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Abstract

Typical Bayesian methods for models with latent variables (or random ef-
fects) involve directly sampling the latent variables along with the model
parameters. In high-level software code for model definitions (using, e.g.,
BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on
the latent variables. This can lead researchers to perform model comparisons
via conditional likelihoods, where the latent variables are considered model
parameters. In other settings, however, typical model comparisons involve
marginal likelihoods where the latent variables are integrated out. This dis-
tinction is often overlooked despite the fact that it can have a large impact on
the comparisons of interest. In this paper, we clarify and illustrate these is-
sues, focusing on the comparison of conditional and marginal Deviance Infor-
mation Criteria (DICs) and Watanabe-Akaike Information Criteria (WAICs)
in psychometric modeling. The conditional /marginal distinction corresponds
to whether the model should be predictive for the clusters that are in the
data or for new clusters (where “clusters” typically correspond to higher-
level units like people or schools). Correspondingly, we show that marginal
WAIC corresponds to leave-one-cluster out (LOcO) cross-validation, whereas
conditional WAIC corresponds to leave-one-unit out (LOuO). These results
lead to recommendations on the general application of the criteria to models
with latent variables.

Keywords:  Bayesian information criteria, conditional likelihood, cross-
validation, DIC, IRT, leave-one-cluster out, marginal likelihood, MCMC,
SEM, WAIC.

1 Introduction

Psychometric models typically include latent variables (called “random effects” in
some cases), classic examples being item response theory (IRT) models, structural equation
models (SEMs), and multilevel/hierarchical regression models (MLMs). In IRT and SEM,
the latent variables represent latent traits or characteristics of persons, and in MLMs, they
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represent random intercepts and possibly random slopes associated with clusters, such as
schools, countries or, in the case of longitudinal data, persons. We will use the generic
term “clusters” for the entities represented by latent variables in the model. In a Bayesian
setting, latent variable models are hierarchical Bayesian models with latent variables as
“direct” parameters, whose priors depend on hyperparameters. Bayesian approaches have
recently received increased interest due to improvements in the ease of coding and estimating
complex models by Markov chain Monte Carlo (MCMC) in various software packages.
When it is computationally demanding to evaluate the marginal likelihood (over the latent
variables) for likelihood-based inference, MCMC has the great advantage of working with
the conditional likelihood (given the latent variables) by sampling the latent variables in
tandem with the other model parameters.

Comparison of Bayesian psychometric models is often facilitated by predictive infor-
mation criteria, including the Deviance Information Criterion (DIC; Spiegelhalter, Best,
Carlin, & van der Linde, 2002) and the Watanabe-Akaike Information Criterion (WAIC;
Watanabe, 2010). These are readily computed by popular Bayesian software packages, and
their computations are heavily based on the model likelihoods. The sampling of latent vari-
ables can lead to a decision point related to the computation of the information criteria. The
decision point specifically involves the question of whether or not the latent variables should
be treated as model parameters. If so, then we would compute information criteria via con-
ditional likelihoods and expect “effective number of parameter” metrics to be large (each
cluster has one or more unique latent variable values, and there are many clusters). If not,
then we would compute information criteria via marginal likelihoods that are not generally
available from the MCMC output. In traditional model estimation methods that optimize
a likelihood or discrepancy function, the marginal likelihood (or some approximation of it)
is used a large majority of the time.

Because DIC and WAIC are measures of models’ abilities to make predictions for new
units, the “conditional vs. marginal” issue can be framed as a question of the type of new
data we wish to predict. If we want our models to make predictions for new units from the
same clusters as in our original data, then the conditional likelihood (conditioning on the
latent variables of the specific clusters observed) is appropriate. Conversely, if we want our
models to make predictions for new units from clusters not in the original data, then the
marginal likelihood is appropriate. We can also think of this distinction in terms of how we
would define the folds in k-fold cross-validation and leave-one-out approaches, or in other
words, what we would leave out during estimation in order to evaluate predictive accuracy.
To generalize to new units from existing clusters, we would leave out individual units from
these clusters, and the predictive distribution for these units would exploit information
from other units in the same clusters by conditioning on the cluster-specific latent variable
values. To generalize to new units from new clusters, we would leave out intact clusters,
and the predictive distribution would be marginal over the latent variables associated with
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the clusters. From this standpoint, the marginal likelihood may generally be preferred
in psychometric modeling; we typically wish to generalize inferences beyond the specific
clusters that were observed in our data. There are additional reasons to generally prefer
the marginal likelihood, including the incidental parameter problem (Neyman & Scott, 1948;
Lancaster, 2000), of which a Bayesian version exists when Bayes modal inference is used
(also see Mislevy, 1986; O’Hagan, 1976).

Spiegelhalter et al. (2002) discuss the conditional/marginal distinction in their orig-
inal paper on the DIC, where they refer to the issue as “model focus” (see also Celeux,
Forbes, Robert, Titterington, et al., 2006; Millar, 2009; Trevisani & Gelfand, 2003). If
the parameters “in focus” include the latent variables, the likelihood becomes what we call
the conditional likelihood; otherwise the likelihood is what we call the marginal likelihood.
However, the distinction is hardly ever discussed in applications. Bayesian books targeted
at applied psychometricians (e.g., Song & Lee, 2012; Kaplan, 2014; Levy & Mislevy, 2016)
and papers on Bayesian model comparison in psychometrics (e.g., Kang, Cohen, & Sung,
2009; F. Li, Cohen, Kim, & Cho, 2009; Zhu & Stone, 2012) define either the conditional
DIC or a generic DIC for non-hierarchical models, then apply the conditional DIC without
discussing the implications of this choice or mentioning the marginal DIC. Fox (2010) is an
exception here, where the generic DIC is first presented and various types of DICs (condi-
tional and marginal) are later utilized in applications. Zhang, Tao, Wang, and Shi (2019)
also discuss various forms of DIC in the context of multilevel IRT models.

The WAIC has not yet been used much in psychometrics, exceptions being Luo and
Al-Harbi (2017) and daSilva, Bazan, and Huggins-Manley (2019), who define the conditional
version of WAIC for IRT without mentioning the marginal alternative, and Lu, Chow, and
Loken (2017) who use the marginal version in factor analysis, without discussing the issue
or mentioning the conditional alternative. Moving beyond psychometrics, Gelman, Hwang,
and Vehtari (2014) point out that there is a choice to be made when defining the likelihood
for Bayesian information criteria (including WAIC) between what we call conditional and
marginal versions, but they use only the conditional version of WAIC in their “8-schools
data” application and comparison to leave-one-out approaches. We are aware of a small
number of contributions that discuss the merits of the marginal version of WAIC (L. Li,
Qui, & Feng, 2016; Millar, 2018), but these treatments are confined to the special case
of one response per latent variable (i.e., one unit per cluster). Further, Vehtari, Mononen,
Tolvanen, Sivula, and Winther (2016) define a marginal version of WAIC for Gaussian latent
variable models without contrasting it to the conditional version.

From an applied perspective, researchers estimating Bayesian models are often un-
aware of the distinction between marginal and conditional versions of information criteria,
relying on default software behavior. Users of BUGS (Lunn, Jackson, Best, Thomas, &
Spiegelhalter, 2012; Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS (Plummer, 2003),
and Stan (Stan Development Team, 2014) typically obtain information criteria based on
a conditional likelihood, whereas users of blavaan (Merkle & Rosseel, 2018) and Mplus
(e.g., Muthén & Asparouhov, 2012) obtain information criteria based on a marginal like-
lihood. Therefore, a first contribution of our paper is to emphasize the importance of the
conditional /marginal distinction for information criteria and, subsequently, to recommend
marginal criteria as a default. We relatedly clarify other differences in the definition of
the DIC implemented in various pieces of software. A second contribution is to propose
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a marginal version of WAIC for the prevalent case of multiple units per cluster and to
contrast it with the conditional version. We specifically show that the marginal WAIC cor-
responds to leave-one-cluster out (LOcO) cross-validation, whereas the conditional WAIC
corresponds to leave-one-unit out (LOuO) cross-validation and has no rationale in the case
of one unit per cluster. A third contribution is to propose an efficient version of adaptive
quadrature for the case where the marginal likelihood does not have a closed form. The
method differs from traditional adaptive quadrature because it is performed as a postpro-
cessing step using MCMC samples of the model parameters and latent variables as input.
Our idea of using the marginal (with respect to the model parameters) posterior first and
second moments of the latent variables in the adaptive quadrature approximation can eas-
ily be applied in Monte Carlo integration by using the corresponding normal density as
importance distribution, and this would be an improvement over the method proposed by
L. Li et al. (2016). A fourth contribution is to provide two real examples, one using SEM
and the other using IRT, where conditional and marginal information criteria can lead to
very different substantive conclusions. For these examples, a large number of Monte Carlo
draws is often needed to obtain acceptable Monte Carlo errors for the information criteria,
especially in the conditional case. We make some practical recommendations for assessing
convergence of the information criteria there.

