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Abstract
Structural equation models comprise a large class of popular statistical models, in-

cluding factor analysis models, certain mixed models, and extensions thereof. Model
estimation is complicated by the fact that we typically have multiple interdependent re-
sponse variables and multiple latent variables (which may also be called random e�ects
or hidden variables), often leading to slow and ine�cient posterior sampling. In this pa-
per, we describe and illustrate a general, e�cient approach to Bayesian SEM estimation
in Stan, contrasting it with previous implementations in R package blavaan (Merkle and
Rosseel 2018). After describing the approaches in detail, we conduct a practical compar-
ison under multiple scenarios. The comparisons show that the new approach is clearly
better. We also discuss ways that the approach may be extended to other models that
are of interest to psychometricians.
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1. Introduction
Structural equation models (SEMs) are commonly used in the social sciences, where it is
customary to (attempt to) measure unobservable traits such as cognitive abilities, attitudes,
and proficiencies. Such models provide a formal way of connecting these unobservable traits
to related, observed variables (e.g., test scores, Likert responses, etc), which has led to long-
standing popularity of SEMs. SEMs are also related to research on causality and directed
acyclic graphs (e.g., Pearl 2013), to generalized linear mixed models (e.g., Bates, Mächler,
Bolker, and Walker 2015; Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2013; Stroup
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2013), and to time series models (e.g., Driver, Oud, and Voelkle 2017), illustrating the models’
broad applicability across disciplines.

A defining feature of the SEM framework is the ability to instantiate regressions on latent
variables, as opposed to observed variables. This framework is more general than the tradi-
tional mixed modeling framework, allowing for products between latent variables and other
free parameters, as might be seen in factor analysis (e.g., Bollen 1989; Merkle and Wang
2018). The generality of SEM implies that the estimation methods are relatively complex,
which has historically led researchers to rely on closed-source implementations of optimiza-
tion methods via software like Mplus (Muthén and Muthén 2017), LISREL (Jöreskog and
Sörbom 1997), and EQS (Bentler 2008). A small number of more recent R (R Core Team
2021) packages, including sem (Fox, Nie, and Byrnes 2021), OpenMx (Boker et al. 2011), and
lavaan (Rosseel 2012), provide open source SEM functionality that utilize classical estimation
methods including maximum likelihood or least squares.

While maximum likelihood and least squares methods are most popular, Bayesian approaches
to SEM and related models have received increased recent attention (e.g., Depaoli and van de
Schoot 2017; Fox 2010; Jackman 2009; Kaplan 2014; Kruschke 2011; MacCallum, Edwards,
and Cai 2012; Merkle and Wang 2018; Muthén and Asparouhov 2012; Van Erp, Mulder, and
Oberski 2018). Researchers have specifically found the methods to be useful for estimation
of complex SEMs (including, e.g., latent variable interactions; Lee, Song, and Tang 2007), for
automatically handling uncertainty associated with latent variable estimation, and for scaling
to high-dimensional datasets.

Despite the increased popularity of Bayesian latent variable models, coding the models via
JAGS (Plummer 2003) or Stan (Carpenter et al. 2017) syntax can be di�cult, and the resulting
sampling can be time-consuming and ine�cient. These issues have been partially addressed
by R package blavaan (Merkle and Rosseel 2018), which uses lavaan model specification syntax
and originally relied on JAGS for model estimation (via package runjags, which provides an R

interface to JAGS; see Denwood 2016). Package blavaan is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=blavaan. Other R

packages have addressed these issues for related models, including brms (Bürkner 2017) for
mixed and multivariate models, rstanarm (Gabry and Goodrich 2020) for regression models,
ctsem (Driver et al. 2017) for time series models, edstan (Furr 2017) for item response models,
and pcFactorStan (Pritikin 2021) for pairwise comparison factor models.

The original blavaan approach was similar to the brms approach for generalized linear mixed
(and related) models, where JAGS code was generated at runtime from the user-specified
model syntax. However, this approach became very slow for some models, forcing the user
to wait hours or more for enough samples to make inferences. This reduced the viability
of blavaan for applied data analysis and for further development, leading us to implement
Stan functionality in blavaan. The original Stan implementation was similar to the JAGS
implementation, generating Stan syntax for a user-specified model and relying on package
rstan (Stan Development Team 2021) for Markov chain Monte Carlo (MCMC). This Stan

implementation has not been formally described, which represents one contribution of the
current paper. In general, though, the Stan implementation was not much faster or more
e�cient than the JAGS approach.

