
Paper ID #34873

Using Visualizations of Students’ Coding Processes to Detect Patterns
Related to Computational Thinking

Dr. Markus Iseli, University of California, Los Angeles

Dr. Iseli is a Senior Research Scientist for CRESST with a focus on integration of engineering and
technology for educational purposes. His specialization is in digital signal processing, speech and image
analysis, pattern recognition, acoustics, and natural language processing. He has over 15 years of practical
expertise as a technology and engineering consultant, applying data analysis and artificial intelligence
algorithms for technology-based learning and knowledge assessment systems. Currently, he is involved
as a knowledge engineer in various private and publicly funded projects. Dr. Iseli holds a PhD and an MS
in electrical engineering from UCLA and from ETH Zürich, Switzerland.
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Using Visualizations of Students' Coding Processes 
to Detect Patterns Related to Computational Thinking 

Introduction 

Computational thinking (CT) has emerged as a key topic of interest in K-12 education. Children 
that are exposed at an early age to STEM curriculum, such as computer programming and 
computational thinking, demonstrate fewer obstacles entering technical fields [1]. Increased 
knowledge of programming and computation in early childhood is also associated with better 
problem solving, decision-making, basic number sense, language skills, and visual memory [2]. 

As a digital competence, coding is explicitly regarded as a key 21st Century Skill, as the 
“literacy of today,” such that its acquisition is regarded as essential to sustain economic 
development and competitiveness [3]. Hence, the reliable evaluation of students’ process data in 
context of problem solving tasks that require CT is of great importance. 

As opposed to product data, which only contain information about what the outcome of a 
problem solving process was (e.g. the final score), process data contain information about how 
the problem was solved (e.g. all the actions and problem solving steps). Students’ coding 
processes are thus defined by their actions while coding, as evidenced by “process data,” and are 
evaluated by comparing their action sequences to optimal action sequences. 

Prior research on process data analysis [4-9] shows several inherent issues. Their approaches 
aggregate data and thus loses information which precludes them from being used in more 
detailed analyses of student behavior. Vector-based approaches often apply dimensionality 
reduction or normalization and require interpretation of the reduced dimensions, which is often 
not possible. Network-based or finite state visualizations that show transitions between states 
(i.e., actions or game-states), are aggregations over the student, game level, or time dimensions 
and thus lose detailed information along these dimensions. Additionally, these networks only 
model Markov processes of order one (current state and preceding state) and do not show the 
frequency of higher-order sequences such as transitions through more than one preceding state. 
Sequential pattern mining approaches can deal with higher-order sequences, but their results tend 
to be verbose and need tedious manual analysis. 

In summary, prior research has analyzed overall action sequences or code snapshots, but has not 
interpreted student actions in context of a situation during the problem solving process -- i.e. 
while students create the solution. A more fine-grained analysis of coding process data is needed, 
where relevant actions are interpreted as a part of the student’s problem solving process. 

This paper addresses some of above issues and presents an approach to detect patterns related to 
computational thinking based on visualizations of students fine-grained actions in situational 
context. 



Participants and Data Collected from codeSpark 

Students' coding process data from a class of 22 first grade students (12 females and 10 males, 
with an average age of 6.6 years, SD=0.6) at a charter school with 97% of the students coming 
from socioeconomically disadvantaged families, 56% English learners, and 96% Hispanic or 
Latino ethnicity was collected using codeSpark Academy. Data was collected in six weekly 45-
minute in-class sessions, where each student was equipped with an iPad running codeSpark 
Academy. codeSpark Academy introduces children to programming and computational concepts 
(sequencing, parameters, loops, events, and conditionals) and combines carefully scaffolded 
puzzles aligned with the curriculum. The app presents students with puzzles that involve 
programming the moves of a character to reach a screen target by overcoming several obstacles. 

To perform process data analysis, we designed a research version of codeSpark Academy, where 
game states and events, as well as all student actions were logged. During the six weekly in-class 
sessions, a total of 85,058 telemetry events were recorded. Telemetry data contain timestamps 
with events, which are listed together with their associated parameters in Table 1. 

Table 1. Subset of telemetry events as captured in the research version of codeSpark Academy 
with their visualization. The column “Visualization Markers” contains markers that will be used 
in our visualizations, which will be discussed in the Methods section.  