In the next section, we define the class of models considered and in Section 3 we
define and contrast information criteria based on conditional and marginal likelihoods. Two
examples based on real data are presented in Section 4, one using SEMs (Section 4.1) and
the other IRTs (Section 4.2). We end with a discussion in Section 5. The supplementary
material includes R code to estimate the IRTs and SEMs presented in this paper and obtain
the information criteria — by performing adaptive quadrature integration for IRT and by
using the recently extended R package blavaan for SEM.

2 Models and conditional versus marginal likelihoods

We consider models with continuous latent variables, such as IRTs, SEMs and MLMs.
Responses y;; are observed for units 7 belonging to clusters j, such as students ¢ in schools j
or items/indicators ¢ for persons j, whereas the latent variables {; are cluster-specific. The
responses follow a generalized linear (or similar) model in which the conditional expectation
of the responses is a function of the latent variables ¢; and possibly observed covariates.
The conditional likelihood is

J
fe(ylw, ¢) H felyjlw, ¢, (1)
where y; is the vector of responses for the units in cluster j (j = 1,...,J), y is the vector of

responses for all units (the y; stacked on one another), ¢; is the vector of latent variables for
cluster j, ¢ is the vector of latent variables for all clusters (the {; stacked on one another),
and w are model parameters. Under conditional independence, the joint conditional density
(or probability) of the responses for cluster j factorizes as

feilw, &) = T felyislw, &),

i=1
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where fc(yijlw, ;) is the conditional density of the response for unit ¢ in cluster j (i =
1,...,nj), given w, ¢;, and possibly covariates (not shown).

For example, in a confirmatory factor analysis, y;; is a continuous response for indi-
cator ¢ and person j, {; is a vector of common factors, fc(yij|lw,¢;) is a normal density,
and w includes intercepts, factor loadings, and unique factor variances. In an item response
model with binary items, f(y;j|w, ;) is wy” (1 — ;) 7% where m;; is the conditional prob-
ability that y;; equals 1 (often an inverse loglt or inverse probit of a linear predictor), {; are
dimensions of ability, and w includes difficulty parameters and possibly discrimination and
guessing parameters. We call f.(y|w, () the conditional likelihood because it is conditional
on the latent variables. Note that, in likelihood-based inference, “conditional likelihood”
usually refers to the likelihood in which the latent variables have been eliminated by condi-
tioning on sufficient statistics, whereas inference based on our conditional likelihood above
is sometimes referred to as joint maximum likelihood estimation.

The latent variables are independent across clusters and have a joint prior distribution

J
9(Clp) = H (Gle)

with hyperparameters 1 that potentially include different values 4; for different (groups of)
clusters j. Specification of the Bayesian model is completed by assuming prior distributions

for w and 9, typically p(w, 9) = p(w)p(t).
The marginal likelihood is

J
fulylo ) = T [ folwslo (1) @
j=1

We call this likelihood marginal because it is integrated over the latent variables. However,
this likelihood is not marginal over the model parameters and should therefore not be con-
fused with the marginal likelihood that is used, for instance, for Bayes factor computation.
The marginal likelihood defined above is the standard likelihood employed in maximum
likelihood estimation of latent variable or random-effects models. Its use implies that the
latent variables are not of direct inferential interest, instead being ancillary parameters that
are removed from the likelihood. Celeux et al. (2006), who regard the latent variables as
missing data, refer to this likelihood as the observed likelihood because it is marginal over
the missing data.

Note that there are usually some parameters that can be included either in % or in
w, depending on how the model is formulated. For example, a linear two-level variance-
components model can be written two alternative ways

A: gy ~N(¢G,0%), ¢~ N,
B: yijNN(oz+Cj,02), CjNN(O,T2)

Version A corresponds to the two-stage formulation of hierarchical models (Raudenbush &
Bryk, 2002), where latent variables (or random effects) appear in the model for y;; and
become “outcomes” in a second-stage model. In SEM, the first-stage and second-stage
models are referred to as the measurement part and structural part, respectively. In the
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Bayesian literature, this formulation has been referred to as hierarchical centering (Gelfand,
Sahu, & Carlin, 1995). If the model is formulated like this, the hyperparameters 1) include
the mean « and variance 72. Version B above specifies the reduced form model for Yij SO
that ¢; becomes a disturbance with zero mean and there is now only one hyperparameter,

P =72
3 Conditional and marginal information criteria

To illustrate problems and differences associated with the use of conditional (vs
marginal) likelihoods, we focus on two specific metrics: DIC and WAIC. The former is
included due to its popularity (related to its inclusion in BUGS and JAGS), whereas the
latter is included because it is a more recent metric that is closer to the current “state of
the art” in Bayesian model assessment (e.g., Gelman et al., 2013, 2014; McElreath, 2015;
Vehtari, Gelman, & Gabry, 2017).

3.1 DIC

The deviance information criterion (DIC) was introduced by Spiegelhalter et al.
(2002). For a model with parameters estimated as 0, they define the loss in assigning
the model-implied predictive density f(y*|0) to new, replicate (or out-of-sample) data y" as
—21log f(y*|@). Following Efron (1986), they express the expectation of this out-of-sample
loss over the distribution of the replicate data as the sum of the in-sample loss (evaluated
for the observed data) and the “optimism” due to using the same data to estimate 6 and
evaluate the loss:

Ey[—2log f(yr|é)] = —2log f(y|é) + optimism, (3)

where the first term is sometimes referred to as the “plug-in deviance.” Spiegelhalter et al.
(2002) use heuristic arguments to approximate the optimism by 2pp, where

pp = Eq),[—2log f(y|0)] + 2log f(y]6), (4)

the posterior expectation of the deviance minus the deviance evaluated at 6, typically the
posterior expectation of the parameters. Here pp can be interpreted as a measure of the
effective number of parameters. Combining these expressions, the DIC becomes

DIC = —2log f(y|0) + 2pp
= Eg|y[—2log f(y]0)] + pp (5)
Plummer (2008) proposes an alternative approximation for the optimism, which

makes use of the undirected Kullback-Leibler divergence (see also Plummer’s contribution
to the discussion of Spiegelhalter et al., 2002). In the general case, this alternative is given

by
rl 91 r2 92
2pp, = Egy [log {;81:92;} e {WH | )

where ' and 62 are independent posterior draws (e.g., from parallel chains), y™ is a
replicate drawn from f(y|@'), and y*? is defined similarly. For exponential family models,

rl
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including the multivariate normal that is used later, the Kullback-Leibler divergence has a
closed form so that the posterior expectation can be evaluated directly without the need for
replicates. However, instead of substituting the above expression for the optimism in (3), or
in other words for 2pp in the first line of (5) as apparently recommended by Plummer (2008)
and as implemented in blavaan (the approach that will be called the “Plummer definition”
in Section 4), JAGS substitutes half this expression for pp in the second line of (5). The
JAGS approach is convenient as it does not require the postprocessing step of computing
the plug-in deviance after the MCMC samples have been obtained. However, the JAGS
approach to DIC in (6) differs from the BUGS approach in (4), and many researchers fail
to realize this difference.