The primary contribution of this paper is to describe and illustrate a new approach to Stan

SEM estimation, which greatly improves the speed and e�ciency of model estimation. The

https://CRAN.R-%20project.org/package=blavaan
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approach can be flexibly applied to models in the traditional SEM framework, with general
(possibly non-conjugate) prior distributions. It has been implemented in blavaan alongside
the previous JAGS and Stan implementations, allowing for easy comparison across implemen-
tations.
In the sections below, we first formally define the models under consideration. We then
describe the three MCMC approaches that are now implemented in blavaan: the original
JAGS approach described in Merkle and Rosseel (2018), the original Stan approach that is
being formally described in this paper for the first time, and the new Stan approach that is
the primary focus of this paper. After describing the approaches, we explicitly discuss some
problematic issues associated with estimation of SEMs via MCMC. These are issues that are
often overlooked in the literature, but they are necessary to have fully functional Bayesian
SEM software. Finally, we compare the three approaches via three examples, highlighting the
advantages of the new Stan approach.

2. Model definition
The blavaan package generally relies on the lavaan representation of a structural equation
model, which is generally based on the LISREL “all-y” representation (e.g., Jöreskog and
Sörbom 1997).
Let yi be the p (continuous) observed variables associated with observation i. Then a struc-
tural equation model with m latent variables may be represented by the equations

yi = ‹ + �÷i + ‘i

÷i = – + B÷i + ’i, (1)

where ÷i is an m◊1 vector containing the latent variables; ‘i is a p◊1 vector of measurement
errors; and ’i is an m ◊ 1 vector of structural errors. The vectors ‹ and – contain intercept
parameters for the manifest and latent variables, respectively; � is a matrix of factor loadings;
and B contains parameters that reflect regression relationships between latent variables.
The residuals ‘i and ’i are assumed to be multivariate normal:

‘i ≥ Np(0, �)
’i ≥ Nm(0, �),

where the associated covariance matrices are often diagonal. These assumptions imply that
the marginal distribution of y (integrating out the latent variables) is multivariate normal
with parameters

µ = ‹ + �–

� = �(I ≠ B)≠1�(I ≠ B€)≠1�€ + �,

which requires that (I ≠ B) be invertible. The traditional LISREL framework includes ad-
ditional matrices for exogenous observed variables, but these are not often utilized in lavaan.
Instead, an exogenous observed variable is more commonly “upgraded” to latent variable
status, where the latent variable accounts for all of the observed variable’s variance (and the
associated variance parameter in � is fixed to 0).
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Many Bayesian approaches to SEM estimation rely on sampling the ÷i in tandem with other
model parameters. This is advantageous because observed variables are often independent
conditioned on the ÷i, so that the conditional distribution of each observed variable is a
univariate normal. However, as we will see later, the sampling of the ÷i can have a major
impact on the speed and e�ciency of MCMC estimation.

3. MCMC approaches
In the sections below, we briefly describe the three MCMC approaches implemented in
blavaan: the original JAGS approach, the original Stan approach, and the new Stan approach
that is the focus of this paper.

3.1. Parameter expansion in JAGS

In previous work (Merkle and Rosseel 2018), we developed a parameter expansion approach
that can be applied to SEMs for continuous data (also see Palomo, Dunson, and Bollen 2007).
The method allows us to often use univariate normal distributions in place of multivariate
normal distributions, and it can be generally implemented in JAGS.
The approach involves converting the model of interest (the “inferential model”) to an over-
parameterized, equivalent model (the “working model”) from which it is easier to sample.
The conversion focuses on a model’s covariance parameters, converting each covariance to a
“phantom” latent variable. This conversion makes observed variables conditionally indepen-
dent of one another (conditioned on latent variables), meaning that our likelihood involves a
series of univariate distributions instead of a single multivariate distribution. Such a conver-
sion can speed up sampling in JAGS, where computations involving the multivariate normal
distribution are very slow. The full details underlying these procedures can be found in Merkle
and Rosseel (2018).

3.2. Likelihood simplification in Stan
The phantom latent variable approach is not essential in Stan and, in testing, we found that
the approach did not lead to gains in sampling speed or e�ciency. However, we did make
initial progress in Stan by capitalizing on the structure of the SEM latent variable covari-
ance matrix �. This capitalization was inspired by related work on estimating multivariate
autoregressive models in Stan (Joseph 2016).
We provide an overview of this approach here. For traditional SEMs, the distribution of
latent variables can typically be expressed as shown in Equation 1:

÷ ≥ N((I ≠ B)≠1–, (I ≠ B)≠1�(I ≠ B€)≠1).

