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From Clicks to Constructs: An Examination of Validity Evidence of Game-Based 
Indicators Derived From Theory1 

ABSTRACT 

A critical issue in using fine-grained gameplay data to measure learning processes is the 
development of indicators and the algorithms used to derive such indicators. Successful 
development—that is, developing traceable, interpretable, and sensitive-to-learning indicators—
requires understanding the underlying theory, how the theory is instantiated under different game 
conditions, and programming that considers these exigencies using fine-grained gameplay data. 
This study examines preliminary validity evidence on various game-based indicators (GBIs) 
developed from theoretical frameworks and not from unsupervised feature extraction methods. 
Examples of indicators are presented that represent three types of indicators: Common 
indicators, distance-based indicators, and games-specific indicators. For each example, the 
theoretical background is presented briefly, followed by a description of how the indicator design 
flows from the theory. Correlational analyses show how the GBIs relate to external criterion 
measures. Limitations and next steps are discussed. 

INTRODUCTION 

The interest in using games for measurement purposes lies in the promise that games, 
compared to traditional testing formats, offer engaging ways to more comprehensively measure 
learners' knowledge, skills, and abilities. Games may heighten engagement and sustain learners' 
interest and attention, thereby allowing observation of effortful performance over a prolonged 
time and under various conditions, allowing for a richer sampling of behavior. Finally, games 
can be instrumented to collect fine-grained, moment-to-moment observations of learners’ in-
game choices and actions yoked to changes in the state of the game (for a discussion of these 
issues, see Baker et al., 2011; Baker & Delacruz, 2016; DiCerbo & Behrens, 2012; Landers, 
2015; Mislevy et al., 2016; Oranje et al., 2019; Sireci, 2016; Shute & Wang, 2016). Indeed, a 
common aspirational goal is to “replace the dull, time-consuming, and anxiety-producing 
traditional approaches commonly used today” (Landers, 2015, p. vii). While Landers was 
referring to traditional standardized tests, his sentiment reflects the general desire to develop 
other means of measuring what learners know and can do under more engaging and complex 
situations. This idea is so compelling, that McKinsey & Company, the premier consulting 
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company in North America, has included a game-based problem-solving assessment as part of 
their recruitment process (2021a, 2021b). 

In comparison to traditional test formats (e.g., multiple-choice tests) or even modern technology-
based assessment tasks (e.g., NAEP [Bennett et al., 2007; NCES, 2012], PISA [OECD, 2014, 
2017]), games can elicit much more varied responses from players: Player actions can be 
repetitive, erratic, or systemic; players respond differently to feedback and use game resources in 
different ways; and players can directly affect the state of the game as well as be affected by the 
game. Reasoning and learning unfold over time, and gameplay behavior is highly variable both 
between individuals and within individuals. Furthermore, the design of games themselves—what 
makes a game a game—often encourages variation in gameplay, including branching where not 
all players encounter the same levels; player choice of what levels to play; no limit on the time 
spent on a level; multiple attempts at beating a level with explicit and implicit feedback given; 
levels that can be replayed; and gameplay where failure is expected and makes the game 
engaging.  

To be taken seriously as assessments, however, games need to be subjected to the same rigor as 
traditional test items. Progress during the last decade has focused on integrating game design and 
assessment design (i.e., aligning assessment goals, game design and game mechanics, and 
indicators of competency) and far less on gathering validity evidence on how the indicators 
generated from gameplay related to learning outcomes, or on describing the algorithm or method 
underlying the computation of GBIs (Gris & Bengtson, 2021; Kim & Ifenthaler, 2019). This 
paper focuses on the latter two aspects.   

Definitions 

By telemetry (or log data or clickstream), we mean time-stamped packets of data that 
encapsulate a specific learner action (e.g., adding a command) and related parameters. Well-
designed telemetry specifies what learner- and system-initiated events and system states to 
record and has a well-defined structure (Chung, 2015). By game-based indicator, we mean an 
observed value of some variable used directly, as an input to auxiliary transformations to derive 
secondary indicators, or as an input to a statistical model or analysis procedure. GBIs are 
extracted from telemetry. By traceable, we mean one can inspect the algorithm (or code) and 
trace how the raw telemetry is processed and transformed (e.g., filtered, aggregated, recombined) 
into a value. By interpretable, we mean given an algorithm, one can agree or disagree with the 
meaning ascribed to the variable in light of the assumptions, constraints, and transformations 
encoded in the algorithm. By generalizable, we mean an algorithm based on a theory that 
presumably encodes the rules and conditions described or predicted by the theory and (with 
modification) can apply to games that may differ in format, mechanics, content, or even learning 
goals.  

Game-based Indicators (GBI) 

A critical issue in measuring learning processes is the indicators: What is their definition, what 
constructs do they purport to indicate, and what is the empirical evidence supporting its 
interpretation? Often unreported in literature is the algorithm used to transform raw gameplay 
telemetry (i.e., log data) into indicators. Indicator identification is often relegated to machine 
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learning procedures. Machine learning procedures may identify variables highly predictive of 
some criteria, but when the actual variables used in the prediction equation are inspected, the 
explanatory power of that variable in relation to the claims about what the equation means may 
suffer. For example, the machine learning algorithm used in a very popular science simulator to 
detect “designing controlled experiments” uses time a student spent performing various actions 
related to variable manipulation in the simulation on a science experiment task. Time was used 
simply because it yielded the best classification performance. It is difficult to explain how 
differences in minutes determine whether a student was engaged in “designing controlled 
experiments.” (Sao Pedro et al., 2013).  

An alternative approach is to develop algorithms guided by theory. Some advantages of starting 
from theory include algorithms and indicators that are more likely to be traceable, interpretable, 
fit into a theoretical framework from which it is derived, more generalizable across games, and 
be sensitive to learning. Our general approach is illustrated in the conceptual model shown in 
Figure 1.  Figure 1 shows how raw telemetry is successively transformed into indicators that can 
serve as inputs to psychometric and statistical models or other analysis procedures—that is, 
going from clicks to constructs.  

