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ABSTRACT
Detailed learning objectives foster an effective and equitable
learning environment by clarifying what instructors expect
students to learn, rather than requiring students to use prior
knowledge to infer these expectations. When questions are
labeled with relevant learning goals, students understand
which skills are tested by those questions. Labeling also
helps instructors provide personalized feedback based on
the learning objectives each student struggles to master.
However, developing detailed learning objectives is time-
consuming, making many instructors unable to pursue it.
Labeling course questions with learning objectives can be
even more time-intensive. To address this challenge, we de-
velop a benchmark for automatically labeling questions with
learning objectives. The benchmark comprises 4,875 ques-
tions and 1,267 expert-verified learning objectives from col-
lege physics and chemistry textbooks. This dataset provides
a large library of learning objectives, and, to the best of our
knowledge, is the first benchmark to measure performance
on labeling questions with learning objectives. We use meta-
learning methods to train classifiers and test them against
our benchmark in a few-shot classification setting. These
classifiers achieve acceptable performance on a test set with
previously unseen questions (AUC 0.84), as well as a course
with previously unseen questions and unseen learning ob-
jectives (AUC 0.84). Our work facilitates labeling questions
with learning objectives to help instructors provide better
feedback and create equitable learning environments1.

∗Equal contribution.
1Repository: https://github.com/AmirZur/smartstem-ai

Figure 1: Deliberate practice framework adapted from [6].
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1. INTRODUCTION
Ericsson and colleagues argue that instructors can maxi-
mize their students’ learning and improvement over time
by facilitating deliberate practice [6]. To facilitate delib-
erate practice, instructors should break targeted skills into
separate subskills, and design learning activities to practice
each subskill in a way that takes students’ prior knowledge
into account. Importantly, students should receive “immedi-
ate informative feedback” about their performance on these
tasks. Afterwards, students should be given the opportu-
nity to improve their performance, whether by revising their
work or by applying what they learned to a similar task.
Our version of the deliberate practice framework is shown
in Figure 1 [16].As shown by Glaser and Chi, breaking down
larger skills into smaller subskills can also facilitate develop-
ment of mental schema to organize domain knowledge, a key
characteristic of expertise [4]. Deliberate practice provides a
useful theoretical framework for understanding the benefits
of detailed learning objectives and labeling course materials
with these objectives.
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Implementing deliberate practice in a classroom environ-
ment requires providing effective feedback. Ramaprasad ar-
gues that true feedback entails clearly articulating a goal,
providing information about the gap between current per-
formance and this goal, and ensuring that this information
is used to bring current performance closer to the goal [19].
Ruiz-Primo and colleagues apply these criteria in their study
of formative assessment [20]. Ruiz-Primo et al. argue that
instructors should address three questions when teaching:
“Where are we going?”, “Where are we now?”, and “How
will we get there?”. Completing the “Where are we going?”
step involves writing learning objectives and clarifying what
is considered evidence of achieving these learning objectives.
Detailed learning objectives therefore provide a clear goal to
measure student performance against. The “Where are we
now?” step involves assessment, which provides a measure
of students’ current and prior knowledge. If assessments
are intentionally designed around relevant learning objec-
tives, and questions are labeled with the learning objectives
they assess, this clarifies the gap between students’ perfor-
mance and the goals defined by the learning objectives. The
“How will we get there?” step involves instructors tailoring
their instructional practices to meet students’ specific needs,
which can include reinforcing concepts that a student may
be struggling with and allowing students to revise their work
[20, 24]. Labeling questions with learning objectives allows
instructors to analyze the specific areas where each student
needs help, and more effectively tailor instruction to the
needs of their students. Finally, exam questions labeled with
detailed learning objectives can particularly benefit students
with less prior preparation, since these students may be less
able to independently identify the skills tested by questions
[17, 21, 22].

However, developing detailed learning objectives is difficult
and time-consuming, which causes many educators to avoid
writing learning objectives altogether, or to write only a
few general learning objectives that do not communicate
the specific skills that they expect students to demonstrate.
Labeling questions with the relevant learning objectives is
even more challenging and time-intensive, making it harder
to provide effective feedback to students. To address such
challenges, this work uses data mining and AI techniques
to help instructors reap the benefits of learning objectives
to facilitate equitable learning outcomes. We develop a
benchmark for automatically labeling questions with learn-
ing objectives, using a custom dataset comprising a total
of 4,875 questions and 1,267 expert-verified learning objec-
tives drawn from four OpenStax college physics and chem-
istry textbooks, a widely-used college chemistry textbook,
and Stanford University’s general chemistry course materi-
als (hereafter, Chem 31A). This dataset provides educators
with a large library of learning objectives and questions,
and, to the best of our knowledge, is the first benchmark
to measure performance on labeling questions with detailed
learning objectives. We use our benchmark to train and
test three different types of classifiers: a multi-class multi-
label (MCML) classifier, a ProtoTransformer, and a classi-
fier adapted from GPT-3 embeddings. The ProtoTransform-
ers and GPT-3 classifiers perform few-shot classification, a
meta-learning task in which a classifier predicts the class of
an input out of previously unseen classes given a few example
items for each class (see Section 2.1 for more detail). Our re-

sults show that these few-shot classifiers achieve acceptable
performance on our held-out test set, which consists of pre-
viously unseen course questions (AUC 0.84). Furthermore,
the ProtoTransformer and GPT-3 classifiers generalize to a
held-out course, which consists of previously unseen course
questions and previously unseen learning objectives (AUC
0.84). Our work facilitates labeling questions with learning
objectives, which can help instructors to incorporate learn-
ing objectives into their courses, provide better feedback,
and create more equitable learning environments for stu-
dents.

