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ABSTRACT
Understanding a student’s problem-solving strategy can have
a significant impact on effective math learning using Intel-
ligent Tutoring Systems (ITSs) and Adaptive Instructional
Systems (AISs). For instance, the ITS/AIS can better per-
sonalize itself to correct specific misconceptions that are in-
dicated by incorrect strategies, specific problems can be de-
signed to improve strategies and frustration can be mini-
mized by adapting to a student’s natural way of thinking
rather than trying to fit a standard strategy for all. While
it may be possible for human experts to identify strategies
manually in classroom settings with sufficient student in-
teraction, it is not possible to scale this up to big data.
Therefore, we leverage advances in Machine Learning and
AI methods to perform scalable strategy prediction that is
also fair to students at all skill levels. Specifically, we develop
an embedding called MVec where we learn a representation
based on the mastery of students. We then cluster these
embeddings with a non-parametric clustering method where
we progressively learn clusters such that we group together
instances that have approximately symmetrical strategies.
The strategy prediction model is trained on instances sam-
pled from these clusters. This ensures that we train the
model over diverse strategies and also that strategies from a
particular group do not bias the DNN model, thus allowing it
to optimize its parameters over all groups. Using real world
large-scale student interaction datasets from MATHia, we
implement our approach using transformers and Node2Vec
for learning the mastery embeddings and LSTMs for pre-
dicting strategies. We show that our approach can scale up
to achieve high accuracy by training on a small sample of
a large dataset and also has predictive equality, i.e., it can
predict strategies equally well for learners at diverse skill
levels.
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1. INTRODUCTION
The recent pandemic has spurred a remarkable growth in vir-
tual learning and with it, the necessity to develop learning
technologies that are effective even in the absence of face-to-
face instruction. To this end, Intelligent Tutoring Systems
(ITSs) [25] and more broadly Adaptive Instructional systems
(AISs) will play a key role in education since they can scale
up personalized instruction to large and diverse student pop-
ulations. However, to adapt to a student, an AIS should be
able to understand the student’s thinking process which can
be challenging. For instance, if we consider math learning,
students can solve the same problem using several different
approaches or strategies. Understanding these strategies can
help an ITS/AIS adapt more effectively [22]. For example,
the type of strategy can reveal the expertise/knowledge of
a student in a topic, incorrect strategies that indicate mis-
conceptions can be corrected by the ITS, the student can be
trained to change strategy based on the problem context,
and students may be less frustrated if the ITS guides them
towards strategies that are more naturally aligned to their
thinking.

In math problem solving, a strategy is a sequence of ac-
tions/steps that the student performs to solve a problem. An
example of 3 different strategies is shown in Fig. 1. Human
tutors can recognize different strategies followed by students
and utilize these in one-on-one instruction. For instance, if
a student is a visual learner, then they can teach the stu-
dent to solve problems through visual aids, or if the student
prefers an analytical approach to solve the same problem,
then they can modify their teaching accordingly. However,
adapting this approach for ITSs is challenging, particularly
since identifying problem-solving strategies through compu-
tational methods is a complex problem. Specifically, there
may be several strategies that are similar/symmetric with-
out being completely identical. An example is illustrated in
Fig. 1 to show similar and dissimilar strategies. As shown
here, 2 of the 3 strategies are not exactly identical but im-
plement the same idea and are thus symmetrical. The third
strategy is quite different and asymmetrical to the first two
strategies. Further, there may be several strategies that may
not be conventional approaches to problem-solving but are
indicative of unique ways in which students think about
problems. Thus, if we identify a new strategy based on
matching them with a set of previously known strategies,
this approach may not be very effective when we want to
scale up to big educational data. While there have been
several approaches to detect strategies including using model
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tracing [4] or sequence mining [34] methods, newer advances
in deep neural networks (DNNs) can learn much more com-
plex representations from large-scale data. Thus, leveraging
such DNNs, we predict novel strategies more effectively.

Our goal in this paper is to develop a scalable and equitable
model to predict strategies in math learning. Specifically,
though DNN models are highly effective, they may tend to
produce biased results. For instance, since most DNNs have
a loss function that optimizes the overall loss, depending on
the data distribution used during training, their results may
be unfair to some sub-groups in the data. In our context,
we want to avoid the model being unfairly biased where it
can only identify strategies for certain student sub-groups.
Specifically, we want to avoid disparate mistreatment [35]
where the model accuracy is significantly different for dif-
ferent types of learners. In particular, learners may have
disparity in their mastery or skill level which will influence
their choice of strategy for a problem. For example, in Fig. 1,
the third strategy shown in the figure is more sophisticated
than the other two and the student who applies this strat-
egy is likely to have greater mastery in the topic. Therefore,
we want to ensure that our model can predict strategies
equally well for learners at all skill levels. To do this, we use
a sampling approach, where instead of training the DNN
over the full dataset (which may contain biases), we mod-
ify the underlying data distribution. Specifically, we sam-
ple the data such that sub-groups in the data are equally
well-represented. Thus, when the DNN is trained over these
samples instead of the full dataset, the DNN is forced to op-
timize its loss over all sub-groups. In general, sampling is a
well-known approach used to scale up complex DNNs while
training the model from large datasets [6]. Further, it has
been shown that in some cases using too much data can lead
to poor generalization [17]. In our case, a naive sampling ap-
proach where we sample students uniformly at random and
train over strategies used by the sampled students will cer-
tainly be biased towards the skill level of the majority group
and does not account for inequalities in skill levels. There-
fore, here, we develop an iterative non-parametric cluster-
ing method where we cluster the data into groups where
each group corresponds to strategies corresponding to simi-
lar skills levels. Further, since strategies themselves are hard
to compare exactly, we develop an approach where we use
approximate symmetries to group strategies. We then train
a DNN to predict a strategy by sampling from these diverse
groups.