Figure 1 

Conceptual Model of the Relations Between Telemetry, Algorithms, and Indicators 
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Research Question 

Our research question is, to what extent do game-based indicators relate to criterion 
measures of learning? To address this question, we summarize preliminary validity evidence on 
various game-based indicators (GBI) developed for a variety of games across numerous studies, 
where the GBIs represent learning outcomes, processes, or strategies. An essential feature of this 
work is that all GBIs were developed from a theoretical framework and not from unsupervised 
feature extraction methods.  

In the remainder of this paper, we first present the general methods we have used to derive GBIs. 
We then present five examples drawn from prior work to illustrate how we used theory to guide 
the development of GBIs. For each example, we present results from correlational analyses of 
how the GBIs relate to an external criterion measure.  

METHOD 

General Methods Used to Derive GBIs 

In this section, we describe the general methods used to compute three general types of GBIs: (a) 
“common” indicators, (b) dissimilarity-based indicators, and (c) game-specific strategy 
indicators. 
 
One type of GBI is summary indicators from gameplay data that presumably reflect the use of 
the target construct or skill. For example, indicators that decompose gameplay processes into 
progress- and performance-related outcomes, such as accuracy (performance) and time 
(progress). A second type of indicator can be used when a product or structure is an outcome of 
gameplay (e.g., programming code or a virtual structure). The player’s solution structure can be 
compared to the referent structure to compute a dissimilarity index. A third method is specific to 
a particular game and requires translating gameplay behavior that maps to qualitative 
observations or other findings from prior research. 

Common Indicators 
Common indicators are outcomes that can be easily computed from ‘typical’ gameplay data to 
provide a general summary of gameplay. Table 1 shows a list of common indicators from prior 
studies (Chung & Parks, 2015a, 2015b; Chung & Roberts, 2018). 
The rationale for developing common indicators is twofold. First, if common indicators can be 
defined and operationalized, then those indicators may be used to compare different games. One 
such comparison is for measurement purposes—to identify games that can serve as measures of a 
child’s proficiency on the particular topic targeted by the game. 
The second reason is for practical purposes. Developing game-specific indicators, as well as 
indicators describing gameplay processes and patterns, can be challenging and require complex 
data wrangling and coding to transform fine-grained telemetry into more abstract indicators that 
reflect learning. The complexity of the programming is governed by the telemetry structure, the 
availability of game state information, and the amount of transformation needed. In general, 
nontrivial amounts of programming effort are required with extensive exploratory analysis to 
refine the measure. 
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Table 1 
List of Common Indicators Based on Prior Work (Chung & Parks, 2015a, 2015b; Chung & Roberts, 2018) 

Type Indicator Descriptions 
Performance Number of correct first 

attempts 
Across gameplay sessions, the number of times players submit or 
explicitly indicate their answer (e.g., by pressing the submit 
button). 

Number of total attempts Across gameplay sessions, the number of times players submit or 
explicitly indicate their answer (e.g., by pressing the submit 
button). 

Number of correct attempts Across gameplay sessions, the number of times players submit or 
explicitly indicate their answer and reach the goal. 

Number of incorrect attempts Across gameplay sessions, the number of times players submit or 
explicitly indicate their answer and fail to reach the goal. 

Progress Mean time spent per level Mean time spent playing each level across gameplay sessions. 
Total time spent in the game Cumulative summation of the amount of time spent in the game 

across gameplay sessions. 
Number of levels completed Cumulative summation of the number of levels completed across 

gameplay sessions. Repeated levels are included. 
Number of distinct levels 
played 

Cumulative summation of the number of non-repeated levels 
played across gameplay sessions. 

Note. We use the term “game session” to refer to a pre-defined time point or period of gameplay. 

Dissimilarity-Based Indicators 
Dissimilarity-based indicators consider the dissimilarity (or distance) between players’ responses 
and a referent. The dissimilarity indicator reflects how far a player’s responses are from an 
optimal state conceptually (e.g., distance to the solution) or graphically (e.g., Euclidean distance 
computed using x-y coordinates). The optimal state can be a solution, a goal state, or an in-game 
target object.  

If a solution is used as the referent, the referent can be used in at least three ways:  (a) as an 
absolute reference—a gold standard solution(s); (b) as a within-player reference—the same 
player’s last successful attempt becomes the referent, or (c) between-player (and sample-
dependent) reference—based on all players’ solution attempts, use the attempt that is closest to 
the actual solution as the reference.  

We can also compute dissimilarities with different levels of granularity, with the most fine-
grained level being players’ moment-to-moment moves. For example, if we compute a 
dissimilarity value whenever players make a move (e.g., a click), and multiple moves can be 
nested within an attempt or submission, then the dissimilarity indicator itself is a time series. An 
alternative is to derive the indicator by considering only the final submission for each game 
level.  

Secondary indicators can be derived using the dissimilarity information, such as whether there 
are diminishing differences between the player's submissions and the solution (i.e., convergence 
over time) or how fast the convergence is. In this case, we have the option to model the process 
as measured by such differences directly or use secondary indicators as scored versions of 
players’ performance and process.  

Game-specific Indicators 
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Game-specific indicators are dependent on the particular game. This type of indicator may be a 
“one-off.”    

 

RESULTS 

Example GBIs and Results 

We next present several examples that illustrate using one of the methods to derive GBIs. For 
each example, we note which general method was used, the theoretical rationale behind the 
operationalization of the indicator, and preliminary validity evidence of how well the GBI related 
to independent measures of the target construct or skill. 
 
Example 1: Speed and Accuracy 

Target knowledge 
or skill: 

Numeracy 

Method used to 
derive the GBI: 

Common indicators 

Theoretical 
justification: 

Skill mastery can be described by performance accuracy and speed of task completion, a 
robust finding across motor and verbal domains (e.g., Ackerman, 1990; Anderson, 1982; 
Fitts & Posner, 1967).  

