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ABSTRACT
Spatial analytics receive increased attention in educational
data mining. A critical issue in stop detection (i.e., the au-
tomatic extraction of timestamped and located stops in the
movement of individuals) is a lack of validation of stop ac-
curacy to represent phenomena of interest. Next to a radius
that an actor does not exceed for a certain duration to es-
tablish a stop, this study presents a reproducible procedure
to optimize a range parameter for K-12 classrooms where
students sitting within a certain vicinity of an inferred stop
are tagged as being visited. This extension is motivated by
adapting parameters to infer teacher visits (i.e., on-task and
off-task conversations between the teacher and one or more
students) in an intelligent tutoring system classroom with a
dense layout. We evaluate the accuracy of our algorithm and
highlight a tradeoff between precision and recall in teacher
visit detection, which favors recall. We recommend that fu-
ture research adjust their parameter search based on stop
detection precision thresholds. This adjustment led to bet-
ter cross-validation accuracy than maximizing parameters
for an average of precision and recall (F1 = 0.18 compared
to 0.09). As stop sample size shrinks with higher precision
cutoffs, thresholds can be informed by ensuring sufficient
statistical power in offline analyses. We share avenues for
future research to refine our procedure further. Detecting
teacher visits may benefit from additional spatial features
(e.g., teacher movement trajectory) and can facilitate study-
ing the interplay of teacher behavior and student learning.
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stop detection, hyperparameters, optimization, spatial ana-
lytics, position mining, classroom analytics, position sensing

1. INTRODUCTION
The increasing accessibility and affordability of position sens-
ing devices have fostered the application of position analytics

in educational data mining [4, 18, 27, 28]. Features mined
from these novel data streams have various applications, in-
cluding healthcare worker training [3], the study of teaching
strategies [15], and instructor dashboards [4, 18].

One key feature derived from position data is teacher or
student stops in the classroom, extracted via decision rules
or algorithms for stop detection [16, 25, 26]. For our pur-
poses, we define stop detection as extracting timestamped
and located stops (i.e., pauses in movement) from raw data
that captures the movement of individuals in classrooms as
a time-series of x-y coordinates. Stop detection defines a
set of parameters that determine the presence of a stop or
interaction between two individuals. Typically, a radius pa-
rameter determines a range of motion the actor does not
exceed, and a duration parameter designates the minimal
amount of time the actor is required to stay in that range
of motion.

Stop detection has various nascent applications in educa-
tional data mining. Mart́ınez-Maldonado et al. [17] used
heatmaps to infer the distribution of teacher visits at dif-
ferent groups of students and inferred teacher strategies by
investigating sequences of teacher visits targets. Similarly,
An et al. [1] used dandelion diagrams (i.e., a triangular
“spotlight” shape) to visualize teachers’ spatial trajectory
for teacher reflection tools. Other studies highlighted the im-
portance of spatial teacher attention for learning. One study
related teacher-student interactions to improved learning and
engagement in a higher education physics lab [21].

With many of these applications emerging, a critical issue in
stop detection is a lack of validation of the accuracy of stops
to represent phenomena of interest (e.g., teacher-student in-
teractions). Past studies made ad hoc choices for parameters
used in stop detection without validating their choices of ra-
dius and duration parameters [16, 25, 26]. This is important
because a lack of validation in the detection of spatial fea-
tures can result in noisy variables that either do not relate to
learning outcomes of interest (e.g., learning gain differences
based on the frequency of teacher visits of students) or, in
the worst case, lead to a biased inference. Relatedly, param-
eter choices need to generalize to diverse classroom settings
and layouts adequately, given that the spatial movement of
teachers (and the resulting distance parameters during inter-
actions) likely vary across classroom settings and pedagogies
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[13]. For example, classrooms with technology-based learn-
ing have been reported to include spatial movements and
behaviors of teachers different from more traditional class-
room settings [11].