2. RELATED WORKS
Although previous research has supported educators’ efforts
to generate and analyze learning objectives [3, 12, 18], there
has been limited research on facilitating the automatic la-
beling of questions with learning objectives. Some rele-
vant work has been done on automatic exam grading, which
can be viewed as labeling questions with rubric items [14,
30, 31]. Our work follows most closely the ProtoTrans-
former [31], which uses prototypical networks [25] to train
a transformer-based model [29] to automatically grade com-
puter science exams. In this section, we reintroduce the
problem of few-shot classification, expand on the Proto-
Transformer approach to this problem, and compare it with
two other classification methods: multiclass-multilabel (MCML)
classifiers and GPT-3 adapted as a few-shot classifier [2].

2.1 Few-Shot Classification
Few-shot classification is a meta-learning task in which, given
a few training examples of each class, a classifier must adapt
to predict new classes that were not previously seen in train-
ing [10, 11, 15, 25]. In our work, we formulate the task of la-
beling questions with learning objectives as a few-shot clas-
sification problem in which the classifier is trained to label
questions with learning objectives, and the set of learning
objectives and questions can vary from course to course.

In our learning setting, we consider a distribution D con-
sisting of task indicators, input examples, and output labels.
Formally, let (t, x, y) ∼ D be a task indicator, input exam-
ple, and label drawn from a distribution of meta-learning
tasks. We consider learning objectives t ∈ T to be task in-
dicators, and questions x ∈ X to be model inputs. The task
label, y ∈ Y = {0, 1}, is such that y = 1 if question x is la-
beled with learning objective t, and y = 0 otherwise. In this
work, our goal is to train a model fθ to accurately predict y
given question x and learning objective t.

To perform few-shot classification, we are given a support
set of k examples for each of the n prediction classes, S =
{(x1, y1), . . . , (xk×n, yk×n)}. This work considers binary
classification (n = 2), and so we interpret our support set as
follows: S contains k examples of questions that are labeled
with learning objective t (i.e., examples where y = 1), and
k examples of questions not labeled with learning objective
t (i.e., examples where y = 0). The goal of a few-shot clas-
sifier fθ is, given S and an unlabeled question x, to classify
whether or not it should be labeled with learning objective t.
Note that the classes predicted by a few-shot classifier may
not be the same between training time and inference time.
In fact, the classes differ with each task type. That is, for
the same input question x, the correct label may sometimes
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Figure 2: Example few-shot learning tasks in our setting, with
k = 2. Each task consists of a task indicator (learning objec-
tive) t, a support set S containing k negative examples of
questions (i.e., questions not labeled with learning objective
t) and k positive examples of questions (i.e., questions labeled
with learning objective t), an input question x, and a label y,
where y = 1 if x should be labeled with t, and 0 otherwise.

Figure 3: Visualization of prototypical networks adapted from
Snell et al., 2017 [25], with n = 2, k = 3. For each class (i.e.,
questions labeled with t and questions not labeled with t) we
are provided three examples of questions. The network fθ
maps each question to an embedding, and computes the pro-
totype pc of each class by averaging the class embeddings. A
new input question, x, is then classified by taking the closest
prototype to its embedding (in this figure, x is labeled 1).

be 0 and sometimes be 1, depending on the learning objec-
tive indicator t. Hence, a few-shot classifier must rely on the
support set S, which consists of example questions for each
class (i.e., examples of questions that should and shouldn’t
be labeled with t). As long as we can provide a support set
S, a few-shot classifier can classify new questions with new
learning objectives that do not appear during training. An
example of few-shot classification is provided in Figure 2.

2.2 Prototypical Networks
One method for few-shot learning classification is prototyp-
ical networks [25], which serves as the basis of the Proto-
Transformer and adapted GPT-3 classifiers [2, 31]. Proto-
typical networks embed inputs into vectors, such that similar
inputs are closer together within the network’s embedding
space. For each prediction class, prototypical networks cre-
ate a prototype embedding by taking the average embedding
of all support examples in that class. New inputs are then
classified by finding the closest class prototype within the
network’s embedding space.

Here we formalize the prototypical network algorithm. Given
a support set S and class label c, let Sc = {(xi, yi) ∈ S |
yi = c} be all examples of class c in S. For example, S0

contains all questions in the support set not labeled with
learning objective t. The prototype embedding of class c is
pc = 1

k

∑
xi∈Sc

fθ(xi). That is, the prototype of each class
represents the mean embedding of inputs with the same class
label. The prototypical network then predicts the label y of
an unseen question x by taking a softmax over the distance
of the model’s embedding of x, fθ(x), from each prototype
pc (see Equation 1). In our setting, this is equivalent to
asking, “Is the network’s embedding of our question closer
to the average embedding of questions labeled with learning
objective t or questions not labeled with t?”

p(y = c | x) =
exp(−dist(fθ(x), pc))∑
c′ exp(−dist(fθ(x), pc′))

(1)

The network is trained to minimize the negative log-probability
− log p(y = y | x) of the true class y. In our setting, dist is
the L2 distance function.

