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In this paper, the SOLO taxonomy is used to identify different levels of student understanding of the 
statistical concepts associated with sampling distribution. This study was part of a research project 
investigating students’ conceptual understanding of concepts of hypothesis testing taught with the support 
of simulation learning activities. The study involved eight students enrolled in a first-year tertiary 
introductory statistics unit and the examination of their written responses to three questions about 
sampling distribution concepts. The SOLO taxonomy categorisations revealed that some students had 
only pre- and unistructural understanding of sampling distribution, and none providing responses at the 
extended abstract level. 

The teaching of statistics has developed and evolved both in terms of curricula and pedagogical 
practices, yet statistics is still a difficult subject to teach and learn (Horton, 2015). Over time, 
researchers have investigated what makes the subject of statistics difficult. For example, Watts 
(1991) suggested that maybe the terms used in statistics—such as “a mean”, “variance”, 
“probability,” or “a random variable”—together with the abstract nature of the associated concepts 
are the crux of the difficulties students encounter. Other factors associated with students’ difficulties 
include changes in curriculum (Duckworth & Stephenson, 2002), understanding ideas like 
resampling and random distribution (Larwin & Larwin, 2011), debate about probability as a separate 
discipline from statistics (Zieffler et al., 2018), inability to meaningfully interpret problems in 
statistics (Reaburn, 2014), understanding statistical inference (Chance et al., 2022; Kula & Koçer, 
2020), and the lack of individual experience with data when teaching certain topics like sampling 
distribution (Sued & Valdora, 2021). 

The ideas of population and sample are two key concepts in inferential statistics. Students must 
first understand that the sample they are using is merely one of a huge number of samples that may 
be taken from the population, and next, to draw conclusions, that the distribution of the means of 
these samples must be known or modelled. The “sampling distribution” is a crucial idea in statistical 
inference; the outcome of repeatedly drawing samples from a population of a fixed size, calculating 
the sample statistic’s value (invariably, the mean) for each sample, and then forming a distribution 
of those values (see, e.g., Bruce, 2014). However, this concept is often poorly understood (Ozmen 
& Guven, 2019; Sued & Valdora, 2021; Watkins et al., 2014). This report focuses on the learning 
of sampling distribution. 

Why is the concept of sampling distribution hard to teach and learn? Sampling distribution is a 
multi-faceted abstract concept compared to elementary statistical ideas (Kula & Koçer, 2020; Watts, 
1991). In addition, the sampling distribution is more an hypothetical distribution than it is an 
experiential distribution (Watkins et al., 2014). That is, when students learn sampling distribution, 
they cannot experience building a full sampling distribution, but instead must abstract it. As well, 
students commonly develop misconceptions of the complex terminology that is essential to 
understanding sampling distribution. These misconceptions involve the sample mean, effect of 
sample size, variance in sample means, standard deviation (Watkins et al., 2014), standard error of 
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the mean, and improper use of probability language (Chance et al., 2004). Student misconceptions 
about sampling distribution include: 

• The sampling distribution should look like the population distribution (for n > 1), 
• Sampling distributions for small samples and large samples have the same variability, 
• Sampling distributions for large samples have more variability, 
• A sampling distribution is not a distribution of sample statistics, 
• One sample (of real data) is confused with all possible samples (in distribution) or potential 

samples, 
• The law of large numbers (larger samples better represent a population) is confused with the 

central limit theorem (distributions of means from large samples tend to form a normal 
distribution), and 

• The mean of a positive skewed distribution will be greater than the mean of the sampling 
distribution for large samples taken from this population (Ben-Zvi, 2004). 

To understand sampling distribution, it is necessary to conceptualise sampling from a population, 
sampling variability, effect of sample size, long run frequency, that is, knowing that the process of 
random selection causes variability in outcomes, but a stable distribution is achieved over a long run 
(Pfannkuch et al., 2012), and an understanding of the relationship between population parameters 
and sample means(Ozmen & Guven, 2019). 