Validation 
approach: 

Correlate GBI to external criterion measure (TEMA3) 

Summary of 
results: 

• Performance indicators 
Knowledge of numeracy: (a) positively related to performance in the game (𝜌𝜌 ranges 
from .4 to .6, p < .01 for correct first attempt at a solution, and (b) negatively related to 
the number of failed solution attempts (𝜌𝜌 ranges from -.4 to -.6, p < .01 for number of 
incorrect solution attempts). 

• Progress indicators (MeatBall Launcher) 
Knowledge of numeracy: (a) positively related to progress in the game (𝜌𝜌 = .67, p < 
.001), (b) negatively related to the amount of time taken to beat a level (𝜌𝜌 = -.57, p < 
.001). 

Original study or 
source of data: 

Chung, G. K. W. K., & Parks, C. (2015). Bundle 1 computational model analysis report 
(Deliverable to PBS KIDS). Los Angeles: University of California, National Center for 
Research on Evaluation, Standards, and Student Testing. 

 
Theoretical background. This example of GBIs is based on the pervasive use of speed and 
accuracy to describe human performance. That is, skill mastery can be characterized by 
performance accuracy and speed of task completion, a robust finding across motor and verbal 
domains (e.g., Ackerman, 1990; Anderson, 1982; Fitts & Posner, 1967). We expected these two 
variables to be important in describing skill attainment but had no basis for asserting which 
component was more important.  

GBI algorithm. We examined three games designed to promote numeracy for preK children. 
The game mechanics differed by game, with MeatBall Launcher being the most “test like” where 
children were asked to collect the target number of meatballs on a plate and then launch the 
meatballs onto a plate of spaghetti. Each level had a new target number. No feedback was given 
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before launching the meatballs. Players were told if they had collected an incorrect number of 
meatballs. The two other games were not as direct in the relation between the game mechanic 
and the application of the target knowledge.  

We created GBIs that represented various aspects of the time component (i.e., game progress) 
and performance component (e.g., correct solution attempt). Table 1 contains the set of 
indicators computed. 

External criterion measure. Twenty-two items of the Test of Early Mathematics Ability, 3rd 
Edition (TEMA-3) (Ginsburg & Baroody, 2003) were administered after students completed all 
games. The items measured numbering, counting and cardinality, and reading numerals, and the 
KR20 reliability was .91. 

Preliminary validity evidence. Table 2 shows the correlations between the GBIs and the external 
criterion measure (Test of Early Mathematics Ability, 3rd Edition [TEMA-3], Ginsburg & 
Baroody, 2003). The pattern of (Spearman) correlations suggests that more knowledge of 
numeracy was related positively to higher performance in the game (𝜌𝜌 ranges from .4 to .6, p 
< .01 for correct first attempt at a solution) and negatively to errors in the game (𝜌𝜌 ranges from 
-.4 to -.6, p < .01 for number of incorrect solution attempts). In terms of progress indicators, only 
one game (MeatBall Launcher) showed significant relationships. Knowledge of numeracy was 
related to how far in the game players advanced (𝜌𝜌 = .67, p < .001) and negatively related to how 
long a player took on average for their first correct attempt (𝜌𝜌 = -.57, p < .001). 

Table 2 
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Table 3 

 

Table 11 in the Appendix shows a compilation of results for various games showing correlations 
between the external outcome used for the game (typically a test) and the time component and 
performance accuracy indicators. 

Example 2: Scientific Thinking 
Target knowledge 
or skill: 

Scientific thinking 

Method used to 
derive the GBI: 

Dissimilarity-based indicators  

Theoretical 
justification: 

Scientific thinking is the ability to evaluate evidence and revise prior beliefs. Hypothesis 
generation, experimentation, evidence evaluation, and theory revision are all important for 
successful problem solving, scientific understanding, and inquiry (Kuhn, 2002; Simon, 
1977; Zimmerman, 2007).  

Validation 
approach: 

Correlate GBIs to an external criterion measure 

Summary of 
results: 

• Knowledge of force and motion was related to effective force adjustments (ρ = .23,  p < 
.05), suggesting that players with higher knowledge of force and motion were better able 
to respond to in-game feedback and adjust the force in the desired direction.  

• Knowledge of force and motion was positively related to productive game actions (ρ = 
.23,  p < .05) and negatively related to unproductive game actions (ρ = -.21,  p < .05). 

Original study or 
source of data: 

Redman, E. J. K. H., Chung, G. K. W. K., Schenke, K., Maierhofer, T., Parks, C. B., Chang, 
S. M., Feng, T., Riveroll, C. S., & Michiuye, J. K. (2018). Connected learning final report. 
(Deliverable to PBS KIDS). Los Angeles: University of California, Los Angeles, National 
Center for Research on Evaluation, Standards, and Student Testing. 
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Theoretical background. Kuhn (2002) argues that the core of scientific thinking (ST) is the 
ability to evaluate evidence and revise prior beliefs. Hypothesis generation, experimentation, 
evidence evaluation, and theory revision are important for successful problem solving, scientific 
understanding, and inquiry (Kuhn, 2002; Simon, 1977; Zimmerman, 2007). Children as young as 
kindergarten have been found to develop ST (Gopnik, 2012) and ST processes, such as 
experimentation and evidence evaluation, predicted young children’s domain-specific knowledge 
(Edelsbrunner, Schalk, Schumacher, & Stern, 2015; van der Graaf, Segers, & Verhoeven, 2018).  

GBI algorithm. The game Fish Force targeted the concepts of force and motion. In a typical 
game level, players are presented with several core components: a rink, a launcher that moves 
along four sides of the rink, a toy, and a target location. The level objective is to move the toy to 
the target by hitting the toy with a projectile. The projectile’s motion is governed by players 
adjusting the launcher’s force, the launcher’s position, or both. 