Taken together, applying prior stop detection procedures to
infer teacher visits at particular students in dense K-12 class-
rooms requires adjustments. The current study presents a
reproducible procedure to optimize stop detection param-
eters for K-12 classrooms. This extension is motivated by
adapting parameters to infer teacher visits to students work-
ing with an intelligent tutoring system. This study reports
initial baselines for detecting and validating inferred teacher
visits in K-12 classrooms. Our approach includes optimizing
stop detection parameters based on training data of field ob-
servations, drawing from studies outside of education that
used machine learning for stop detection from video motions
[9]. To achieve this, we extend an established stop detection
algorithm described in Mart́ınez-Maldonado et al. [16] to
account for dense classroom layouts. Finally, we contribute
guidelines regarding handling tradeoffs in teacher visit detec-
tion accuracy, namely accuracy and recall, concerning sam-
ple size. We share reproducible analysis code that includes
our stop detection algorithm and its parameter tuning, in-
cluding synthetic training data.1

2. RELATED WORK
2.1 Stop detection
One key application of stop detection in educational data
mining featured in this study is to map the stops of teachers
to visits of particular students in the classroom (referred to
as teacher visits). We survey prior research on teacher visits
and stop detection in educational data mining.

Teacher visits can relate to various constructs relevant to
teaching strategies. First, teacher visits can relate to help-
ing students. VanLehn et al. [23] developed a data-driven
classroom orchestration tool to recommend teacher visits
to students working with intelligent tutoring systems and
make visible the limited resources of teachers to visit all
students that would require help through qualitative cod-
ing of teacher-student interactions. Second, teacher visits
can also relate to teacher information seeking [22] and stu-
dent relationship building [12]. Given teachers’ time and
resource constraints to pay spatial attention to all students’
needs in the classroom, past work has argued that improved
learning through teacher-facing tools is partially due to im-
proved teacher sensing and attention allocation decisions in
the classroom [8]. In line with this reasoning, recent re-
search found student idleness decreased after teacher visits
when working with AI tutors [10].

Past methodological choices in stop detection algorithms
have been heuristic, ad hoc, and varied. This is important
as established machine learning techniques for stop detec-
tion are largely based on GPS data (cf. [19]) which do not
provide the spatial granularity necessary for stop detection
in classroom settings. Mart́ınez-Maldonado et al. [16] used a
distance from the teacher’s x-y coordinates of 1 m to detect
stops based on a heuristic of individuals’ reported personal
space during interpersonal interactions [20] and an ad hoc

1github.com/Sho-Shoo/stop-detection-optimization-edm23

duration of the proximity of 10 s. Similarly, Yan et al. [26]
classified teacher-student interactions by spatial proximity
of less than 1 m for longer than 10 s. Yan et al. [25] used
heuristics to determine distance thresholds between students
and teachers to detect social interactions based on [6]. The
distances were classified into intimate (0 – 0.46 m), personal
(0.46 – 1.22 m), social (1.22 – 2.10 m), and public (2.10 m
and above). Yan et al. [25] acknowledge that further valida-
tion work is desirable to assess social interactions through
triangulations with more data sources.

2.2 Applications of spatial analytics in educa-
tional data mining

We identify three common use cases of spatial analytics in
educational data mining. First, spatial analytics can be used
to derive features for learning outcome inference. Yan et al.
[28] used position data of healthcare students to assess tasks
and collaboration performance in simulation-based learning
and demonstrate the feasibility of using these analytics to
distinguish between different levels of student performance.
Yan et al. [26] used Markov chains of student interaction
sequences with student and teacher as well as individualized
studying primary school to model learning over eight weeks
and demonstrate the feasibility of these analytics to detect
low-progress students. Second, spatial analytics can guide
teacher reflection and strategy. Yan et al. [27] engineered
features from teacher position logs to encode proactive or
passive teacher interactions. They also demonstrate the fea-
sibility of linking these spatial analytics to different class-
room spaces relating to different pedagogies [13]. Third,
spatial analytics can inform instructor dashboards and in-
the-moment teaching support. Fernandez-Nieto et al. [4]
used epistemic network analysis to enact student movements
for instructors in nursing education. They find that these
enactments were consistently interpreted across multiple in-
structors. Similarly, Saquib et al. [18] demonstrate that
position sensors worn in students’ shoes in early-childhood
classrooms can help teachers better plan individualized cur-
riculums and identify student interaction needs.

