
Using Markov Matrix to Analyze Students’ Strategies for 
Solving Parsons Puzzles 

Amruth N. Kumar 
Ramapo College of New Jersey 

amruth@ramapo.edu 

 

 

ABSTRACT 
Is there a pattern in how students solve Parsons puzzles? Is there a 
difference between the puzzle-solving strategies of C++ and Java 
students? We used Markov transition matrix to answer these ques-
tions. We analyzed the solutions of introductory programming 
students solving Parsons puzzles involving if-else statements 
and while loops in C++ and Java from fall 2016 to fall 2020. We 
present the results of our analysis qualitatively as heat maps and 
quantitatively using descriptive statistics.   

We found that most students solved the puzzles in the order in 
which lines appeared in the correct solution. Counter-intuitively, 
we found this pattern even in the solutions of the puzzles involving 
nested if-else statements, multiple while loops and nested 
while loops. Students who solved the puzzles with the fewest ac-
tions acted upon fewer lines out of order, i.e., not in the order in 
which they appear in the final solution. Whenever we found a sta-
tistically significant difference between C++ and Java solutions, 
C++ solutions involved fewer out-of-order and redundant actions 
than Java solutions. We discuss the implications of these results for 
the use of Parsons puzzles as a tool for teaching introductory pro-
gramming. 

Keywords 
Parsons puzzles, Puzzle-Solving Strategy, C++, Java, Markov ma-
trix. 

1. INTRODUCTION 
In a Parsons puzzle [21], first proposed as an engaging way to learn 
programming, the student is given a program in scrambled order 
and asked to reassemble it in its correct order. The puzzle may also 
contain distracters, which are incorrect variants of lines in the puz-
zle that are meant to be discarded. Parsons puzzles have gained 
popularity - scores on Parsons puzzles were found to correlate with 
scores on code-writing exercises [2]. Solving Parsons puzzles was 
found to take significantly less time than fixing errors in code or 
writing equivalent code, but resulted in the same learning perfor-
mance and retention [6]. In electronic books, students preferred 
solving Parsons puzzles to answering multiple choice questions or 
writing code [5]. Researchers have placed Parsons puzzles in a hi-
erarchy of programming skills alongside code-tracing [19], and 

have proposed using it to scaffold software design process [9]. Soft-
ware to administer Parsons puzzles have been developed for Turbo 
Pascal [21], Python (e.g., [1,11,12]) and C++/Java/C# [15].   

The focus in Parsons puzzles research lately has been on how stu-
dents solve them and what does/does not help students solve them 
better, e.g., the patterns in how students solve the puzzles [10,14]; 
that subgoal labels help students solve puzzles better [20]; that 
adaptive practice of Parsons puzzles is just as effective as writing 
code [4, 7]; that students are twice as likely to complete adaptive 
puzzles than non-adaptive ones [4]; but, motivational supports [16] 
and the use of mnemonic variable names [13] do not help students 
solve puzzles more efficiently. Yet, the effectiveness of Parsons 
puzzles as a tool for learning programming remains unresolved due 
to lack of replicated research [3] or contradictory results that found 
no correlation between Parsons puzzles and code-tracing / code-
writing exercises [18]. 

Another focus of research has been on the strategies used by stu-
dents to solve Parsons puzzles. Each Parsons puzzle typically has 
only one correct solution. So, the correct solution, i.e., the final re-
assembled program will be the same for all the students. But, the 
order in which students go about assembling the lines of code will 
vary among students. This order reflects their puzzle-solving strat-
egy.   

One study found that novice students solved puzzles by focusing 
on indentation of individual lines or their syntax [8] when lines 
were presented with indentation. Another study [10] found that 
some students used “linear” order, i.e., the order in which scram-
bled lines were provided. But, the study also observed backtracking 
and looping behavior, which were unproductive. Experts were 
found to use top-down strategy to solve Parsons puzzles in a study 
[11]. Students were found to use statement-level semantics more 
than control-flow semantics to solve puzzles in a recent study [22]. 
Another study reports that students found the final few steps of the 
solution to be more challenging [24].  

