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Big Ideas in school mathematics can be seen as overarching concepts that occur in various mathematical 
topics in a syllabus. For teachers, this knowledge can be used to help students develop a better 
understanding of mathematics by making visible the central ideas, and connection across topics and across 
levels. For students, this knowledge can further be helpful affectively by engendering an appreciation of 
mathematics as a subject that is coherent and comprehensible. Although there has been much interest 
recently in the understanding of Big Ideas, there is little research done in the assessment of Big Ideas 
thinking. In this paper, we discuss our development of an instrument to measure the Big Ideas of 
equivalence and proportionality. Our analysis of some pilot items suggests that Big Idea thinking is a 
multidimensional construct within most school environments. 

We concur with Charles’ (2005) definition of a Big Idea in mathematics as “a statement of an 
idea that is central to the learning of mathematics, one that links numerous mathematical 
understandings into a coherent whole” (p.10). Each Big Idea connects various concepts and 
understanding across topics, strands and levels. The notion of Big Ideas became prominent in the 
teaching and learning of mathematics when it was highlighted by the National Council of Teachers 
in Mathematics in 2000, where it stated: “Teachers need to understand the Big Ideas of mathematics 
and be able to represent mathematics as a coherent and connected enterprise. Their decisions and 
their actions in the classroom—all of which affect how well their students learn mathematics—
should be based on this knowledge.” (NCTM, 2000, p17) 

While there has been an interest in the understanding and teaching with the understanding of Big 
Ideas, to date, there has been little research done on how the knowledge and understanding of Big 
Ideas can be assessed. One reason can be attributed to the different classifications and definitions of 
the Big Ideas by various educational bodies and researchers. Charles (2005) listed twenty-one Big 
Ideas in mathematics. Niemi (2006) identified a list of twenty Big Ideas for school algebra alone 
and wrote about the development of an assessment instrument to measure the Big Ideas based on his 
list. Hurst (2019) had further categorized his list of Big Ideas into three categories: sequential Big 
Ideas, umbrella Big Ideas and process Big ideas. The Singapore Ministry of Education (MOE) 
syllabus identified six Big Ideas for the Primary grade levels in Singapore (Grades 1 to 6), and an 
additional two for the Secondary grade levels (Grades 7 to 10) (MOE, 2018a, 2018b). 

Another possible reason for the scarcity of Big Ideas assessment instruments could be the lack 
of clarity on the intent of the assessment in the first place. Educational institutions may not rate it 
important and pressing enough to know how well their students are able to think along the Big Ideas 
to incorporate specific items into their class and grade assessments. With a proper instrument 
available at the national level to measure Big Ideas thinking, professional development can be 
provided to educational institutions on how to assess Big Ideas thinking and enactment in their 
environments. Teachers could also use this information for curriculum development and design, 
resource design and formative assessment. It would seem then that any instrument designed to assess 
Big Ideas should be an addition to the current suite of assessments already put in place and, in 
particular, to be done outside of high stakes mathematics assessments. Assessment instruments 
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developed to assess Big Ideas thinking will have to factor in the testing load on the students as well 
as the amount of time taken away from curriculum to administer the instrument. 

A third reason could be that it is difficult to create items that assess Big Ideas thinking because 
Big Ideas link numerous mathematical understandings and cuts across topics and grade levels. Thus, 
a major consideration for items created to assess Big Idea thinking is that they must be able to test 
specifically such cross-topic thinking and not be confounded by specific topical familiarity and 
expertise. Another aspect to consider, akin to Carroll’s three-stratum theory of cognitive abilities 
(e.g., Carroll, 1993; 1997; Warne & Burningham, 2019) is when to see Big Ideas as a unidimensional 
construct and when as a multi-dimensional construct. 

This paper reports the initial stage of developing an instrument, to measure Equivalence and 
Proportionality, two out of the eight Big Ideas in the mathematics curriculum document (MOE, 
2018a, p5). The pilot instrument was administered to students in two primary schools and two 
secondary schools in Singapore. We took into consideration the need to create an item with questions 
that test across different topics. The items were analysed to explore if Big Ideas thinking in schools 
is a unidimensional construct or if it is 2-dimensional along the two Big Ideas to be assessed. 

Equivalence and Proportionality 
There are no generally accepted formal definitions yet on any of the Big Ideas. For example with 

regard to Equivalence, Warren & Cooper (2009), in their EATP project, highlighted 5 key aspects: 
equations as equivalence; the balance principle; sign systems for unknowns; identity and inverses; 
and finding solutions and generalisations. On the other hand, Fyfe et al. (2018), restricted 
equivalence to the idea in which both sides of an equation are equal and interchangeable. While 
understanding the broad nature of the construct, their study was focused on the symbolic 
understanding of equivalence: the understanding of the equal sign. 