Spiegelhalter et al. (2002) emphasize that, for hierarchical Bayesian models, the defi-
nition of pp and DIC depends on which parameters are “in focus,” or in other words, which
parameters are included in 6. If the parameters in focus include the latent variables ¢, then
f(-]) in Equations (3) to (5) is fc(y|w, ) from (1), whereas it is fm(y|w, 1) from (2) if the
parameters in focus exclude the latent variables. We therefore define the conditional DIC
as

DIC. = -2 IOg fc(y|a” é) + 2pDc
= Ew,C|y[_2 log fc(y|w7C)] + PDc (7)
and the marginal DIC as
DIC, = —2log fu(ylw, ";) + 2ppm
= Ey yjy[—210g fin(ylw, )] + ppm (8)

with corresponding conditional and marginal variants of (4) or (6) for pp. and ppy,. Note
that Celeux et al’s (2006) DIC7 and DIC; correspond to our conditional and marginal DIC,
respectively.

Conditioning on ¢ implies that the new units y* in hypothetical replications come
from the same clusters as the observed data, whereas marginalizing over ¢ implies that the
new units are for new clusters. We show in Appendix A that E, ¢, [—2log fe(y|w, ()] <
Eu ply[—210g fum(y|w, )] and in Appendix B that pp. tends to be much larger than ppy.
Because the magnitudes of these differences will vary between models, there will be many
instances where conditional DICs and marginal DICs favor different models. Plummer
(2008) shows that the large-sample behavior of the penalty pp depends on the dimension of
0 and that the penalty may not approach the optimism if the dimensionality of 8 increases
with the sample size, as it does for latent variable models when ¢ is in focus. This finding
implies that the penalty term is a poor approximation of the optimism when the conditional
DIC is used.

When the individual clusters are not of intrinsic interest or when we would like to
choose among models that differ in the specification of the distribution for the latent vari-
ables p(¢|v), then clearly the marginal DIC should be used. However, the conditional DIC
is easier to compute because it does not require integration. For this reason, users of MCMC
software (e.g., BUGS, JAGS) usually obtain the conditional DIC as output and are often
unaware of the important distinction between conditional and marginal versions of the DIC.
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It is sometimes possible to evaluate the marginal likelihoods by exploiting software
for maximum likelihood estimation. For example, blavaan uses the related lavaan package
(Rosseel, 2012) to evaluate the marginal likelihood for each MCMC iteration to obtain the
posterior expectation of the deviance for pp,, and once after MCMC sampling is complete to
compute the plug-in deviance. In the case of normal likelihoods, as in linear mixed models
or SEMs with continuous responses, the marginal likelihood has a closed form. However,
closed-form solutions are generally not available for non-normal likelihoods, as in models
with categorical responses. For such cases, we propose approximating the integrals using
a computationally efficient form of adaptive quadrature (Naylor & Smith, 1982; Rabe-
Hesketh, Skrondal, & Pickles, 2005). With posterior samples of the model parameters
and latent variables as input, the marginal deviances evaluated at each draw of the model
parameters and at their posterior means are obtained by using the marginal (with respect
to the model parameters) posterior first and second moments of the latent variables in
the adaptive quadrature approximation. This quadrature method is less computationally-
intensive than typical adaptive quadrature methods, because it takes place after MCMC
sampling and can use all posterior samples of model parameters for the “adaptive” step.
While the method will eventually become computationally prohibitive as the number of
latent variables increases, its performance is improved over traditional quadrature methods.
See Appendix C for details, where we also point out that the normal approximation to the
marginal posterior distribution could be used as the importance distribution in Monte-Carlo
integration, which would be an improvement over the standard Monte-Carlo integration
used by L. Li et al. (2016) to compute predictive information criteria. For probit models
and MCMC sampling with augmented variables, Fox (2010, p. 190) and Zhang et al. (2019)
exploit the closed form of the marginal likelihood of the augmented variables to obtain
different kinds of marginal DICs.

Zhao and Severini (2017) relatedly describe and compare a variety of other methods
for computing integrated likelihoods. Our approach is closest to their “direct method” of
importance sampling (see their Section 3.1.2), with importance density chosen to be similar
to what they call the “weighted likelihood function.” However, in the weighted likelihood
function, we use the marginal prior instead of the conditional prior distribution to improve
computational efficiency. In addition, we use Gauss-Hermite quadrature instead of Monte
Carlo integration because the importance distribution is normal. For this reason, the Naylor
and Smith (1982) approach is closest to ours in the Bayesian literature.

3.2 WAIC

Gelman et al. (2014) and Vehtari et al. (2017) describe WAIC (Watanabe, 2010) as
an approximation to minus twice the expected log pointwise predictive density (elppd) for
new data. The definition of the WAIC requires that the data points, such as responses ¥;;
for units, are independent given the parameters, so we first consider the conditional case
where the parameters @ include the latent variables. In this case, minus twice elppd is

J nj J ny

-2 Z Z Ey: log [Ew,c|yfc(y§j]w, ¢j } =-2 Z Z log [ w,¢lyfe(Yijlw, CJ)} + optimism.

j=1i=1 j=1i=1
9)
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where E,, ¢y fe(yi;lw, ;) on the left is the pointwise (posterior) predictive density for a
new response y;; and its logarithm is averaged over the distribution of new responses. In
contrast, the first term on the right is evaluated at the observed response y;; and therefore
represents the in-sample version of the elppd, called lppd by Gelman et al. (2014). Unlike
the plug-in deviance in the DIC., where we condition on point estimates @, f , here we take
the expectation of f.(yj;|w, ;) over the posterior distribution of w and ¢. This can be
written as

Bucin sl 6) = [ £, | [ 21100, 8}, $ly)ae | deods,

where the term in square brackets evaluates to the joint posterior p(w,(jly). It is clear
from this expression that, even after conditioning on w and 1, whose posterior depends
on all the data, the data y; for cluster j provides direct information on ;. As discussed
by Gelman, Meng, and Stern (1996), this posterior predictive density is appropriate for
the situation where hypothetical new data are responses from the existing clusters. The
conditional WAIC is then given by

J ny

WAIC, = _QZZIOg[ w(\yfc y2]|w Cj):| + 2pwe, (10)
j=1li=1

where pyy. is the effective number of parameters and can be approximated by (see Gelman
et al. (2014) for an alternative approximation)

J ny

bwe = szarw,cw [logfc(yij|w7Cj)] .

j=1i=1

Vehtari et al. (2017) discuss problems with this approximation when any of the posterior
variances of the log-pointwise predictive densities, Var,, ¢|,[log fc(vij|w, {;)], are too large,
giving 0.4 as an upper limit based on simulation evidence.

If the hypothetical new data come from new clusters with new values (j of the latent
variables, the mized predictive density (Gelman et al., 1996; Marshall & Spiegelhalter, 2007)
should be used, which is the posterior expectation of fm(y£j|w, 1) and can be written as

Buip 0. %) = [ | [ 2010 Gp(G0)AG bl ply)dwas, (1)

where the term in brackets, which evaluates to fm(yfj\w,z/)), involves only the prior of
¢;- When making predictions for a new cluster, the data provide information on ¢; only
indirectly by providing information on . For clustered data, we cannot simply use (11) to
define the marginal WAIC because the responses for different units from the same cluster
are not conditionally independent given w and 1), so that we must redefine the “data points”
as the vectors of responses y; for each cluster j. The marginal WAIC therefore becomes

J
WAIC,, = —QZlog [Ew,zp\yfm(yj‘w:w)} + 2pwm
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with
J

Pwm = Z Varw,’tﬁ\y [log fm(yj|w> ¢)] >
j=1
where fr, (y;|w, ) is given as term j of the product in (2). L. Li et al. (2016) and Millar
(2018) define WAIC,, for the case when there is only one unit per cluster. Examples are
overdispersed Poisson or binomial regression models, where the unit-level latent variable
modifies the variance function, and meta-analysis, where the data for the clusters have
been aggregated into effect-size estimates.