We implement our approach using the DP-Means Hierarchi-
cal Dirichlet Process framework [9] to jointly cluster students
and problems. Specifically, we project students (and prob-
lems) into an embedding space that we term MVec (Mastery
Vectorization). To do this, we represent relationships be-
tween symbolic objects (students, problems, and concepts
used in strategy) as a graphical structure. We then learn
dense vectors using an embedding approach called Node2Vec
[5] that assigns similar embeddings to nodes that have sim-
ilar neighborhoods. We add mastery over concepts used in
the strategy as weights in the graph estimated from a trans-
former model with attentions [31]. Thus, students with mas-
tery over similar concepts in their strategies are assigned
similar embeddings. We optimize the clusters incrementally
where in each step, we adaptively change a penalty param-

eter based on the symmetries encoded by the clusters in
the previous step. To quantify approximate symmetries, we
develop a strategy alignment procedure with positional en-
codings [28]. Once the clusters converge, we sample training
instances from the clusters and train a Long Short Term
Memory (LSTM) model that predicts strategies.

We evaluate our approach on two datasets from MATHia,
a commercial AIS widely used for math learning in schools.
The data is available through the PSLC datashop [30]. The
datasets are both large datasets that consist of millions of
data instances (an instance is a student-problem pair and
has multiple interactions in the dataset). Our results con-
firm that using our approach, we can sample a substantially
smaller set of instances from the big dataset which we can
use to train the strategy prediction model efficiently and
achieve high accuracy in strategy prediction for students at
diverse levels of mastery.

2. BACKGROUND
2.1 Related Work
Ritter et al. [22] provide a comprehensive survey on different
approaches used to identify student strategies. Well-known
approaches include the use of model tracing-based meth-
ods [4] to identify strategies. In such cases, strategies may
be pre-specified and the tutor can recognize correct and in-
correct strategies. Model-tracing-based methods have also
been adapted to recognize new strategies [21]. Sequence
learning approaches have been used in Open-Ended Learn-
ing Environments such as Betty’s brain [11]. In [34], se-
quence pattern mining was applied to a MOOCs platform
to analyze activity sequences of learners. For conversational
tutors, natural language conversation interactions between
tutors and students were mapped into a taxonomy of higher-
level pedagogical concepts (e.g. scaffolding) by education
experts [15]. These concepts can also be seen as a form of
strategy and models have been developed to predict these
concepts from conversational tutors [13, 26, 32]. Shakya et
al. [27] developed an approach using importance sampling
to sample data instances to scale up training of a strat-
egy prediction model based on student interaction data from
Mathia. Specifically, they formulated a Neuro-Symbolic AI
model [33] where symbolic formulas were used in conjunc-
tion with a DNN to train the model. However, unlike our
approach [27] has two fundamental limitations in identify-
ing strategies. Particularly, their work does not use mastery
to diversify the training samples which is important for eq-
uitable training. Further, it does not learn approximately
symmetrical groups in a non-parametric manner. Thus,
it cannot effectively group together symmetrical strategies
which is necessary if we want to train the DNN from strate-
gies that represent all such groups.

Mastery-based learning was proposed in the classic work
by Bloom [1] to reduce achievement gaps between diverse
students. The famous Bloom 2-sigma rule illustrates the
benefits of such mastery-based learning. Ritter et al. [23]
more recently provides a detailed insight into how mastery
learning works in large-scale environments through their ex-
periments on the MATHia platform. Knowledge tracing [4]
is a well-known approach for inferring the knowledge state
of students over KCs which indicates the degree of mastery
over the KCs. More recently, deep knowledge tracing [20]
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Figure 1: Illustrating symmetries in strategies where similar colors indicate similar steps. Strategies 1 and 2 are similar in
that they use the elimination method but are not identical. Strategy 3 uses the matrix method which indicates a higher level
of sophistication in student mastery.

performed knowledge tracing using deep learning models.
There is also a significant momentum in tackling the Knowl-
edge Tracing problem in terms of graphs with the advent of
GNNs [12, 16]. In [29], node-level and graph-level GCNs
have been used to learn exercise-to-exercise and concept-to-
concept relational sub-graphs adding to the semantic value
of the representations. The natural phenomenon of learn-
ing, forgetting and dynamic changes to a student’s mastery
of knowledge concepts is formulated using gating-controlled
mechanisms in [36]. Learning the pre-requisite structure of
various associated skills has proven to be insightful to un-
derstand the problem-solving patterns [3, 19]. In [18], an
attention-based model was proposed to predict correct an-
swers but this was not used to predict strategies which is
the focus of our work.

Our approach to using symmetries to make deep learning
more scalable is inspired by the Geometric Deep Learning
(GDL) [2] framework. Specifically, GDL is a formal frame-
work used to understand the effectiveness of DNNs from the
perspective of symmetries. Here, we ground GDL in the
context of improving the effectiveness of DNNs in strategy
prediction from big, diverse data. More generally, being se-
lective about training instances has been shown to improve
scalability and generalization [17]. Deep importance sam-
pling [6] has the same underlying principle as our approach
in that they propose to sample data to scale up training.
However, unlike our approach they do not use symmetries
as a basis for efficiently and equitably training the model.
More recently, there has been work on improving fairness
in DNNs by adaptively selecting batches during training to
improve fairness measures such as minimizing gender dis-
parity [24]. In principle, our approach also tries to achieve
a similar goal in the context of educational data which is
more challenging given that both mastery and strategies are
complex variables.

2.2 Overview of Embedding Models
We use the well-known embedding model Node2Vec [5] to
learn our mastery-based embedding MVec. Node2Vec is an
embedding model for graphs and learns embeddings/dense
vectors for nodes in the graph base on local neighborhoods.
It is well-known to be a highly scalable approach for learn-
ing embeddings from large graphs. Node2Vec assigns similar
vector representations for nodes with similar neighborhoods.
Internally, it uses a skip-gram model called Word2Vec [14]
to learn these representations. Word2Vec, which was orig-
inally developed for word embeddings, is used to predict
neighboring nodes (also called context) from a given node.
An autoencoder architecture is used in Word2Vec and the
hidden layer learns the embedding. When neighborhoods
are similar for two nodes, since their contexts are similar,

the embedding learned for the two nodes will also be simi-
lar. Thus, Word2Vec projects the nodes into a continuous
embedding space where similar/symmetrical nodes lie close
to each other in the space.