One teaching strategy employed in tertiary statistics education is the use of simulations as a 
means of depicting real life situations. Statistical simulations allow multiple retrials of a given 
sample to generate a larger data size (Blejec, 2003), and are known as a computer simulation when 
a computer is used as a means of generating virtual data quickly. Simulations are believed to be 
effective because it takes advantage of the dual relationship between a distribution and a sample 
from that distribution. Learners can control the simulation, allowing them to discover the effects of 
changing the sample size by generating various sample sizes (Hesterberg, 2015). 

Although, the teaching of sampling distribution has been researched extensively (Garfield et al., 
2015; Kula & Koçer, 2020; Ozmen & Guven, 2019; Watkins et al., 2014), the research focus has 
been mostly on statistical inference. For example, Chance et al. (2022), Makar and Rubin (2018), 
Morris et al. (2019), Rossman and Chance (2014), Sigal and Chalmers (2016) all explored tertiary 
student understanding of sampling distribution within the context of statistical inference but with 
using simulation. The various principles related to sample distribution are what make it complex. 
Using the SOLO taxonomy (further discussed in the analysis section), Watson (2004) studied pupils 
at various stages of reasoning about samples. Using the SOLO taxonomy, an analysis of variation—
another concept connected to sampling distribution—showed different levels of knowledge 
development in a primary six class (Watson et al., 2022). The SOLO taxonomy will be used here to 
analyse students’ understanding of sample distribution at various levels as ideas connected to 
sampling distribution are investigated. Hence, the research question addressed in this paper is: 

• What does a SOLO taxonomy categorisation tell us about students’ understanding of 
sampling distribution? 

Research Methods 
The research reported in this paper adopted a pragmatist paradigm (Mackenzie & Knipe, 2006) 

to explore tertiary students’ understanding of sampling distribution. The methodology was chosen 
to capture specifically the students’ level of understanding of sampling distribution demonstrated 
using designated statistical simulations. The research was conducted in a first-year undergraduate 
statistics unit over three semesters at a regional Australian university. The unit, Data Handling and 
Statistics 1, was taken by students from courses that require a foundational statistics unit and was 
offered over a period of 12 weeks in both Semester 1 and 2 of the academic year. Students in this 
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study participated in the unit by attending weekly 1-hour lectures and 2-hour tutorial sessions. 
Assessment of the unit comprised written responses to quiz questions, completion of projects, and a 
final examination. 

Four simulation activities that focused on different statistical topics were implemented as a 
pedagogical intervention in lectures. The focus of this report is the extension tasks that followed one 
of these simulation activities, which focussed on sampling distribution. The learning intentions of 
this activity and the extension tasks were to understand sampling distribution, simulation, sampling 
bias, and randomness. The first author participated as an observer during the implementation of the 
activity. The data collected for this study comes from the eight participants who were enrolled in the 
unit, gave informed consent to participate in the research, and provided written responses to the 
extension tasks. These were completed in their own time after the lecture that included the simulation 
activity. Participants also engaged in after-class activities, one of which is reported and discussed in 
this paper. 

Task 
Scenarios used in the simulation activity and the questions used in the extension tasks afterwards 

were sourced from a moderated statistics blog called, Ask Good Questions: A Blog About Teaching 
Introductory Statistics (https://askgoodquestions.blog/). A simulation activity (Gettysburg Address) 
was implemented in the lecture. The Gettysburg Address is an activity where students were given a 
speech by Nelson Mandela, were asked to circle any ten words, and then asked to find the average 
number of letters for each word in their sample. This was first done manually by recording, on paper, 
the words circled and the number of letters in each word, and then calculating the average number 
of letters. Students then shared their means and started to manually build a sampling distribution. 
They were then introduced to a simulation app, which selected ten words from the Gettysburg at 
random (without showing the actual words), and then calculated the mean automatically. They also 
produced 20-word samples, determined the means, and produced a distribution of the means. At the 
end of the lecture, students were provided with an online link to the extension tasks, which were the 
stimulus for the data collection in this study, and which are described in the results. 