Telemetry Event Marker 

PuzzleStart: Sent at the beginning of every puzzle level s 

PuzzleResult: Sent at the end of every puzzle level *,2*,3* 

CommandAdded: A command tile is successfully added to the code tray | 

CommandParameterChange: A parameter on a command was changed / 

CommandRemoved: A command was removed from the code try - 

CommandReorder: A command was reordered within the code tray none 

StartExecuteTrigger: Sent when the student executes the code ^ info 

EndExecuteTrigger: Sent when the code execution stops before $  

The puzzle levels are broken into five chapters based on the CT concept being introduced. We 
analyzed the first three chapters with the following character, setting, and game mechanics: 

1. Chapter 1: “Donut Detective” (17 levels) featuring a detective, introduces the coding 
interface, has brief tutorials to show students how to enter and run code, and covers basic 
sequencing of commands like walking and jumping. 

2. Chapter 2: “Tool Trouble” (16 levels) featuring a construction worker, introduces the 
loop command. The construction worker must do repetitive tasks so the ability to loop 
commands is beneficial. This chapter also introduces new commands. 



3. Chapter 3: “Kite Plight” (17 levels) featuring a ninja, provides advanced sequencing 
puzzles. These puzzles are more difficult than Chapter 1 and often involve back-tracking 
and looping to get the correct solution. 

 

Figure 1. Game interface representative of chapters 1 through 3. 

The game interface, representative of each level for chapters 1-3, is shown in Figure 1. Each 
level consists of a selection of available commands (Fig. 1, bottom of screen), a code tray 
(orange-brown box in lower half of screen), and the game world, which contains the character, 
obstacles, breadcrumbs (green gems), and the final goal (golden fish) to be reached by the 
character. The goal for the student is to program each step of the character on its path to the goal, 
avoiding obstacles and collecting all the breadcrumbs on the way. A code length limitation of 
seven commands in the code tray, forced students to use loops in certain levels. Figure 1 shows 
the optimal solution in the code tray: On code execution, the ninja character will jump right four 
times, walk right, unlock the treasure chest (which contains a gem), walk left three times, until 
arrives at the goal (golden glowing fish). 

We distinguish between two phases of game play: 1) the code construction phase, which ends 
with the student executing the constructed code; and 2) the evaluation phase, where the student 
observes the character’s moves and can interrupt at any time to reload the level. 

In the code construction phase, at the beginning of each level sometimes an introductory screen 
in comic-book format describing the task or the background story is shown. After a cutscene, the 
level’s game interface shows the character at its initial position. The student can then drag 
commands into the code tray. Once commands are in the code tray, the student can either change 
their position relative to each other, change their parameter, or remove them from the tray. The 
following commands have parameters that can be changed: walk (left or right), jump (left, up, or 
down), throw (left or right), loop (number of times). 

By tapping on the character, the evaluation phase begins, where the code in the code tray is 
executed with the character starting at its current position. If the character does not arrive at the 
goal, the game pauses; now, the student can either tap on the level reload button (Fig. 1, top right 



of the screen), which will move the character back to its initial position but will not change the 
code in the code tray, or modify the code in the code tray and execute the modified code at the 
character’s current position. 

Students receive three “stars” for successful completion of each level -- no stars are awarded if 
the character does not arrive at the goal. If not all breadcrumbs (e.g. gems) are collected or if 
multiple code edits and executions were done during one attempt, the student receives only one 
or two stars. An “attempt” is considered the time span between the puzzle start event and a 
reload or exit event. In our study, students could move to the next level even when not having 
succeeded in prior levels. However, when stuck on a level, hints - but not the solution - were 
provided to them. 

Methods 

To detect patterns in students' coding processes, we created and analyzed visualizations of 
telemetry data. The focus of the analysis was to generate performance measures that can track a 
student’s performance over time, with performance expressed as a similarity or distance to 
optimal performance. The final goal was to be able to visualize these measures in intuitive and 
efficient ways so that instead of having to watch hours of recorded game play on video, relevant 
information could be displayed at a glance. 