2.3 DP-Means
DP-Means [10] is a non-parametric clustering algorithm that
does not require us to specify of the number of clusters.
The DP-Means Hard Gaussian Processes (HDP) clustering
learns a 2-step hierarchy where local clusters for multiple
datasets are learned at the lower level and these clusters are
associated with global clusters at the higher level. Let xij
denote the i-th instance of dataset j. The specific objective
function of HDP is as follows.

g∑

p=1

∑

xij∈ℓp
||xij − µp||22 + λℓk + λgg (1)

where ℓp is the p-th global cluster, k is the total number of
local clusters, µp is the center of the p-th global cluster, g
is the total number of global clusters, λℓ is a local penalty
that controls the formation of local clusters and λg is a global
penalty that controls the formation of global clusters.

We can minimize the objective in Eq. (1) HDP clustering as
follows. For each xij , we compute the distance to the current
global cluster means. If the minimal distance exceeds λℓ +
λg, we create a new local cluster for xij and a new global
cluster ℓg associating it with the newly created local cluster.
If the minimal distance is smaller than the sum of penalties,
then we find the closest global cluster for xij , say ℓg′ . We
then add xij to a local cluster that is already a part of
ℓg′ . If no such local clusters exist, we create a new one
for xij and associate it with ℓg′ . We then process the local
clusters as follows. Let c denote a local cluster. We compute
the global cluster whose mean is at a minimal distance, d′

from c. Let the sum of distances of the points in the local
cluster c to its cluster center be m. If d′ is greater than the
sum of the global cluster penalty and m, we create a new
global cluster and assign c to this new global cluster. This
algorithm converges to a locally optimal solution for Eq. (1)
as shown in [10].

2.4 Positional Encodings
Positional encodings [31] are used to encode positional in-
formation in a sequence using a continuous vector space.
Specifically, using sine and cosine functions that alternate
with frequencies, we can represent positions in a sequence
as follows. Let the position of the t-th item in the sequence
be encoded by the d dimensional vector p⃗t. The k-th dimen-
sion in p⃗t is computed as follows. If k is even, the value is
equal to the sinusoidal function sin(ωk.t) and if k is odd,
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the value is equal to the cosine function cos(ωk.t), where ωk
= 1/100002k/d. The frequencies of the sine and cosine func-
tions increase as k increases. Positional encodings are widely
used to augment the latent representation learned by a deep
network with positional information for sequence learning.

3. PROPOSED APPROACH
Since strategy is a generic term, we define it more precisely.
Specifically, we consider strategies in the context of struc-
tured interaction between students and tutors. In this case,
a student interacts with a tutor and solves a problem by
sequentially solving the steps that lead to the final solution.
Thus, we can think of a strategy as a sequence of actions the
student takes among possible sequences in an action-space.
Operationally, each step in the sequence is associated with
a specific knowledge component (KC) [8] which is defined by
domain experts and corresponds to the concept/knowledge
required to solve that step. Thus, in our discussion, a strat-
egy corresponds to a sequence of KCs. Further, note that a
step can be associated with multiple KCs in which case, we
can just unroll the step to ensure that each step has a single
KC. While it is possible to adapt our approach to perform
structure prediction where instead of a single KC, a step
can be mapped to a more complex structure (e.g. a graph),
we leave this for future work and focus on the case where a
single KC is mapped to a step in the strategy.

In this paper, the task that we want to solve is the follow-
ing. Given a student s and a problem p, we predict the
sequence of KCs that s will use to solve p. In particular, we
assume that we have a large dataset D where we refer to an
instance in the dataset as a pair (s, p) ∈ D. We want to sam-
ple instances from D to train a model that takes as input
(s, p) ∈ D and predicts strategies, i.e., variable-length se-
quences of KCs. We also assume that D contains correctness
associated with each step in the strategies. Specifically, for
an input (s, p), for each step that s takes to solve p, we know
if s was successful in solving that step correctly. We use
this information to determine the mastery of a student and
based on this, we develop an embedding (vector represen-
tation) for students and problems. We then jointly cluster
the embeddings using a non-parametric approach such that
instances where the strategies are approximately symmetric
are clustered together. Finally, we train an LSTM model
to predict strategies by sampling the clusters. In the sub-
sequent subsections, we first describe our embedding called
MVec. Next, we apply DP-Means HDP clustering [10] to
the embeddings while also incorporating approximate sym-
metries in strategies.

3.1 MVec Embeddings
To learn the MVec embedding, we use an approach that is
similar to Node2Vec [5]. Specifically, we construct a rela-
tional graph G = (V,E) as follows. Each student, problem,
and KC in the training data is represented as a node V ∈ V.
For every student S who uses KC K as a step to solve prob-
lem P , there exist 2 edges E,E′ ∈ E, where E connects
the node representing the student to the node represent-
ing the KC and E′ connects the node representing the KC
to the node representing the problem. An example graph
over 3 students, problems, and KCs is shown in Fig. 2. We
now sample paths in the graph and learn embeddings for

Figure 2: Illustrating a graph network of three students,
problems, and KCs. The figure on the right shows some of
the sampled random walks/paths.

these paths using word embedding models (Word2Vec) [14].
Specifically, the objective function is as follows.

max
f

∑

u∈V

logP (NQ(u)|f(u)) (2)

where f : u → Rd is the vector representation for nodes
u ∈ V, NQ(u) denotes the neighbors of u sampled from a
distribution Q. Similar to Node2Vec, we assume that there
is a factorized model that gives us a conditional likelihood
that is identical to the likelihood function used in Word2Vec.