These studies have used various techniques to identify the puzzle-
solving strategy of students: think-aloud protocol [8, 11], a state-
transition diagram of puzzle-solving states and student transitions 
[10], edit distance trails and k-means clustering [24] and applica-
tion of BNF grammar rules to student logs [17]. Think-aloud 
protocols are gold standard for qualitative research, but they do not 
scale with the number of participants. State transition diagrams can 
grow intractable in size with combinatorially explosive number of 
states in all but very small puzzles, making it hard to find puzzle-
solving patterns with the approach. Edit-distance trails [24] lose 
line-specific information in the puzzles and are better suited for re-
vealing the rate at which students make progress towards the final 
solution. BNF grammars are suitable for verifying whether a stu-
dent used a specific puzzle-solving strategy, not for finding the 
student’s strategy. 
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In contrast, a first order Markov transition matrix (not to be mis-
taken for Hidden Markov Models) can be used to find patterns in 
time-series data. The matrix has dimensions determined by the 
number of lines in a puzzle, and not the number of states or stu-
dents. So, it is scalable with the number of students. We used it to 
analyze the data collected from the puzzle-solving sessions of stu-
dents to find patterns or strategies. The research questions for our 
analysis were: 

1. RQ1: Is there a pattern in how students solve the puzzles? An-
swer to this question may help shed light on how to improve 
them to promote learning.   

2. RQ2: Is there a difference between the puzzle-solving strate-
gies of C++ and Java students? This question is of interest 
because of the difference in the programming paradigm typi-
cally used in the two languages: imperative-first in C++ versus 
objects-first in Java, even though both the languages support 
object-oriented programming. 

2. PARSONS PUZZLE INTERFACE 
For this study, we used the data collected by epplets (epplets.org) 
[15], a suite of tutors on Parsons puzzles. The user interface of the 
tutors is shown in Figure 1. The problem statement is displayed in 
the instruction panel (I). The code for the problem is presented in 
the problem panel (P), both scrambled and unindented. The solu-
tion is assembled in the Solution panel (S). Distracters are deleted 
when dragged into the Trash panel (T). Feedback is provided for 
incorrect actions in the Feedback panel (F). The student has the fol-
lowing actions available for solving the puzzle: 

 Insert: Drag a line of code from the Problem panel (P) or the 
Trash panel (T) to the Solution panel (S) and drop it anywhere 
in S;  

 Delete: Drag a line of code from the Problem panel (P) or the 
Solution panel (S) to the Trash panel (T); 

 Reorder a line of code in the Solution panel (S) by moving it 
up or down by one or more lines; 

 Undo: Return a line from either the Solution panel (S) or the 
Trash panel (T) back to the Problem panel (P) - the line is 
placed back in its original scrambled order in the Problem 
panel (P); 

 

Figure 1. User Interface of Epplets [15] 

In addition, students could indent/outdent lines of code in the Solu-
tion panel (S) to improve the readability of the program. But, these 

actions were not counted in our analysis since indentation does not 
affect the semantics of C++ and Java programs.   

The tutors do not provide any feedback while the student is solving 
the puzzle. If the student attempts to submit an incomplete solution 
before moving all the lines out of the panel P, the tutors direct the 
student to properly place all the lines before submitting their solu-
tion. Once a complete solution is submitted, the tutors repeatedly 
highlight the next line in the solution that is not in its correct loca-
tion. The tutors either suggest how the line should be moved or 
point out the line of code that should replace it. The tutors provide 
such feedback until the solution is correct. The actions taken by the 
student in response to the feedback become part of the student’s 
solution sequence.  

3. MARKOV TRANSITION MATRIX 
The tutors report the order in which students solve a Parsons puzzle 
as a sequence of <line, action> pairs, line referring to line 
number in the correct solution of the code and action referring 
to the action applied to that line of code. We will refer to this se-
quence of pairs as action sequence. From a student’s action 
sequence, we can extract the order in which the student acted upon 
the lines of the puzzle by considering only the first tuple in each 
pair.  