Defining Performance Measures 

We approached quantitative analysis from a machine learning perspective, where we envisioned 
teaching a computer how to learn to play the game. In order to learn, the computer will need to 
evaluate a performance measure that tells it how it is doing. Usually this is done by minimizing a 
distance (or cost) function expressed as a distance between the current solution and the optimal 
solution or between the current game state and the performance goal. Accordingly, in the code 
construction phase, where the goal is to construct the optimal code, the distance function is 
related to a distance to optimal code. In the evaluation phase, where the goal is to evaluate and 
recognize instances when something goes wrong (i.e., the character gets stuck or does not move 
along the optimal path), the distance function is related to the estimated number of remaining 
steps to reach the goal position. 

We defined CodeDist as the distance to optimal code. We chose the Damerau-Levenshtein 
(DL) edit distance [10], which is defined as the minimum number of simple edit operations 
required to transform a given string of letters into another string. The following edit operations 
are considered when calculating the DL distance: insertions, deletions, substitutions of single 
letters, and transpositions of adjacent letters. For example, the DL distance between the strings 
“cats” and “fact” is 3 and hence can be achieved by three transformation operations as either cats 
> fcats (insertion), fcats > facts (transposition), and facts > fact (deletion); or as cats > fats 
(substitution), fats > facts (insertion), and facts > fact (deletion). In any case, the minimum 
number of edit operations is 3, which is the DL edit distance. To compare between the current 
student code and the optimal code, each command in the code corresponds to a letter in the 
string: Adding a command corresponds to insertion, removing a command corresponds to 
deletion, and moving a command corresponds to transposition. Note that substitution operations 
are not possible in the game. 

https://www.zotero.org/google-docs/?ov89NW


The code in the code tray is represented as an abstract syntax tree (ASTs) in Lisp-like format 
with parentheses. This format is easy to generate and easy to read. For example, the optimal 
solution for the level shown in Figure 1 is expressed as follows: 
(Loop.4(,Jump.R,),Walk.R,Unlock,Loop.3(,Walk.L,)) 

Each command consists of a command and an optional parameter, separated by a dot from the 
command, e.g., “Loop.4(” means that the loop command is executed four times. Similarly, the 
parameters “x.L,” “x.U,” “x.R” denote parameters “left,” “up,” and “right.” Additional commas 
before or after parentheses act as delimiters to make the command sequence interpretable as a 
string to which the DL distance can be applied. Our implementation of the DL distance first 
calculates the DL distance on the sequence of commands, ignoring the parameters, each 
operation counting with weight 1, and then adds a weight of 0.5 for each parameter difference. 
For example the CodeDist between Loop.2(,Walk.L,Jump.U,),Throw.R and 
Throw.R,Loop.3(,Walk.L,),Jump.U is 4 and uses the following transformations: 

Loop.2(,Walk.L,Jump.U,),Throw.R 
Loop.2(,Walk.L,Jump.U,)   (deletion: weight 1) 
Throw.,Loop.2(,Walk.L,Jump.U,)  (insertion: weight 1) 
Throw.,Loop.2(,Walk.L,),Jump.U  (transposition: weight 1) 
Throw.R,Loop.3(,Walk.L,),Jump.U  (change of 2 parameters: 1 = 2 x 0.5) 

We defined PathDist as the estimated number of remaining steps to reach the goal position.  
The optimal path through a level’s world is expressed as a list containing the x/y-coordinates of 
the optimal path positions starting at the character’s initial position and ending at the goal 
position. 

Figure 2. Illustration of the x/y coordinate system used to calculate PathDist. The optimal path is 
indicated by red arrows, which represent the steps that need to be taken along the path.  

Figure 2 shows the x/y coordinate system with the optimal path overlaid on top of a game play 
level scenario for which the character’s initial position is at the origin (x=0, y=0).The list of the 
optimal path for the example in the figure is: [1:(0,0), 2:(1,1), 3:(2,2), 4:(3,3), 5:(4,0), 6:(5,0), 
7:(5,0), 8:(4,0), 9:(3,0), 10:(2,0)]. The list includes step numbers, separated by colons. This list 
contains ten steps (total_steps=10). Every step corresponds to the execution of one command, 
hence when the character arrives at position (5,0) in step 6, it unlocks the treasure and stays at 
position (5,0) in step 7. Depending on at what step the character is currently at (current_step), 
PathDist is calculated as: PathDist = total_steps - current_step 