P (ni|f(u)) =
exp(f(ni) · f(u))∑
v∈V exp(f(v) · f(u))

(3)

where ni is a neighbor of u. The conditional likelihood is
optimized by predicting neighbors of u using u as input in an
autoencoder neural network. The hidden layer learns similar
embeddings for nodes with symmetrical neighborhoods. To
do this, we generate walks on G as shown for the example
in Fig. 2, and in each walk, given a node, we predict neigh-
boring nodes similar to predicting neighboring words in sen-
tences. To generate these walks, a simple sampling strategy
Q is to randomly sample a neighbor for a node. However,
in our case, it turns out that each neighbor may have dif-
ferent importance when it comes to determining symmetry.
Specifically, if a student has achieved mastery in applying
a KC to a problem, then the corresponding edges should
be given greater importance when determining symmetry
between nodes in G. To do this, we train a Sequence-to-
Sequence attention model [31] from which we estimate the
sampling probabilities for edges in G.

The intuitive idea in quantifying mastery is illustrated in
Fig. 3 which shows the opportunities given to 3 students
to apply KCs in different problems. For each sequence of
KCs, we predict if the student got the step correct or wrong
on the first attempt (abbreviated as CFA for Correct First
Attempt) when given an opportunity to apply the KC. The
CFA values are performance indicators for the student, i.e., if
they have mastered a KC, then they are likely to get the step
correct in every opportunity they get to apply that KC. We
train a model to predict the CFA values (CFA = 1 indicates
a correct application of the KC) given the KCs used in a
problem. The predicted values from the model are shown
for each KC. The bar graphs show mastery over the KCs.
As seen here, the first student is inconsistent in applying
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Figure 3: An example to illustrate the use of attention for mastery estimation. The bar charts show for each KC, the attention
on a KC across steps that the student solves successfully (CFA=1) normalized by total attention for that KC. Larger values
indicate that the model believes the student understands the KC as the attention on it is large when CFA=1 and vice versa.

the skill, find the slope using points (labeled as E) since the
predictions for this oscillate between 0 and 1 whenever the
student tries to apply this KC. On the other hand, student 2
consistently applies the same skill correctly and therefore the
attention value is higher. We train the attention model from
opportunities based on curriculum structure. Specifically,
the curriculum consists of multiple units and each unit is
further subdivided into sections. For each student S, from
every unit that the student has completed say U , we select a
problem P from each section that the student has worked on
in U and train the model to predict the CFA values for each
KC used in P . We use the standard architecture described
in [31] for this model. Specifically, the input consists of the
KC sequence, and the encoder maps this sequence to a latent
representation and the decoder decodes the CFA values one
at a time. The attention is given by

Attention(γ, κ, η) = softmax

(
γκT√
dk

)
η (4)

where γ, κ, and η are the standard query, key, and value
matrices respectively as defined in [31], and dk is the dimen-
sionality of the embedding that represents the latent repre-
sentations. We use the encoder-decoder attention, i.e., the
query is the decoder representation and the key is the en-
coder representation. The attention weights are an estimate
of the alignment between encoded latent representations of
mastery with the decoded representation of correctly apply-
ing a skill at each step in the problem. The projection of
mastery over a KC K based on the attention vectors is es-
timated by the following equation.

α(S, P,K) =

∑
i

∑
v∈π(ai) v∑

i

∑
v∈π(ai) v +

∑
i

∑
v′∈π̄(ai) v

′ (5)

where π(·) extracts only those values in the input vector
where the corresponding output for that step is predicted
as 1, i.e., the model predicted that the student could solve
the step correctly. π̄(·) is the complement of π(·), i.e., it
extracts attention values corresponding to steps that were
predicted as mistakes made by the student and i sums up

all the instances where K is used.

We now sample paths from G using the factored distribu-
tion, i.e., Q(S) ∗ Q(K|S) ∗ Q(P |K,S), where Q(S) is the
probability of sampling a student node, Q(K|S) is the prob-
ability of sampling a KC K given student S and Q(P |K,S)
is the probability of sampling problem P given K,S. We
assume that Q(S) is a uniform distribution over students.
The conditional distributions are as follows.

Q(K|S) = 1/n
∑

p

α(S, P,K) (6)

Q(P |K,S) = α(S, P,K) (7)

where n is the number of opportunities given to student S to
apply KC K. The algorithm to generate MVec embeddings
is shown in Algorithm 1. As shown here, we sample a path in
the graph as follows. We first sample student S uniformly
at random, then we sample a KC K from Q(K|S) and a
problem from Q(P |K,S). We then predict each node in
the path using the neighboring nodes through a standard
Word2Vec model. The resulting embeddings are learned in
the hidden layer of the Word2Vec model. Note that for
scalability, we do not construct/store the full graph G at any
point. Instead, we only sample paths in an online manner
as shown in Algorithm 1.

3.2 Non-Parametric Clustering
We cluster the student and problem MVec embeddings jointly
through a non-parametric approach based on symmetries
defined as follows. For the dataset denoted by D, let S, P
denote the set of students and problems respectively in D.

Definition 1. A strategy-invariant partitioning w.r.t D
is a partitioning {Si}k1i=1 and {Pj}k2j=1 such that ∀i, j, if

S, S′ ∈ Si, P, P
′ ∈ Pj, S, S

′ follow equivalent strategies
for P, P ′ respectively.

where k1 and k2 are the number of partitions/clusters for
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Algorithm 1 Generate MVec embeddings

Input: Relation Graph: G = (V,E) with student, problem
and KCs as nodes, Embedding dimension: d, pre-trained
attention-model A

Output: Embeddings for each node v ∈ Rd
Initialize: set of walks, W = empty

1. for all t = 1 to T do
2. Sample a path < S,K,P > in G from Q(S)∗Q(K|S)∗

Q(P |K,S) using Eq. (6) and (7).
3. W = W ∪ < S,K,P >
4. end for
5. ve = word2vec(W, d)
6. return ve

Figure 4: HDP Clustering showing the local clusters (stu-
dent clusters and problem clusters) and the global clusters
that combine the student, problem clusters.

students and problems respectively. The benefit of strategy-
invariant partitioning is that we can scale up without sacri-
ficing accuracy by training a prediction model only on sam-
ples drawn from the partitions instead of the full training
data. Therefore, our task is to learn such partitioning ap-
proximately (since constraining the partitions to have exact
equivalence of strategies is a hard problem). Since it is hard
to know apriori how many partitions are needed, we for-
mulate this as a non-parametric clustering problem and use
DP-Means [10] to learn the clusters.