For example, consider a four-line Parsons puzzle with no distract-
ers. The four lines are provided scrambled in panel P (Figure 1). 
We will refer to these lines by their location in the correct solution, 
e.g., line 3 is the line that should appear third in the correct solution, 
although it may be in any order in panel P. Suppose a student solves 
the puzzle using the following actions: 

1. Drags line 3 from panel P to S; 
2. Drags line 1 from P to S and drops it after line 3; 
3. Moves line 3 after line 1 in S; 
4. Drags line 2 from P to S and drops it after line 3; 
5. Drags line 4 from P to S and drops it after line 2; and  
6. Moves line 2 up so that it appears between lines 1 and 2.  

The corresponding action sequence is  

1. <3, Insert> 
2. <1, Insert> 
3. <3, Reorder> 
4. <2, Insert> 
5. <4, Insert> 
6. <2, Reorder>.  

From this action sequence, we extract the order in which the student 
acted upon the lines of the puzzle as 3-1-3-2-4-2. Finally, we use 
this order of lines to build a Markov transition matrix [25]. 

In a Markov transition matrix, the rows and columns are line num-
bers in the program, followed by distracters in the puzzle. In 
addition, the matrix contains a first row for the start state S before 
attempting the puzzle and a last column for the end state E after 
completely solving the puzzle. So, Markov matrix is an n X n ma-
trix where n = number of lines + number of distracters + 1. 

We will use M as the abbreviation for Markov transition matrix and 
Mi,j to denote the element of the matrix on row i and column j. Ini-
tially, all the elements Mi,j = 0. If a student applies an action to line 
j after applying an action to line i, Mi,j is incremented by 1. 

As an illustration, consider a puzzle containing 4 lines of code that 
are provided to the student scrambled. The left side of Figure 2 
shows the Markov transition matrix of a student who applies ac-
tions to lines in the following order: 4-1-2-1-3-4. Since the first line 
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acted on by the student is 4, MS,4 = 1. Thereafter, the matrix entries 
that are set to 1 are M4,1, M1,2, M2,1, M1,3, M3,4 and finally, M4,E 
since 4 is the last line to be acted upon. The right side of the figure 
shows the matrix for a student who applies actions to lines in the 
following order: 1-3-2-2-3-2-4-1. In particular, note that the student 
acts upon line 2 after line 3 twice – hence, M3,2 = 2. The student 
applies back-to-back actions to line 2, e.g., inserts line 2 into the 
solution, and immediately reorders it in the solution – hence, M2,2 
= 1. The last line acted upon is line 1 – hence, M1,E = 1. 

For our analysis, we combined the Markov matrices of all the stu-
dent solutions into a single transition matrix, such that:  

Mi,j = ∑ ai,j / s 

∑ ai,j is the sum of all the actions on line j after line i in all the 
student solutions;  

s is the number of student solutions, i.e., the number of times stu-
dents solved the puzzle.   

 1 2 3 4 E   1 2 3 4 E 

S    1  S 1     

1  1 1   1   1  1 

2 1     2  1 1 1  

3    1  3  2    

4 1    1 4 1     

Figure 2. Markov Transition Matrices for solution sequences 4-
1-2-1-3-4 and 1-3-2-2-3-2-4-1 for a puzzle containing 4 lines of 
code 

So, Mi,j is the number of actions on line j after line i per student 
solution. If all the students applied exactly one action to each line 
in each solution, 0 ≤ Mi,j ≤ 1.   

Since the puzzles also included two distracters D1 and D2, we 
added rows and columns in the matrix for D1 and D2 after those 
for all the lines in the puzzle. Mi,D1 refers to students acting on the 
first distracter D1 after line i. In the matrix: 

 If each student applies exactly one action to each line of code, 
the sum of all the entries in a row / column is 1. But, since a 
student may apply more than one action to a line of code (e.g., 
insert into the solution, reorder within the solution), the sum 
of each row / column is at least 1.   

 The larger the value of Mi,j, the larger the number of times 
students applied an action to line j after line i.   

 A puzzle assembled in the correct order of lines, i.e., line 1 in 
the solution is inserted first (MS,1), line 2 in the solution is in-
serted next (M1,2), and so on, will appear as entries in all the 
diagonal elements of the matrix from top left to bottom right. 