When players experimented with how changing the launcher’s force may affect the projectile’s 
movement and the outcome, they also used ST processes (e.g., hypothesis generation; Kuhn, 
2002; Simon, 1977; Zimmerman, 2007). The indicators derived were designed to identify 
sequences of behaviors that suggest children revising their strategies in response to visual or 
auditory feedback. Levels where players succeeded in the first attempt and levels that did not 
provide specific force feedback were excluded from the analysis. 

We focused on the force adjustment and derived GBIs corresponding to two important 
components of ST—evaluation of evidence (as provided by in-game feedback) and strategy 
revision (as reflected by subsequent adjustments).  

We first developed auxiliary indicators that represented how much players’ adjustments of force 
deviated from a target value. The indicators were: (a) Force deviation—the difference 
(deviation) between the amount of force set by the player and the target amount of force; (b) 
Force convergence—whether each adjustment was converging to the optimal value, reflected by 
diminishing deviations. The mean values for both, averaged across all game levels played, were 
used in the final analysis. 

Then a secondary indicator was derived to represent the quality of an adjustment, termed 
Effective force adjustment, and intended to meet the core definition of ST—the ability to 
evaluate evidence and revise prior beliefs. The indicator also was conditioned by children’s 
responses to specific feedback events. The algorithm assumed that children's adjustments were 
informed by context and were not a random process. Instead, children’s responses were 
responses to feedback events in the game.  

Effective force adjustment was computed as the average number of times a child used 
information from a previous feedback event (evidence) and adjusted the force to a value closer to 
the solution (theory revision). We expected players who exhibited more effective force 
adjustments would have better ST and thus better performance on the external assessment. 

External criterion measure. The external knowledge assessment consisted of five items 
developed and pilot tested by Redman et al. (2019). Redman et al.’s (2019) study used a 
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between-subjects pretest-posttest randomized design. The reliability of the assessment as 
measured by Cronbach’s alphas was .64 for the pretest and .57 for the posttest. Because the game 
was used as a potential intervention in Redman et al. (2019), the posttest sum score should reflect 
players’ most recent standing after gameplay. Therefore, it was used as the external measure to 
compare with the GBI. 

Preliminary validity evidence. The mean number of effective adjustments correlated with 
posttest sum scores, 𝜌𝜌 = .23,  p < .05, suggesting players who scored higher on the posttest also 
tended to respond to in-game feedback in the desired direction. In addition, knowledge of force 
was positively related to mean force convergence (𝜌𝜌 = .23,  p < .05) and negatively related to 
mean force deviation (𝜌𝜌 = -.21,  p < .05), supporting the idea that these two indicators were 
measuring something meaningful (i.e., productive actions in the game related positively to 
knowledge, and unproductive actions related negatively to knowledge). Table 4 presents all 
pairwise correlations computed between posttest scores and each of the three GBIs.  

Table 4 
Spearman Correlations Between External Force Knowledge Measure and Game-Based Indicators  

 1 2 3 
1. Posttest sum scores  –   
2. Mean effective force adjustment  .23*  –  
3. Mean force deviation  -.21*  -.27** – 
4. Mean force convergence  .23*  .40***  -.44***  

*p < .05 (two-tailed). **p < .01 (two-tailed). ***p < .001 (two-tailed).  

 

Example 3: Bug-Inducing and Debugging Behaviors 
Target knowledge 

or skill: 
Debugging 

Method used to 
derive the GBI: 

Dissimilarity-based indicators  

Theoretical 
justification: 

Johnson et al.’s (1983) bug classification scheme defined four types of major programming 
bugs: (a) Missing is programming code that is required but omitted; (b)  Redundant is 
programming code that is present but not required; (c) Misplaced is programming code that 
is required but in the wrong position; and (d) Malformed is programming code that is 
incorrect but in the correct position. 

Validation 
approach: 

Correlate GBIs to an external criterion measure 

Summary of 
results: 

• Knowledge of computational thinking concepts was positively correlated with productive 
debugging behavior (pretest: ρ = .31, p < .01; posttest: ρ = .34, p < .01) 

• Knowledge of computational thinking concepts was negatively correlated with 
unproductive debugging behavior (pretest: ρ = -.23, p < .05; posttest: ρ = -.28, p < .05).  

Original study or 
source of data: 

Feng, T., & Chung, G. K. W. K. (2022, to be presented April 22–25). Extracting debugging 
indicators based on distance to solution in a block-based programming game. In G. K. W. K. 
Chung (Chair), Game-based indicators of learning processes: Extraction methods, validity 
evidence, and applications [Symposium]. American Educational Research Association 
(AERA) Annual Meeting, San Diego, CA, United States. 
Feng, T., & Chung, G. K. W. K. Extracting debugging indicators based on distance to 
solution in a block-based programming game. Manuscript under preparation. 
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Theoretical background. This example involves developing indicators of bug-inducing and 
debugging behaviors in a block-based programming game. We used Johnson et al.’s (1983) bug 
classification scheme to identify four types of major programming bugs—Missing, Redundant, 
Misplaced, and Malformed, where: 

• Missing is programming code that is required but omitted.  

• Redundant is programming code that is present but not required.  

• Misplaced is programming code that is required but in the wrong position.  

• Malformed is programming code that is incorrect but in the correct position; this often 
happens in more complex programming environments, such as the use of an incorrect 
data type during variable declarations (e.g., int versus double in C++).  

GBI algorithm. In the programming game codeSpark Academy, players create programs by 
specifying the sequence of commands to achieve a goal. The game was designed to teach 
programming concepts to children aged between five and nine. 

The commands are represented as blocks, where the player drags the block from the command 
palette to the code tray. Getting to an optional solution involves changing both the commands 
and the order of the block commands. To develop indicators of a potential debugging process, 
changes in commands were decomposed into (a) changes in code commands (or code content) 
and (b) changes in the structure (or ordering) of the code. Then player’s code could be evaluated 
against a referent program (i.e., solution or gold standard) and a dissimilarity index computed.  