To formalize our approach, we begin with some notation.
Let S = {xi1}Ni=1 denote the set of students and P = {xj2}Mj=1

denote the set of problems. We refer to the student and
problem clusters as the local clusters. A global cluster com-
bines student and problem clusters as illustrated in Fig. 4.
We run the standard DP-Means HDP clustering algorithm
to optimize Eq. (1) and learn global clusters that combine
local clusters over S and P. Note that large values of the
global penalty λg result in a coarse clustering with few clus-
ters and small values of the penalty result in fine-grained
clusters. We adaptively change λg where we progressively
lower the penalty yielding a coarse-to-fine refinement of the
clusters. Specifically, suppose ℓ1 . . . ℓg are the current global
clusters, we compute a score S(ℓ1 . . . ℓg) based on the sym-
metry of strategies within each cluster and as long as the
score progressively improves across iterations, we reduce λg
to obtain finer-grained clusters.

3.3 Refining Clusters using Symmetry
Note that each global cluster implicitly represents a set of
strategies, i.e., a student-problem pair (s, p) within the clus-
ter corresponds to a strategy followed by s for problem p.

Algorithm 2 Coarse-to-Fine Refinement

Input: Student/Problem set: {xij}, Constant Penalty pa-
rameter: λℓ, iteration limit T

Output: Global strategy clustering {ℓ1, . . . , ℓg}
Initialize : Global cluster penalty λg = y (where y is a
large number), t = 0, cluster coherence coht−1 = 0.

1. repeat
2. t = t+ 1
3. Cluster with penalties λℓ, λg
4. Compute cluster coherence score, coht = S(ℓ1, . . . ℓg)
5. Reduce: λg = λg − ϵ
6. until coht > coht−1 or t > T

We want to quantify symmetry between strategies within a
cluster. A naive approach to compare two strategies is to
compute the mean of the MVec embeddings for the KCs used
in each strategy and then compute the distance between the
means. However, this assumes that all permutations of a
strategy are equivalent to each other which is problematic.
On the other hand, suppose we compare the KC embedding
at a step in one strategy with the KC embedding at the same
step in the other strategy, then we assume the strategies are
equivalent only if they are perfectly aligned with each other
which is also an over-simplification.

To match strategies approximately, we represent a strategy
using a combination of embeddings and positional encod-
ings [31], and approximately align two strategies to esti-
mate the symmetry between them. A KC K in the strategy
is represented by its positional embedding K⃗ = K⃗e + K⃗p

where K⃗e is the MVec embedding for K and K⃗p is the posi-
tional encoding for K in the strategy. To compute symme-
try between strategies, we compute an alignment between
their positional embeddings. Alignment is a fundamental
problem in domains such as Bioinformatics where a classi-
cal approach that is often used is the Smith and Waterman
algorithm (SW) [28]. The idea is to perform local search to
compute the best possible alignment between two sequences.
SW requires a similarity function which in our case is the
similarity between two KCs and we set this to be s(K,K′)

= K⃗⊤K⃗′, i.e., the cosine similarity between the positional
embeddings of K and K′. Further, SW also requires a gap
penalty which refers to the cost of leaving a gap in the align-
ment. In our case, we set the gap penalty to 0 since we want
symmetry between strategies to be invariant to gaps. That
is, if two strategies are symmetric, adding extra steps in the
strategies is acceptable. SW iteratively computes a scoring
matrix based on local alignments. The worst-case complex-
ity to compute the scoring matrix that gives us scores for
the best alignment is equal to O(m ∗ n) where m and n are
lengths of the strategies.

Note that in our case, we are interested in quantifying sym-
metry between strategies based on the alignment. Specifi-
cally, let K and K′ be two strategies of lengths n and m re-
spectively. SW gives us an alignment between K and K′ de-
noted by L(K,K′). The alignment consists of the pairs KCs
from K and K′ respectively that have been matched/aligned
or a gap, i.e., a KC from K could not be aligned with any KC
from K′. We compute the symmetry score between K and
K′ as r(K,K′) = 1

max(n,m)

∑
(K,K′)∈L(K,K′) (K⃗⊤K⃗′), where
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(K,K′) ∈ L(K,K′) are aligned KCs and K⃗⊤K⃗′ is their co-
sine similarity. We see that 0 ≤ r(K,K′) ≤ 1. Based on
this, we estimate symmetry in the clustering as follows.

S(ℓ1, . . . , ℓg) =
1

g

g∑

p=1

Zp
∑

K,K′∈T (ℓp)

r(K,K′) (8)

T (ℓp) is a set of all strategies in ℓp and Zp = 2
|T (ℓp)|(|T (ℓp)|−1)

is the normalization term. Thus, a larger value of S(ℓ1, . . . , ℓg)
implies that the clustering corresponding to ℓ1, . . . , ℓg has a
greater degree of symmetry in strategies. Using this score,
we refine the clustering by adapting the global penalty. Specif-
ically, we reduce the global penalty λg by a constant ϵ as
long as the symmetry score decreases across iterations or
for a fixed number of iterations. Algorithm 2 summarizes
the coarse-to-fine refinement.