If the character deviates from the optimal path, current_step is defined as the step on the optimal 
path that is closest to the character’s position. Given the optimal path from our example, if the 
character is at position (-2,0), the closest position on the optimal path is at position (0,0), thus 
current_step = 1, with PathDist = 9. If the character is closest to more than one step on the path, 
the current step which is closest to the previous step (previous_step) is taken. E.g., if the 
character is at position (6,0), steps 6 and 7 on the path are closest. If previous_step <= 6, then 
current_step = 6 with PathDist = 4; and if previous_step >= 7, then current_step = 7 with 
PathDist = 3. Depending on the attempted optimal solution, a different optimal path is selected. 

Visualization of Performance Measures 

Figure 3. Visualization for child 106, chapter 3, level 16. CodeDist (blue curve, code 
construction phase), PathDist (red curve, evaluation phase). 

The visualization of students’ coding processes distinguishes between the code construction 
phase and the evaluation phase and displays the corresponding measures CodeDist and PathDist, 
together with relevant events for each student and game level as a function of time for each 
session and attempt. A common visualization is depicted in Figure 3: The x-axis shows the time 
in seconds, whereas the y-axes show the distance measures for CodeDist (blue curve, code 
construction phase) and for PathDist (red curve, evaluation phase). To include information about 
events that happen along the timeline, markers for each of the events were added as defined in 
Table 1. Analyzing the visualization shown in Figure 3, the following information can be read at 
a glance. The student (ID 106) played chapter 3, level 16, in session 6 (week 6) using three 
attempts: 6-1, 6-2, and 6-3. In attempt 1, for example, the student adds a command and changes 
its parameter (/), then removes the command, emptying the code tray, then adds another 
command with parameter change, and finally adds one last command reducing CodeDist from 12 



to 9. Around 25 seconds in the game, the student executes the code (^) and the character stops 
moving around second 27 ($), reducing PathDist from 11 to 8. 

Results & Discussion 

Analyses of our visualizations of students’ coding processes yielded several patterns that were 
mapped to the six constructs of computational thinking as extracted by [11]: abstraction, 
decomposition, generalization, modeling, algorithmic thinking, and evaluation. We will present 
and discuss the detected patterns, organized by CT construct. The results are summarized in 
Table 2. All analyses were based on non-tutorial levels in order to reduce inputs resulting from 
students’ unfamiliarity with newly introduced game mechanics or concepts.  

Ideal performance looks as depicted in Figure 3, panel 6-3, where both CodeDist and PathDist 
are steadily reduced to zero, and the student is using only code additions (|) and parameter 
changes (/) when editing the code tray. 

Non-ideal performance for CodeDist manifested by non-steady reduction of distances, e.g., 
CodeDist increases and decreases and edit operations such as deletions and transpositions are 
used. Non-ideal performance for PathDist happens either when PathDist does not reduce 
(character got stuck on its path to the goal) or when PathDist drops steeply (character took a 
shortcut and misses some gems). 

The observable behavior of abstraction is defined as adding a command and changing 
parameters at once, or as neglecting distractors or details (see Table 2 below). Examining the 
visualizations, we originally expected that (a) some students would add all commands and then 
change their parameters at once and that (b) other students would change the parameter after 
each added command. However, it could be seen that the second behavior (b) was prevalent, and 
that the first behavior (a) would only occur if there was a misconception present. Figure 4 shows 
an example of the first behavior, where it turns out that many students did not realize that the 
default parameters were set to “.R” instead of “.L”. Once students realized that the character was 
walking in the wrong direction, they interrupted and fixed the code. Another interesting 
behavioral pattern we found was that after a reset, some students removed all commands from 
the code tray, perhaps to start fresh and not get distracted with non-functioning code. Figure 5 
shows such an example. We are currently still debating whether this behavior is related to 
abstraction (prioritizing) or decomposition (not mixing different attempts), a combination of both 
or some other construct. 