For this study, we will specify our understanding of two Big Ideas, Equivalence and 
Proportionality, and use them in developing our instrument. We look at two Big Ideas common to 
the list proposed by Charles (2005) and the list of Big Ideas developed by MOE: Equivalence and 
Proportionality. 

Charles (2005) described Equivalence as when “any number, measure, numerical expression, 
algebraic expression, or equation can be represented in an infinite number of ways that have the 
same value”. MOE described equivalence as: “A relationship that expresses the equality of two 
mathematical objects that may be represented in two different forms. In every statement about 
equivalence, there is a mathematical object (e.g., a number, an expression or an equation) and an 
equivalence criterion (e.g., value(s), part-whole relationships).” (MOE, 2018b, p.15) The former 
defines equivalence focusing on representations having the same value while the latter goes beyond 
the equivalence of values. Consider the mathematical problem as follows: 

Example 1: Ali had $220 and Colin had $310. After each of them bought an identical T-shirt, Colin had 
thrice as much money as Ali had left. How much does each T-shirt cost? 

In the mathematical problem stated, the difference in money Ali and Colin had at the beginning is 
the same as the difference in money at the end. The two equivalent entities are the difference in 
money before and after having bought identical T-shirts. 

When defining the Big Idea of proportionality, Charles (2005) explained that “when two 
quantities vary proportionally, that relationship can be represented as a linear function”. MOE 
describes proportionality as a “relationship between two quantities that allows one quantity to be 
computed from the other based on multiplicative reasoning” (MOE, 2018b, p.16). We operationalise 
proportionality by making explicit the two entities that vary in direct proportion. This can be seen 
in the following example: 
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Example 2: 60 workers can make 180 chairs in one day. All workers work at the same rate. How many chairs 
can 36 workers make in one day? 

It can be clearly seen from this example that the number of chairs made in one day varies 
proportionally to the number of workers. 

Methodology 
Our design of the items for the instruments is guided by the three characteristics of Big Ideas as 

detailed by Hsu et al. (2007). The items that we develop serve to (a) connect different parts of the 
curriculum under the umbrella Big Idea; (b) be a basis for understanding other topics; and (c) make 
choices about curriculum. Objectives (a) and (b) are meant for the instruments for both teachers and 
students, and (c) is for the teachers. In this paper, we shall only consider the instrument for the 
students. We shall call this instrument Big Ideas in School Mathematics, BISM for short. 

 

Figure 1. An item on the Big Idea of Equivalence consisting of five parts. 
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Each item in BISM tests only one Big Idea of either Equivalence or Proportionality and has five 
parts. Part 1 to Part 3 each consists of a selected response question focusing on the same Big Idea 
and are from the same topic, for example ‘Area of rectangles’. Ability to correctly answer these parts 
could be due to topical and procedural knowledge and/or knowledge of the Big Idea under focus. 
To facilitate thinking beyond the topical and procedural knowledge, Part 4 seeks to assist 
participants to look for the link connecting the three parts. Part 4 also seeks to trigger students’ Big 
Idea concepts, if any. Participants then attempt Part 5, a question that focuses on the same Big Idea 
but based on a different topic. Figure 1 shows one of the items under the Big Idea of Equivalence. 

Each of the first three parts can be solved by seeing the equivalence between the area of the large 
rectangle and the sum of the areas of its component parts. Part 5 needs also the Big Idea of 
Equivalence but not exactly in terms of areas of rectangles. The focus is on the equivalence of two 
mathematical forms, a diagram and its equivalent mathematical equation. It can be subsumed within 
the strand of Whole Numbers. Part 5 was refined later to dissociate it from the idea of Areas with 
changes in the figure as well as the phrasing as shown in Figure 2. 

 

Figure 2. Refined part 5. 

Figure 3 shows Part 5 of an item on the Big Idea of proportionality. Students at this level have 
not learnt about areas of circles but are expected to have knowledge of areas of rectangles as well as 
that the sum of angles at a point is 360°. The problem can be solved by seeing that the area of the 
“slice” varies proportionally with the angle at the centre. 

 

Figure 3. Part 5 of an item on the Big Idea of Proportionality. 
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Analysis of Instrument and Item Performance 
The items have been validated by three content specialists at the National Institute of Education, 

with a doctorate degree in Mathematics, Educational Assessment and Mathematics Education, 
respectively. To validate the items further, the instrument was analyzed using Rasch analysis via the 
Winsteps software. 