Evaluation of this multivariate normal log-likelihood is time-consuming in Stan because we
need to compute the inverse and determinant of the covariance matrix. However, for many
models, the structure of the covariance matrix leads to simplifications. For example, the
matrix B is often triangular with zeros along its diagonal (leading to what some call a
“recursive” model), and the matrix � is often diagonal. When both of these properties are
fulfilled, we can use standard matrix properties (e.g., Petersen and Pedersen 2012) to write
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the determinant as a product of scalar values:

det((I ≠ B)≠1�(I ≠ B€)≠1) = (det(I ≠ B))≠1det(�)(det(I ≠ B))≠1

= 1 ·
mŸ

i=1
Âii · 1.

Relatedly, the inverse of � is simplified as

((I ≠ B)≠1�(I ≠ B€)≠1)≠1 = (I ≠ B€)�≠1(I ≠ B),

which completely removes the need to compute matrix inversions when � is diagonal. When
either B is triangular or � is diagonal (but not both), we can use a subset of the above
simplifications to improve sampling e�ciency as much as possible. Given a specific model,
blavaan automatically determines which simplifications are available and uses them for Stan

estimation. The simplifications are implemented in Stan as a custom log-probability density
function. This approach is available in blavaan via the argument target = "stanclassic".

3.3. New Stan approach
Both methods mentioned above exploit the fact that the latent variables in the model can be
sampled along with other model parameters. This generally simplifies likelihood computations
and allows us to immediately extend the methods to situations where observed variables have
non-normal distributions. Most Bayesian approaches to SEM, and to other models with
“random” parameters, sample the latent variables.
However, the sampling of latent variables greatly increases the dimension of the parameter
space, which can reduce sampling speed and e�ciency. Thus, the key to fast sampling in Stan

is to work with a model likelihood that is marginal over latent variables, a result that was also
recently discussed by Hecht, Gische, Vogel, and Zitzmann (2020). This is somewhat unintu-
itive, because previous researchers have focused on the simplifications that we can gain from
sampling the latent variables. One concern related to using the marginal likelihood involves
our inability to make inferences about the latent variables (because they are integrated out
of the likelihood). But this concern is addressed by blavaan because, conditional on the other
model parameters, the latent variable posterior distribution is tractable. Thus, the latent
variables can be sampled in a “generated quantities” block of the Stan syntax, even though
they do not directly play a role in the MCMC sampling.
The new blavaan approach utilizes the marginal likelihood, and we have written a single
Stan program that can estimate the majority of multivariate normal SEMs that a user could
specify. This file is compiled once during (or before) package installation. Then, once the user
specifies a model, many pieces of information about the data and about the model are passed
to the compiled model, with sampling occurring immediately. To complement the Stan file,
we have new R code that serves as a pipeline from blavaan to the Stan model and back. The
blavaan user will not notice many di�erences, because the commands for model specification
and estimation are the same as before. However, the model is now sent to the pre-compiled
Stan model by default, whereas the previous approaches wrote JAGS or Stan code at runtime.
It is worth noting that our Stan SEM file stands on its own, so that users of languages beyond
R (e.g., Python) could also utilize the file if they can pass all the required data in to the Stan

model. This is more challenging than it may sound due to the many pieces of data that are
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required, including the dimensions of all SEM matrices, the free entries of SEM matrices,
equality constraints on free parameters, prior distribution parameters, and so on.
Because our Stan model is precompiled, the possible models that can be estimated are re-
stricted in two ways. First, there is some inflexibility in choice of prior distributions. For most
types of model parameters, the form of each parameter’s prior cannot be changed (though
the specific prior hyperparameters can). For example, regression parameters (B) in blavaan
currently have N(0, 10) priors by default, where the normal distribution is parameterized by
standard deviation. Users can change the mean or standard deviation of this normal prior,
but they cannot change the fact that the prior is normal. However, for scale parameters,
users have the option to place priors on variances, standard deviations, or precisions.
The second restriction of the precompiled Stan model involves equality constraints. While our
code currently allows for equality constraints within a class of parameters (e.g., loadings can
be constrained equal to one another or intercepts can be constrained equal to one another),
it does not allow for constraints across classes of parameters. Additionally, if users wish
to set one parameter equal to a function of other parameters, that is not currently possible.
However, if users desire features that are not included in our current implementation, they can
export our Stan file (via argument mcmcfile=TRUE), make the desired changes, and recompile
the model. Alternatively, they could use the other MCMC methods available in blavaan,
which provide more flexibility because they are not precompiled.