The CT construct of decomposition was defined as the behavior of approaching a level's 
solution step by step. Figure 6 shows such an example where a student first reduces CodeDist 
from 10.5 to 9, executes the code until execution stops, which reduces the PathDist from 7 to 6 
(the character has not yet reached its goal position). Without reloading, the student continues 
editing the code (CodeDist = 3), executes the code (PathDist = 2), edits the code (CodeDist = 0), 
and executes (PathDist = 0), solving the problem and receiving two stars. Because of multiple 
code executions within the same attempt, only two and not three stars are awarded. 

https://www.zotero.org/google-docs/?efFap0


Figure 4. Panel 1-1: Student adds all commands without changing parameters (see blue 
rectangle), executes the code, reloads before code execution ends. Panel 1-3: Student changes all 
parameters at once (see red rectangle) and code executes with three stars. 

Figure 5. Panel 1-1: Student edits code, executes it, and after unsuccessful completion, reloads 
the level. Panel 1-2: Student cleans code tray by removing all commands (see red rectangle), 
adds commands (CodeDist = 0), executes the code and receives three stars. 

Figure 6. Decomposition: Student edits code, executes (^), edits some more, executes, edits 
more, executes, eventually gets two stars (not three stars, because of multiple code changes). 

 



Table 2 (see below) defines the behavior of the CT construct of generalization to be related to 
using loops correctly and identifying repeated or similar game elements. From the provided 
explanations of suboptimal solutions (“no/missing/infinite loop”), we know if a student used 
loops correctly when needed. Note that not every game level requires the use of loops. Our 
visualizations currently do not allow for cross-level comparisons, however. 

The concepts of modeling and algorithmic thinking seem to be intertwined. We believe that a 
correct model is required to guide algorithmic thinking to generate a correct algorithm. Trying to 
infer modeling and algorithmic thinking from the observed coding process is not obvious: If the 
coding process shows a certain pattern, was it due to either presence or lack of modeling or 
algorithmic thinking or both? For example, Panel 1-1 in Figure 5 shows the student reducing 
CodeDist from six to three, using seven code edits including two edits that do not reduce 
CodeDist. This pattern of not steadily reducing CodeDist to zero indicates a lack of either 
modeling or algorithmic thinking. However, in the student’s second attempt (Figure 5, Panel 1-
2), after removing all commands from the code tray, the student steadily reduces CodeDist from 
six to zero in four CodeDist-reducing edits. This pattern indicates correct modeling and 
algorithmic thinking skills. After careful evaluation of our data, we decided that we could not 
infer modeling and algorithmic thinking separately. Thus, the behavior that is required for both 
constructs should show assembly of commands in the order the algorithm intended, which, using 
visualizations, could be defined as the steady reduction of CodeDist down to zero with or 
without using deletion or transposition operations (see Table 2). 

Finally, the CT construct of evaluation uses comparison of the (mental) model with reality: i.e., 
if the character in the game does not do what it is supposed to do, evaluation should start the 
debugging process, which will include all the CT constructs, but especially modeling and 
algorithmic thinking. As defined in Table 2, the behavior for evaluation includes interruptions. 
Interruptions during the code construction phase indicate that the student is comparing the 
algorithmic expression in the code tray to the mental model (evaluation, algorithmic thinking) 
and exits or reloads the level before executing (^) the code, see Figure 7, upper panel. 
Interruptions during the evaluation phase indicate that the student realizes that the code is not 
behaving as the mental model predicted (evaluation) and thus reloads the level before the code 
stops executing ($), see Figure 8 lower panel. Once interrupted, the student will start the 
debugging process by either updating the mental model (modeling) or the algorithm (algorithmic 
thinking) or both. 

Figure 7. Upper panel: While editing the code, the student might realize that the code does not do 
what it was supposed to (evaluation, algorithmic thinking), and decides to reload (r) the level 
instead of executing the code. Lower panel: Student realizes when the character gets stuck 
(PathDist not changing, evaluation) and reloads (r) before code execution ends. 



Other patterns found in our data were associated with CodeDist not being reduced to zero while 
PathDist was reduced to zero with 3 stars. Reasons for this were identified as: 1) The list of 
solutions was missing a correct, but suboptimal solution; 2) The student’s code had superfluous 
elements that make the character move beyond its goal position (e.g., by using an infinite loop); 
3) Loops with repetition 1 were used (Loop.1 was allowed), which was not accounted for. 