2.3 The present study
Methodological choices in stop detection have mainly relied
on heuristics and ad hoc decisions. Given the increasing use
of stop detection and spatial analytics in educational data
mining, there is a need to adapt stop detection to differ-
ent classroom contexts concerning their size, spatial layout,
and teaching context. Addressing this gap, this study fol-
lows three steps. First, we describe an extended algorithm
for stop detection to infer teacher visits based on Mart́ınez-
Maldonado et al. [16] to account for dense classroom seating
layouts in which teacher visits can relate to multiple stu-
dents simultaneously. Second, we describe a reproducible
procedure to optimize the parameters of that stop detection
algorithm given human-coded ground-truth observations in
a K-12 classroom working with an intelligent tutoring sys-
tem. Third, we evaluate the accuracy of our algorithm given
different thresholds for the precision of stop detection and
discuss the challenges and affordances of our procedure con-
cerning research aims and future work.
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3. METHODS
3.1 Data
We collected training data for our stop detection algorithm
on eighty-five 7th graders and one teacher in a public school
in the United States, where we have obtained IRB (i.e.,
ethics board) approval for data collection. The data included
1) the teacher’s position in the classroom, 2) classroom ob-
servation in five distinct classes across three days, and 3)
student seating coordinates in the classroom, which were
constant throughout the study. Each class held one session
daily, and all sessions focused on algebraic equation solving.
Figure 1 is a visual of the data collection site.

During all classroom sessions, students worked with an AI
tutor, Lynnette [14, 24]. Lynnette is an intelligent tutoring
system specialized in equations solving practice for K-12.
During practice, the teacher moved around the classroom
to support students. According to our classroom observa-
tions, students sometimes raised their hands and proactively
asked for the teacher’s attention when Lynnette’s hints were
insufficient.

To gather teacher position data, we used Pozyx. Pozyx is
a positioning system that provides real-time location infor-
mation based on automated sensing. We placed six anchors
as a 2 x 3 matrix in the four borders of the classroom. All
timestamped position coordinates, recorded at a one-second
sampling rate, included X and Y coordinates in a 2D plane
representing the classroom. Tracking tags were used to mea-
sure the coordinates of all the major objects in the class-
room, including each student’s desk, teacher’s desk, black-
board, window, and door. These reference points were used
to track teacher positions concerning students and relevant
objects in the classroom.

Figure 1: Middle school classroom with desks and chairs

Following procedures described in Holstein et al. [7], one ob-
server took notes at the back of the classroom during data
collection. The observer recorded teacher actions, including
“monitoring class” and “helping student #1” and took notes
of students’ behaviors like “raising hand”. The observer also
noted which student a teacher interacted with. All obser-
vations were logged in real-time with time stamps using the

Table 1: Example data table for position data, observation
log, and Stop Detection Output, including timestamps (t) and
students (S).

Pozyx Observation Prediction
t X Y Visit Subject(s) Stop Inference
0 100 100 True S3 False NA
1 110 90 True S3 True S3, S1
2 200 250 False NA True S3, S1
3 1000 1000 True S1 False NA
4 1700 1500 False NA True S10

“Look Who’s Talking” software. Activities logged as on-task
and off-task conversations with students or groups of stu-
dents (referred to as teacher visits) served as training data
for stop detection.

3.2 Stop detection setup and algorithm
To generate accuracy measures for our stop detection algo-
rithm, we match human observations of the teacher visiting
particular student(s) to X-Y coordinates of teachers. These
timestamped observation logs of teacher visits to particu-
lar students(s) serve as ground-truth for algorithm train-
ing. We then create estimates of teacher visits based on
teacher X-Y coordinates and compare these to the ground-
truth stops. Notice that both observer-generated and stop
detection-generated teacher visits are accompanied by stu-
dent subject(s), which can relate to multiple students si-
multaneously. A preview of the data set for stop detection
algorithm optimization is in Table 1.