4. Challenging issues
While the above methods can be readily applied to “vanilla” models such as confirmatory
factor analysis with uncorrelated factors, the SEM framework includes many model and data
characteristics that require further attention for estimation. Below, we highlight three char-
acteristics that are not always addressed in texts on Bayesian SEM.

4.1. Covariance parameters
The general SEM presented earlier includes two covariance matrices with free parameters: �
and �. These matrices can sometimes include some fixed values and some free values, so prior
distributions for these matrices are not straightforward. That is, there are some models for
which we cannot simply place an inverse Wishart prior on the covariance matrix, nor an LKJ
prior (Lewandowski, Kurowicka, and Joe 2009). Those priors were meant for unrestricted
covariance/correlation matrices, not for matrices with some fixed values and some free values.
In the Stan approaches, we consequently decompose the covariance matrices into standard
deviations and correlations. For example, � is written as

� = D�R�D�,

where D� is a diagonal matrix of standard deviations and R� is a correlation matrix. Prior
distributions are then placed individually on the free standard deviation parameters and on
the free correlation parameters within the two matrices. This approach is similar to that
of Barnard, McCulloch, and Meng (2000), and Liu, Zhang, and Grimm (2016) provide a
comparison of this approach to the use of inverse Wisharts in the context of growth curve
models.
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The use of an independent prior on each free parameter can sometimes lead to a non-positive
definite covariance matrix during MCMC sampling. Stan is able to reject such a covariance
matrix and continue sampling, whereas JAGS will terminate. This is why we developed
the parameter expansion method in JAGS: the parameter-expanded model involves diagonal
covariance matrices that cannot become non-positive definite. The non-positive definite co-
variance matrices have implications for model calibration, however, and we detail this in the
simulation-based calibration study later.
We are aware of a variety of other prior distributions proposed for covariance matrices (e.g.,
Chung, Gelman, Rabe-Hesketh, Liu, and Dorie 2015; Consonni and Veronese 2003; Mulder
and Pericchi 2018; Spezia 2019). The strategy implemented in blavaan is worthwhile because
it is relatively easy to specify informative prior distributions for individual standard deviation
and correlation parameters in the model. In contrast, many of the other prior distributions
are proposed for convenience or due to the fact that they maintain positive definiteness, and
they have less-intuitive interpretations as compared to our approach. But we plan to further
consider these alternative priors in the future.

4.2. Missing data
While it is often useful and desirable to directly model the missing values with the rest of the
model (e.g., Merkle 2011; O’Muircheartaigh and Moustaki 1999), blavaan employs a “missing
at random” approach to missing data that di�ers across JAGS and Stan. In JAGS, one can
include NA values in the data, and JAGS will sample these missing values as if they were
extra model parameters. In contrast, Stan does not allow NA values in the data, so that
one must handle the missing data manually. We utilize a “full information” likelihood (e.g.,
Wothke 2000) in our Stan models, which is the same likelihood that is used to handle missing
data in lavaan and other software that performs maximum likelihood SEM estimation. This
requires some additional overhead in preparing the data to be sent to Stan, because each case’s
observed values must be indexed, and cases are sorted by missing data pattern to speed up
computations. Missing values could also be directly sampled (“imputed”) in Stan, though
this functionality is not currently available.

4.3. Latent variable scaling
Structural equation models typically require some parameter constraints to achieve parameter
identification, where we must “set the scale” of each latent variable. The two most popular
ways to do this involve (i) fixing each latent variable’s variance to one, or (ii) fixing a single
loading (parameter in �) to one for each latent variable. Of these two, the latter method is
most straightforward to implement in a Bayesian setting.
The former method (of fixing each latent variance to one) is more challenging. This is because,
as described by Peeters (2012), one loading per latent variable must be sign constrained to
achieve global parameter identification. Otherwise, the sign of each loading may flip back and
forth, with a model’s regression parameters and covariance parameters potentially flipping
along with the loadings. One solution to this issue involves the placement of a truncated
normal prior (truncated from below at 0) on one loading per latent variable, preventing the
sign changes. This solution is adopted in blavaan’s JAGS approach to model estimation.
A di�erent solution is implemented in blavaan’s Stan approaches. In those approaches,
the sign flipping is allowed to occur during MCMC sampling. The issue is then handled
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after sampling, in the “generated quantities” block. In this block, one loading per la-
tent variable is transformed to always be positive, and the signs of associated parame-
ters (loadings, regressions, and covariance parameters) are flipped every time the sampled
value of the focal loading is negative. This approach can improve sampling e�ciency be-
cause no boundary constraints are introduced in the parameter space. Further informa-
tion about this approach can be found in a thread on the Stan Discourse site (https:
//discourse.mc-stan.org/t/latent-factor-loadings/1483).