3.3 Interpretation of WAIC via connections with LOO-CV

Watanabe (2010) showed that WAIC and Bayesian leave-one out (LOO) cross-
validation (CV) are asymptotically equivalent. Following our previous discussion, the dif-
ferent forms of WAIC correspond to different forms of LOO-CV. Because the predictive
distribution in the conditional WAIC is for a response from a new unit in an existing clus-
ter, it approximates leave one unit out CV, given as

J nj

—2LOuO-CV = -2 Z Z log Ew,(ly,ij fe(yijlw, Cj),
j=1i=1

where y_;; represents the full data with observation ij held out. In contrast, the predictive
distribution in the marginal WAIC is the joint marginal distribution for the responses of all
units in a new cluster and therefore approximates leave one cluster out CV:

J

—2L0cO-CV = =2 "log By, yjyy_, fn (Y|, ).
j=1

In other words, the marginal WAIC generalizes to new clusters whereas the conditional
WAIC generalizes only to new units in the clusters that are in the data. Note that the
first term in WAIC,,, the in-sample lppd, corresponds to the “hierarchical approximation”
(Vehtari, Mononen, et al., 2016) or the “full-data mixed” (Marshall & Spiegelhalter, 2007)
method for approximating what we call LOcO-CV.

L. Li et al. (2016) and Millar (2018) motivate their marginal WAIC,, as an approxi-
mation to LOO-CV in the case of one unit per cluster. Millar (2018) shows that conditional
leave-one out (our LOuO) becomes marginal leave-one out (our LOcO) when there is only
one unit per cluster, because there are no data for the cluster to condition on after remov-
ing the unit. Therefore, WAIC, has no clear justification in this case. Vehtari et al. (2017)
nevertheless use WAIC, for the “eight schools” data, a meta-analysis of SAT preparatory
programs. They find that WAIC, diverges from LOO-CV when the responses are multiplied
by a factor S with S > 1.5 (see their Figure la). We replicated their results and found
that WAIC,,, which Vehtari et al. (2017) did not consider, continues to be a good approx-
imation to LOO-CV for S = 4, for which we obtained LOO-CV= 86.0, WAIC,, = 85.5,
and WAIC. = 68.7. Millar (2018) also points out that two regularity conditions required
for asymptotic equivalence of WAIC and LOO-CV do not hold for the conditional versions,
namely (1) the observations are not identically distributed (their distribution depends on
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the latent variables {;) and (2) the number of parameters increases with the sample size.
These two regularity conditions are also violated in the clustered case, so it is not clear
whether WAIC, is a good approximation to LOuO-CV.

Recent work describes the fact that LOO-CV (and, consequently, WAIC) does not
necessarily select the true or best model. Piironen and Vehtari (2017) explored use of WAIC
(and other metrics) for selecting subsets of predictors in a regression context, finding that
variability associated with its estimation can lead to poor model selection. Gronau and Wa-
genmakers (2018) provide three artificial examples where LOO-CV does not asymptotically
select the data-generating model. Discussants of these issues have recommended against the
sole use of point estimates for model selection, also considering, e.g., qualitative patterns of
data that the model can accommodate (Navarro, 2018) and uncertainty associated with the
model’s predictive accuracy (Vehtari, Simpson, Yao, & Gelman, 2018). Uncertainty in a
model’s predictive accuracy may include explicit consideration of variability in a metric like
WAIC, or it may include a different procedure such as Bayesian model averaging (Hoeting,
Madigan, Raftery, & Volinsky, 1999) or stacking (Yao, Vehtari, Simpson, & Gelman, 2018).

Vehtari et al. (2017) introduce a computationally efficient approximation to LOO-CV
using Pareto-smoothed importance sampling (PSIS), and they implement this method in
the R package loo (Vehtari, Gelman, & Gabry, 2016). This package computes both PSIS-
LOO and WAIC with MCMC draws of pointwise predictive densities as input, and it can
be used to compute PSIS-LLOuO, PSIS-LOcO, WAIC,, and WAIC,, by providing either
log fe(yijlw, {;) or log fm(y;|w, ) as input. This package is used in Section 4.2.

4 Examples

We now discuss two examples to highlight differences between various types of
Bayesian information criteria. The first example involves a series of increasingly constrained
multiple-group factor analysis models, as might be used in a measurement invariance study.
This example focuses on DIC and its various definitions across software and across con-
ditional /marginal likelihoods. The second example involves item response models, where
marginal versions of the criteria do not have closed forms. In this example, we consider

WAIC and PSIS-LOO in addition to DIC.

4.1 Measurement Invariance Study via Multi-Group CFA

Wicherts, Dolan, and Hessen (2005) compared a series of four-group, one-factor mod-
els using data from a stereotype threat experiment. Here we replicate these model com-
parisons via both conditional DIC and marginal DIC; the original authors’ comparisons
involved frequentist models. This allows us to illustrate the practical impact of using dif-
ferent DICs.

4.1.1 Method. The data consist of Differential Aptitude Test scores from 295
Dutch students comprising both majority and minority Dutch ethnicities. The test con-
tained three subscales (verbal ability with 16 items, mathematical ability with 14 items,
and abstract reasoning with 18 items), where each subscale score was computed as the
number of items that a student answered correctly. Gaussian factor analysis is used here;
it would perhaps be more appropriate to employ an item factor analysis model here, but
our models below generally match those of the original authors.
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The original authors used a “stereotype threat” manipulation during the data collec-
tion: half of the students were primed about ethnic stereotypes related to intelligence tests,
while the other half received no primes. Wicherts et al. (2005) conducted a measurement
invariance study with the resulting data, to examine the impact of the stereotype threat
manipulation on the students. This measurement invariance study involved four groups:
two ethnicities (majority, minority) crossed with the stereotype threat manipulation (re-
ceived, not received). The measurement model for subscale i (i = 1,2,3) and person j
(j=1,...,295) in group g (¢ = 1,2,3,4) is

2
Yijg|Vigs Nigs Tig, Cig ~ N(Vig + AigCig, 0ig)

where v;4 is a group-specific intercept, A4 is a group-specific factor loading for subscale
i (with the loadings for the first subscale set to 1 for identification, A1y = 1), (j4 is the
common factor, and 02-29 is the group-specific variance of the unique factor for subscale i.

The parameters v;4, Aig, and 01-29 are in w and have the following prior distributions
forg=1,2,3,4:

Vig,V2g,V3g ~~ N(O, 1000)
Aag, A3y ~ N(0,100)

01;2, 02;2,03;2 ~ Gamma(1l,.5)
The distribution of the common factor, or structural part of the SEM is
2
Cig ~ N(O‘Q’Tg)

with group-specific means o, and variances 792. These hyperparameters are in 1 and have
the following priors:

a, ~ N(0,100)

79_2 ~ Gamma(1,1),
with the exception that «y is fixed to zero for identification. These prior distributions are
similar to the defaults supplied by blavaan. They are just informative enough so that most
models converge in JAGS, while being uninformative enough to not exert much influence
on the parameters’ posterior distributions.

The measurement invariance study involved the comparison of nine versions of the
model above; specific model details are shown in Table 1. The overall strategy was to set
increasingly more parameters equal across groups (i.e., across the g subscript), starting with
factor loadings A;; (models 2 and 2a), then unique factor variances afg (models 3 and 3a),
then common factor variances 7‘5 (model 4; constant across conditions but allowed to differ
between minority and non-minority groups), then intercepts, v;, (models 5, 5a and 5b), and
finally factor means a, (model 6; constant across conditions but allowed to differ between
minority and non-minority groups). The models without letters resulted from the previous
model by constraining one type of parameter, whereas the model with the same number
and a letter resulted from freeing some of these parameters again based on SEM fit criteria
and modification indices. For example, model 5 (intercepts restricted across all four groups)
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Table 1
Description of estimated models. The parameter count is the number of free parameters in
the marginal likelihood. Also see Table 8 of Wicherts et al., 2005.