Mart́ınez-Maldonado et al. [16] proposed a stop detection
algorithm based on duration and radius. The algorithm
iterates through the teacher’s position coordinates. A stop
is established if the teacher’s X-Y coordinates are within a
circle defined by radius for a pre-defined time (duration).
Extending on this stop detection algorithm, we propose a
new method to identify the student(s) visited by the teacher
during a teacher’s stop. This extension is motivated by more
dense classroom layouts in K-12 classrooms (including the
classroom of our data collection), where students usually sit
in groups, and the teacher may stand close to and interact
with multiple students simultaneously. We define another
parameter called “range”. At the time of the stop, students
seated within a circle with radius r = range of the inferred
stop are added as subjects of that particular teacher visit.
Algorithm 1 describes the algorithm’s implementation.

Our implementation of stop detection via required proximity
over a minimal duration features a moving window bounded
by two timestamps, tl and tr. The two boundaries move
according to the following rules:

• If the coordinates within the time window are within a
certain radius distance relative to a point coordinate,
the right-side boundary tr will increase by one second;

• Otherwise, and if tr−tl ≥ duration, the interval [tl, tr]
will be denoted as a teacher visits; the visit’s corre-
sponding coordinate centroid will also be stored; and
tl will be updated to be tl ← tr;
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Data: Teacher position data: X-Y coordinates with
timestamp; given duration, radius, and range
parameters

Input: arr, result
Output: result
Result: Teacher Visit Intervals
tl ← 0;
stops← List();
while t < tfinal do

tr ← tl + 1;
while WithinRadius(position[tl,tr ], radius) do

tr + +;
end
if tr − tl < duration then

tl + +;
else

studSet = NearbyStuds((tl, tr), range);
stops.append((tl, tr, studSet));
tl ← tr;

end
return stops;
Algorithm 1: Stop detection algorithm proposed in this
study

• If tr − tl < duration, let tl increment by one second
and continue.

3.3 Cross-validation method
Cross-validation is employed to investigate the robustness
and generalizability of our stop detection algorithm. Since
the dataset contains five class periods (see Section 3.1), split-
ting the training data into five folds and by class period is
natural. There are two reasons behind this decision. First,
random student splits may cause data leakage, as the stop
detection error on students in the vicinity is expected to
be correlated. Second, creating folds based on class period
puts our algorithm to the test of accounting for differences
in teacher behavior across periods. For example, one of the
periods is an honors class, where students’ academic perfor-
mance is high.

Period-level cross-validation is conducted in five steps. First,
the dataset is split into five folds by class period. Second,
we define fold #n as including period #n’s data as test-
ing set and other periods’ data as training set. Third, a
full parameter sweep (see Section 4.1) is conducted on each
fold’s training data. Fourth, the best-performing parame-
ters is selected for each fold based on the evaluation metrics
described in the Evaluation Section. Fifth, the selected pa-
rameters are evaluated on each fold’s test set, and evaluation
metrics (precision, recall, and F1 score) are reported.

4. PROPOSED OPTIMIZATION PROCEDURE
To better quantify the values of the three parameters, duration,
radius, and range, in more diverse classroom layouts, we
present a novel parameter search algorithm based on grid
search to optimize the stop detection algorithm.