Two indicators were developed to serve as inputs to more abstract indicators. A content indicator 
was created to represent the player’s programming code in terms of commands present or absent. 
A structure indicator was created to represent the sequence commands.  

Following Johnson et al.’s (1983) classifications, we first derived indicators of bug-inducing 
behaviors with two optimal solutions serving as the ideal references. The first two types of 
bugs—Missing and Redundant—are order-agnostic and focus on checking if the player has the 
right type and number of commands compared with the solutions (e.g., if a command in the 
solution is missing from the player’s programming code). The remaining bug types, Misplaced 
and Malformed, focus on describing the order and form of the command sequence.  

With the capability of detecting bug-inducing behaviors, we then developed secondary indicators 
targeting students’ debugging processes as reflected by transitions between stages (stages 1 to 5) 
characterized by changes in bug-inducing behaviors. The five stages, from worst to best, are 
given in Table 5. 

The indicator algorithm counted the number of forward transitions between categories (e.g., 
moving from Stage 1 to Stage 2), backward transitions (e.g., moving from Stage 2 to Stage 1), 
and self-transitions (e.g., moving from Stage 2 to Stage 2). We summed the credits to obtain 
player-specific game-based indicators that presumably reflected debugging. 
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Table 5 

Stages of Programming Code Quality 

Stage Description 
1 Players’ commands were at least 50% structurally dissimilar from the solution, implying the content was 

quite different. 
2 There were missing commands, redundant commands, or both in players’ programming code, and some 

commands were misplaced. 
3 Players’ commands were malformed. 
4 Players’ commands were only misplaced (no missing or redundant ones). 
5 Players’ commands were exactly the same—both in terms of content and structure—as the solution. The 

transition counts were averaged over the number of levels played for each player. 
 

External criterion measure. The external criterion measure used was TechCheck, a 15-item 
multiple-choice assessment that measures computational thinking skills in domains that have 
been identified as developmentally appropriate for children between the ages of four and nine 
(Relkin et al., 2020). TechCheck had a Cronbach’s alpha of .63 for the posttest.  

Preliminary validity evidence. Figure 2 shows boxplots of averaged transition counts with self-
transitions excluded. Table 6 presents the correlations between the external measures and game-
based outcomes. Knowledge of computational thinking concepts was positively correlated with 
productive debugging behavior (represented by the mean number of times players moved 
forward) (𝜌𝜌 = .34, p < .01). Knowledge of computational thinking concepts was negatively 
correlated to unproductive debugging behavior (represented by the mean number of times 
players remained in the same stage) (𝜌𝜌 = -.28, p < .05).  
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Figure 2 

Boxplots of Transitions Between Different Debugging Stages 

  
Note. The x-axis labels denote the transition between two different stages. For example, S1toS2 refers to the Stage 1 
(S1) to Stage 2 (S2) transition. 

Table 6 
Spearman Correlations Between External Measures and Game-Based Outcomes  

 1 2 3 4 5 

1. Posttest sum scores –     

2. Mean no. attempts -.12 –    

3. Mean no. of correct first attempts -.03 -.54*** –   

4. Mean no. in-game forward transitions .34** -.62*** .33** –  

5. Mean no. in-game backward transitions -.12 .06 .15 .19 – 

6. Mean no. in-game self-transitions -.28* .55*** -.39*** -.95*** -.43*** 

 *p < .05 (two-tailed). **p < .01 (two-tailed). ***p < .001 (two-tailed).  
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Example 4: Misconceptions 
Target knowledge 

or skill: 
Misconceptions about weight and pan balances 

Method used to 
derive the GBI: 

Game-specific indicators  

Theoretical 
justification: 

Metz (1993) identified and qualitatively described two misconceptions associated with 
young children’s use of the pan balance: (a) displacing elements across pans and (b) the 
higher pan is the heavier object.  

Validation 
approach: 

Correlate GBIs to an external criterion measure 

Summary of 
results: 

• Knowledge of weight (posttest) was negatively related to the number of higher-is-heavier 
misconceptions (r = -.36, p < .01) 

• Learning of knowledge of weight (gain) was negatively related to the number of higher-is-
heavier misconceptions (r = -.34, p < .05) 

Original study or 
source of data: 

Redman, E. J. K. H., Chung, G. K. W. K., Schenke, K., Maierhofer, T., Parks, C. B., Chang, 
S. M., Feng, T., Riveroll, C. S., & Michiuye, J. K. (2018). Connected learning final report. 
(Deliverable to PBS KIDS). Los Angeles: University of California, Los Angeles, National 
Center for Research on Evaluation, Standards, and Student Testing. 

 

Theoretical background. While many elementary school students can master the standard 
measurement tasks taught in school, few truly understand the measurement concepts (National 
Research Council., 2009). In areas ranging from physics to mathematics, children possess 
misconceptions that may hinder future learning (Perkins & Simmons, 1988). This example 
describes algorithms to detect misconceptions associated with using a pan balance. Metz (1993) 
qualitatively coded and defined general strategies in the development of weight-based problem 
solving for children ages 3 to 5. Two misconceptions identified by Metz were used in this study: 
(a) the higher pan is the heavier object and (b) displacing elements across pans. 

GBI algorithm. For the games Pan Balance, we investigated two misconceptions: (a) heavier 
weights are those weights on the pan in the higher position, and (b) yanking or aligning one side 
of the balance with the other side to force equilibrium, which is how we operationalized 
displacing elements across pans. In the telemetry, we used information about the number of 
weights needed to beat the current round (target weight), the number of weights on the right side 
of the balance that children can interact with (scale weights), the number of weights on the table 
(table weights), and whether each placement or removal of one weight on or from the right side 
of the balance helps the player get closer to the target weight. From the telemetry, we computed 
the number of times a child placed a weight on the low pan or subtracted weight from the high 
pan. These in-game behaviors, in combination with other gameplay data, such as the number of 
times they received feedback about this error and total playtime, were used to identify the 
children with these misconceptions (either displacing elements across pans or the higher pan is 
the heavier object).  