Model Parameter Restrictions Parameter Count
2 All \jg=XNi=1,...,3;9=1,...,4 30
2a, Model 2, except Agyq unrestricted 31
3 Model 2a, plus all O'ng = o? 22
3a Model 3, except o3, unrestricted 23
4 Model 3a, plus 7% = 73 and 75 = 77 21
5 Model 4, plus all v;4 = v; except vo4 unrestricted 16
5a Model 5, except v31 unrestricted 17
5b Model 5a, except 39 unrestricted 18
6 Model 5b, plus a1 = ag 17

is nested in models 5a (one intercept freed) and 5b (another intercept freed), and model 6
(factor means constrained equal across conditions) is nested in model 5b. See Wicherts et
al. (2005) for further detail on the models.

We conduct a Bayesian re-analysis of the nine Wicherts et al. (2005) models here,
focusing on model comparison via DIC. We used JAGS to estimate each of the models ten
times; for each of these estimations, we used “automatic” computations of chain length and
convergence proposed by Raftery and Lewis (1995) and implemented in R package runjags
(Denwood, 2016). This algorithm first runs three chains for 4,000 iterations each, checking
that all parameters’ Gelman-Rubin statistics (Gelman & Rubin, 1992) are below 1.05. If
not, the algorithm runs for 4,000 more iterations and re-checks, continuing in this fashion
until either the statistics are below 1.05 or a maximum time limit has been reached. Once
the 1.05 threshold is achieved for all parameters, the algorithm performs a computation to
determine the number of additional samples necessary to estimate each parameter’s 2.5th
quantile to an accuracy of .005 with probability .95. Then the chains are run for this
number of additional samples. Thus, the specific number of samples varies for each model
estimation.

For each estimation, we computed four DIC statistics via blavaan: the conditional
and marginal versions using both the Spiegelhalter et al. (2002) definition in (4) and the
Plummer (2008) definition in (6) for “effective number of parameters.”

4.1.2 Results. Spiegelhalter et al’s (2002) conditional and marginal DICs for ten
estimations of each of the nine models are displayed in Figure 1. Here the scale of the y axis
for the marginal case is a 10-fold magnification of that for the conditional case, showing that
the Monte Carlo error is far greater for the conditional DICs. However, there is substantial
Monte Carlo error also in the marginal case, making model comparison unreliable for some
pairs of models (e.g., Models 3 and 2a). This suggests that accurate DICs require sampling
for more iterations, as compared to what is required for obtaining accurate parameter
estimates.

Especially because these models were part of a measurement invariance study, we
also examine where we would stop as we moved from Model 2 to 6 in a sequential /stepwise
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Figure 1. Marginal and conditional DICs (Spiegelhalter et al. definitions) for nine models
from Wicherts et al., where each model was estimated ten times.
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fashion (as was done in the original paper, though this is not required). In the marginal
case, the DIC for Model 3 is generally larger than the DIC for Model 2a, so we may stop
at Model 2a. However, Monte Carlo error is large enough that we may prefer Model 3 to
Model 2a in a given replication, in which case we may stop at Model 4. But the marginal
DIC is lowest for the final Model 6. The results are very different in the conditional case.
Here, we would stop at Model 2a across all ten replications. Further, the models generally
obtain larger DIC values as we move towards the final model 6, in stark contrast to the
marginal case. Models 5b and 6 have the worst values in the conditional case, whereas they
are the best in the marginal case.

Beyond the comparison of DICs, we further examine the four definitions of effective
number of parameters: marginal versus conditional crossed with the Spiegelhalter versus
Plummer definitions. These are displayed for the Wicherts et al. (2005) models in Figure 2,
with the lines showing simple parameter counts for each model (where, in the conditional
case, latent variable values for the students count as parameters). Results are similar to the
previous figure in that the conditional definitions exhibit greater Monte Carlo error than
the marginal definitions (note the differences in y-axis scales, both within this figure and as
compared to Figure 1). In the marginal case, we are counting the unrestricted item-specific
parameters in w and the unrestricted factor means and variances in 1 (note that these
parameter counts increase when parameters are freed, i.e. going from model 2 to 2a, 3
to 3a, and from 5 to 5a to 5b.); the Plummer effective number of parameters is generally
larger than the Spiegelhalter effective number of parameters here. In the conditional case,
we are counting the unrestricted item-specific parameters in w and the common factor values
for all students. Here we see greater discrepancy between the Spiegelhalter and Plummer
definitions. The Spiegelhalter definition appears to work better here, as the values are
nearly always smaller than the associated parameter counts (which we would expect based
on the fact that the latent variables exhibit shrinkage). However, in fairness, Plummer
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Figure 2. Estimated effective number of parameters under marginal and conditional DIC
for nine models from Wicherts et al., where each model was estimated ten times. Lines
reflect simple parameter counts for each model, where latent variables count as parameters
in the conditional case. The Plummer DIC computes pp via Kullback-Leibler divergence
as in (6), whereas the Spiegelhalter DIC computes pp via deviances as in (4).
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(2008) explicitly states that his definition is not intended for situations where the number
of parameters increases with the number of observations, as they do in the conditional
case. Beyond this, we observe situations where the marginal effective number of parameters
decreases while the conditional effective number of parameters increases or stays the same;
the sequence from Models 4 to 6 exhibits multiple examples.

Finally, we point out that much of the variability in DIC is due to Monte Carlo error
in the estimate of the effective number of parameters. As shown in Appendix D, this Monte
Carlo error is easy to estimate (in the Plummer case by ignoring any Monte Carlo error in
the plug-in deviance). Figure 3 plots the Plummer DICs across the 10 replications, with
error bars representing +2 times the estimated Monte Carlo error (from a single replication)
only in the effective number of parameters. We observe that the error bars reflect the
magnitude of variability in the overall DIC values. To support this claim, we computed
the proportion of the time that the error bars covered the DICs across the ten replications
and nine models. This coverage was 76% in the conditional case and 83% in the marginal
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Figure 3. Marginal and conditional DICs (Plummer definitions) for ten replications of the
Wicherts et al. models, with error bars (£ 2 SDs) stemming from a single replication.

Conditional Marginal
&
48001 :
} 4330
3 5 3
S 4500 [ s
$) 8 : 4320 .
[a] 4 & o @ é L4 *
4200 *
43101
2 22 3 32 4 5 5a 5b 6 2 22 3 32 4 5 5a 5b 6
Model

case (the coverage for the corresponding effective numbers of parameters was 89% and 99%,
respectively). While the coverage for the DIC is lower than the nominal 95%, it illustrates
that the deviance evaluated at the posterior means exhibits small variability compared to
the variability in expected deviance (Spiegelhalter case) or K-L distance (Plummer case).

4.1.3 Prior Sensitivity. While the prior distributions in the previous section
were related to blavaan default settings, other sets of priors could be considered. Two
plausible sets include (i) less-informative priors, closer to Mplus defaults, and (ii) informa-
tive priors based on substantive knowledge of the data. We conducted the same analyses
described in the previous section under these two new sets of priors.

The less-informative set of priors was

Vg, V2g, V39 ~ N(0, 10, 000)
Aag, Azg ~ N(0,1000)
012,052,032 ~ Gammal(.01,.01)

ay ~ N(0,1000)

-2
7, ~ Gamma(.1,.1)
while the informative set of priors was

Vg, Vag, V3g ~ N(7,10)
Aag, Azg ~ N(0,1)
01_92, 02_92, 03_92 ~ Gamma(2.5,5)
ag ~ N(0,1)

Tg_2 ~ Gamma(2.5,5).

The informative priors were selected so that the posterior density was generally in the
range of plausible parameter values: intercept priors are chosen to reflect the fact that the
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Figure 4. Marginal and conditional DICs (Spiegelhalter et al. definitions) under informative
prior distributions for nine models from Wicherts et al.
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observed variables are scale scores that range between 0 and 18; loading priors are based on
the fact that one loading is fixed to 1, and other loadings are expected to be similar; and
the gamma distributions on precisions are selected based again on the scale scores’ ranges
(knowing that the ranges of the scale scores cannot produce extremely large variances).