2.3 ProtoTransformer Classifier
The ProtoTransformer classifier is a prototypical network
with a transformers-based architecture [31]. One key feature
of the ProtoTransformer classifier is its ability to incorporate
textual information from the task indicator (i.e., learning
objective), which we expand upon in this section.

Prototypical networks generalize to previously unseen input
examples (i.e., course questions) and to previously unseen
task indicators (i.e., learning objectives). However, repre-
senting learning objectives as task indicators does not allow
our model to utilize textual information from the learning
objectives themselves. Note that as illustrated in Figure 3,
prototypical networks do not make use of the content of the
task indicator t – they only use the positive and negative
examples of the task – in order to classify a new input x.
The ProtoTransformer classifier addresses this problem by
incorporating information from the task indicator in its em-
bedding layer. The ProtoTransformer uses a separate em-
bedding function gϕ, a pre-trained transformers model [29]
with frozen parameters, to compute a vector representation
of the learning objective, and adds this vector representa-
tion to the beginning of its model embeddings. The result-
ing embedded representation (i.e., learning objective token
concatenated with question embedding) is passed into the
transformers architecture, so that the interaction between
the learning objective and question information can be used
to construct an output vector. That is, the ProtoTrans-
former treats a learning objective as a sort of “task token,”
which informs the model of the relation between the input
question and its learning objective. An example ProtoTrans-
former embedding layer is illustrated in Figure 4.

2.4 MCML Classifier
Another approach to labeling questions with learning ob-
jectives utilizes multi-class multi-label (MCML) classifiers
[28]. MCML classifiers, given an input question x, learn to
predict a binary vector y with an entry for each learning
objective t, such that the t-th entry of y is 1 for all learning
objectives that x should be labeled with, and 0 otherwise.
Although MCML classifiers are not few-shot learners, in that
they do not use the support set S in their predictions, they
contribute to a field of prior research on fine-tuning trans-
former classifiers [29]. In our setting, we fine-tune an MCML
model with a transformers-based architecture on a collected
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Figure 4: Figure adapted from Wu et al., 2021 [31], illustrat-
ing the embedding-space architecture used in our model in
order to incorporate textual information from the task indi-
cator (learning objective) t.

Table 1: Cross-comparison of classifiers used in this work to
label questions with learning objectives. Both ProtoTrans-
formers and GPT-3 perform few-shot classification, while
MCML does not. Although GPT-3 does not require any fine-
tuning or additional training, it is not freely accessible and
must be accessed through a monetized API.

Classifier Few-Shot Fine-tuned Free Access

ProtoTransformer ✓ ✓ ✓

MCML ✗ ✓ ✓

GPT-3 ✓ ✗ ✗

dataset of questions labeled with learning objectives. The
MCML model serves as our baseline, since it is not trained
by the meta-learning algorithm for prototypical networks.

2.5 GPT-3 Classifier
Recent research has investigated the potential of large lan-
guage models to perform few-shot classification without ad-
ditional training [1, 2]. In our work, we adapt a recent
large generative model, GPT-3 [2], as a prototypical net-
work. That is, when run on an input question x, the adapted
GPT-3 model output fGPT-3(x) is the activation of the last
hidden layer within the GPT-3 model. The final layer ac-
tivation constitutes a vector representation that is used to
compute the prototype embedding for each class within the
support set during few-shot classification. One advantage of
GPT-3 is that since it is a large pre-trained language model,
we expect its hidden layers to provide rich embeddings of
text across various domains, including our collected course
questions and learning objectives. Hence, GPT-3 does not
require any fine-tuning nor additional training in our set-
ting. On the other hand, GPT-3 is not publicly available,
and, as of time of writing, is only accessible through a mon-
etized API. This restriction does not apply to the Proto-
Transformer and MCML classifiers, and is further discussed
in Section 7.2.

In summary, we are not aware of prior research which has
focused on the task of labeling course questions with learn-
ing objectives. Nevertheless, recent research on ProtoTrans-
former, MCML classification, and large language models
such as GPT-3 provides avenues for developing models to
label questions with learning objectives from previously un-
seen courses. We summarize the key attributes of proto-
typical networks, MCML classifiers, and few-shot GPT-3 as
pertains to our work in Table 1.

3. METHODOLOGY

Our work introduces a benchmark for automatically labeling
questions with learning objectives, on which we analyze the
ProtoTransformer, MCML, and adapted GPT-3 classifiers.
In this section, we provide details on the benchmark data
collection process and the classifier training process.