Data Analysis 
The Structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs & Collis, 2014) 

was used to analyse the data. SOLO is a qualitative model of assessment, established from existing 
cognitive models, which seeks to assess students’ conceptual knowledge at varying levels of 
understanding. SOLO helps to separate the respondents from their responses, measuring only their 
knowledge or level of performance demonstrated at a particular time. This form of assessment has 
been used successfully to evaluate both summative and formative assessment in statistics education 
(e.g., Groth & Bergner, 2006; Watson et al., 2022). The SOLO taxonomy has five levels (Biggs & 
Collis, 2014), namely: 

Prestructural. Responses at this level could be “I don’t know”, or involve merely reiterating the 
question, or have no relation to the question. 

Unistructural. Responses might use a single cue from the question or relevant domain. There is 
no interrelationship of ideas. 

Multistructural. Responses provided or interpreted at this level incorporate two or more aspects 
relevant to the questions, but they may not be interrelated, and conclusions in the response might be 
inconsistent. 

Relational. Responses at this level weave together all connecting aspects in the response and 
make a coherent whole response to a given question. 
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Extended abstract. Responses at this level involve generalisation, set out principles on which 
responses are based, and may indicate application to other situations. 

The students’ responses were initially categorised against the SOLO levels by the first author. 
They were then categorised independently by the third and fourth authors, and any discrepancies 
were discussed and resolved. 

Results 
Comprehensive understanding of sampling distribution is evidenced by understanding of the 

sample mean, effect of sample size, variance in sample means, standard deviation (Watkins et al., 
2014), standard error of the mean, and correct use of probability language (Chance et al., 2004). 
Presented below is each scenario with the corresponding questions, followed by a model response 
(sourced from https://askgoodquestions.blog/), a brief discussion about cogent words or description 
necessary for answering the question, general description of varying level of participants’ responses 
using SOLO (Biggs & Collis, 2014), two examples of a given response, and a justification for the 
level of categorisation determined. 

Scenario 1: Cats 

Assume that domestic housecats’ body lengths (excluding the tail) have a mean of 18 cm and a 
standard variation of 3 cm. 

Question 1. (Cat tail length longer than 20cm). 
Which is more likely—that a randomly chosen cat’s length is longer than 20 cm, or that the average length of 
a randomly selected sample of 50 cats is more than 20 cm, or are these probabilities equal? Describe your 
thinking. 

Model response. Since a length of 20 cm is longer than the mean and average values vary less 
than individual values, the likelihood of a cat exceeding 20 cm is higher than the likelihood of the 
sample average exceeding 20 cm. 

Discussion. The model response implies variation (variation in the sample means, but greater 
variation in the individual values); when the mean of the whole population is 18 cm, the sample 
averages will be around this value, and thus likely to be less than 20 cm, whereas a single cat’s 
length is more likely to be longer than 20 cm (correct use of probability language). 

Out of eight respondents, most responses used the correct probability language, and most 
understood variation in sample mean. Three responses were classified as multistructural because 
they referred to multiple elements, such as the sample average, sample size, variation in mean, 
standard deviation and the correct use of probability language. One response was considered 
relational because it used mathematical calculations to back up its reasoning, and the other four were 
either pre-structural (e.g., gave vague responses, or just reiterated the question), or unistructural 
(only referred to the variation in mean or standard variation). Of particular interest here are two 
responses that were difficult to categorise. 

Response A: I think the probability of a sample of fifty cats having its mean fall at 20 cm is more likely than 
a single cat measuring exactly 20 cm, because 20 cm is only 1 standard deviation away. 

Response A could be classified as a unistructural response or a pre-structural response. On one hand, 
it could be argued that the response was unistructural because it states a statistical claim with 
reference to one element of the problem (standard deviation). The claim, “because 20 cm is only 1 
standard deviation away,” shows that the respondent had some understanding of standard deviation, 
although the concept of standard deviation was not well-used. On the other hand, it could be said 
the response was pre-structural because the standard deviation is not relevant in this case. This 



Understanding of sampling distribution 

77 

response was ultimately categorised as unistructural because the standard deviation was applied in 
the justification. 