The results for the uninformative set of priors (shown in Appendix E) are similar
to the previous results, with some additional Monte Carlo error and convergence issues.
The results for the informative set of priors are more interesting. Figure 4 is similar to
Figure 1, except that the conditional y-axis scale is seven times the marginal y-axis scale
(as opposed to Figure 1, where marginal was ten times as large). We generally observe that
the conditional metrics’” Monte Carlo errors have been drastically reduced under informative
priors, though the error is still larger than that of the marginal metrics. The conditional
and marginal metrics’ selections of the best model continue to disagree with one another.
Additionally, the Plummer computation of conditional DIC prefers a different model as
compared to the Spiegelhalter computation of conditional DIC (see Appendix E).

The results in this section illustrate that the use of marginal vs conditional DIC
can impact substantive conclusions, in that different models can be selected with different
versions of DIC and different conclusions can be reached about the effective number of
parameters. We speculate that conditional DIC will generally prefer models of greater
complexity, due to the relationship between conditional/marginal DIC and cross-validation.
Because conditional DIC is related to predicting a held-out unit from an existing cluster,
the remaining data from that cluster are helpful for making the prediction. In contrast,
when predicting data from a held-out cluster (which is related to marginal DIC), we have
greater uncertainty about the specific properties of the cluster. Thus, conditional DIC may
support models of greater complexity, as compared to marginal DIC.

Beyond model preference, the conditional DIC exhibits larger Monte Carlo error and
depends more strongly on the approximation used (Spiegelhalter versus Plummer), as com-
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pared to the marginal version. Further, the Monte Carlo error in conditional DIC is dras-
tically reduced through use of informative prior distributions on model parameters. While
strong prior information is not always available, this result suggests that even mild prior
information can aid in precise computation of DIC. In the next section, we extend these
results to item response models and other information criteria.

4.2 Explaining Individual Differences in Verbal Aggression via IRT

Here, we consider item response models with different person covariates, comparing
them via conditional and marginal versions of DIC (Spiegelhalter et al. definitions), WAIC,
and PSIS-LOO. In the case of IRT, the marginal information criteria utilize the numerical
integration methods described in Appendix C.

4.2.1 Method. Several latent regression Rasch models are fit to the dataset on
verbal aggression (Vansteelandt, 2000) that consists of J = 316 persons and I = 24 items.
Participants were instructed to imagine four frustrating scenarios, and for each they re-
sponded to items regarding whether they would react by cursing, scolding, and shouting.
They also responded to parallel items regarding whether they would want to engage in
the three behaviors, resulting in six items per scenario (cursing/scolding/shouting x do-
ing/wanting). An example item is, “A bus fails to stop for me. I would want to curse.”
The response options for all items were “yes”, “perhaps”, and “no.” The items have been
dichotomized for this example by combining “yes” and “perhaps” responses. Two person-
specific covariates are included: the respondent’s trait anger score (Spielberger, 1988), which
is a raw score from a separate measure taking values between 11 and 39, and an indicator
for whether the respondent is male, which takes the values 0 and 1. This leads us to con-
sider five possible models: a model without person covariates, two models with one person
covariate, a model with both person covariates, and a model with both person covariates
plus their interaction.

The model that defines the conditional likelihood f.(y|w, () is

Yijlxj, 7, 5, 0i ~ Bernoulli <logit_1(a};~’y + ¢ — (57,)) , (12)

where y;; = 1 if person j responds positively to item i and y;; = 0 otherwise, x; is a vector
of a constant and K — 1 person-specific covariates, v is a vector of regression coefficients,
¢; is a person residual, and ¢; is an item difficulty parameter. The last item difficulty is

constrained such that 6y = — 251_1) 0;. The priors for the item difficulties and regression
coefficients that comprise w are

51, 611 ~ N(0,9)
YooY ~ t1(0,1).

Unlike the previous example, (; is just a disturbance here with zero mean and hyperparam-
eter Y =T

G ~N(0,7%)
T ~ Exp(.1).
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Weakly informative priors are specified for the regression coefficients -y, following
Gelman, Jakulin, Pittau, and Su (2008). Specifically, after standardizing continuous covari-
ates to have zero mean and standard deviation 0.5 and binary covariates to have mean 0 and
range 1, t-distributions with one degree of freedom are used as priors for the corresponding
regression coefficients, v*. The MCMC draws of the coefficients are then transformed to
reflect the original scales of the covariates. Next, the priors for item difficulties have about
95% of their density lying between (—6, 6), reflecting the fact that the difficulties are on the
logit scale (so it would be surprising to observe values outside of this range). Finally, the
prior on 7 is simply chosen to be uninformative.

Focus is placed on (; for the conditional approach, which yields a prediction infer-
ence involving new responses from the same persons (and items). The marginal approach,
perhaps more realistically, places focus on 7, implying a prediction inference involving new
responses from new people. Five competing models are considered, differing only in what
person covariates are included: Model 1 includes no covariates (K = 1), Model 2 has the
trait anger score (K = 2), Model 3 has the indicator for male (K = 2), Model 4 has both
covariates (K = 3), and Model 5 has both covariates and their interaction (K = 4).

4.2.2 Results. The five models are estimated via Stan using 5 chains of 2,500
draws with the first 500 draws of each discarded, resulting in a total of 10,000 kept posterior
draws. The unusually large number of posterior draws (for Hamiltonian Monte Carlo) is
chosen here due to the anticipated Monte Carlo errors for the information criteria, but such
a large number is not ordinarily necessary for estimating the posterior means and standard
deviations of the parameters. The adaptive quadrature method described in Appendix C is
used to integrate out ¢ for computing the marginal versions of DIC, WAIC, and PSIS-LOO.
Eleven quadrature points were found to be sufficient for one of the models (Model 4) using
the method described in Appendix C, and this number of points is used throughout. On a
Windows desktop with 4 cores and 16GB of memory, the quadrature method took about
90 seconds per model to complete (with parallel processing).

Figure 5 provides the estimates for the information criteria and PSIS-LOO, where
the conditional and marginal versions now have the same y-axis scales. The DIC and
WAIC differ from each other for any given model, though they seem to show a similar
pattern between models. The WAIC is a much better approximation to the PSIS-LOO
in the marginal case than the conditional case. The high degree of Monte Carlo error
in the conditional versions renders differentiating the predictive performance of the models
difficult. In the marginal case, the amount of Monte Carlo error is less but still poses a degree
of difficulty in making comparisons. However, Models 1 and 3 now clearly provide poorer
predictions in comparison to the others. These models do not include trait anger, suggesting
that this variable is an important predictor of verbal aggression. There is some evidence
supporting Model 4 (both covariates, no interaction) as the best among the candidates.

Figure 6 provides the estimated effective number of parameters (dots) and actual
number of parameters (lines) for the conditional and marginal versions of the DIC and
WAIC. For conditional information criteria, the effective number of parameters is substan-
tially less than the actual numbers of parameters, owing mainly to the fact that each (j,
with its hierarchical prior, contributes less than one to the effective number of parameters.
For marginal information criteria, on the other hand, the effective number of parameters
are close to the actual numbers of model parameters and, for WAIC, are somewhat larger
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Figure 5. Information criteria for the five latent regression Rasch models. Points repre-
sent the results of the 10 independent MCMC simulations per model. A small amount of
horizontal jitter is added to the points.
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than the number of parameters.

For the WAIC, contributions to the effective number of parameters (from item-person
combinations for pw. and from persons for pwy,) should be less than .4 which was always
satisfied for the marginal WAIC but was violated for an average of between 2.1 and 3.4
contributions for the conditional WAIC across the five models (for details, see Furr, 2017).