5. Applications
As stated earlier, the MCMC approaches described here are all implemented in package
blavaan for general SEM estimation. These include the original JAGS approach (obtained
via argument target = "jags"), the original Stan approach (target = "stanclassic"),
and the new Stan approach (target = "stan"). Common model estimation functions in
blavaan include bcfa() and bsem(), both of which call the more general blavaan() function
with prespecified argument settings. The commands and settings mimic those of lavaan,
except that the model is estimated via Bayesian methods instead of frequentist methods.
As a concrete example, the following code specifies a model for the well-known “political
democracy” data (Bollen 1989) and estimates it via each of the three approaches described
earlier. This dataset includes 75 countries measured on 11 attributes, seven of which were
measured in 1960 and four of which were measured in 1965. The intent of the model is to
study relationships between countries’ levels of industrialization and democracy over time.

R> model <- �
+ # measurement model
+ ind60 =~ x1 + x2 + x3
+ dem60 =~ y1 + y2 + y3 + y4
+ dem65 =~ y5 + y6 + y7 + y8
+ # regressions
+ dem60 ~ ind60
+ dem65 ~ ind60 + dem60
+ # residual correlations
+ y1 ~~ y5
+ y2 ~~ y4 + y6
+ y3 ~~ y7
+ y4 ~~ y8
+ y6 ~~ y8
+ �
R> fit1 <- bsem(model, data = PoliticalDemocracy, target = "jags")
R> fit2 <- bsem(model, data = PoliticalDemocracy, target = "stanclassic")
R> fit3 <- bsem(model, data = PoliticalDemocracy, target = "stan")

The above commands use the default number of burnin/warmup and sampling iterations,
as well as the package’s default prior distribution for each type of model parameter. The
default prior distributions have generally been chosen to be weakly informative for a variety
of SEMs typically encountered in practice, but we encourage users to consider their own

https://discourse.mc-stan.org/t/latent-factor-loadings/1483
https://discourse.mc-stan.org/t/latent-factor-loadings/1483
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prior distributions for their own applications. Some further discussion of prior distributions
appears later in the simulation-based calibration section.
Following model estimation, convergence diagnostics such as Rhat and e�ective sample size
are immediately available via the summary() method and blavInspect() function, and many
types of plots are available via the plot() method, which relies on package bayesplot (Gabry
and Mahr 2021). Further examples of blavaan syntax and functionality can be found in Merkle
and Rosseel (2018), noting that target="jags" was the default at the time that paper was
written, while target="stan" is now the default.
In the following sections, we compare the three MCMC approaches on speed and sampling
e�ciency via three example models. These comparisons are platform dependent, require
some arbitrary decisions to be carried out, and exhibit variability from run to run. But the
comparisons uniformly show that the new Stan approach is best, and we encourage users to
try out other models to see for themselves. After reporting on these comparisons, we study
the extent to which the new Stan approach is calibrated.

5.1. Performance comparison
All comparisons were carried out on a Dell desktop with a large amount of RAM, running
Ubuntu Linux. We define sampling e�ciency as “e�ective sample size per second” (ESS/s),
where e�ective sample sizes are computed via the rstan monitor() function and sampling
time is measured after Stan model compilation. The warmup time for Stan models was fixed
to 300 iterations, whereas the burn-in time for JAGS models was fixed to 1000 iterations.
There is clear arbitrariness in the warmup and burn-in choices here, so that the ESS/s metric
is somewhat crude.
We examine the MCMC methods’ speed and e�ciency on three models, two of which are
popular models often used to illustrate SEM methods. The third is a more complex model
that is known to pose di�culties for the original blavaan approach. We do not conduct a
full Monte Carlo study here so, as mentioned earlier, our results are subject to noise. But
the results are generally consistent across the models presented here as well as many others
not presented, so we think they can be taken as general evidence for the approaches’ relative
performance. The results are also consistent with those of Yackulic, Dodrill, Dzul, Sanderlin,
and Reid (2020), who study marginalization of discrete latent variables in ecological models.