External criterion measure. The external measure used to compare our GBI indicators was a 20-
item assessment using four items from the Child Math Assessment (CMA; Starkey et al., 2004) 
and three items from the KeyMath-3 Diagnostic Assessment (Connolly, 2007) and 13 items 
developed by our research group. The reliability of the assessment as measured by Cronbach’s 
alpha was .82. 
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Preliminary validity evidence. To examine the relationship between the two misconception 
measures, correlations were computed between the misconception measures and the external 
measures of weight. Table 7 shows the intercorrelations between the GBIs and the external 
measure. The higher-is-heavier misconception was negatively related to the posttest knowledge 
of weight, r(52) = -.36, p < .01, and children’s gain in weight knowledge, r(52) = -.34, p < .05. 
The significant negative correlation between the higher-is-heavier misconception and the 
knowledge gain is interesting because it suggests that children who were committing the 
misconception learned less from the game than other students.  

Table 7 
Intercorrelations Among Misconception Measures and External Measures of Weight 

Measure 1 2 3 4 5 
1. No. of higher-is-heavier misconceptionsa —     
2. No. of yank-or-align misconceptionsa .24 —    
3. Pretestb -.04 -.06 —   
4. Posttestb -.36** -.23 .58*** —  
5. Gain (Posttest – Pretest)b -.34* -.19 -.30* .59*** — 
6. Time spent in Pan Balanceb .21 .08 .15 .18 .07 

an = 53. bn = 66.  
*p < .05, two-tailed. **p < .01, two-tailed. ***p < .001, two-tailed. 

 

Example 5: Deductive Reasoning 
Target knowledge 

or skill: 
Deductive reasoning 

Method used to 
derive the GBI: 

Game-specific indicators  

Theoretical 
justification: 

Device troubleshooting is a complex task that requires students to engage in reasoning 
strategies throughout the problem-solving process (Jonassen & Hung, 2006). 
Troubleshooting tasks require students to determine what information is needed for problem 
diagnoses and to reason with incomplete information—deductive reasoning. 

Validation 
approach: 

Correlate GBIs to an external criterion measure 

Summary of 
results: 

• Deductive reasoning was positively correlated with the ability to detect obstacles 
(sensitivity) (ρ = .67, p < .001) 

• Deductive reasoning was negatively correlated with players propensity to use lights 
(response bias) (ρ = -.67, p < .001). 

• Deductive reasoning was positively correlated with optimal decision-making (utility) (ρ = 
.81, p < .001).  

Original study or 
source of data: 

Chung, G. K. W. K., Redman, E. J. K. H., Eng, S., Feng, T., Michiuye, J. K., & Madni, A. 
(2019). Developing innovative items to measure career readiness (CRESST Report 861). 
Los Angeles: University of California, Los Angeles, National Center for Research on 
Evaluation, Standards, and Student Testing (CRESST). 

 

Theoretical background. Device troubleshooting is a complex task that requires students to 
engage in reasoning strategies throughout the problem-solving process (Jonassen & Hung, 2006). 
Troubleshooting tasks require students to determine what information is needed for problem 
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diagnoses and to make judgments with incomplete information. Decision-making under 
uncertainty requires deductive reasoning.  

In decision-making under uncertainty, students must choose an effective option from a mix of 
relevant and irrelevant options while observing the consequence of their choices. In a game task, 
the sources of uncertainty can be (a) exploration-driven: players have to explore unknown game 
areas; (b) solution-driven: players have to solve a problem or puzzle with unorganized or limited 
information; and (c) alignment-driven: players have to organize in-game objects or pieces of 
information in a spatial or conceptual configuration.   

GBI algorithm. When the target construct requires decision-making under uncertainty, we can 
develop indicators that reflect a player’s ability to make sound choices despite uncertainty or 
alternative noise. Signal Detection Theory (SDT) can be used to model the components of 
deductive reasoning. The most well-known application of SDT is in perceptual science, where 
SDT has been used to assess human performance in sensory detection and recognition tasks. 
SDT is also effective for measuring more complex scenarios, such as social threat perception that 
involves action classification and risk inference (Lynn & Barrett, 2014) and deductive reasoning 
(Trippas et al., 2014).  

The game was designed for high school students and required them to program a (simulated) 
device controller to navigate a UFO from a starting point to a destination while avoiding 
obstacles and traps under cover of darkness. To help navigate the UFO, the player could use 
various controller tools (light, jump) to detect and avoid obstacles. The game increased in 
complexity, starting from no obstacles, to the inclusion of walls, to the inclusion of walls and 
vortexes.  

To detect deductive reasoning, we used signal detection theory (SDT) within a utility framework 
to determine the GBIs. SDT indicators quantify a person’s ability to discern information-carrying 
signals from noise, independent of a person’s response bias (Macmillan & Creelman, 2005; 
Swets, Tanner, & Birdsall, 1961). The key indicators are sensitivity and response bias, both 
functions of hits and false alarms on decision-making tasks. SDT in a utility framework adds an 
additional variable, utility (Lynn & Barrett, 2014). Utility reflects optimal decision-making (vs. 
only accurate decisions) by incorporating the costs and benefits of decisions.  

Sensitivity is the player’s ability to discriminate between signal and noise. In the game where 
navigation was under cover of darkness, the signal was operationalized as obstacles that would 
cause a collision (i.e., a wall or vortex), the noise was operationalized as darkness, and the 
number of obstacles was unknown to the participants, which creates the perceptual uncertainty.  

Response bias is the decision-making threshold influenced by the player’s perceived uncertainty 
and the consequences of making a decision. In the game, response bias was operationalized as 
the player’s propensity to use lights. The cost of being wrong results in the player needing to 
start over. Table 8 shows the classification table for signal and player perception, and Table 12 
and Table 13 in the Appendix show the formulas for computing sensitivity, response bias, and 
utility. 
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Table 8 
Classification Table for Sensitivity and Response Bias 

 Player perception 
Signal Signal perceived as absent Signal perceived as present 

Actual signal is absent Correct rejection (CR): Perceiver believes 
there is no signal and the actual signal is 
absent. 