5 Discussion

In this paper, we sought to clarify and illustrate the various forms of Bayesian infor-
mation criteria that are used in practice. Researchers often rely on pre-packaged software
to obtain these criteria, failing to realize the fact that multiple versions of the criteria are
available depending on the software (BUGS vs. JAGS) and depending on whether or not
the latent variables appear in the model likelihood (leading to conditional and marginal
information criteria, respectively). Additionally, we showed that the criteria can suffer from
large amounts of Monte Carlo error. Hence, long chains will often be necessary to obtain
precise point estimates of the criteria. If ignored, these issues can lead to model compar-
isons that are irrelevant and/or irreproducible. While the conditional and marginal criteria
will sometimes agree on the best model, the agreement is dependent on the number and
types of models under consideration. In Appendices A and B, we provide theoretical results
showing that the conditional and marginal information criteria will generally differ from
one another.

Recommendations. Similarly to the use of marginal likelihoods in general latent
variable models, we recommend use of marginal information criteria as the defaults in
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Figure 6. Estimated effective number of parameters (p) for the five latent regression Rasch
models. Points represent the results of the 10 independent MCMC simulations per model.
A small amount of horizontal jitter is added to the points. The horizontal lines represent
the counts of parameters associated with each model and focus.
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Bayesian analyses. As previously discussed, marginal criteria assess a model’s predictive
ability when applied to new clusters. This is exactly what is desired in many psychometric
contexts, where clusters may be defined by, e.g., countries, schools, or students. In these
cases, we wish to discern general properties of scales or items that are not specific to the
clusters that were observed. As a side advantage, the marginal information criteria also
tend to have less Monte Carlo error than their conditional counterparts. We would expect
similar issues to arise when one uses posterior predictive estimates to study model fit, and
this is a topic of future study.

Because the chain length necessary to obtain precise information criteria is generally
larger than the length required to obtain stable posterior means of individual parameters, it
may be useful to compute the information criteria at multiple points. First, the criteria can
be computed when individual parameters’ posterior means have converged and stabilized.
The researcher can then continue running the chains for the same number of iterations,
re-computing the information criteria and effective number of parameters, and assessing
changes in results. This process can be continued until the information criteria have reached
the desired level of precision. Alternatively, researchers might apply the Raftery and Lewis
(1995) automatic chain length computations directly to samples of the model deviance (these
computations are typically applied to samples of individual model parameters). Regardless
of strategy employed, our examples suggest that the Monte Carlo error of the effective
number of parameters largely track the imprecision of the information criteria.

Beyond Monte Carlo error, there are further issues that lead us to not recommend
conditional information criteria. For the DIC, Plummer (2008) showed that the penalty



BAYESIAN COMPARISON OF LATENT VARIABLE MODELS 22

does not approach the optimism when the number of parameters increases with the sample
size (as they do in the conditional case), and we observed in the first example that the
penalty term depended largely on the definition used (Plummer versus Spiegelhalter). In
the second example, we observed that the WAIC differed much more from PSIS-LOO in the
conditional case than in the marginal case. This corresponds to the work of Millar (2018),
who points out that two regularity conditions are not satisfied in the conditional case, one
of them again being the number of parameters increasing with sample size. In the context of
multilevel IRT models, Zhang et al. (2019) also recommend against the conditional version
of the DIC.

Concluding remarks. Researchers may also be interested in the abilities of the
information criteria to select the true model. We note that the information criteria are not
designed to select the true model but instead to select the model with best out-of-sample
predictive accuracy. In small datasets with complex data-generating models, the model with
best out-of-sample predictive accuracy will tend to be simpler than the true model, because
the true model would lead to overfitting and poor out-of-sample predictive accuarcy.

Zhang et al. (2019) conducted simulation studies using DIC and obtained related
results. Their studies involved multilevel IRT models where item responses were nested in
individuals, and individuals were nested in schools. For these models, one can marginalize
only over person parameters or over both person and school parameters, leading to different
forms of marginal DIC. Additionally, the authors considered “joint” forms of DIC that, in
our notation, employed likelihoods that are roughly of the form f(y;,{j|w). Zhang et al.
found that the conditional DIC sometimes preferred models that were more complex than
the data-generating model, and they ultimately recommended a version of DIC based on
the person-level joint likelihood. This joint likelihood does not appear to have an immediate
interpretation via leave-one-out cross-validation, because the data are modeled jointly with
an unknown parameter. More work could be done to expand on this point.

The Zhang et al. (2019) models also illustrate that, while the dichotomous “condi-
tional /marginal” distinction is most relevant for psychometric models, middle grounds are
evident in some situations. Multiple marginal versions of the information criteria exist when
the model includes more than two levels and/or (partially-)crossed random effects. Further,
in non-multilevel IRT contexts, both the item parameters and person parameters can be
modeled as random effects (e.g., De Boeck, 2008). Here, a researcher might be interested
in the model’s predictive ability when new people complete the same items that originally
entered in the model. This would lead the researcher to compute information criteria where
the person random effects are marginalized out of the likelihood but the item random effects
are not. These scenarios highlight that, for latent variable models, it is insufficient to report
a model information criterion without providing additional detail on how the criterion was
computed. Further, the values that are automatically obtained from MCMC software are
generally not suitable for further use.
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Appendix A
Posterior expectations of marginal and conditional likelihoods
Following Trevisani and Gelfand (2003), who studied DIC in the context of linear mixed
models, we can use Jensen’s inequality to show that the posterior expected value of the
marginal log-likelihood is less than the posterior expected value of the conditional log-
likelihood.
First, consider the function h(x) = zlog(z). It is convex, so Jensen’s inequality states
that
h(E(z)) < E(h(z)). (13)

Setting =z = f.(y|w, {) and taking expected values with respect to ¢, we have that

h(E() =log | [ eyl Oalclw)ac] [ fitylw. Calcl)dc (1)
E(h(x)) = [ log(fe(ylew, ) felylw. g(Cl)dC, (15)

so that

log | [ £yl Qal¢)dc| [ £iplee, QalCl)dC < [log(fuwleo, )yl Calclp)dc.

(16)

We now multiply both sides of this inequality by p(w,)/c, where p(w, ) is a prior
distribution and

c:AAAﬂ@MOMOmewwmmw (17)

is the posterior normalizing constant. Finally, we integrate both sides with respect to w
and 1) to obtain

/d)/wlog (/C fc(y|w,C)g(C’¢)dC>/Cfc(y\w,()g(gw)dc.[p(w,w)/c] dwdp <
AAA@%M%@&M%%@WM@mwﬁmw.m)

We can now recognize both sides of (18) as expected values of log-likelihoods with respect
to the model’s posterior distribution, leading to

Ew,¢|y [log fm(y‘w7 ¢)] S Ew,C\y [lOg fC(y’wa C)] . (19)

Note that the above results do not rely on normality, so they also apply to, e.g., the two-
parameter logistic model estimated via marginal likelihood.

Appendix B
Effective number of parameters for marginal and conditional DIC
To consider the effective number of parameters for normal likelihoods, we rely on results
from Spiegelhalter et al. (2002). They showed that the effective number of parameters pp
can be viewed as the fraction of information about model parameters in the likelihood,
relative to the total information contained in both the likelihood and prior. Under this
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view, a specific model parameter gets a value of “1” if all of its information is contained in
the likelihood, and it gets a value below “1” if some information is contained in the prior.
We sum these values across all parameters to obtain pp.

Spiegelhalter et al. (2002) relatedly showed that, for normal likelihoods, pp can be
approximated by

pp ~ tr(I(O)V), (20)

where 6 includes all model parameters (including ¢ in the conditional model), I (é) is
the observed Fisher information matrix, and V is the posterior covariance matrix of 6.
When the prior distribution of @ is noninformative, then I (é) ~ V~!. Consequently,
matching the discussion in the previous paragraph, the effective number of parameters
under noninformative priors will approximate the total number of model parameters.

This result implies that the conditional pp will tend to be much larger than the
marginal pp. In particular, in the conditional case, each individual has a unique (; vector
that is included as part of the total parameter count. The resulting pp will not necessarily
be close to the total parameter count because the “prior distribution” of {; is a hyperdis-
tribution, whereby individuals’ {; estimates are shrunk towards the mean. Thus, for these
parameters, the “prior” is informative. However, even when the fraction of information in
the likelihood is low for these parameters, the fact that we are summing over hundreds or
thousands of ¢; vectors implies that the conditional pp will be larger than the marginal pp.