3.4 Training the Model
We use an LSTM architecture similar to [27] to predict
strategies. Specifically, the model is a one-to-many LSTM
that takes student, problem vectors as input and generates a
sequence of KCs as output. To train this model, we sample
instances from the converged global clusters, and for each
sampled student-problem pair (s, p), the LSTM input is the
concatenation of MVec embeddings of s and p. The output
corresponds to the sequence of KCs in the strategy used by
s for p, each of which is encoded as a one-hot vector. To
handle variable-length strategies, a special stop symbol is
used to denote the end of a sequence. The entire model is
trained using the standard categorical cross-entropy loss.

4. EXPERIMENTS
Our goal is to answer the following questions through our
evaluation. i) what is the accuracy of our approach in pre-
dicting strategies? ii) how does our approach scale-up? iii)
what is the influence of mastery in predicting strategies ac-
curately? and iv) is there a disparity in the accuracy of
prediction for different skill-based sub-groups in the data?

4.1 Dataset
The data we use in this work is large-scale real-world ed-
ucation data recorded with real students using MATHia.
MATHia is an online math learning program for middle
school students that is popularly used across several schools.
We used two datasets provided by MATHia for evaluating
our proposed approach, Bridge-to-Algebra 2008-09 (BA08)
and Carnegie Learning MATHia 2019-20 (CL19). Both of
these datasets contain recorded interactions between the stu-
dent and the computer tutor while the student attempts to
solve a problem on the platform. Each recorded interaction
consists of the log of the student’s action toward solving
the problem, for example, the knowledge component used,
if hints were needed and if the step was completed correctly.
BA08 is an older dataset that consists about 20 million in-
teractions for about 6000 students and 52k unique algebra
problems. This dataset contains about 1.6 million data in-
stances. It is important to note that we consider a data
instance as a student-problem pair, so one data instance
consolidates all the interactions/steps for one student on a
specific problem. CL19 is a more recent and larger dataset
containing about 47 million interactions for 5000 students
and about 32k unique math problems. It has about 1.9

Table 1: Main parameters for the models.

Transformer-based model LSTM-based strategy model

Dimension → 512 Latent Dimension → 200
Number of layers → 6 Epochs → 60
Number of heads → 8 Batch Size → 30

Dimensions of key, value and query → 64 Adam Optimizer with Learning rate 0.01
Max Sequence Length → 150 Dropout → 0.1

Dropout → 0.1
Weight Sharing → False

million data instances. Both datasets are publicly available
through the PSLC datashop [30].

4.2 Experimental Setup
To train the attention model, we used the transformer im-
plementation in [31]. For the strategy prediction, we used
a one-to-many LSTM [27] where the input is the student
and problem embedding, and the output is the sequence of
KCs. The parameters for the two models are shown in Ta-
ble 1. We used the standard parameters for the transformer
model and retained the same parameters as in [27] for the
LSTM model for an unbiased comparison. For generating
MVec embeddings, we used Gensim [14] with an embed-
ding dimension set to 300 (which is typically used). We
initialize the local cluster penalty λℓ = 7 and global cluster
penalty λg = 9 for Coarse-to-Fine refinement and reduce
the global penalty by ϵ = 1 (we discovered these to be the
best-performing hyper-parameters in experimentation). We
perform our experiments on a machine with 64 GB RAM, an
Nvidia Quadro 5000 GPU with 16 GB memory, and a CPU
with 8 cores. The code for our implementation is available
here 1.

4.3 Comparison to Baselines
We compared our approach with the following methods.
The first one is a specialized approach proposed in Shakya
et. al. [27] (CS) for the same datasets where an LSTM
is trained using importance sampling. However, this sam-
pling does not incorporate mastery or approximate symme-
tries to find diverse training instances. We also applied a
more general importance sampling approach that is said to
be applicable for any DNN model training proposed in [7]
(IS) using their publicly available implementation. However,
IS failed to output any results for datasets of our size and
therefore we do not show it in our result graphs. This in-
dicates that general-purpose methods do not scale up for
our datasets. We also developed a stratified sampler (GS
for group sampling) where the distribution is only propor-
tional to the number of problems solved by a student, i.e.,
we sample more instances from students that have data as-
sociated with them. The last baseline is a naive Random
Sampler (RS) used as a validation check where we sample
students and problems uniformly at random. We refer to
our approach as Attention Sampling (AS). In our evalua-
tion, for each approach, we enforce a limit on the number of
training instances and measure test accuracy based on the
model trained with this limit. This is similar to a measure
of the effective model complexity [17] which is the number
of training samples to achieve close to zero error. We re-
port the average accuracy of predicted KCs based on three
training runs.

1https://github.com/anupshakya07/attn-scaling
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Figure 5: Illustrating Scalability vs Accuracy. (a), (b) show test accuracy for strategy prediction for varying training datasize
limits. (c), (d) show accuracy (strategy prediction) for different training time limits.

4.4 Results and Discussion
4.4.1 Accuracy

The strategy prediction accuracy results for BA08 and CL19

are shown in Fig. 5 (a) and (b). As shown in Fig. 5 (a),
for BA08, in our approach (AS), it takes less than 1% of
the entire data (of BA08 containing 1.6 million instances) to
obtain test accuracy that is greater than 80%. CS is the next
best performer but is consistently below AS for all training
sizes. GS performs significantly worse which illustrates that
symmetries are more complex and a simple grouping based
on problems/students is insufficient. The poor performance
of RS validates that the problem of choosing the correct
samples is a challenging one. As seen in Fig. 5 (b), for
a considerably larger dataset CL19, we can observe similar
performance as in BA08. AS remains the best performer and
here CS is less stable since we see a performance drop as
we increase the limit on training samples. This suggests
that CS may not be able to capture all symmetries and thus
may produce a more biased training sample set. The results
for GS and RS are similar to those observed in BA08. As
mentioned before, IS failed to produce any results.