False alarm (FA): Perceiver believes 
there is a signal, but the actual signal is 
absent. 

Actual signal is present Missed detection (MD): Perceiver 
believes there is no signal, but the actual 
signal is present. 

Correct detection (CD): Perceiver 
believes there is a signal and the actual 
signal is present. 

 
External criterion measure. Five items were adopted from Lawson’s Classroom Test of 
Scientific Reasoning (Lawson, 2000). These items required deductive reasoning to solve the 
items correctly. All items were multiple-choice, and the total score for all items was used as the 
measure. Cronbach’s alpha for the measure was .67.  
 
Preliminary validity evidence. Table 9 shows the correlations among the external criterion 
measure and the three SDT indicators. The external measure of reasoning was highly correlated 
with the SDT indicators. Sensitivity, or the ability to detect obstacles, was positively correlated 
to reasoning, 𝜌𝜌 = .67, p < .001. Response bias, or the propensity to use lights, was negatively 
correlated to reasoning, 𝜌𝜌 = -.67, p < .001. Utility, which integrates costs and benefits with SDT 
indicators, resulted in a higher correlation with reasoning, 𝜌𝜌 = .81, p < .001. This latter result is 
consistent with the operationalization of utility as optimal decision making.  

Table 9 
Correlations (Spearman) Among Task Performance and Processes Measures 

Measure 1 2 3 
1. External reasoning scale –   
2. Sensitivity .67** –  
3. Criterion -.67** -.53* – 
4. Utility .81*** .76*** -.76*** 
*p < .05, two-tailed. **p < .01, two-tailed. ***p < .001, two-tailed. 

 

DISCUSSION 

Our research question for this study was, to what extent do game-based indicators (GBI) relate to 
criterion measures of learning? We presented five examples where game-based indicators were 
developed based on a theory, and preliminary validity evidence was presented on the relationship 
between the GBI and an external criterion measure. 

We found statistically significant correlations of varying magnitude depending on the study. The 
results are summarized in Table 10. 
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Table 10 
Summary of Correlations Between GBI and External Criterion Measure by Example 

Example Type of GBI Summary of Results 
1. Speed and 

Accuracy 
Common 
indicators 

Performance indicators. Knowledge of numeracy was: 
• Positively related to performance in game (𝜌𝜌 =.4 to .6, p < .01 for correct first 

attempt at a solution) 
• Negatively related to the no. of failed solution attempts (𝜌𝜌 = -.4 to -.6, p < .01 for 

no. of incorrect solution attempts). 
Progress indicators. Knowledge of numeracy was: 
• Positively related to progress in the game (𝜌𝜌 = .67, p < .001) 
• Negatively related to the time taken to beat a level (𝜌𝜌 = -.57, p < .001). 

2. Scientific 
Thinking 

Dissimilarity-
based 

indicators 

Knowledge of force and motion was: 
• Positively related to effective force adjustments (ρ = .23,  p < .05) 
• Positively related to productive game actions (ρ = .23,  p < .05) 
• Negatively related to unproductive game actions (ρ = -.21,  p < .05). 

3. Debugging 
Behaviors 

Dissimilarity-
based 

indicators 

Knowledge of computational thinking concepts was: 
• Positively correlated with productive debugging behavior (ρ = .34, p < .01) 
• Negatively correlated with unproductive debugging behavior (ρ = -.28, p < .05).  

4. Mis-
concep-
tions 

Game-
specific 

indicators 

• Knowledge of weight (posttest) was negatively correlated with the no. of higher-is-
heavier misconceptions (r = -.36, p < .01) 

• Learning (gain) was negatively correlated with the no. of higher-is-heavier 
misconceptions (r = -.34, p < .05) 

5. Deductive 
Reasoning 

Game-
specific 

indicators 

Deductive reasoning was: 
• Positively correlated with detection of obstacles (ρ = .67, p < .001) 
• Negatively correlated with propensity to use lights (ρ = -.67, p < .001). 
• Positively correlated with optimal decision-making (ρ = .81, p < .001).  

 

Our results show several interesting findings. First, the direction of the correlations in all 
examples is in the expected direction. GBIs representing productive behavior are positively 
related to the external criterion measure, and GBIs representing unproductive behavior are 
negatively related to the external criterion measure. This finding is an important piece of validity 
evidence because it suggests that the GBIs measure (albeit weakly) the knowledge or skills 
measured by the external criterion measure.  

The second interesting finding is that common indicators from Example 1 and those in Table 11 
in the Appen appear to be sensitive to the criterion measure across a broad set of games (see 
Table 11). It may be that speed and time are fundamental variables underlying human 
performance. If so, then common indicators might serve a similar role as an effect size index: A 
standardized metric to compare games on their potential to serve as measures of knowledge or 
skill.  

The third interesting finding is that we needed to refer to qualitative studies published nearly 30 
years ago in Metz’s case (1993) to find work on misconceptions around the pan balance that had 
a rich enough description of the actual child behavior and what the behavior meant in terms of 
learning. Similarly, we had to back nearly 40 years in Johnson’s case (1983) to find a debugging 
scheme that was explicit enough about the rules and conditions to enable the classification of 
programming behavior into different bug categories. While purely speculative, we think there 
exists a trove of qualitative studies with detailed, comprehensive descriptions of student learning 
yoked to explicit student behavior under all sorts of conditions and outcomes (e.g., microgenetic 
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analyses). Such studies are ideal for indicator and algorithm development, as illustrated by 
Example 4 (misconceptions), Example 3 (debugging), and to a lesser extent, Example 2 
(scientific thinking), where we were able to translate detailed descriptions of the phenomena into 
algorithms.  