Firstly, the instrument was analysed to check if the items collectively are unidimensional, i.e., 
that it measures only one latent trait, Big Ideas thinking. 

The items were administered to 360 students from two participating schools at grade levels five 
and six. Each student is given two complete sets of items, one each from the different Big Ideas of 
Equivalence and Proportionality. The items given to various students overlapped and interlaced to 
allow for item equating to be done. Each student was given 45 minutes to complete the items. 

Figure 4 shows the analysis report from Winsteps on the standardized residual variance based 
on the students’ responses. 

 

Figure 4. Standardized residual variance report. 

If the items are unidimensional, the variance explained by the items is expected to be 
considerably larger than the unexplained variance in the first contrast. As can be seen from Figure 
4, the variance explained by the items are about equal in magnitude with all the unexplained 
variances in the other contrasts, signaling that the items may not be unidimensional. A closer 
analysis is needed to understand how the items function. We shall proceed to analyse the first two 
contrasts. Figure 5 shows the Principal Component Analysis report for the first contrast, Contrast 1. 

 

Figure 5. Principal component analysis for contrast 1. 
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From the report, the contrasting questions are identified based on their polarizing loading. The 
two most positively loaded questions are those belonging to items testing for Equivalence, 
recognizable from the ‘E-P’ prefix (the second ‘P’ refers to the Primary track) on the question 
identifications while the most negatively loaded questions are those belonging to items testing for 
the Big Idea of proportionality, recognizable from the ‘P-P’ prefix on the question identifications. 
Figure 6 shows the Principal Component Analysis report for the second contrast, Contrast 2. 

  

Figure 6. Principal component analysis for contrast 2. 

Similar to the first contrast, the two most positively and negatively loaded questions are from 
the items testing the Big Ideas of Proportionality and Equivalence respectively. From these two PCA 
analyses, it can be preliminarily concluded that the two Big Ideas of Equivalence and Proportionality 
may require very different skillsets and that Big Ideas thinking may be multidimensional in nature. 

 

Figure 7. Item correlation report. 
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The items are further analysed by examining how the questions are correlated to each other. A 
positive correlation of the questions will reinforce the unidimensionality of the latent trait. Figure 7 
shows the item correlation report. 

From the report, the largest negatively correlated items are between Proportionality and 
Equivalence items. We do see items within the same Big Ideas also being negatively correlated, as 
seen from the 7th entry in the table as well as some more pairs of items down the table. A closer 
study of the items showed that these items are from different topics. Both item E-P-014 and E-P-
016 are shown as Part 2 and Part 5 respectively in the earlier Figure 1. Part 2 is from the measurement 
topic of area while Part 5 is a counting question under the strand of Whole Numbers. Item P-P-031 
under the topic of whole numbers is shown earlier as Example 2 while P-P-034, under the 
measurement strand is shown as Part 5 in Figure 3. In both these pairs of questions, students may 
have solved them using topical knowledge instead of knowledge of equivalence or proportionality. 
Hence, they may be able to do an item from a topic but not another item from another topic with the 
same Big Idea. 

Findings and Discussion 
At this point in the research, we have tested some items at both the primary and secondary levels. 

Only two complete sets of items were tested for each Big Idea of Equivalence and Proportionality 
at the primary level. The findings and discussions are based on this small number of items that was 
tested at the primary level. From the standardized residuals and principal component analysis, it can 
be concluded preliminarily that it may not be feasible to construct just one instrument that measures 
the latent trait of knowledge of Big Ideas. Big ideas in mathematics may likely be multidimensional. 
At this juncture, it may seem more appropriate that two separate instruments be created, one for each 
Big Idea. Thus, the final BISM instrument may consist of a battery of subtests. At the next data 
collection stage, a detailed analysis will be made for the separate instruments to check once again 
for the unidimensionality of the items for each instrument first before making further analysis on 
students’ performance. 

For some of the items we have created, especially those in the first three parts of an item, 
participants may have solved them using topical content knowledge and not because they have the 
knowledge of Big Ideas. These earlier parts tend to be easier to solve and thus could be solved well 
by students equipped with sound content knowledge. Part 5 of each item was administered after the 
participants were asked to reflect and find similarities for each of the first three parts, guiding them 
to think beyond the topical content and more towards Big Ideas thinking. We have decided to analyse 
Big Ideas thinking through the participants’ performance on Part 5 of the items only. 

Finally, this study is part of a larger project that includes the professional learning development 
(PLD) of teachers in their knowledge of Big Ideas. The instrument that we are developing will also 
be used in the formative assessment of the teachers in the PLD and subsequently for the students in 
their classes. 
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