4.4.2 Scalability
Fig. 5 (c) and (d) show the training time required to obtain a
specific accuracy for BA08 and CL19 respectively. Even with
the extra processing that is needed to compute the mastery-
based embeddings and the non-parametric clustering, AS re-
quires the shortest training time to achieve an accuracy that
is higher than the other approaches. This illustrates the sig-
nificance of leveraging symmetries in the data to train the

Table 2: Ablation study with NS (No symmetries used), SS
(Symmetries without using mastery) and MS (Adding the
mastery model to better identify symmetries). Results are
shown for 2 datasets with different sample sizes. Accuracy
results in %.

Expts.
BA08 CL19

40k 100k 150k 40k 80k 100k
NS 60.05 71.14 74.58 74.81 75.4 75.8
SS 80.98 82.3 82.65 81.6 83.2 83.8

SS + MS 86.02 86.21 86.53 84.74 85.8 85.9

model. As mentioned before, the full data is infeasible to
train and when attempting to use the full data, the model
did not converge for both datasets even after several days of
training time using our experimental setup. As seen in our
results, for CL19, the training time is larger since it takes
longer to compute the groups using non-parametric cluster-
ing due to the much larger size of the dataset. However,
considering that CL19 is significantly larger than BA08, we
see that AS could still scale up to this dataset quite eas-
ily while IS which is a state-of-the-art sampling method for
DNN training failed to train the model.

4.4.3 Ablation Study
Table 2 shows the results of our ablation study. We add
each component to our overall approach and observe the
test accuracy as we vary the sample size in the training
data. Specifically, the first case (NS) uses no symmetries,
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Figure 6: T-SNE visualization of strategy clusters for CL19. The color-coded plots show the 2D representation of the different
strategy clusters for (a) Embeddings that do not use mastery (b) MVec embeddings. The strategy representations are extracted
from the final hidden layer of the LSTM model and converted to 2D representation using T-SNE. (c) shows accuracy for
different groups of students (based on their performance) for CL19. The x-axis denotes different ranges of %s, where a range
a− b denotes that students in this group got > a and < b steps correct in their first attempt. The y-axis shows accuracy over
the groups. (d) shows the performance of the model on different groups based on the average variance of the strategies in the
sections for CL19. Variance is computed using edit distance as the metric of similarity between strategies.

Figure 7: An example from the dataset CL19 illustrating coarse-to-fine refinement of clusters. Strategies are shown by paths
connecting KCs. C1 and C2 are the coarse clusters which get refined into strategy invariant clusters C1′, C2′, C3′ and C4′.
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Table 3: Different strategies used by the students for different problems in the same section for CL19 dataset. The model is
able to predict accurately as student adapt their strategies.

Student Problem Name Predicted Strategy Actual Strategy

linear inequalities
numberline 5

represent open point on numberline-1 represent open point on numberline-1
represent ray on numberline-1 represent ray on numberline-1
represent inequality in symbolic problem-1 represent inequality in symbolic problem-1
identify when finished with numberline-1 identify when finished with numberline-1
identify invisible non-inflection point is in solutionset-1 identify invisible non-inflection point is in solutionset-1
identify invisible non-inflection point is not in solutionset-1 identify invisible non-inflection point is not in solutionset-1
identify visible non-inflection point is not in solutionset-1 identify visible non-inflection point is not in solutionset-1

linear inequalities
numberline 9

write simple inequality in verbal problem-1 write simple inequality in verbal problem-1
represent closedpoint on numberline-1 represent closedpoint on numberline-1
represent ray on numberline-1 represent ray on numberline-1
identify when finished with numberline-1 identify when finished with numberline-1
identify visible non-inflection point is not in solution set-1 identify visible non-inflection point is not in solution set-1
identify invisible non-inflection point is not in solution set-1 identify invisible non-inflection point is not in solution set-1
identify inflection point in solution set-1 identify inflection point in solution set-1

identify invisible non-inflection point is not in solution set-1

S1

identify inflection point in solution set-1

ratio proportion
prop1 4

enter part in proportion with variable-1 enter part in proportion with variable-1
enter given total in proportion-1 enter given total in proportion-1
enter numerator of given rate in proportion-1 enter denominator of given rate in proportion-1
enter denominator of given rate in proportion-1 enter numerator of given rate in proportion-1

enter proportion label in numerator-1 enter proportion label in numerator-1
enter proportion label in denominator-1 enter proportion label in denominator-1
calculate part in proportion with fractions-1 calculate part in proportion with fractions-1
enter numerator of form of 1-1 enter denominator of form of 1-1
enter denominator of form of 1-1 enter numerator of form of 1-1

enter calculated value of rate-1 enter calculated value of rate-1

ratio proportion
prop1 5

enter proportion label in numerator-1 enter proportion label in numerator-1
enter proportion label in denominator-1 enter proportion label in denominator-1
enter given total in proportion-1 enter given total in proportion-1
enter numerator of given unit rate in proportion-1 enter numerator of given unit rate in proportion-1
enter denominator of given unit rate in proportion-1 enter denominator of given unit rate in proportion-1
calculate part in proportion with fractions-1 calculate part in proportion with fractions-1

S2

enter calculated value of rate-1 enter calculated value of rate-1

i.e., the clustering is performed randomly. Next, we cluster
based on embeddings without using the mastery, i.e., when
we generate the embeddings for MVec, we do not use the
attention model and simply use triplets (S, P,K), where S
is a student, P is a problem and K is a KC used by S for P
as input to Word2Vec and generate embeddings. Thus, we
use symmetries in strategy without utilizing mastery when
we generate the clusters. We show this as Strategy Symme-
try (SS) in the table. Finally, we add mastery to generate
embeddings denoted by SS + MS and as shown, this im-
proves the generalization performance for all sample-sizes
thus, illustrating that utilizing mastery to learn embeddings
plays a significant role in improving accuracy in predicting
strategies.