3.1 Benchmark Creation
We collected 4,875 questions and 1,267 expert-verified learn-
ing objectives from four publicly available OpenStax text-
books (Chemistry 2e [8], University Physics I, II, and III
[13]), a commonly-used university chemistry textbook (Prin-
ciples of Chemistry 3rd edition [27]), and a Stanford Univer-
sity introductory chemistry course (Chem 31A). The ques-
tions from all OpenStax textbooks, as well as from the uni-
versity chemistry textbook, are labeled with the correspond-
ing list of learning objectives included in each textbook. To
collect data from Chem 31A, we worked with members of
the course teaching team to manually develop a list of 75
specific learning objectives for the course. For reliability, we
independently labeled 30 exam questions (30 percent of the
total dataset) and reached an agreement of 98 percent with
a Cronbach’s alpha score of 0.90, consistent with excellent
inter-rater reliability [26]. We then labeled 98 exam ques-
tions from the 2021 offering of the course, consisting of four
assessments, with the relevant learning objectives from our
list. After coding all 98 exam questions, we found that only
53 of our learning objectives were covered by these exam
questions. Although other repositories of learning objec-
tives are available [3, 12, 18], to the best of our knowledge
this is the first dataset to allow for training and benchmark-
ing machine learning models on the labeling of course ques-
tions with relevant learning objectives. Example data points
from our dataset can be found in Table 4, and are further
discussed in Section A in the Appendix.

3.2 Classifier Training
Our main contribution in this work, besides the creation
of the benchmark, is a collection of classifiers (ProtoTrans-
former, MCML, GPT-3), trained and tested on our bench-
mark for labeling questions with learning objectives. We
use a ProtoTransformer with a BERT architecture, keeping
the default settings from the original paper [29] (∼110M pa-
rameters). We train the ProtoTransformer with an Adam
optimizer [9] and a learning rate of 1 × 10−5 for 8 epochs
on our training dataset, which consists of ∼950 of k-shot
classification tasks. The k value during training is 5, al-
though we vary k during inference time. Our implemen-
tation of MCML is a BERT model (same hyperparameters
as the ProtoTransformer) fine-tuned on our training data.
We train the MCML classifier with an Adam optimizer and
a learning rate of 1 × 10−5 for 5 epochs on our training
dataset. Lastly, we adapt GPT-3 using the OpenAI curie
model [2] (∼6.7B parameters) as described in Section 2.5,
without additional training.

4. EXPERIMENTS
4.1 Experiment 1: Held-Out Test Set
We evaluate our model on a held-out test set, which consists
of previously unseen learning objectives. Although questions
were shared with the training set, the support set and query
set consist of previously unseen combinations of questions
and corresponding learning objectives, hence constituting
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a previously unseen task. In our benchmark test dataset,
positive examples (i.e., question-learning objective pairs in
which the question is labeled by that learning objective)
are balanced with negative examples (i.e., question-learning
objective pairs in which the question is not labeled by that
learning objective).

4.2 Experiment 2: Held-Out Course
Our second experiment considers using the trained classifiers
to automatically label questions with learning objectives on
a full course. We use a held-out course, Chem 31A, which
consists of 53 previously unseen learning objectives and 98
previously unseen questions. We note that the MCML clas-
sifier is inapplicable in this setting, since the learning objec-
tive class labels are unavailable to it during training. Hence,
we only compare the ProtoTransformer and GPT-3 classi-
fiers. Unlike the test set, our held-out course is unbalanced
with regards to positive and negative examples. A course
question in Chem 31A is labeled with one to eight learning
objectives of the total 53 available; therefore, our held-out
course data is skewed towards negative examples.

Due to the imbalance in our dataset and multiple learning
objective labels per question, we evaluate models with re-
spect to ROC-AUC and F1 scores in addition to accuracy
[7, 23]. The ROC-AUC metric considers a moving deci-
sion boundary, allowing us to better interpret the tradeoff
between precision, or the ability to predict a short list of
learning objectives that match the true learning objectives
per question (with the risk of excluding true learning objec-
tives), and recall, or the ability to predict all learning true
objectives per question (with the risk of providing a long
list containing unrelated learning objectives). Likewise, the
F1 score balances precision and recall in its computation,
accounting for class imbalances. We use the accuracy, AUC,
and F1 evaluation metrics in both the held-out test and
held-out course experiments.

4.3 Experiment 3: Recall Over Top-mmm
Due to the imbalanced nature of our held-out course dataset,
in which questions are labeled with one to three of 53 learn-
ing objectives, we expect our model to over-predict the list
of learning objectives with which to label a question (i.e.,
generate an overly-long list of candidate learning objectives
for a single question). Interestingly, error types in our set-
ting are imbalanced as well. A false positive (type I error)
in our setting occurs when our model labels a question with
an incorrect learning objective, meaning that an educator
would need to filter a longer list of predicted learning ob-
jectives in order to label a question. Meanwhile, a false
negative (type II error) occurs when our model fails to la-
bel a question with one of its correct learning objectives,
meaning that an educator would need to search through the
entire course list of learning objectives in order to find the
correct learning objective. As a result, false negative er-
rors would be far more time-consuming for an educator to
correct. Hence, our last experiment considers recall, which
measures a classifier’s protection against false negative er-
rors. We consider a graph of recall over top-m, where m
represents the number of positive labels that the classifier
assigns (i.e., the number of learning objectives labeled per
question), chosen by taking the m learning objectives with
the highest probability predicted by the classifier. A higher