Grid search takes a pre-defined parameter search space and
evaluates each parameter candidate to find a global opti-
mum. The relatively small size of our position data (N =
19,073 recorded teacher position records) also enables us

to run a grid search within a reasonable time, not requir-
ing complex optimization procedures such as gradient de-
scent. We define the search space of the three parameters
via lower and upper bounds, including a step size. The step
size designates the value by which the lower bound is in-
cremented for trialing the next parameter value until the
upper bound is reached. The search bounds for range and
radius were based on estimations of the minimal and max-
imal distance between students observed in our classroom
layout. In addition, the minimal duration was based on the
coder’s experience of teacher movement in the classroom,
which would entail brief stops for spatial orientation of be-
low 3 s. In contrast, the maximum duration was based on
not exploring minimal durations three times as long as those
used in prior work (cf. [16]), which we deemed not mean-
ingful. Our search space was duration: [3, 30) where the
step size is three and the unit is second, radius: [200, 2000)
where the step size is 200 and the unit is millimeter, and
range: [100, 2000) where the step size is 200 and the unit is
millimeter.

To compare teacher visit detection accuracy across different
parameter combinations, we define three metrics for evalu-
ation: hits, misses, and false alarms. We further describe
these measures in the next section.

4.1 Evaluation
By treating observation logs as the ground truth, we intro-
duce a function, Evaluate, that outputs three metrics, hits,
misses, and false alarms, to describe the alignment between
these ground truth representations of teacher visits and the
inferred subjects of our stop detection algorithm.

Suppose an arbitrary teacher visit documented in the ob-
servation log is vi, and its corresponding timestamp is ti.
During vi, a set of student subjects, Si, were visited. Si is
the ground truth subject set corresponding to ground truth
visit vi. For each ground-truth observation, compute a time-
frame between time stamp [ti−5, ti+5], which is a 10-second
window. We are examining a time frame instead of a single
time point because classroom observations of teacher visits
include a natural degree of imprecision. The human coder
described their time stamp recording of teacher visits and
the time of the actual visit to differ by up to 10 s, the size
of or timeframe window. In other words, the observation
record may be entered a few seconds earlier or later than
the true starting time of an event, with ±5 seconds being a
reasonable estimate as reported by the observer. By filtering
variables posStops and inferredSubj with only entries
in time frame [ti − 5, ti + 5], we can obtain an inferred sub-
ject set Gi. We define hiti = |Si ∩ Gi|, missi = |Si \ Gi|,
and falseAlarmi = |Gi \ Si|.

A hit is an element Si and Gi have in common: a correctly
inferred student subject that was stopped at. Miss counts
the true subjects our stop detection fails to capture, while
false alarm keeps records of incorrect subjects tagged by stop
detection.

Recall all calculations are based on iterating through the
observation log while gathering algorithm-extracted teacher
visits within time frame

⋃
i[ti−5, ti+5] with i being in stop

index in the observation log. This does not account for in-
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correctly inferred teacher visits which were never gathered
within time frames. We call this collection of unchecked de-
tected stops V . Suppose an arbitrary visit in V is vj , and
its corresponding inferred subject set Gj . We can also treat
these inferences as false alarms: falseAlarmj = |Gj |. No-
tice this subscript j is different from the previous i. We call
these false alarm counts to be “outside” since they are out-
side the unionized time frames. Conversely, falseAlarmi

represents “inside” false alarms. We evaluate all algorithms
based on false alarms inside and outside designated time
frames. Still, we note that for some applications, an eval-
uation of inside false alarms only might be more desirable.
To evaluate algorithmic accuracy, we sum the total number
of hits, misses, and false alarms for a given parameter com-
bination. We introduce measures that combine these three
metrics for optimization, namely precision and recall, which
are analogous to precision and recall in machine learning
classification tasks:

recall =
hit

hit+miss
(1)

precision =
hit

hit+ falseAlarm
(2)

While precision designates the probability of an inferred
teacher visit to be correct according to observation logs, re-
call is the probability of any given observation log teacher
visit to be detected via stop detection. We select optimal
parameter combinations for stop detection on a global max-
imization of precision and recall by evaluating all parameter
combinations in a grid search based on our search space. For
larger data, less extensive optimization algorithms, such as
gradient descent, may be preferable.

