

5.2 Discussion 

As Table 4 shows, the association between the CT predictors and CT self-efficacy varies considerably 

depending on the CTS dimension. Hence, our results may complement the work of Durak and Saritepeci 

(2018) who used CTS to form a single outcome variable. Contrary to our hypothesis, the male gender is not 

positively related to CT self-efficacy. This is consistent with the findings of Durak and Saritepeci (2018). 

Against this backdrop, the assertion that female students’ lower CT can be attributed to lower self-efficacy 

may be doubtful. Across all five dimensions of CTS, CT self-concept appears to be the best predictor. This 

might not be surprising as self-concept and self-efficacy are closely related (Bong & Skaalvik, 2003).  

Self-determined motivation is also a significant predictor for algorithmic and critical thinking; this may point 

to the overall importance of motivation, as captured by the EVM, for predicting CT self-efficacy.  
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Other than in the ICILS, variables from the area home environment and learning opportunities can 
explain hardly any variance. The reason may be that the ICILS used a performance test instead of a  
self-assessment instrument to measure CT. Overall, the best prediction is possible for algorithmic thinking. 
The explained variance equals 51.1%, which may be a moderate proportion (Hair et al., 2019). For 
cooperativity, on the other hand, the explanatory power of the model is weak with an explained variance of 
only 14.6%. 

There were also four findings contrary to our hypotheses that we will discuss in the following. 
Mathematics skills negatively predict creativity. The meta-analysis of Bicer et al. (2021) reports a positive 
association of general creativity and mathematical achievement (r = .39). However, the constructs in this 
meta-analysis are captured with performance tests. Students with higher mathematical skills may perceive 
their creativity as low although this might, in fact, not be the case. Further research may elaborate the nature 
of computational thinking creativity and develop test instruments for this construct. Developing such a 
domain specific concept may be promising. Bicer et al. (2021) showed that the association of mathematical 
achievement is higher with mathematical creativity (r = .53) than with general creativity (r = .39). 

The association between reasoning ability and cooperativity is negative. Reasoning ability is a core facet 
of general intelligence. In light of this, the findings may be contrary to findings of more intelligent people are 
more capable of cooperating (Jones, 2008). Again, the reason for the negative association may lie in the 
nature of the CTS. Cooperativity in the sense of the CTS focus on the willingness to collaborate with friends 
and classmates. Intelligent students may deliberately choose who they work with. In a classroom setting, they 
may have had unfavorable experiences in the past, e.g., with group phenomenon such as free riding. This 
may have reduced their willingness to cooperate in such a setting. Further research may focus on the ability 
to cooperate in a broad context, i.e., not restricted to friends and classmates. The small correlation of 
cooperativity with the other four dimensions of CTS may also indicate a different nature of this construct. 

Critical thinking is negatively associated with duration of computer use. However, McMahon (2009) 
reported a positive correlation between the length of time spent within technology-rich environments and the 
development of critical thinking skills. Again, our contrary finding could be attributed to the different nature 
of self-reports and performance tests as used by McMahon (2009). Another reason may be that students in 
their free time do not use computers for pedagogically meaningful purposes. Since free time is limited, heavy 
computer users might have less time for activities that are reportedly conducive to critical thinking, e.g., 
reading books and newspapers (Carr, 1988). 

Problem solving is negatively associated with self-determined CT motivation. The reason may be the 
measurement of problem solving. Guggemos et al. (2023) argue that the operationalization of this dimension 
by CTS is problematic: all the items that capture problem solving are reversely coded. Hence, the factor 
problem solving may be a methodological artefact. At the content level, there is no obvious reason why  
self-determined CT motivation negatively predicts problem solving. Again, this finding might indicate the 
need to revise CTS. 

5.3 Implications 

Our work has three main implications: 1) Further elaboration on the CTS might help clarify the nature of the 
constructs and their operationalization. Specifically, the dimension problem solving could be problematic as 
it comprises only reversely coded items. 2) Aggregating the five CTS dimensions into a single CT-score 
seems problematic. Results vary significantly when each of the five dimensions is treated as a dependent 
variable. 3) Of all five CTS dimensions, algorithmic thinking may be at the core of CT self-efficacy, as the 
conceptually based predictors can explain the greatest proportion of variance. 
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