Table 2: Comparison of classifier performances on held-out
test set. Highest scores are in bold.

k Classifier Accuracy AUC F1
0 MCML 0.52± .02 0.51± .00 0.34± .00

1
GPT-3 0.53± .02 0.55± .03 0.43± .02

ProtoTransformer 0.68± .01 0.79± .02 0.63± .02

2
GPT-3 0.53± .02 0.54± .03 0.43± .02

ProtoTransformer 0.74± .01 0.83± .02 0.71± .02

5
GPT-3 0.52± .02 0.53± .03 0.44± .02

ProtoTransformer 0.77± .010.77± .010.77± .01 0.84± .010.84± .010.84± .01 0.74± .010.74± .010.74± .01

m represents more post-processing on behalf of educators
(e.g., filtering from a list of five vs. ten predicted learning
objectives); meanwhile, a higher recall score indicates that a
greater percentage of true learning objectives are contained
in the list of m learning objectives.

5. RESULTS
Below we detail classifier performance across each of our
experiments. We also provide example classifier outputs in
Table 5, and a preliminary qualitative analysis of classifier
behavior in Section B in the Appendix.

5.1 Experiment 1: Held-Out Test Set
We report accuracy, ROC-AUC, and F1 scores on our held-
out test set for the ProtoTransformer, MCML, and GPT-3
classifiers, across varying values of k (see Table 2). Higher
values of k denote more examples provided to a few-shot
learner per classification (in our case, more examples of ques-
tions that are labeled with a certain learning objective), and
hence a greater manual effort to label questions with learning
objectives. Since the MCML model is not a few-shot classi-
fier, we treat it as a zero-shot classifier with k = 0. Both the
ProtoTransformer and GPT-3 classifiers significantly out-
perform the MCML classifier, with the ProtoTransformer
achieving the strongest performance at k = 5 (AUC of 0.84).

5.2 Experiment 2: Held-Out Course
We compare the ProtoTransformer and GPT-3 classifiers on
a held-out course, Chem 31A, which consists of previously
unseen questions and previously unseen learning objectives.
We report results across varying values of k, correspond-
ing to the number of example questions per learning objec-
tive that the classifier requires in order to label the remain-
ing course’s questions (see Table 3). The ProtoTransformer
model requires at least k = 1 example per learning objec-
tive. Meanwhile, GPT-3 can be used as a zero-shot learning
model, where each learning objective class is represented by
the GPT-3 embedding of the learning objective itself. In
this experiment, GPT-3 outperforms the ProtoTransformer
classifier, achieving an AUC of 0.80 on the k = 1 setting.

5.3 Experiment 3: Recall Over Top-mmm
Figure 5 illustrates the trade-off between m, the total num-
ber of learning objective labels that a model assigns to a sin-
gle input question, and the model’s recall. A larger m means
that an educator would need to filter between a longer list
of outputted learning objectives. Meanwhile, a larger recall
means that the list of outputted learning objectives contains
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Table 3: Comparison of classifier performances on held-out
course. Highest scores are in bold.

k Classifier Accuracy AUC F1
0 GPT-3 0.76± .02 0.66± .05 0.49± .02

1
GPT-3 0.63± .03 0.80± .040.80± .040.80± .04 0.46± .02

ProtoTransformer 0.47± .05 0.73± .04 0.36± .03

2
GPT-3 0.77± .03 0.75± .05 0.55± .03

ProtoTransformer 0.63± .02 0.74± .05 0.46± .02

5
GPT-3 0.84± .030.84± .030.84± .03 0.79± .05 0.61± .030.61± .030.61± .03

ProtoTransformer 0.66± .03 0.77± .04 0.48± .02

Figure 5: Model performance, measured as recall of true
learning objectives, over m, or the number of learning ob-
jectives predicted by the model.

a higher percent of the learning objectives that match the in-
put question. The plot below shows that at larger m values
and k = 5, the ProtoTransformer model achieves stronger
recall than GPT-3. Nevertheless, GPT-3 achieves higher re-
call at k = 1 and k = 5 when limited to lower m values
(between 8 and 12).

6. DISCUSSION
The main contribution of our work is a custom benchmark
and a collection of classifiers trained on our benchmark to fa-
cilitate the process of labeling questions with learning objec-
tives. Our classifiers generalize to a held-out course, Chem
31A, with previously unseen questions and learning objec-
tives. We therefore believe that these classifiers can be ap-
plied to other courses to help educators introduce learning
objectives in their classrooms.

Our experiments evaluate an MCML classifier and two few-
shot classifiers, the adapted GPT-3 and ProtoTransformer.
When benchmarked on our held-out test set, which con-
sists of previously unseen course questions and seen learning
objectives, the ProtoTransformer significantly outperforms
both the GPT-3 and MCML classifiers (AUC of 0.77, 0.52,
0.52, respectively). These results suggest that the Proto-
Transformer model generalizes to new few-shot classifica-
tion tasks, and is suitable for use in courses that share sim-
ilar learning objectives to our dataset (e.g. university-level

STEM courses). Meanwhile, the MCML classifier, without
the ability to perform few-shot classification, is not as suit-
able as the meta-learning approaches of the adapted GPT-3
and ProtoTransformer classifiers.

