
Investigating the Importance of Demographic Features for
EDM-Predictions

Lea Cohausz
University of Mannheim
lea.cohausz@uni-

mannheim.de ∗

Andrej Tschalzev
University of Mannheim

andrej.tschalzev@uni-
mannheim.de ∗

Christian Bartelt
University of Mannheim

christian.bartelt@uni-
mannheim.de

Heiner Stuckenschmidt
University of Mannheim

heiner.stuckenschmidt@uni-
mannheim.de

ABSTRACT
Demographic features are commonly used in Educational
Data Mining (EDM) research to predict at-risk students.
Yet, the practice of using demographic features has to be
considered extremely problematic due to the data’s sensi-
tive nature, but also because (historic and representation)
biases likely exist in the training data, which leads to strong
fairness concerns. At the same time and despite the fre-
quent use, the value of demographic features for prediction
accuracy remains unclear. In this paper, we systematically
investigate the importance of demographic features for at-
risk prediction using several publicly available datasets from
different countries. We find strong evidence that includ-
ing demographic features does not lead to better-performing
models as long as some study-related features exist, such
as performance or activity data. Additionally, we show
that models, nonetheless, place importance on these features
when they are included in the data – although this is not
necessary for accuracy. These findings, together with our
discussion, strongly suggest that at-risk prediction should
not include demographic features. Our code is available at:
https://anonymous.4open.science/r/edm-F7D1.
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1. INTRODUCTION
The use of demographic features for training models to pre-
dict at-risk students, e.g., students in danger of dropping
out or failing a course or study program, is very common [2,
21]. Demographic features “refer to particular characteris-
tics of a population [. . . ], such as age, race, gender, ethnicity,

∗Both authors contributed equally to the paper

religion, income, education, [. . . ]” [25]. These features are
typically categorical and sometimes also of high cardinality.
Other features usually used in the context of at-risk pre-
diction are previous performance features (e.g., previous re-
sults, current GPA, ...) as well as study engagement/activity
data (e.g., log data, count of raised hands) [31]. Alturki et
al. [2] evaluated the features most used across EDM stud-
ies predicting student success from 2007-2018. Among the
ten most used features are six demographic features (gen-
der, age, income, nationality, marital status, employment
status) – the most common of which is gender. In a way,
it is not surprising that these features are so regularly used.
Most educational institutions require the students to enter
demographic information about themselves, and this data is
typically more accessible to researchers than, e.g., log data.
However, demographic features also make datasets very prob-
lematic regarding receiving access and sharing the data [9].
Demographic data is sensitive data and can be used to iden-
tify people in the dataset. In order to be able to share the
data, at least some type of pseudonymization has to be em-
ployed, e.g., k-anonymity [29]. This is often extremely dif-
ficult to achieve and weakens the usefulness of the features,
e.g., through binning.
Apart from the problems with data access, demographic fea-
tures are also problematic in some settings where we could
employ the models. Suppose we, e.g., use a model to admit
people to a course based on their prediction. In that case,
it is very problematic if demographic variables impact the
prediction as it could easily reproduce biases [13]. Due to
these fairness concerns, the use of demographic features is
heavily discussed in the literature on fairness in AI [17].
Hence, using demographic features in predictive models leads
to a lot of problems. Still, if demographic features are rel-
evant for EDM predictions, it might be tempting for re-
searchers and practitioners to include them. Yet, their value
for the prediction is unclear. Few papers explicitly evaluated
feature importance, and even fewer considered the effect of
demographic features in general. Those that have arrived
at very different conclusions. While some stress the impor-
tance of demographic features [4, 7, 12], others state that
they are not important [31, 32, 19], and others yet are on
middle ground [15, 30, 35, 6]. So far, comparatively few
papers compared the accuracy metrics of models with and
without demographic information [31, 1, 14]. Furthermore,
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the nature of the relationship (linear, nonlinear) between
demographic features and study success has not been evalu-
ated enough. Suppose we find that demographic features are
not important for model performance. In that case, it pays
to leave them out – mostly for fairness and privacy reasons
but also because wisely selecting features pays off regarding
the amount of data instances we need to train our models,
as more features require more instances [34]. In detail, the
contributions of this paper are:

• We provide a theoretical discussion on the type of
features typically used for at-risk prediction (Section
2.1), fairness concerns when using demographic fea-
tures to predict academic achievement (Section 2.2),
and causal mechanisms that could exist between de-
mographic characteristics and academic achievement
(Section 2.3).