Finally, we believe the most important finding is that we could develop GBIs (with moderate 
success) that have been defined by theory and not discovered through data-driven methods. We 
have demonstrated the operationalization of theory-based expected behaviors into algorithms by 
systematically transforming low-level clicks into successively more abstract and meaningful 
indicators. Furthermore, the finding that the indicators were significantly correlated with the 
external criterion measure at all is remarkable given how fine-grained the data are.  

To elaborate on the significance of this effort: Making sense of telemetry and other fine-grained 
data—where one player can generate several hundred events during a single 60-minute session, 
and where the number of variables encoded in the telemetry can easily be in the hundreds—can 
be daunting. The data glut situation will only increase as more interactive systems become 
instrumented to collect telemetry. Some method is needed to impose structure on the data to 
enable the extraction of meaning. Further, the result should be explainable so that we can better 
understand precisely what a learner knows (or does not know) and can do (or cannot do). By 
having what we call traceable and inspectable indicators and algorithms, one can examine how 
an indicator is defined and operationalized, inspect what “ingredients” comprise inputs to 
algorithms and eventually statistical models, and evaluate analytically the extent to which the 
indicators represent the relevant, important, and educationally meaningful aspects of the 
construct being measured.  

Limitations 
There are many limitations to this work. First, the GBIs presented have all been from small-
sample studies with sample sizes ranging from 20 to 150. The correlation coefficients reported 
may be unstable for the smaller samples. Second, most of the games were designed for young 
children, and thus there were a limited number of game mechanics. It is unclear how challenging 
it would be to develop theory-based GBIs for more complex learning games. Third, the games 
we have examined thus far were convenience samples. They were part of a current or past study 
and not a systematic sampling of games. The last limitation is the external criterion measure. The 
criterion measures used for the different examples sampled a broader range of knowledge than 
the GBI was targeting. This may partially explain the low correlations between the GBIs and 
criterion measures. 

Next steps 
Assuming theory-based GBIs are desirable and important, several next steps are needed. An 
immediate next step is to examine the alignment between the GBI algorithms and the items in the 
external criterion measures. This analysis may help explain the different magnitudes across the 
different examples. While the signs of the correlations were in the expected direction, the 
magnitude of the correlation coefficients varied widely across examples.  

A second next step is to continue to develop GBIs for a broader range of learning games to get a 
better sense of the generalizability and utility of our approach. When does it not make sense to 
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develop theory-based GBIs? Are theory-based GBIs better suited for some types of games (e.g., 
STEM games) than others?  

A third next step is to examine GBIs to explicitly represent sequential processes. For example, 
GBIs that could represent the different phases of a problem-solving cycle would be extremely 
useful for two reasons: (a) to quantify a learner’s skill at problem-solving; and (b) to characterize 
the degree to which a game or game level requires problem-solving skills, conditioned by player 
knowledge and experience variables.  

Finally, a long-term next step is to accelerate the development GBIs. Algorithm development is 
labor-intensive, time-intensive, and highly specialized. Developing theory-based indicators 
requires expertise in coding, statistics, learning, measurement, and content. Indicator 
development involves extensive exploratory work. One way to accelerate development is to 
enable general researchers—who already understand the theory, learners, and the conditions that 
promote or detract from learning—to intuitively express expected behavioral patterns that 
indicate different learning processes and outcomes with the same degree of information as Metz 
(1993) had in her descriptions of preschoolers’ behaviors and strategies.  

The allure of using games for measurement purposes lies in its potential to offer rich forms of 
interaction and require learners to use domain knowledge and problem-solving strategies in an 
engaging way. Successful algorithm development requires understanding the underlying theory, 
how the theory is instantiated under different game conditions, and programming that can take 
into account these exigencies using fine-grained gameplay data.  
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APPENDIX 

Table 11 
Correlations Between Progress Measures and Performance Measures and External Outcome Measures 
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Table 12 
Computation and Interpretation for Sensitivity and Criterion (Macmillan & Creelman, 2005) 

Measure Computation Interpretation 
Sensitivity 
(d’ or d-prime) 

The standardized difference between 
the means of the correct detection 
and false alarm rates, where CD and 
FA are expressed as z-scores: 

 

𝑑𝑑′ =  𝑧𝑧(𝐶𝐶𝐶𝐶) − 𝑧𝑧(𝐹𝐹𝐹𝐹) 

 

d’ = 0 indicates the perceiver cannot discern the signal 
from noises. The higher d’, the higher sensitivity. 

In the context of the UFO game, d’ reflects the 
difference between detecting an obstacle. Higher 
values of d’ indicate the player can more often detect 
obstacles. 

Response Bias 
𝑐𝑐 = −

𝑧𝑧(𝐶𝐶𝐶𝐶) + 𝑧𝑧(𝐹𝐹𝐹𝐹)
2

 
c = 0 indicates the correct detection and false alarm 
rates are equal. A negative value for c indicates that 
the false alarm rate exceeds the correct detection rate, 
and a positive value for c indicates the correct 
detection rate exceeds the false alarm rate. A higher c 
indicates a more conservative approach. 

In the context of the UFO game, c is the decision 
threshold above which the player will conclude there 
is an obstacle and thus use the light function. 

 

Table 13 
Computation of the Expected Value Estimator. Reproduced from Lynn, Wormwood, Barrett, and Quigley (2015, pp. 
6) 

Measure Computation Interpretation 
Expected value, U, of 
a decision criterion at 
signal value xi. 

U(xi) = αhp[CD] + αmp[MD] + (1 – α)ap[FA] + (1 – α) jp[CR] 
Optimal or near-
optimal decision 
making. 

Note. Base rate parameters: α = base rate or relative probability of encountering a signal, 1 – α = relative probability 
of encountering a signal from the noise. Payoff parameters: h = benefit of correct detection, m = cost of missed 
detection, a = cost of false alarm, j = benefit of correct rejection. Similarity parameters: p[CD] = correct detection 
rate, p[MD] = missed detection rate, calculated by 1 – p[CD], p[FA] = false alarm rate, p[CR] = correct rejection 
rate, calculated by 1 – p[FA]. 
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