The following algorithms (Algorithm 2) demonstrate how
the grid search is carried out together with Evaluate (Al-
gorithm 3) that implements the aforementioned set calcula-
tion:

Data: Teacher Position Data and Observation Logs
Result: Hits, Misses, and False Alarms for Each

Parameter Combination
for d in durationGrid do

for r in radiusGrid do
posStops← GetStops(teacherPos) ;
obsStops← GetStops(obsLog);
for rng in rangeGrid do

inferredSubj ← GetSubj(posStops, rng);
hit,miss, FA←
Evaluate(posStops, inferredSubj, obsLog);
SaveToFile(hit, miss, FA);

end

end

end
Algorithm 2: Parameter sweep algorithm

5. RESULTS
5.1 Parameter sweep results
We tune stop detection algorithm parameters with respect
to precision and recall. As a first step, to gauge the over-
all performance of our algorithm given different parameter

seenStops← List();
for obsStop in obsLog do

t← obsStop.time;
stops← posStop[t− 5, t+ 5];
seenStops.append(stops);
S ← SubjectOf(obsStop);
G← SubjectOf(stops);
hiti, missi, FAi ← SetOps(S,G);
hit,miss, FA← hit+ hiti,miss+missi, FA+FAi;

end
for stop in posStops and stop not in seenStops do

FAj+ = |SubjectOf(stop)|;
FA+ = FAj ;

end
return hit, miss, FA;

Algorithm 3: Evaluate function body

settings, we visualize precision and recall for all of our pa-
rameter combinations in Figure 2.

Based on Figure 2, we find that recall deteriorates faster
with increasing precision than precision deteriorates with
increasing recall. This means that improving precision in
our algorithm concerning our training data comes with a
relatively high recall cost.
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Figure 2: Scatter plot of precision and recall (inside and
outside) for all parameter combinations of our stop detec-
tion algorithm evaluated against ground-truth observations
of teacher visits, including a reference line with slope -1.

Based on this finding, we identify two ways of sampling an
optimal set of parameters for precision and recall. The first
set of parameters is derived from maximizing the average
of precision and recall (referred to as “absolute maximiza-
tion”). The resulting set of parameters is duration = 6,
radius = 1800, and range = 1900. The radius and range
are close to the upper bound of our search space. This may
be due to the relatively fast deterioration of recall over pre-
cision, overemphasizing recall when averaging precision and
recall, and leading to very liberal stop detection. Therefore,
we select the second set of parameters based on a minimally
required precision cutoff (referred to as “conditional maxi-
mization”). We set this cutoff to be precision > 0.2. This
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selection strategy’s resulting parameters are duration = 21,
radius = 600, and range = 700. Notice that the higher
the precision cutoff, the lower the number of detected stops
will be. Therefore, one way of resolving the precision-recall
tradeoff is to set the precision cutoff low enough to obtain
a sample size sufficiently large for a given study design. For
example, if the study design includes a two-sided t-test of
whether teacher visits are, on average, longer for low- than
high-prior knowledge students, a sufficiently large number of
stops assuming a power of 1−β = 0.8 and effect size d = 0.3
would be around N = 175 stops.

5.2 Parameter weights
We fit an ordinary least square (OLS) regression inferring
the average of precision and recall to approximate the rela-
tive feature importance of our three parameters (i.e., dura-
tion, radius, and range) on teacher visit detection accuracy.
To compare effect sizes, we Z-standardize all three parame-
ters to a mean of 0 and a standard deviation of 1. We report
the result of the regression in Table 2.

Table 2: OLS regression results of parameter weights on the
average of precision and recall of teacher visit detection.

Predictors β CI95% p
Intercept 0.25 0.24 – 0.25 <0.001
Duration -0.02 -0.03 – -0.02 <0.001
Radius 0.01 0.00 – 0.01 .003
Range 0.06 0.05 – 0.06 <0.001

R2
adjusted 42.0%

According to Table 2, while all three parameters had a sig-
nificant association with the average of precision and recall,
range had the largest standardized effect size (β = 0.06,
p < .001).