In the second experiment, we analyze classifier performance
on our held-out course, Chem 31A, with previously unseen
questions and learning objectives. The results of this exper-
iment demonstrate how few-shot classifiers could be used
to automatically label new questions with new learning ob-
jectives. Both the ProtoTransformer and GPT-3 classifiers
achieve acceptable performance on the k = 5 setting (AUC
0.77, 0.79, respectively), in which the instructor would need
to provide 5 examples of questions for each learning objec-
tive. Interestingly, the GPT-3 classifier tested on the k = 1
setting – requiring only one example question per learning
objective – achieves the strongest AUC score of 0.80. This is
a promising result which showcases the capability of GPT-
3 to perform few-shot classification without any additional
training. Therefore, the GPT-3 classifiers can be a better
choice for labeling questions with learning objectives of a
new course with unseen learning objectives and questions.

Our recall over top-m plot, seen in Figure 5, confirms the
strength of GPT-3 as a few-shot classifier. The ProtoTrans-
former achieves the strongest recall given a larger m value,
meaning that when allowed to tag a question with 20 learn-
ing objectives, the ProtoTransformer is the most likely model
to include the correct learning objectives within the list of
20 predictions. Nevertheless, the k = 5 GPT-3 classifier
achieves acceptable recall (0.63) at m = 10 , striking a bal-
ance between overly-long lists of learning objectives and the
retrieval of accurate learning objectives. We note that the
GPT-3 classifier in the k = 1 setting, which requires less
manual question labeling on behalf of an educator, achieves
an acceptable recall (0.69) at m = 12. Figure 5, then, il-
lustrates the power of the ProtoTransformer and adapted
GPT-3 classifiers to label previously unseen questions with
previously unseen learning objectives.

7. LIMITATIONS
7.1 Benchmark Limitations
While the results in this work suggest that our dataset of
questions labeled with relevant, specific learning objectives
is a reliable and useful benchmark, it is limited by the speci-
ficity of the OpenStax learning objectives and their corre-
sponding questions. An inspection of the OpenStax portion
of our benchmark, which constitutes the training dataset for
our models, reveals that a question is labeled by each of its
subchapter’s learning objectives, not all of which may be rel-
evant. This limitation also means that questions spanning
multiple concepts are only labeled with learning objectives
from a particular course unit. See Section A in the Appendix
for a detailed analysis of the OpenStax dataset.

The fact that OpenStax questions are not labeled with sub-
sidiary learning objectives from other sub-chapters while
Chem 31A questions are labeled with such subsidiary learn-
ing objectives may help explain why classifiers trained on
OpenStax questions perform better on the held-out course,
Chem 31A, than on the held-out OpenStax dataset (see Ta-
bles 2 and 3). Another potential explanation is that the
OpenStax dataset contains 1,267 learning objectives while
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the Chem 31A dataset contains 53 learning objectives, mean-
ing that the classifiers need to choose from fewer learning
objectives when labeling Chem 31A questions. The smaller
number of learning goals in Chem 31A is likely more rep-
resentative of a single course, rather than a textbook that
could be used to teach a series of courses. Therefore, the
OpenStax dataset could pose a more challenging labeling
task than the intended use case of assisting course instruc-
tors.

Another notable limitation is that we automatically col-
lected the OpenStax data using a custom web scraping pro-
gram (available on our GitHub repository), without any data
preprocessing such as removing special unicode characters or
addressing typos. While this limitation does not seem to pre-
vent our classifers from performing effectively on the Open-
Stax dataset, systematically correcting typos could improve
classifier performance and increase the dataset’s usefulness
to both instructors and researchers.

7.2 Classifier Limitations
Key differences between our ProtoTransformer and GPT-
3 models, beyond classification performance, include model
size and accessibility. Our trained ProtoTransformer model
is an order of magnitude smaller than the respective GPT-3
classifier (∼110M vs. ∼6.7B parameters), and is freely acces-
sible for usage and further training. As of time of writing,
GPT-3 is only accessible through a monetized API2, and,
partly due to its size, is not readily available for additional
training. Hence, we encourage further use and exploration
of the ProtoTransformer classifier.

At the same time, we acknowledge that although achiev-
ing an AUC score of 77% on a held-out course is promis-
ing, the ProtoTransformer classifier may not be accurate
enough for use in all introductory STEM courses. We hope
that future research using our benchmark will improve clas-
sifier accuracy, and potentially generalizability to different
course subjects. For immediate use in classroom settings,
we recommend that instructors investigate model outputs
carefully, and filter its predicted learning objectives down to
the ones most relevant to the question at hand. Instructors
can use Figure 5 to determine the number of learning objec-
tives that they would like to filter from (we recommend an m
between 12 and 16). Furthermore, future research could en-
semble multiple classifiers together (e.g. ProtoTransformer
at k = 5, GPT-3 at k = 1, and GPT-3 at k = 5) in order to
improve classifier accuracy [5].