Table 2 summarizes the results of our analysis using visualizations of students’ coding processes. 
It shows the six CT constructs together with their definitions and behavioral patterns. 

Table 2. Definition of computational thinking constructs with possible observable student 
behavior for the codeSpark Academy game puzzles. Note that after careful evaluation of our 
data, we decided that we could not infer modeling and algorithmic thinking separately. 

CT Construct Definition codeSpark Student Behavior 

Abstraction 
○ Simplify a construct (idea, problem factors 

and components) at different levels of detail 
(levels of abstraction, LOA). 

○ Reduce construct complexity by determining 
relevant LOAs. 

○ Add a command and change parameters 
at once if needed. 

○ Neglect distractors or details. 

Decomposition 
○ Break/factor a construct (e.g., a problem) into 

smaller, less complex, easier to process parts. 

○ Approach a level's solution by first 
achieving part of the goal then adding 
more commands. 

Generalization 
○ Recognize and identify patterns in space and 

time, find and exploit similarities and 
connections (e.g., rules) to other patterns. 
(exploit = reuse in other situations, transfer). 

○ Use loops correctly (e.g., no loops with 
repetition 1, no loops containing a 
repetition of the same commands). 

○ Identify repeated or similar game 
elements across chapters and levels. 

Modeling 
○ Create a (mental, physical, graphical) 

representation of the past/present/future state 
and behavior of a construct or concept. 

○ Define a cost function (difference between 
model and goal) that describes the quality of 
the representation. 

○ Make code edits that are mostly correct. 
○ Avoid removing and moving commands 

(deletions and transpositions), once 
placed in the code tray. 

○ Add commands in order, as defined by 
the algorithm. 

Algorithmic Thinking 
○ Define a clear sequence of steps (e.g., 

instructions and rules), given a model 
○ Execute a sequence of given steps (an 

algorithm). 



Evaluation 
○ Check/test/analyze if model cost function is 

minimized. 
○ If the cost function is not minimized, start 

debugging. 

○ Interrupt code editing when code does 
not look right. 

○ Interrupt game play execution as soon as 
an error happens (e.g., character gets 
stuck). 

Conclusion and Future Work 

This paper focused on whether patterns of systematic player behavior can be detected using 
visualizations. We consider this as a first step in the process of developing algorithms to 
automatically detect these patterns, construct indicators from these patterns, and integrate these 
indicators into probabilistic or statistical models, such as predictive, discriminative, or generative 
models of performance. 

We presented a visualization approach for the analysis of coding process data. This approach 
showed the following benefits: (a) It does not require the definition of process states; (b) It does 
not accumulate data (either across students or over time) and thus preserves the raw information 
aspect of the data; (c) It is goal-oriented, by being based on well-defined and measurable 
performance objectives; (d) It facilitates the definition of specific performance similarity 
measures for each performance objective (e.g. or distance to optimal code or distance to optimal 
path), and thus facilitates scoring; (e) It is independent of sequence data length and thus enables 
time series analysis (e.g. frequency, pauses, etc.) (f) It can visualize each student’s performance 
for each measure as a function of time; and (g) It can be used to inform the feature extraction 
process by facilitating pattern identification. 

The visualizations of student process data (a) clearly showed groups of patterns that represent 
different strategies related to the computational thinking constructs: abstraction, decomposition, 
generalization, modeling, algorithmic thinking, and evaluation (see results in Table 2); and (b) 
were shown to be able to guide algorithm development to detect patterns related to 
computational thinking. 

While the current research is based on process data from the codeSpark Academy game, the 
same approach could be used with other programs such as Scratch or Scratch Jr. If adopted by 
third parties, our work could contribute to the automated scoring of programs and the 
implications that flow from this capability—individualized and immediate diagnostic feedback to 
the student and diagnostic feedback to teachers, incorporated into large-scale assessment 
programs such as NAEP or PISA that would allow those programs to offer assessments of 
computational thinking. 

In future research we plan to: a) Extract new, visualization-informed measures derived from the 
time series used in these visualizations. E.g., first and second order derivatives, means and 
variances to infer CT constructs can be used. b) Use the newly extracted measures to provide 
real-time feedback to students and/or teachers. c) Explore the use of the newly extracted 
measures as new features for inputs to machine learning models and algorithms. 
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