 When the solutions of all the students are combined in a ma-
trix, each widely used puzzle-solving strategy produces a 
distinct pattern in the matrix: entries between frame elements 
are large in frame-first strategy and most of the elements are 
non-zero and small in a random strategy.  

4. DATA COLLECTION AND ANALYSIS 
For this study, we analyzed the data collected online by two Parsons 
puzzle tutors called epplets (epplets.org) [15] on if-else state-
ments and while loops. The tutors were used by introductory 
programming students as after-class assignments in high schools, 
community colleges and baccalaureate institutions during fall 2016 

– fall 2020 as shown in Table 1. Some schools used the tutors for 
C++ and others for Java – so, the two sets of users were mutually 
exclusive. C++ and Java versions of each puzzle were of exactly 
the same size. This made it possible to compare the solutions in the 
two languages. Since the tutor users were introductory program-
ming students, they had little prior programming experience. The 
demographics of the students using the two tutors are shown in Ta-
ble 2. Not everyone reported their gender/race/major. 

The tutors were set up to randomize the variable names and data 
types used in the puzzles. They also randomly scrambled code in 
the problem panel P. Research shows that novice programming stu-
dents are unduly influenced by the superficial differences resulting 
from such randomization [31, 32, 33]. This randomization deterred 
plagiarism since no student saw the same puzzle verbatim more 
than once and no two students saw the same puzzle verbatim. It also 
deterred solution-sharing plagiarism schemes that afflict program-
ming tutors [27]. 

Table 1. Usage of the tutors in fall 2016 – fall 2020   

Fall 2016 – Fall 2020 if-else while loop 
Type of Institution C++ Java C++ Java 

High Schools 2 11 1 5 
Community Colleges 3 1 2 2 

Baccalaureate Institutions 4 13 3 11 

For our analysis, we considered only those students who solved a 
puzzle completely and correctly so that we could find patterns 
among those who successfully solved the puzzle. Only students 
who consented to their data being used for research purposes were 
included in the study. Because of these two factors, the N reported 
in Table 2 is not the same as those reported in subsequent tables. 
Since the tutors were accessible over the web, students could use 
the tutors as often as they pleased. If a student used a tutor more 
than once, we picked the session in which the student had solved 
the most number of puzzles. In case of a tie between two sessions, 
we used the data from only the first session. 

Table 2. Demographics of the users of the tutors   

Fall 2016 – Fall 2020 if-else while loop 
N 431 203 

Gender Male 264 102 
Female 100 38 

Race Caucasian 194 78 
Asian 91 33 
Other 70 25 

Major Computer Science 170 76 
Engineering 77 25 

Sciences 22 7 
We analyzed the data of each puzzle using three-color heat maps 
and descriptive statistics. A three-color heat map shows zero values 
in red, maximal values (0.2 and up) in shades of green and interme-
diate values (0.1 – 0.2) in yellow. For the calculation of descriptive 
statistics, we eliminated the last two rows and the penultimate two 
columns in the matrix corresponding to the two distracters – they 
were not part of the correct solution. The descriptive statistics in-
cluded: 

1. the number of different lines acted upon first (F) by students, 
i.e., the number of non-zero cells in the first row of the matrix;  

2. the number of different lines acted upon last (L) by students, 
i.e., the number of non-zero cells in the last column of the ma-
trix;  
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3. the percentage of matrix cells (C) that are non-diagonal and 
non-zero; and  

4. the sum of the values (V) of non-diagonal non-zero matrix 
cells expressed as a percentage of the sum of the values of all 
non-zero cells.   

5. The mean of diagonal elements (µd). 

Note that the greater the values of F and L, the more varied the 
solutions. The larger the value of C, the more the lines that were 
acted upon out of order, i.e., not in the order in which they appear 
in the final solution. The larger the value V, the more the redundant 
actions and hence, the less efficient the solutions.  

A puzzle with n lines can be solved with n actions. For the purposes 
of analysis, we considered as minimal solvers, students who solved 
a puzzle with no more than 1.1n actions, i.e., with no more than 
10% redundant actions. Minimal solvers were a subset of all the 
solvers of a puzzle. We analyzed the data of each puzzle, both for 
non-minimal and minimal solvers. We computed the statistical sig-
nificance of the difference between two groups (e.g., non-minimal 
versus minimal solvers) by using paired sample t-test in which the 
corresponding values Mi,j (the element of the Markov matrix on 
row i and column j) of the two groups were paired.  