Response B: The first probability is larger. The main difference is that when working with a sample, we use 
the standard error of the sample, which is equal to standard error divided by the square root of the sample 
size. p1 = p (> 20) = 1-NORM.DIST(20, 18, 3, 1) = 0.25; p2 = p(average length > 20; n = 50) = 1- 
NORM.DIST(20, 18, 3/sqrt 50, 1) = 0.0000012. 

Response B was debated among the authors, with a multistructural categorisation initially 
considered, based on insufficient written explanation to address the instruction that said, “Describe 
your thinking.” However, it was ultimately categorised as relational because the respondent justified 
the choice of standard error, chose the correct distribution, and then performed the correct 
calculations to justify the claim that the first probability was larger. 

Question 2. (Cat tail length between 17–19 cm). 
Which is more likely—that a randomly chosen cat’s length falls between 17 and 19 cm, or that an average 
length of 50 randomly chosen cats falls which this range, or are these probabilities equal? Describe your 
thinking. 

Model response. Because the range is centered on the population mean, the probability of length 
being between 17 and 19cm is greater for a sample average than for an individual cat. 

Discussion. In the analysis of this question, some responses related the sample mean to the 
population mean, which showed understanding of variation, sample mean, effect of sample size, and 
the use of correct probability language. Using the SOLO categorisations, most responses were at a 
unistructural level, and while two respondents realised that question one and question two were 
similar, the way this connection between question was stated brought about a question of where their 
responses should be placed on the SOLO categorisation scale. 

Response A: The same reason. 

No other explanation was given, so if we go by the definition of the prestructural SOLO level, then, 
“The same reason” was considered prestructural. However, it is asking to take the justification for 
the other response (response given in question one) as the response for question two. If we go by the 
given response in question one “The second one should be larger generally as a more stable and 
closing to normal distributing data,” which was categorised as unistructural, then we might 
categorise the response to question two as also being unistructural. 

Response B: Using the same logic as in the last question, the probability that the sample of 50 is between 17 
and 19 cm will be higher. 

Response B was categorised as multistructural, because the respondent was able to relate the first 
question to the second question using the phrase “using the same logic in the last question.” In the 
previous question the participant wrote: 

The probability that the length of a randomly selected cat is no longer than 20cm is higher. The standard error 
in the sample of 50 will be lower than the standard deviation for one, as there is a 1/sqrt (50) multiplier. Thus, 
the confidence intervals will be smaller for the sample. 

This response was also categorised as multistructural with respect to Question 1. 

Scenario 2: Hospital Problem 

Suppose that a region has two hospitals. Hospital A has about 10 births per day, and Hospital B has 
about 50 births per day. About 50% of all babies are boys, but the percentage who are boys varies at 
each hospital from day to day. 
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Question 3. Hospital problem. 
Over the course of a year, which hospital will have more days on which 60% or more of the births are boys—
A, B, or negligible difference between A and B? Explain your option. 

Model response. With a large sample, we would expect the mean proportion of boy births to be 
around 50%, whereas smaller samples will vary from this mean more often. Hospital A, which has 
fewer births (i.e., smaller sample size) will have more days with 60% or more of the births being 
boys because the smaller hospital will have more variation in the percentages of boys born on a day. 

Discussion. The third question is a well-known statistical task in the field of introductory 
statistics. Out of eight respondents, most responses used the correct probability language. Three 
were prestructural because the question was only reworded or the response seemed like memorised 
theory with no depth to them, and the three unistructural responses only referred to variation in 
sample mean with no connection to other elements. Two individuals provided multi-structural 
responses to this question by explaining effect of sample size (see summary of responses in Table 
1). Two responses of particular importance are recounted below. 

Response A: Hospital A. With less data, a smaller denominator of the standard error, means a larger range. 