5.3 Cross-validation
Given the tradeoff between precision and recall described
in Section 5.1, we report cross-validation results broken out
by absolute and conditional maximization. Table 3 reports
the chosen parameters by fold compared to those chosen by
running parameter sweep on all position data.

Table 3: Parameters selected per CV fold.

Fold Maximization duration radius range

1
conditional 30 600 700

absolute 6 1800 1900

2
conditional 18 600 700

absolute 6 1800 1900

3
conditional 21 1200 700

absolute 6 1800 1900

4
conditional 18 600 700

absolute 6 1800 1900

5
conditional 21 600 700

absolute 6 1800 1900

all
conditional 21 600 700

absolute 6 1800 1900

The parameters chosen for each fold are comparable to the
optimal parameters when fitting parameters to the full train-
ing data set. Table 4 displays the means and standard devi-

ations of the three performance metrics (F1, precision, and
recall) across the five folds.

Table 4: CV evaluation metrics per fold.

Maximization Metric M SD

Absolute
F1 score 0.09 0.01
Precision 0.05 0.00

Recall 0.68 0.03

Conditional
F1 score 0.18 0.02
Precision 0.21 0.07

Recall 0.17 0.05

Conditional maximization yielded an average F1 score twice
as large as absolute maximization (0.18 compared to 0.09).
Moreover, absolute maximization corresponded to liberal
teacher visit detection (i.e., low precision at high recall),
while conditional maximization led to more balance between
precision and recall.

6. DISCUSSION AND CONCLUSIONS
Stop detection and spatial analytics receive increasing at-
tention in educational data mining. Yet, with past stop de-
tection parameter settings being based on heuristics, there
is a need to evaluate and optimize stop detection in diverse
classroom settings and layouts. In this study, we extended
a popular stop detection algorithm to detect teacher visits
to particular student(s) in a K-12 math classroom working
with intelligent tutoring systems. We introduced metrics to
evaluate the algorithm’s accuracy against ground truth hu-
man observations of teacher visits. Our three main findings
are as follows:

First, we find a large variability in stop detection accuracy
given different parameter choices. This is important as past
work has primarily relied on ad hoc or heuristic parameter
settings in stop detection [16, 25, 26]. As an implication
for research, spatial features other than inferred teacher vis-
its may afford similar validation work and adaptation to
diverse classroom contexts as presented in this study. Po-
tential outcomes of interest include the total time teachers
spent attending to different students, the average visit du-
ration, and the dispersion, or entropy, of visits to students
[15]. Our proposed optimization procedure may be readily
extended to infer these spatial features.

Second, we establish a benchmark for teacher visit detection
accuracy that future research may pick up. To improve ac-
curacy, we contribute a reproducible procedure to adapt our
algorithm to diverse classroom layouts and contexts. We
described strategies to weight precision and recall to derive
meaningful sets of teacher visits for research. Importantly,
our results indicate that setting a precision threshold during
parameter fitting yields superior cross-validation accuracy.
More generally, we find a precision-recall tradeoff in detect-
ing teacher visits that favors recall over precision, as pre-
cision came with a higher cost in the tradeoff. This might
be due to the nature of our data set, as our classroom lay-
out included dense groups of students compared to previous
studies using open learner spaces [16]. Teachers may have
interacted only with a subset of students sitting in a group,
leading to larger ranges for satisfactory recall at an excess
of false positives and diminishing precision. Coding teach-
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ers’ proximity to groups rather than teacher-student inter-
actions might be a more tractable prediction task based on
position coordinates alone in dense classroom layouts. For
the detection of teacher visits, the high cost of precision
in dense classrooms may result in lower statistical power
through smaller sample sizes of resulting visits as the number
of detected visits diminishes with increasing precision. Re-
searchers may adjust precision thresholds accordingly. We
note, however, that with lower precision, statistical associa-
tions might be less likely to be detected as the false positive
teacher visits introduce noise to features. Therefore, we rec-
ommend future research to estimate the expected number of
stops during classroom sessions ahead of the data collection
to plan sample sizes accordingly. Multiplying estimates of
the number of expected stops with stop detection precision
could yield an estimate for the number of detected stops for
power analyses.