5. RESULTS 
5.1 if-else puzzles 
The first puzzle solved by the students was on a program that read 
two numbers and printed the smaller of the two numbers. The puz-
zle contained 14 lines of code and 2 distracters.   

Figure 3 shows the heat map of C++ solutions: for non-minimal 
solutions on the left and minimal solutions on the right. In the heat 
maps, the last two rows and the penultimate two columns corre-
spond to distracters. Note the following in Figure 3: 

1. A majority of both non-minimal and minimal solvers assem-
bled the puzzle in the order in which the lines appeared in the 
correct program. So, the largest values are all along the diag-
onal – µd, the mean of diagonal elements, is 0.61 for non-
minimal and 0.81 for minimal solvers. This behavior was 
much more pronounced among minimal solvers: the diagonal 
is brighter green and far more non-diagonal cells are red 
(zero). Paired sample t-test yielded a statistically significant 
difference between the two groups (p < 0.001). 

2. Students discarded distracters more often than not at the end 
of the session – the cells in the last column for the last two 
rows are green.   

Minimal solvers solved the puzzles with no more than 10% unnec-
essary actions. But, this did not mean, they had to assemble the 
puzzle in the order in which the lines appeared in the correct pro-
gram (corresponding to the diagonal from top left to bottom right 
being green): they could have assembled the program in reverse or-
der, i.e., the last line first and the first line last (corresponding to the 
diagonal elements from the bottom left to the top right being green) 
or in random order (non-diagonal elements just as likely to be green 
as diagonal elements). That a majority of both non-minimal and 
minimal solvers solved the puzzles in the correct order of the lines 
in the puzzle is a novel and interesting finding of this study.  

Figure 4 shows the heat map of Java solutions: for non-minimal 
solutions on the left and minimal solutions on the right. We observe 
the same two patterns in Java as in C++. The difference between 
non-minimal and minimal Java solutions was again statistically sig-
nificant (p < 0.001). 

  

Figure 3. Heat Map of C++ solutions: non-minimal (N=118) on 
the left and minimal (N=57) on the right   

  

Figure 4. Heat Map of Java solutions: non-minimal (N=237) on 
the left and minimal (N=66) on the right   

Table 3 lists the descriptive statistics for C++ and Java solutions. 
The table numerically confirms what is hinted at in the heat maps: 
minimal solutions were less varied, with fewer first lines (F) and 
last lines (L). In minimal solutions, students acted on fewer lines 
out of order, e.g., among C++ solvers, non-zero non-diagonal cells 
(C) were fewer - 24.3% for minimal versus 88.1% for non-minimal 
C++ solutions. As could be expected, minimal solutions were more 
efficient with fewer redundant actions, e.g., among Java solvers, 
the sum of non-zero non-diagonal cells as a percentage of all the 
non-zero cells (V) was smaller too - 26% for minimal versus 68.8% 
for non-minimal Java solutions.  

Table 3. Descriptive statistics for if-else puzzle 1    

if-else  
puzzle 1 

C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 118 57 237 66 
First line (F) 10 2 12 6 
Last line (L) 13 4 14 7 

Cells (C)  88.1% 24.3% 96.7% 35.2% 
Value (V) 64.4% 15.4% 68.8% 26.0% 

Diagonal (µd)     0.61 0.81 0.63 0.7 
In addition, it is evident from Table 3 that C++ solutions were less 
varied, had fewer lines assembled out of order and were more effi-
cient than Java solutions. Paired samples t-test yielded a 
statistically significant difference between non-minimal C++ and 
Java solutions (p < 0.001), but not between minimal C++ and Java 
solutions.  