Response A could be determined to be at a prestructural level or a unistructural level of learning 
outcome. This is because only one useful piece of information was mentioned (standard error) which 
shows some indication of reasoning (unistructural) but this singular use of a term without adequate 
expression might arise as merely a memorised term (prestructural). 

Response B: Hospital A will have more variable days because of the low sample size. 

Response B was categorised as multistructural as the respondent showed an understanding of 
variation and sample size, although the given response was not well expressed to show the implied 
relation between sample size of 10 versus 50. More connectivity between the two may have taken 
this response to the relational level. Also, the respondent could have been reiterating memorised 
theory, but it was not possible to confirm that possibility with the data available. 

A summary of the responses for the three questions are presented in Table 1. Across the three 
questions and 24 responses in total, there were five prestructural, nine unistructural, nine 
multistructural, and one relational level responses. 

Table 1 
Number of Responses for Each SOLO Level 

 SOLO Level 

 Prestructural Unistructural Multistructural Relational 

Question 1 1 3 3 1 

Question 2 1 3 4 0 

Question 3 3 3 2 0 

Discussion 
The analysis of the student responses demonstrated that participants generally understood the 

correct probability language that applied to the questions posed. Probability is one of the few topics 
in statistics studied from Years Foundation–12 in Australia (Australian Curriculum, Assessment and 
Reporting Authority, 2018), so it might be expected the participants have brought this familiarisation 
with the concept of probability from high school. This suggests that probability as an important idea 
in sampling distribution (Pfannkuch et al., 2012) could be an effective starting point for the teaching 
and learning of sampling distribution. 



Understanding of sampling distribution 

79 

The five responses classified as either unistructural or multistructural support the observation 
that component elements of sampling distribution like “sample,” “sampling,” “variation,” and 
“averages” (Watson, 2004; Watson et al., 2022) are vital to the understanding of bigger concepts. 
Lack of such understanding, however, may underpin the remaining prestructural responses, 
suggesting the misconception of variability between large and small samples (Ben-Zvi, 2004). 
Although not confirmed in the data presented here, we further postulate that higher levels of 
understandings could stem from using simulation as a pedagogical approach in teaching this concept 
(Chance et al., 2022). 

Students’ grasp of the ideas related to sampling distribution varied greatly, and using SOLO 
taxonomy proved helpful in distinguishing different levels of understanding. Higher order thinking 
abilities like analysis, synthesis, and assessment were encouraged by the form of the questions 
answered. However, only four of the SOLO taxonomy’s five levels of learning outcomes were 
evidenced in the responses given. None of the questions achieved the abstract extended level of 
learning outcome, which may be because the questions were not expressed specifically to yield 
answers at that level. 

Categorisation of the data using SOLO was at times problematic because responses were brief, 
non-existent, or ambiguous. This illustrates the problem of presentation or internalisation (Reaburn, 
2014), as observed in the ways respondents wrote their responses. Since understanding of the 
concept can only be inferred based on what is written, lower-level responses could be due to a 
misunderstanding of the question wording, its presentation, or accompanying instructions. This 
suggests additional data, such as from an interview, is needed to support the SOLO classifications. 
Interviews using open-ended questions would provide participants the opportunity to demonstrate 
understanding at the extended abstract level described by Groth and Bergner (2006). The results in 
Table 1 shows the majority of responses were unistructural or multistructural, with only one 
relational response This suggests that the simulation activity was not fully successful in supporting 
students’ conceptual understanding for the extension tasks, certainly in making the connections 
between the simulation observations and different contexts. 

Conclusion 
The study reported in this paper differs from previous research in that it has looked at the 

understanding of the fundamental components of sampling distribution, rather than the more 
common focus on sampling distribution for statistical inference. The evidence presented here serves 
to shed light on the elements of sampling distribution best understood by students, and the levels of 
understanding observed in their responses. It highlights the complexity of sampling distribution and 
suggests that achieving sophisticated understanding of the concept is possible if the fundamental 
components of the concept are well-understood. The results from this report could potentially be 
used to inform a methodological approach in analysing students’ understanding of fundamental 
components of a statistical concept. 
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