• We summarize and discuss the findings of existing stud-
ies on the importance of demographic data in Section
3.

• We evaluate the importance of demographic features
for predicting academic success using four EDM datasets
in Section 6 and show that demographic characteris-
tics are related to the target, but when study-related
information is available, using them does not increase
the predictive performance

• We find that models nonetheless place importance on
demographic features when they are included such that
practitioners cannot rely on technical solutions but
have to carefully think about whether demographic
features should be included at all in Section 7.

2. THEORETICAL CONSIDERATIONS
2.1 Types of Features
As already mentioned in the introduction, we can have dif-
ferent types of features in the datasets. In accordance with
Tomasevic et al. [31] we argue that there are three major
types of EDM features: demographic features, performance
features, and activity/engagement features.
Demographic Features. Demographic features are tradition-
ally considered to be features that refer to characteristics
of a population. Typically used demographic features are
gender, age, ethnicity, nationality, or features indicating so-
cioeconomic status, such as e.g. parental occupations or
household income. Furthermore, we define all features as
demographic features that strongly point toward certain de-
mographic characteristics. For example, we consider the
school a student went to or parental financial support as
demographic information.
Performance Features. Any study-related performance mea-
sures, e.g., grades, information on passes or fails, or percent-
ages on assignments, are considered performance features.
In other words, any information that hints on how well a
student did in the past belongs to this type.
Activity Features. Activity features are features that are
study-related and show how active a student is. Typical
features of this type are participation during class, hours
spent on online-learning platforms, participation in online
forums, etc.

Most features in EDM datasets belong to one of these cat-
egories with the implicit assumption that they all matter
regarding at-risk prediction. Other features not belonging
to either of these categories would, e.g., be the study pro-
gram or the semester a student is in or in which the course
takes place. As our focus is on investigating whether us-
ing demographic features is advantageous when we also have
some study-related features, we do not differentiate between
activity and performance data. For the remainder of the pa-
per, we define study-related features as all features related
to a student’s study activity and previous performance.

2.2 Fairness Considerations
Before we start investigating the potential usefulness of de-
mographic features in detail, we want to briefly highlight
why fairness concerns are so prevalent when it comes to de-
mographic features and why it is so important to investigate
their potential impact.
Most datasets used in EDM research consist of historical
data. Historical data may already include biases [17]. If
e.g., a teacher unconsciously or consciously favors students
of a certain gender or ethnicity, students belonging to this
demographic category will have better grades. A machine
learning model will learn this pattern and, as a result, is
more likely to predict that students who belong to different
genders or ethnicities are at risk. If e.g., the prediction is
used to admit students to a course or a degree, then it is very
obvious that unfairness results from bias. Another probable
problem in EDM research arises when some populations are
underrepresented in the training data [17]. If, e.g., only one
person in the data has children, and this person happens
to perform badly, a machine learning model might simply
learn that having children is a good predictor of bad per-
formance. If we then predict how well another student with
children will do, the model will likely predict them to be at
risk. Again, the fairness concerns are obvious. This problem
of underrepresentation may particularly occur when demo-
graphic features are categorical and of high cardinality, as
fewer samples are available per categorical value. In this
case, it is likely that some groups are poorly represented,
and therefore, overfitting occurs, which can lead to bias.
One often-used strategy to circumvent these fairness issues is
to completely remove obvious demographic features (such as
ethnicity and gender) from the training data. Nonetheless, it
is sometimes possible to still infer demographic information
from other features that do not appear to be demographic
features directly [17]. For example, if the school name is
included in the training data, this might reveal the gender
of a person (”ABC School for Girls”). The best strategy to
avoid unfairness is, therefore, to try to exclude any features
that point towards demographic characteristics and are not
directly study-related when at-risk prediction models are de-
ployed.