The second puzzle solved by students was on a program to read 
numerical grade and print the corresponding letter grade. The pro-
gram contained four levels of nesting of if-else statements. The 
puzzle contained 34 lines of code and 2 distracters.  
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The heat maps of C++ solutions are shown in Figure 5 – for non-
minimal solutions on the left and minimal solutions on the right. 
Once again, note that a majority of the students solved the puzzle 
in the order of the lines in the correct solution. This result is partic-
ularly counter-intuitive since the solution contained four levels of 
nesting of if-else statements. Multiple copies of the same line 
of code (e.g., else or braces) were treated as interchangeable by 
the tutor. Yet, assembling nested if-else statements in the order 
of the lines is no small feat. Balancing the braces of if-clause and 
else-clause is in itself a difficult task for novice programmers. Yet, 
a majority of the students chose to reassemble the program in the 
order in which the lines appear in the correct solution. The differ-
ence between non-minimal and minimal C++ solutions was 
statistically significant (p < 0.001). 

  

Figure 5. Heat Map of C++ solutions: non-minimal (N=89) on 
the left and minimal (N=42) on the right   

  

Figure 6. Heat Map of Java solutions: non-minimal (N=154) on 
the left and minimal (N=28) on the right   

Table 4. Descriptive statistics for if-else puzzle 2   

if-else 
puzzle 2 

C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 89 42 154 28 
First line (F) 9 2 9 4 
Last line (L) 18 12 29 10 

Cells (C)  67.4 19.0 78.2 17.4 
Value (V) 64.3 38.5 70.4 37.5 

Diagonal (µd) 0.57 0.62 0.46 0.62 
Similarly, the heat maps of Java solutions are shown in Figure 6. 
Once again, students attempted to solve the puzzle in the order of 
the lines in the correct solution, minimal solvers much more so. The 
difference between non-minimal and minimal Java solutions was 
statistically significant (p < 0.001).  

The descriptive statistics are shown in Table 4. The difference be-
tween C++ and Java was not statistically significant for non-
minimal or minimal solutions. 

5.2 while loop puzzles 
The first puzzle solved by students was on a program to read num-
bers till the same number appeared back to back. The program 
printed the first number to appear twice back to back. The puzzle 
contained 13 lines of code and 2 distracters.   

  

Figure 7. Heat Map of C++ solutions: non-minimal (N=48) on 
the left and minimal (N=44) on the right   

  

Figure 8. Heat Map of Java solutions: non-minimal (N=78) on 
the left and minimal (N=42) on the right   

Table 5. Descriptive Statistics for while puzzle 1   

while puzzle 1 C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 48 44 78 42 
First line (F) 5 2 5 2 
Last line (L) 8 5 6 6 

Cells (C) 73.1 32.4 80.8 29.1 
Value (V) 62.5 33.1 62.9 23.0 

Diagonal (µd) 0.56 0.6 0.62 0.7 
The heat maps of C++ and Java solutions are shown in Figures 7 
and 8 respectively. In both of the languages, students solved the 
puzzle in the correct order of lines, minimal solvers much more so. 
The difference between non-minimal and minimal solutions was 
statistically significant for both C++ (p < 0.001) and Java (p < 
0.001). The difference between non-minimal C++ and Java solu-
tions was statistically significant at p = 0.1 level, but not the 
difference between minimal C++ and Java solutions. Table 5 lists 
the descriptive statistics for all four cases.   

The second puzzle solved by the students was on a program to input 
the face of a card followed by cards in a deck. It prints the number 
of cards into the deck where it finds the first card, and prints the 
face of the subsequent card in the deck. The program contained two 
back-to-back while loops. The puzzle contained 22 lines of code 
and 2 distracters. 
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The tutors were set up to conduct a controlled experiment on 
whether using mnemonic variable names affected how efficiently 
students solved the puzzles [13]. Some schools received a version 
of the puzzle with mnemonic variable names whereas others re-
ceived a version with single-character variable names. Since the 
C++ sample size was larger for the single-character version of the 
puzzle and Java sample size was larger for the mnemonic version 
of the puzzle, we used data from those respective versions for com-
parison.  

  

Figure 9. Heat Map of C++ solutions of the single-character 
version of the puzzle: non-minimal (N=27) on the left and min-
imal (N=14) on the right   

The pattern of students solving puzzles in the correct order of lines 
is again evident from Figures 9 (of C++ solutions of single-charac-
ter version of the puzzle) and 10 (of Java solutions of mnemonic 
version of the puzzle). Quite counter-intuitively, minimal solvers 
rarely straggled back and forth between the two while loops, i.e., 
picked a line in the first loop followed by a line in the second loop 
or vice versa. Descriptive statistics are listed in Table 6. The differ-
ence between non-minimal and minimal solutions was statistically 
significant for both of the languages (p < 0.001).   