Political democracy

For our first comparison, we continue with the Bollen (1989) political democracy model.
The blavaan code to fit the model was shown earlier. The JAGS method was fastest here,
averaging 0.55 seconds per 100 iterations. Next fastest was the new (marginal) Stan method,
averaging 1.44 seconds per 100 iterations, followed by the old Stan method at 7.36 seconds
per 100 iterations. But it is more important to examine the methods’ sampling e�ciencies
(e�ective sample size per second), which are shown in Figure 1. A separate metric is shown
for each parameter, with the parameters being numbered along the x-axis. Parameters are
ordered on the x-axis by parameter type, with the details being shown in the figure caption.
The figure shows that the speed of JAGS is o�set by the e�ective sample size, so that the new
Stan method is best in terms of sampling e�ciency. The old Stan method exhibits e�ciency
similar to that of JAGS, though the old Stan method was also prone to some divergent
transitions.
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Figure 1: Sampling e�ciency of the MCMC procedures for the Bollen example. Parameter
numbers correspond to di�erent types of parameters: loadings are 1–8; regressions are 9–11;
observed variances are 12–28; latent variances are 29–31; intercepts are 32–42.

Holzinger and Swineford

Our second example involves a confirmatory factor analysis of the Holzinger and Swineford
(1939) data. This is the version of the dataset included in package lavaan, which has 301
individuals measured on nine cognitive scales. The confirmatory factor model fit to the data
includes three latent variables, each of which is associated with three observed variables. The
blavaan code to specify and fit the model is

R> HS.model <- � visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 �
R> fit <- bcfa(HS.model, data = HolzingerSwineford1939)

where additional arguments would typically be used to specify the number of sampling iter-
ations, to specify priors, to specify the MCMC sampler, and so on.
In terms of speed, the JAGS method is again fastest, averaging 0.91 seconds per 100 itera-
tions. This was followed by the marginal Stan method at 2.83 seconds per 100 iterations, then
the old Stan method at 9.55 seconds per 100 iterations. The ESS/s metrics for this model
are visualized in Figure 2. The graph is similar to that of the previous section, with fewer
parameters in this model as compared to the last model. We see that the gold line, represent-
ing the new Stan method, is the highest for all the model parameters, being at least twice as
large as the other methods’ e�ciencies. The JAGS and old Stan methods are again similar
to one another for this example, with JAGS being better for the majority of parameters.
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Figure 2: Sampling e�ciency of the MCMC procedures for the Holzinger and Swineford
example. Parameter numbers correspond to di�erent types of parameters: loadings are 1–
6; observed variable variances are 7–15; latent variable variances are 16–18; latent variable
covariances are 19–21; intercepts are 22–30.

Growth model

For our final comparison, we use a “multiple indicator univariate latent change score” model
presented in Kievit et al. (2018). The blavaan code to fit this model, as specified by Kievit
et al. (2018), is
R> MILCS <- �
+ COG_T1 =~ 1*T1X1 + T1X2 + T1X3
+ COG_T2 =~ 1*T2X1 + equal("COG_T1 =~ T1X2")*T2X2 +
+ equal("COG_T1 =~ T1X3")*T2X3
+
+ COG_T2 ~ 1*COG_T1
+ dCOG1 =~ 1*COG_T2
+ COG_T2 ~ 0*1
+ COG_T2 ~~ 0*COG_T2
+
+ dCOG1 ~ 1
+ COG_T1 ~ 1
+ dCOG1 ~~ dCOG1
+ COG_T1 ~~ COG_T1
+ dCOG1 ~ COG_T1
+
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Figure 3: Sampling e�ciency of the MCMC procedures for the growth model example. Pa-
rameter numbers correspond to di�erent types of parameters: loadings are 1–2; regressions
are 3; observed variances are 4–6; observed variable covariances are 7–9; latent variances are
10–11; intercepts are 12–13; latent means are 14–15.