Lastly, our preliminary qualitative analysis of example model
behavior (see Section B in the Appendix) suggests that the
performance of our few-shot classifiers is limited by the pro-
vided input. That is, access to high-quality support exam-
ples during inference time (i.e., questions that are already
labeled with learning objectives by the instructor) is essen-
tial for accurate prediction. Future work on decreasing k
while maintaining high accuracy, along with work on identi-
fying learning objectives that do not receive as much course
coverage, can significantly enhance the capabilities of our
classifiers.

2Information about the OpenAI API can be found here:
https://openai.com/blog/openai-api

8. FUTURE WORKS
Our results enable many exciting future works for educators
in chemistry, physics, and other STEM fields. By facili-
tating the process of labeling questions with learning objec-
tives, we aim to help educators introduce learning objectives
into their classrooms and label course materials with these
objectives, actions that support students towards mastery-
based learning approaches and promote equity [17]. Since
our classifiers can label new questions with existing learning
objectives and our dataset includes expert-verified learning
objectives from multiple fields, our classifiers can be used to
generate lists of detailed learning objectives for courses that
currently have none. Rather than designing learning objec-
tives from scratch, instructors could use our classifiers to la-
bel their existing course materials with the relevant learning
objectives from our dataset. The list of learning objectives
chosen by the classifiers can serve as a draft list of learn-
ing objectives for the course, which instructors can adapt to
fit their needs. To facilitate these applications, our research
team is currently developing an interactive web-based tool to
allow instructors to experiment with our trained classifiers.
This tool will allow instructors to automatically label their
own questions with learning objectives from our datasets, or
with other learning objectives that they provide. In addi-
tion, the tool will allow instructors to choose the value of hy-
perparameters such as m, the number of learning objectives
that they would like the model to recommend as potentially
relevant to each question, in order to best align with their
needs. Furthermore, the performance of GPT-3 in this work
as a prototypical neural network and as a zero-shot classifier
motivates further exploration of GPT-3 as a meta-learning
model, and its use within educational domains. Lastly, we
encourage data scientists and educators to use and expand
on our dataset of learning objectives, which we believe is the
first benchmark of its kind to label questions with learning
objectives.

9. CONCLUSIONS
Questions labeled with learning objectives can help students
use feedback to better navigate their course, particularly
benefiting students with less prior preparation. However,
the task of labeling questions with learning objectives is
time-consuming, making many instructors unable to pur-
sue it. In this paper, we introduce a benchmark and trained
classifiers for automatically labeling course questions with
learning objectives. We show that meta-learning classifiers
trained on our benchmark achieve acceptable performance
on a test set with previously unseen questions (AUC 0.84),
as well as a previously unseen course (AUC 0.84). We be-
lieve that our work, and future research in this realm, can
support educators by facilitating the process of developing
and utilizing learning objectives in their courses to create
more effective and equitable learning environments.
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APPENDIX
A. SAMPLE DATA
In this section we provide an overview of the OpenStax por-
tion of our benchmark. Table 4 provides example input
questions and their corresponding learning objective labels,
sampled from our OpenStax training dataset.

We note that all questions from each sub-chapter of a given
OpenStax textbook were labeled with every learning objec-
tive that the authors included for that subsection, rather
than each question being hand-labeled with unique learn-
ing objectives. For example, all questions from the Open-
Stax Chemistry 2e [8] sub-chapter “6.1 Solving Problems
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with Newton’s Laws” would be labeled with all five of the
learning objectives for this sub-chapter (see Table 4). This
simplifying assumption allowed us to create a much larger
dataset, including 4,875 labeled questions spanning 1,267
specific learning objectives from OpenStax university-level
science textbooks, than would have been possible had we
hand-labeled each question individually. While not every
question in each sub-chapter focuses on every learning ob-
jective for that sub-chapter, the key learning objectives for
each question are likely to be included in the learning objec-
tives for that question’s sub-chapter. Similarly, it is likely
that all of a sub-chapter’s learning objectives are relevant
in varying degrees to the questions from that sub-chapter,
so questions from the OpenStax portion of our dataset are
unlikely to be labeled with off-topic learning objectives.

The most significant limitation resulting from this simplify-
ing assumption is that questions in our OpenStax dataset
are never labeled with subsidiary learning objectives from
other sub-chapters. In theory, this could limit the useful-
ness of the OpenStax portion of our dataset in training clas-
sifiers to label questions that focus on integrating multiple
course topics. As shown by our experimental results (see
Table 3), classifiers trained on our OpenStax dataset were
able to perform effectively on our Chem 31A dataset, where
chemistry experts individually hand-labeled questions with
learning objectives. Additionally, many questions from the
Chem 31A dataset focus on integrating skills from multiple
course topics, particularly the longer free-response questions
and questions from the final exam. Our classifiers’ ability
to generalize to the Chem 31A dataset after being trained
on the OpenStax dataset suggests that the benefits of the
method we used to label the OpenStax questions, such as
enabling the creation of a much larger dataset for training,
outweigh the limitations mentioned above.

B. SAMPLE OUTPUTS
Table 5 presents the outputs of the ProtoTransformer clas-
sifier with k = 5 on a sample of questions from the held-out
Chem 31A course.