  

Figure 10. Heat Map of Java solutions of the mnemonic version 
of the puzzle: non-minimal (N=50) on the left and minimal 
(N=12) on the right   

The third puzzle solved by the students was on a program to repeat-
edly read a positive number, read additional numbers till its 
multiple is found, and print the number and its multiple. It did this 
until 0 or a negative value was input for the first number. The pro-
gram contained nested while loops. The puzzle contained 17 lines 
of code and 2 distracters. 

Figures 11 (C++) and 12 (Java) once again show that a majority of 
the students solved the puzzles in the correct order of the lines in 
the solution, even though the puzzle involved nested while loops. 
Nested while loops are particularly hard for novice programmers 

to read or write. So, it is counter-intuitive that students would as-
semble the lines in the order in which they appear in the correct 
solution. 

Table 6. Descriptive statistics for while puzzle 2   

while  
puzzle 2 

C++ - single-char 
(Minimal?) 

Java – mnemonic 
(Minimal?) 

No Yes No Yes 
Sample (N) 27 14 50 12 
First line (F) 5 3 7 2 
Last line (L) 5 5 7 3 

Cells (C)  55.9 11.3 66.4 9.9 
Value (V) 68.1 26.3 69.4 25.4 

Diagonal (µd) 0.58 0.7 0.55 0.71 
 

  

Figure 11. Heat Map of C++ solutions: non-minimal (N=44) on 
the left and minimal (N=12) on the right   

  

Figure 12. Heat Map of Java solutions: non-minimal (N=48) on 
the left and minimal (N=11) on the right   

The descriptive statistics are shown in Table 7. The difference be-
tween non-minimal and minimal solutions was statistically 
significant for both C++ and Java (p < 0.001). The difference be-
tween C++ and Java was not statistically significant in either case: 
non-minimal or minimal solutions. A confounding factor of this 
comparison is that the number of minimal solvers is small for both 
C++ and Java. 

Table 7. Descriptive statistics for while puzzle 3   

while puzzle 3 C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 44 12 48 11 
First line (F) 8 2 2 1 
Last line (L) 6 4 6 2 

Cells (C)  67.0 11.4 71.6 4.3 
Value (V) 67.8 27.9 66.7 7.7 
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while puzzle 3 C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Diagonal (µd) 0.58 0.66 0.57 0.85 

6. DISCUSSION 
We presented the results of analyzing the data of five different puz-
zles – involving a single if-else statement, nested if-else 
statements, a single while loop, multiple while loops and nested 
while loops. The answer to our research question RQ1 is that in 
every case, a majority of the students solved the puzzle in the order 
of the lines of code in the correct solution, as illustrated by the di-
agonals in heat maps. Students who solved the puzzles with the 
fewest actions did so by acting upon fewer lines out of order and 
less often.  

An earlier study had used think-aloud protocols to find that experts 
solved Parsons puzzles [11] by first assembling the majority of the 
control flow, followed by initialization of variables and handling of 
corner cases. This was referred to as top-down strategy. In a similar 
vein, when writing control statements, novices are advised to write 
the frame of the control statement first and then, proceed to fill in 
the details [26]. We had hoped to find that at least minimal solvers 
used such strategies.  