4.4.4 Visualizing Clusters
We used T-SNE to visualize the clusters of strategies. For
this, we pick 100 student-problem pairs sampled from 10
clusters. We then perform strategy prediction for these and
visualize the hidden-layer representation of the LSTM in
the T-SNE plot. We compare this for MVec embeddings as
well as embeddings that are learned without using mastery.
As shown in Fig. 6 (a) and (b), when we use MVec, the
LSTM hidden-layer representation of strategies has better
separation. This indicates that we learn better grouping of
strategies using MVec embeddings.

4.4.5 Fairness
We evaluate if our approach results in disparate mistreat-
ment. Specifically, this means that the model should not
have significantly different accuracy for different sensitive

sub-groups in the data. In our case, the sensitive sub-groups
correspond to students at different skill levels. That is, we
want to predict the strategies equally well for all students.
To do this, we conducted an experiment where we divide
the test data into 6 performance groups. The performance
groups are based on the % of problem steps the students
solve correctly on their first attempt. The performance
groups include students who scored in the following ranges
≤ 30%, 30− 50%, 50− 70%, 70− 90%, ≥ 90%. To measure
disparate mistreatment, we compare the average accuracy of
strategies predicted for each of these groups. For a student
S in performance group G, we predict the strategies for all
problems attempted by S in the test set and measure the
average accuracy µS . We then compute the accuracy over a
performance group as 1/|G|∑S∈G µS . Fig. 6(c) shows our
results for the variants, NS, SS and SS+MS (identical to
those used in the ablation study) for CL19 (we show results
on this since this is the larger and more recent dataset).
As seen from our results, SS+MS yields the best accuracy
over each performance group. Further, the accuracy over
the poorest and the best performers is comparable to each
other and not significantly different. Thus, there is no dis-
parate mistreatment of any performance group shown by our
approach.

Next, we want to verify if there is disparate mistreatment
when we consider sub-groups that have rare strategies. To
measure this, we divided the problem sections in the test set
into groups based on the variance among strategies for prob-
lems in those sections. Specifically, to perform worst-case
analysis, we used the edit distance to measure the variance
of strategies within problems in a section. That is, if a pair
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of problems vary in two out of 10 steps, the edit distance is
0.2. We computed the variance in edit distances over all the
problems in a section. We then obtained the sub-groups at
5 different thresholds of variance. Thus, groups that have
large variance include more rare strategies, while groups that
have smaller variance have fewer rare strategies. For all the
problems in each of these sub-groups, we computed the av-
erage accuracy in strategy prediction. Fig.6(d) shows our
accuracy results over all the sub-groups. As seen here, we
have no disparate mistreatment for any of the sub-groups.
Thus, we show that even in cases where rare strategies are
used by students, our approach predicts strategies with an
accuracy that is very similar to cases where common strate-
gies are used.

4.4.6 Example Cases
Table 3 illustrates examples corresponding to two different
students where we predict strategies for two problems taken
from the same section in each case. Note that the students
make modifications to their strategy to suit the problem
context as seen in the examples, though the overall strategies
are similar since the problems are from the same section.
The model is able to successfully adapt and predict these
strategy changes quite accurately. In the case of student
S1, for the second problem, the model predicted most of the
steps except that the student had some redundant steps at
the end which were not predicted by the model. In the case
of S2, for problem 1, the predicted strategy interchanged the
order of a couple of steps that clearly does not significantly
alter the underlying strategy.

We illustrate some examples of coarse-to-fine refinement in
Fig. 7. Specifically, we show examples from two types of
problems, Fractions and Ratio, Proportions. The clusters
indicate the students, problems, and strategies followed by
students. In cluster C1, even though there are two different
strategies, they are symmetric to each other and therefore,
in a subsequent iteration of refinement, C1′ is the same as
C1. On the other hand, C2 consists of 4 strategies, 2 of
these are expert-level strategies and the other two are sim-
pler but differing strategies. Upon refinement of C2, we get
C2′ which intuitively represents the expert students and
C3′, C4′ which represents students using simpler yet differ-
ent strategies. Thus, the coarse-to-fine refinement results in
invariant strategies within each cluster.

5. CONCLUSION
We presented a scalable and equitable framework for pre-
dicting math problem-solving strategies used by students.
Since students with differing skill levels use significantly
different strategies, to predict these, we need to train a
model over diverse training instances. Identifying such in-
stances is a challenging problem in big data. Particularly,
identifying strategies which are approximately symmetrical
to each other is a hard task. Here, we developed a clus-
tering approach to discover diverse groups where instances
within each group have approximately symmetrical strate-
gies. Specifically, we learned an embedding MVec using a
combination of Node2Vec where we learned representations
for relationships in the data encoded as a graph and a trans-
former model that predicts mastery. Specifically, similar
attentions in the transformer model over steps in the strat-
egy indicated similar mastery in solving a problem, which

we used to learn the Node2Vec representation. We then
clustered the MVec embeddings with a non-parametric al-
gorithm called DP-Means by iteratively refining the clusters
based on the level of symmetry encoded within the clus-
ters. By sampling from clusters, we were able to train an
LSTM model to predict strategies using small but highly
informative instances that were representative of strategies
in the full data. Further, by sampling from clusters, we
ensured that the LSTM model did not optimize its param-
eters for any specific group, but instead generalized over all
groups in the data, thus making the model capable of iden-
tifying strategies from diverse groups. Experiments on two
large-scale datasets demonstrated our accuracy in predicting
strategies with a small fraction of the dataset and further,
our predictions were fair across students at different levels
of skill.

As part of future work, we hope to extend this model to
non-structured interactions (e.g. conversations). Further,
we also plan to explore more complex mappings of strate-
gies where each step can be represented by a structure (e.g.
graph, table, etc.) and developing structured prediction
models from such mappings. We also propose to utilize this
approach in instructional design where we can select prob-
lems to solve based on a student’s predicted strategy and
also to develop interventions in ITSs based on misconcep-
tions identified in predicted strategies.
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