A brief inspection suggests that the ProtoTransformer clas-
sifier does not solely rely on semantic keywords. For exam-
ple, although the second question contains the phrase“vapor
pressure” multiple times, the top three classifier predictions
do not contain this phrase. Meanwhile, the first question
does not explicitly state the ideal gas law, PV = nRT ; how-
ever, the classifier infers the learning objective label.

Although a thorougher investigation is required to interpret
the ProtoTransformer classifier’s behavior, we hypothesize
that the classifier more accurately identifies core learning
objectives (e.g. “use the ideal gas law”, “interpret a phase
diagram”) which appear in many course questions, and less
accurately predicts learning objectives that are specific to a
sub-unit (e.g. “apply the concept of percent by mass”). This
is because few-shot classification requires access to high-
quality samples of related questions. Since the pool of ques-
tions related to the ideal gas law in Chem 31A is richer
than the pool of questions related to the concept of percent
by mass, the ProtoTransformer classifier is likely to achieve
higher accuracy on the former than on the latter.
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Table 4: Sample questions and their corresponding learning objective labels from the OpenStax training dataset.

Course
+ subchapter

Question Learning Objectives

University Physics I

6.1 Solving

Problems with

Newton’s Laws

A 30.0-kg girl in a swing is pushed to one side and held

at rest by a horizontal force F so that the swing ropes are

30.0° with respect to the vertical. (a) Calculate the

tension in each of the two ropes supporting the swing

under these conditions. (b) Calculate the magnitude of F

Apply problem-solving techniques to solve for quantities

in more complex systems of forces

Use concepts from kinematics to solve problems using

Newton’s laws of motion

Solve more complex equilibrium problems

Solve more complex acceleration problems

Apply calculus to more advanced dynamics problems

Chemistry 2e

4.3 Reaction

Stoichiometry

What mass of silver oxide, Ag2O, is required to produce

25.0 g of silver sulfadiazine, AgC10H9N4SO2, from the

reaction of silver oxide and sulfadiazine? 2 C10H10N4SO2

+ Ag2O → 2 AgC10H9N4SO2 + H2O

Explain the concept of stoichiometry as it pertains to

chemical reactions

Use balanced chemical equations to derive stoichiometric

factors relating amounts of reactants and products

Perform stoichiometric calculations involving mass, moles,

and solution molarity

Table 5: Presents the outputs of the ProtoTransformer classifier with k = 5, run on four sample questions from the Chem 31A
course. The top m = 3 learning objectives predicted by the classifier are shown for each question, in order of model confidence.
Correct predictions by the model are highlighted in green, while incorrect predictions are highlighted in red.

Question True Learning Objectives Predicted Learning Objectives
(m = 3)

A mixture of 20.0 g of Ne and 20.0 g Ar

have a total pressure of 1.60 atm and

temperature of 298K. What is the partial

pressure of Ar?

Apply the concept of percent by mass and

percent by volume when solving problems

Use gas laws with stoichiometry to analyze

chemical reactions of gasses

Use the ideal gas law (PV=nRT) to solve

problems

Use the ideal gas law (PV=nRT) to solve

problems

Write and balance chemical and net-ionic

equations

Decreasing the external pressure on a

liquid at constant temperature will do

which of the following:(a) Increase the

boiling point, but not affect the vapor

pressure(b) Decrease the boiling point, but

not affect the vapor pressure(c) Increase

the vapor pressure, therefore decreasing

the boiling point(d) Increase the amount of

heat required to boil a mole of the

liquid(e) Both B and D are true

Calculate how vapor pressure will change as

the pressure, volume, temperature, or

amount are varied

Calculate changes in energy, enthalpy, and

temperature that result from a chemical

reaction

Interpret a phase diagram to determine

what phase change may occur for a given

change in pressure or temperature

Interpret a phase diagram to determine

what phase change may occur for a given

change in pressure or temperature

Know the difference between systems and

surroundings

At a constant external pressure, if work

was done by the system on the

surroundings, would you expect ∆E for the

system to be greater than, less than or the

same as the ∆H° for the system?(a) ∆E for

the system would be greater than ∆H°(b)
∆E for the system would be less than

∆H°(c) ∆E for the system would the same

as ∆H°(d) It is impossible to determine

without knowing the magnitude of work

done.

Calculate the work done by or on a gas Calculate how vapor pressure will change as

the pressure, volume, temperature, or

amount are varied

Know the difference between systems and

surroundings

Use the ideal gas law (PV=nRT) to solve

problems

Determine the longest wavelength of light

capable of removing an electron from a

sample of potassium metal, if the binding

energy for an electron in K is 1.76 × 103

kJ/mol. (a) 147 nm (b) 68.0 nm (c) 113

nm (d) 885 nm (e) 387 nm

Know how the photoelectric effect can be

used to assess binding energy

Know how the photoelectric effect can be

used to assess binding energy

Use the relationship between the frequency

and wavelength and velocity (speed) of a

wave to calculate any one (frequency,

wavelength or velocity) given the other two

Use the relationship between the frequency

and wavelength and velocity (speed) of a

wave to calculate any one (frequency,

wavelength or velocity) given the other two

Explain how electronic structure gives rise

to periodic trends (i.e. recognizing

isoelectronic species)
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