+ T1X1 ~~ T2X1
+ T1X2 ~~ T2X2
+ T1X3 ~~ T2X3
+
+ T1X1 ~~ T1X1
+ T1X2 ~~ T1X2
+ T1X3 ~~ T1X3
+
+ T2X1 ~~ equal("T1X1 ~~ T1X1")*T2X1
+ T2X2 ~~ equal("T1X2 ~~ T1X2")*T2X2
+ T2X3 ~~ equal("T1X3 ~~ T1X3")*T2X3
+
+ T1X1 ~ 0*1
+ T1X2 ~ 1
+ T1X3 ~ 1
+ T2X1 ~ 0*1
+ T2X2 ~ equal("T1X2 ~ 1")*1
+ T2X3 ~ equal("T1X3 ~ 1")*1
+ �
R> fit <- blavaan(MILCS, data = simdatMILCS, fixed.x = FALSE)
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where we fit the model to 500 artificial observations. Further information about this model
and its specification can be found in Kievit et al. (2018). This model, and others described
in Kievit et al. (2018), have been especially di�cult to fit in blavaan, requiring long run
times and exhibiting high autocorrelation among parameter draws. We ended up thinning
the JAGS samples by 20 in our analyses here, because it was the only way that we could
consistently obtain an Rhat value below 1.05.
The sampling speed is now reversed for this example, with the marginal Stan method at 23.4
seconds per 100 iterations, the JAGS method at 28.4 seconds per 100 iterations, and the old
Stan method at 577.27 seconds per 100 iterations. If we instead compute the JAGS speed while
accounting for thinning (i.e., counting only each twentieth iteration in the computations), then
the JAGS speed is at 567.98 seconds per 100 iterations.
The approaches’ sampling e�ciencies are shown in Figure 3, where parameter ordering is
again described in the figure caption. The JAGS and old Stan methods are very low for this
model, with the new Stan method displaying much better e�ciency and yielding useful results
in a matter of minutes, as opposed to hours or days. This and related examples (not shown)
convinced us to make the new Stan method the default in blavaan, replacing the original
default of JAGS. The new Stan method reliably produces fast, e�cient samples for a large
number of models, whereas the other methods exhibit more variability in their speeds and
e�ciencies, and are seldom clearly better than the new Stan method.

5.2. Verification and simulation-based calibration
The posterior estimates resulting from blavaan have been verified in a few manners. Initially,
we treated lavaan as a gold standard, comparing posterior means and standard deviations
under weak priors to the maximum likelihood estimates and standard errors from lavaan.
For all three MCMC methods, the posterior means obtained under this approach typically
agree with lavaan estimates up to the tenth digit. The posterior standard deviations tend
to be close to, but slightly larger than, the maximum likelihood standard errors. But now
that there are multiple MCMC methods implemented in blavaan, we have also been able to
compare MCMC methods to one another in order to verify that they were producing similar
posterior distributions.
Here, we use the simulation-based calibration method proposed by Talts, Betancourt, Simp-
son, Vehtari, and Gelman (2018) to study the calibration of blavaan’s new (marginal) Stan

implementation. This involves repeatedly generating data from the model’s prior distribution,
fitting the model to the generated data, and examining the ranks of the posterior MCMC
samples relative to samples from the prior distribution. If the MCMC algorithm is calibrated,
then these ranks should be approximately uniformly distributed. Deviations from uniformity
are taken as miscalibration.

Method

Our simulation-based calibration study utilized the political democracy model presented ear-
lier. We generated 500 datasets of size 75 from the prior predictive distribution and fit the
model to each generated dataset via MCMC. The study involved two conditions that dif-
fered by the prior distributions that were used. First, we used the default prior distributions
from blavaan, which are intended to be weakly informative in many situations encountered in
practice. Second, we used a set of more informative prior distributions to contrast with the
noninformative priors. Both sets of prior distributions are shown in Table 1.
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‹ ⁄ — ◊ Â fl

Set 1 (default) N(0,32) N(0,10) N(0,10) Gamma(1,.5) Gamma(1,.5) Beta(1,1)
Set 2 (informative) N(0,32) N(1.25,.25) N(1.5,.25) Gamma(10,10) Gamma(10,10) Beta(5,5)

Table 1: Prior distributions used in the simulation-based calibration study. Normal priors are
parameterized using standard deviations. Gamma priors are placed on standard deviations
associated with ◊ and Â parameters, as opposed to variances or precisions.
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Figure 4: Simulation-based calibration rank frequencies, default blavaan priors.

Results

Rank frequencies for the blavaan default priors are shown in Figure 4. Perhaps surprisingly,
the distributions are far from uniform, with peaks generally occurring near zero and one.
These peaks represent posterior distributions that exhibit less variability than they should,
given the non-informative priors from which we started. Clearly, the results are far from the
uniformity that would be expected from a calibrated algorithm.
The non-uniformity occurs because our model has a large number of parameters with in-
dependent prior distributions, with many parameters playing a role in a model covariance
matrix that has some covariances fixed to zero and other covariances that are free. For the
model considered here, there are many combinations of parameters that lead to a non-positive
definite covariance matrix here, and the MCMC sampler will avoid these combinations of pa-
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Figure 5: Simulation-based calibration rank frequencies, informative priors.

rameters during sampling. In the simulation-based calibration study, this leads to posterior
samples that are not calibrated with respect to the independent priors. Instead, we might
say that the posteriors are calibrated with respect to regions of the prior distribution that
are positive definite.