Instead, at each step, students seem to have asked themselves 
“where in the scrambled code can I find the next line of the solu-
tion?” instead of “where should the next scrambled line be placed 
in the solution?” or “how would I write this solution based on top-
down thinking and frame-first coding?” They assembled code in 
the order in which it appears in the program, not the order in which 
it is written by a programmer who follows top-down decomposition 
of the problem. This is the difference between the product and the 
process. The order in which code segments are written in a program 
is dictated by the process of programming and is not necessarily the 
order in which the code segments eventually appear in the program, 
i.e., the product of programming. The process is influenced by both 
semantics (top-down design [11]) and syntax (frame-first program-
ming [26]). Educators want novices to learn the process of 
programming, not the product, since the product, i.e., the program 
for a given problem is not unique. Researchers have found that the 
process used by novices for programming is a better predictor of 
their course grade than the actual programs written by them [29]. 
Besides, product follows process – the more disciplined the pro-
cess, the better the programming product. So, for a novice learning 
to write programs, the focus should be on the process of program-
ming and not the product. Unfortunately, in programming, one 
cannot learn the process by looking at the product – all the process 
information is lost by the time a program is completed [30]. So, the 
fact that a majority of the students solve Parsons puzzles by focus-
ing on the product rather than reconstructing the process of 
programming does not bode well for Parsons puzzles as a tool for 
learning programming. Parsons puzzle tutors designed to help stu-
dents learn programming must actively prompt and scaffold 
novices to reconstruct the process of programming when solving 
the puzzles.  

Yet, scores on Parsons puzzles were found to correlate with scores 
on code-writing exercises [2]. An explanation for this correlation is 
that just as they assemble Parsons puzzles, students write programs 
line by line in the order in which the lines appear in the program, 
i.e., their process mirrors the product. Writing a program line by 
line in this manner is difficult because it entails significant cogni-
tive load, e.g., when writing the statements in a nested loop, the 
programmer must actively keep track of the nested loop, the nesting 
loop and any variables previously declared in the program. Experts 

seldom write code in this manner, instead resorting to top-down and 
frame-first strategies. This naïve approach to writing code may ex-
plain why attrition in introductory programming courses remains 
unacceptably high [34, 35]. Configuring Parsons puzzle tutors to 
proactively enforce top-down and frame-first coding maybe one 
way to use Parsons puzzles to help students learn effective pro-
cesses of programming rather than developing their own ineffective 
processes. 

Earlier researchers have reported that C++ students used semantics 
more than Java students while solving Parsons puzzles [23] and that 
the learning curve associated with learning object-oriented pro-
graming in Java is steeper compared to learning imperative 
programming in C++ [22]. This may be why we found significant 
difference between non-minimal C++ and Java solutions on the 
first problems in both the tutors (our research question RQ2), In 
both the cases, Java students used more out-of-order and redundant 
actions to solve Parsons puzzles than C++ students. This finding 
would benefit from replication in a more controlled environment.   

One confounding factor of our study is that the algorithm was pro-
vided as comments in the solution panel S (Figure 1) for each 
program. Students may have followed these comments from top 
down to assemble the program from the first to the last line. Then 
again, the presence of comments should have freed students to as-
semble the different commented sections of the program in an 
opportunistic manner, not necessarily from the first to the last sec-
tion. Other researchers have noted that such subgoal labels make it 
easier for students to solve Parsons puzzles [20], but do not address 
the influence of comments on how students go about solving Par-
sons puzzles.  

In our analysis, we considered only line numbers in action se-
quence, the sequence of <line, action> pairs. We ignored the 
information about the action applied to each line, thereby losing 
some richness of data. For example, Mi,i represents back-to-back 
actions applied to line i. These could be actions that cancel each 
other out, such as deleting a line followed by undeleting it.  In such 
a case, the two actions could be ignored. Considering the nature of 
action while creating Markov transition matrix may lead to better 
results. 

In our analysis, we considered only complete and correct solutions. 
Analyzing incomplete and incorrect solutions may yield patterns in 
puzzle-solving behavior that unearth common misconceptions 
among programming students. 

We presented Markov matrices as a technique for finding patterns 
in Parsons puzzle solutions and used heat maps to visualize the re-
sults. An added benefit of using Markov matrix is that we can use 
higher order matrices (obtained by multiplying a Markov matrix by 
itself) to answer questions such as how quickly after assembling an 
open brace do students get around to assembling its matching clos-
ing brace in a program, a question of interest in frame-first [26] 
coding. 

Knowing how students solve Parsons puzzles can help us under-
stand how they can be improved for that purpose. We hope our 
discussion in this section contributes towards these efforts. We plan 
to continue to collect data from additional tutors and analyze the 
problem-solving patterns used by students in those tutors to see if 
the same patterns are repeated.  
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