Appendix C
Adaptive Gaussian quadrature for marginal likelihoods
We modify the adaptive quadrature method proposed by Rabe-Hesketh et al. (2005) for
generalized linear mixed models to a form designed to exploit MCMC draws from the joint
posterior of all latent variables and model parameters. Here we describe one-dimensional
integration, but the method is straightforward to generalize to multidimensional integration
as in Rabe-Hesketh et al. (2005). We assume that (; represents a disturbance with zero
mean and variance 72 so that there is only one hyperparameter 1) = 7.

In a non-Bayesian setting, standard (non-adaptive) Gauss-Hermite quadrature can be
viewed as approximating the conditional prior density g(¢;|7) by a discrete distribution with
masses Wy, m = 1,..., M at locations a,,T so that the integrals in (2) are approximated
by sums of M terms, where M is the number of quadrature points,

J M
m(Y|lw, 7) H Z Wi fe(yjlw, (G = amT). (21)

To obtain information criteria, this method can easily be applied to the conditional likeli-
hood function for each draw w® and 7° (s = 1,...,5) of the model parameters from MCMC
output. This approximation can be thought of as a deterministic version of Monte Carlo
integration. Adaptive quadrature is then a deterministic version of Monte Carlo integration
via importance sampling.

If applied to each MCMC draw w?® and 7%, the importance density is a normal ap-
proximation to the conditional posterior density of (;, given the current draws of the model
parameters. Rabe-Hesketh et al. (2005) used a normal density with mean and variance equal
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to the mean E((;|y;,w?®, 7°) and variance var((;|y;, w®, 7°) of the conditional posterior den-
sity of (j, whereas Pinheiro and Bates (1995) and some software use a normal density with
mean equal to the mode of the conditional posterior and variance equal to minus the recip-
rocal of the second derivative of the conditional log posterior. Here, we modify the method
by Rabe-Hesketh et al. (2005) for the Bayesian setting by using a normal approximation
to the unconditional posterior density of (; as importance density. Specifically, we use a
normal density with mean

fij = E((ly) = SZC], (22)

and standard deviation

S

3 = mcﬂy):J 1 (G~ ) 23)

s=1

where (7 is the draw of (; from its unconditional posterior in the sth MCMC iteration. The
tildes indicate that these quantities are subject to Monte Carlo error.

Note that this version of adaptive quadrature is computationally more efficient than
the one based on the mean and standard deviation of the conditional posterior distributions
because the latter would have to be evaluated for each MCMC draw and would require nu-
merical integration, necessitating a procedure that iterates between updating the quadrature
locations and weights and updating the conditional posterior means and standard devia-
tions. A disadvantage of our approach is that the quadrature locations and weights (and
hence importance density) are not as targeted, but the computational efficiency gained also
makes it more feasible to increase M.

The adaptive quadrature approximation to the marginal likelihood for cluster j at
posterior draw s becomes

J M
(Yylw,7) H Z w mte(yjlw, § = ajm), (24)

j=1m=1
where the adapted locations are
m = fij + & X am, (25)

and the corresponding weights or masses are

2

w‘;m = \/ﬂ X QEJ X exp <a£n> X g (a]ma 077—27s> X W, (26)

where g (ajm; 0, 7%%) is the normal density function with mean zero and variance 7%*

uated at a;p,.

The number of integration points M required to obtain a sufficiently accurate approx-
imation is determined by evaluating the approximation of the target quantity (DIC, WAIC)
with increasing values of M (7, 11, 17, etc.) and choosing the value of M for which the
target quantity changes by less than 0.01 from the previous value. Here the candidate values

, eval-
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for M are chosen to increase approximately by 50% while remaining odd so that one of the
quadrature locations is at the posterior mean. Furr (2017) finds this approach to be accu-
rate in simulations for linear mixed models where the adaptive quadrature approximation
can be compared with the closed form integrals.

Appendix D
Monte Carlo Error for the DIC and WAIC effective number of parameters
For the DIC effective number of parameters, pp, we can make use of the well-known method
for estimating the Monte-Carlo error for the mean of a quantity across MCMC iterations.
Let a quantity computed in MCMC iteration s (s = 1,...,.5) be denoted s, so the point
estimate of the expectation of ~ is

1 S
7= g ;%-
Then the squared Monte Carlo error (or Monte Carlo error variance) is estimated as
MCen®(7) = < [1 ES:(% —7)21 : (27)
Set |S—14

where Seg is the effective sample size.
For the effective number of parameter approximation in (6) proposed by Plummer
(2008), we can obtain the Monte Carlo error variance by substituting

! Syted) | | 1 f(yL?]02)
T = 21°g{f<yglez>}+2log{1'%y;2ww}

in (27).
For the effective number of parameter approximation in (4) proposed by Spiegelhalter
et al. (2002), we assume that the variation due to Eg),[—2log f(y|@)] dominates and use

vs = —21log f(y0s).

For the WAIC effective number of parameters, pw, we use expressions for the Monte
Carlo error of sample variances (see, e.g. White, 2010). Let the variance of v, over MCMC
iterations be denoted v(7),

1< 13 S
v(y) = ﬁ;(%—i)zz ggTs, Ts = ﬁ(’Ys—W)Q
Then the Monte Carlo error variance is estimated as
1 S
MCerr?(v(v)) = 52 xS ;(Ts —v()* (28)

The conditional version of the effective number of parameters is given by the sum
over all units of the posterior variances of the pointwise log posterior densities,

J nj

pwe = Y Vary ¢y [log fo(yijlw, ¢;)] -

j=1i=1
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The posterior variance Var,, ¢|,, [log fc(yijlw, ;)] for a given unit is estimated by v(v;;) with

Yijs — log fc(yij |w87 CjS)v

where we have added subscripts ¢j to identify the unit, and has Monte Carlo error variance
MCerr?(v(7;;)) given in (28). The variance of the sum of the independent contributions
v(7ij) to pwe is the sum of the variances of these contributions,

J ny

MCerr?(pwe) Z Z MCerr?( (v(7i4))-

Jj=1li=1

For the marginal version of the effective number of parameters, pwm, we define

VYis = IOg fm(yj |w57 ¢s)

and

MCerr? (Pwm) Z MCerr?(v(v;)).

Appendix E
Additional results
This section contains additional results from the CFA example that were not included in
the main text.

Figure E1 shows Spiegelhalter DIC values for models that use the uninformative
priors described in the “Prior sensitivity” subsection. Of note here is that Models 2 and 2a
sometimes failed to converge, resulting in fewer than ten points in the graphs. Because we
used the automatic convergence procedure described in the main text, “failure to converge”
here means that the chains did not achieve Gelman-Rubin statistics below 1.05 in the
five minutes allotted. When we removed the 5-minute maximum time to convergence, we
encountered situations where chains ran for days without converging. In our experience,
these convergence issues are often observed for CFA models in JAGS with flat priors. Chains
sometimes get stuck in extreme values of the parameter space and cannot recover.

Figure E2 shows Plummer DIC values for models that use the informative priors
described in the “Prior sensitivity” subsection. The figure also contains error bars (£2 SDs)
from a single replication, similarly to Figure 3 in the main text. These error bars appear to
continue to track Monte Carlo error in DIC. Comparing Figure E2 to Figure 4, we observe a
different pattern in the conditional DICs across the Plummer and Spiegelhalter definitions.
The Spiegelhalter conditional DICs (Figure 4) consistently prefer Model 2a, whereas the
Plummer conditional DICs (Figure E2) generally decrease across models and become lowest
for the final models, labeled 5b and 6 (though Models 4 and 5a are also similar). On the
other hand, the marginal DICs are similar across the Spiegelhalter and Plummer definitions.
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Figure E1. Marginal and conditional DICs (Spiegelhalter et al. definitions) under uninfor-
mative prior distributions for nine models from Wicherts et al.
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Figure F2. Marginal and conditional DICs (Plummer definitions) under informative prior
distributions for nine models from Wicherts et al.
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