To provide evidence that the MCMC algorithm is indeed calibrated with respect to priors that
maintain positive definiteness, we show the results of the informative priors in Figure 5. These
frequencies are now much closer to uniform, because the information in the prior distributions
now generally leads to positive definite model covariance matrices. This interplay between the
informativeness of prior distributions and posterior calibration is worthy of further attention,
because existing MCMC algorithms for SEM use a series of independent priors on parameters
that each play a role in the model-implied covariance matrix. A researcher’s priors can be more
informative than expected, based solely on the fact that the model-implied covariance matrix
must remain positive definite during MCMC sampling. Further, depending on the model
likelihood used (marginal vs. conditional), the degree of information present in uninformative
priors may vary. These results highlight the utility of blavaan for conducting detailed study
of MCMC algorithms, as well as the fact that there is room to improve the default blavaan
priors in the future.
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6. Conclusion
The results in this paper show that we can improve sampling e�ciency by integrating the
latent variables out of the model likelihood, which is the opposite of most popular approaches
to Bayesian SEM estimation (where the popular approaches are largely based on results
summarized by, e.g., Lee 2007; Song and Lee 2012). We can expect the marginal sampling
e�ciency to be even more advantageous as sample sizes increase, because the sample size
has no impact on the dimension of the parameter space here. In contrast, the dimension of
the parameter space increases with sample size under conditional approaches, where latent
variables count as parameters.
While the marginal approach is promising, use of the marginal likelihood leads us back to
problems that frequentists often encounter in SEM. These problems include the fact that the
marginal likelihood does not have a closed form when we have non-normal observed variables
(e.g., ordinal variables) or when we have latent variable interactions. We think that some
progress can be made here by employing other Bayesian methods, including data augmen-
tation (e.g., Chib and Greenberg 1998) in the ordinal case. The use of data augmentation
for psychometric models has been described by Fox (2010) and Fox, Mulder, and Sinharay
(2017), and such methods may be implemented in future versions of blavaan.
For situations where the marginal likelihood does not exist in closed form, it is also possible
to move back to the original blavaan approaches that sample the latent variables. However,
in our experience, the original approaches are even slower and less e�cient in those situations
(as compared to the models considered here), making them questionable for applied work.
Further, even if those methods did exhibit reasonable e�ciency, the marginal likelihood is
generally necessary for obtaining suitable information criteria such as DIC (Spiegelhalter,
Best, Carlin, and Linde 2002) or WAIC (Watanabe 2010). Merkle, Furr, and Rabe-Hesketh
(2019) discuss why the marginal likelihood is preferable here, and Zhang, Tao, Wang, and
Shi (2019) discuss related applications of DIC to multilevel item response models. Thus, we
think that use of the new Stan approach, paired with new tricks for handling non-normal ob-
served variables, is the most promising approach for applications to the non-normal modeling
situations typically encountered in practice.
We should note that the three methods here are not the only ones that can be conceptualized
in JAGS or in Stan. For example, the pre-compiled marginal Stan approach can be modified
so that the latent variables are part of the model likelihood. This leads to a method that is
similar to the “old Stan” method, except that it simplifies computation of the model likelihood
in di�erent ways. In limited testing, we found that this approach was somewhat closer to the
JAGS approach in sampling e�ciency, but still similar to the “old Stan” approach studied in
this paper. Alternatively, it is possible to define a marginal approach in JAGS, but our limited
testing there indicates that use of the multivariate normal distribution leads to decreases in
JAGS sampling e�ciency. For some models, it is also possible to fit the model to the sample
covariance matrix instead of to the raw data (e.g., Choi and Levy 2017). This can improve
sampling e�ciency because we only have to compute a single likelihood for the covariance
matrix, whereas we must compute a separate likelihood for each individual in the raw data.
However, SEM includes many models where the sample covariance matrix is not a su�cient
statistic, so this approach cannot always be applied.
Finally, our analyses here have included no use of parallelization. While between-chain paral-
lelization is immediately available in blavaan, there have been recent advances in within-chain
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parallelization in Stan. These advances are promising for further improvement of Stan sam-
pling e�ciency, and we plan to include this in future versions of blavaan.

Computational details
The results in this paper were obtained with R 4.1.2, g++ compiler version 9.3.0 for C++,
rstan 2.21.2 with StanHeaders 2.21.0-7 on an Ubuntu 20.04.3 system. The replication code
with random seeds is provided, but exact replication requires the same operating system, same
compiler, same compiler version, and same hardware (for timings). We have run the code on
other systems and obtained similar results that lead to the same qualitative conclusions as
were reported in the paper.
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