Third, we find that range (i.e., the minimally required dis-
tance of students to the teacher during visits) had the largest
association with teacher visit detection accuracy. Notice
that range was the new parameter we defined to detect mul-
tiple students in proximity to the teacher during stops to
account for dense classroom layouts. This suggests that
the largest improvement to our algorithm might be achieved
through optimizing the decision rules for tagging groups of
students in proximity to the teacher. One such improvement
might be approximating the teacher’s orientation during the
visit based on past movement trajectory. Future work may
test whether excluding students not faced by the teacher
(e.g., seated behind their back) from stop detection improves
accuracy. Finally, further improvements of the range pa-
rameter appear desirable, particularly for dense classroom
layouts with groups of students, such as K-12 classrooms.

6.1 Limitations and future work
We acknowledge limitations to our current methodology that
future research may improve upon. First, limitations may
emerge from how our ground truth observation data of teacher
visits were coded. In particular, manual coders could only
code visits to an accuracy level of a time frame of 10 s.
Future work may improve training data quality by using
more coders and establishing inter-rater reliability for the
coding of visits or other means of automatically generating
observation logs during classroom sessions, for example, by
recording observations verbally with a microphone rather
than typing them into a laptop. More accessible tools for
coding may reduce the time lag in human coding during
model optimization and improve overall stop detection ac-
curacy. We note that the quantitative definition of stops
may differ based on the research context. Hence, future
work may refine coding schemes for coders to capture spa-
tial attributes of different research contexts (e.g., coding 1-
to-1 interactions between teachers and students compared
to group visits). In both cases, our optimization procedure
allows for adapting stop detection to such complexities for
more nuanced explorations in offline analyses.

Second, our algorithm may require more sophisticated deci-
sion rules to achieve better accuracy. Based on our evalua-
tion, inferring teacher visits may benefit from additional spa-
tial features for algorithm training other than the teacher’s
spatial position only (e.g., information about the teacher’s

movement trajectory before a visit). Our relatively low
cross-validation F1 score of 0.18 may relate to the challenge
of inferring teacher visits to particular students when the
students of interest sit close to others not visited. Next to
teacher visits, teacher proximity may also encode teacher at-
tention effects on student learning, such as motivational and
performance differences through mere presence [2, 5]. Fu-
ture extensions of our algorithm could also consider specific
teacher movement strategies. For example, models could
calibrate to the usual distance of teachers when interact-
ing with students. Teachers may have different distances
from different students (e.g., due to some students sitting in
the back of the classroom). Fitting a parameter to student
characteristics to adjust the distance in stop detection may
improve accuracy while being sufficiently generalizable to
new students. Similarly, future research may also consider
fitting the stop detection parameters as a function of spa-
tial attributes instead of being static. Under a dynamic set
of parameters, the detection algorithm may be better able
to differentiate between teacher standing at the periphery
of the classroom observing and actually visiting students in
the middle of the classroom.

Third, the cross-validation indicates that our stop detec-
tion algorithm and optimization procedure are generalizable
across different class periods. However, this study only ex-
plored one classroom layout setting: a dense layout with
grouped seating typically found in US K-12 classrooms. More
research is needed to gauge the performance of our algorithm
and optimization procedure for other seating arrangements.

We see two central use cases of our proposed stop detec-
tion algorithm and optimization procedure. First, future re-
search could use our adaptive algorithm to more accurately
mine stops and investigate teachers’ attention distribution
at a lower cost. Our algorithm can learn relevant stop de-
tection parameters from human-coded examples of teacher
visits and automatically generate a teacher visit distribution
from optimized parameters, facilitating data collection. Sec-
ond, our stop detection algorithm can be incorporated into
teacher-facing reflection and orchestration tools, where stop
detection can serve as a feature for teacher-facing analyt-
ics. These applications can help facilitate the study of the
interplay of teacher behavior and student learning.
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