2.3 Causal Mechanisms including Demographic
Features

Although it has hardly been done in EDM, it is important
to consider how demographic features might causally impact
study success theoretically. Understanding these mecha-
nisms will help us to reason when demographic features may
matter for the prediction but also again highlights why us-
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Figure 1: A graph to display the causal relationship between
demographic aspects and the target.

ing demographic features for at-risk prediction is not ideal.
Demographic features never directly impact study success
but only through causal mechanisms. Drawing on social sci-
ence literature, we classify those mechanisms into two types:
capital-based and discrimination-based.

2.3.1 Capital-Based Mechanisms
Capital is typically divided into economic, social, and cul-
tural capital [11]. Economic capital would, e.g., be money.
If a student has little monetary means (low socioeconomic
background), they might be forced to work a lot and live far
away from campus. Working much and having to commute
both means the student has less time to study, leading to
less activity and poorer results. Social capital would, e.g.,
be to know whom to turn to if a student struggles or to
have a social support network. Students from a low socioe-
conomic background or a foreign country might not have
access to this knowledge and those connections. Similarly,
people with such demographics might not know certain cul-
tural rules (cultural capital) in academia which might also
lead to disadvantages [23]. Capital-based mechanisms are
diverse and probably exist in different settings, such as on-
line and offline.

2.3.2 Discrimination-Based Mechanisms
Demographic features may also impact study success through
discrimination, e.g., an instructor might consciously or un-
consciously discriminate against students with certain char-
acteristics. This could either directly impact a student’s
academic achievement or indirectly as the student perceives
the discrimination and reacts by spending less time and ef-
fort on the course [20]. The effect of discrimination-based
mechanisms should vary from setting to setting. For exam-
ple, discrimination could be less likely in online settings as
teachers do not receive visual cues regarding students’ de-
mographic characteristics.

2.3.3 Mediation Effects
Overall, capital-based mechanisms probably exist univer-
sally. However, once someone is in higher education, de-
mographic characteristics will have already impacted previ-
ous performance (in school and then in previous university
courses). This might mean that as long as we have infor-
mation on previous performances, demographic data has no
additional effect. Demographic characteristics might also
impact a student’s activity. Not having time naturally leads
to less study engagement. Furthermore, e.g., people from a
lower socioeconomic background might also be hesitant to
participate in class. So, again, having activity information
may – at least partly – make demographic data redundant.

To a degree, these considerations might also be true for
discrimination-based mechanisms; here, however, the effect
of demographic characteristics should vary between courses
and also between different settings, e.g., between different
universities and online and offline learning. Returning to
our discussion on fairness, it is also obvious that ML models
in action should not predict based on previous discrimina-
tion against certain populations.
In summary, demographic features are causally related to
study success and may, therefore, be important for predic-
tions. However, their impact is likely already captured by
previous performance and, potentially, to a degree, previ-
ous activity data, such that the performance gain in us-
ing them for predictions is small too not existent. In other
words, other study-related features mediate the effect of de-
mographic characteristics. This mechanism can also be seen
in Figure 1.

3. EXISTING EVIDENCE
As already mentioned, existing research is divided on whether
demographic features are important for predictions or not.
In this section, we will look at contributions highlighting the
importance, lack thereof, or some middle ground between
these stands.

3.1 Demographic Features Are Important
Batool et al. [4] used the widely used Open University
Learning Analytics Dataset (OULAD) and two similarly
structured datasets and used only the demographic features
in the datasets to predict who will fail the courses. They
report high F1-scores using Random Forests but do not
compare against baselines to validate the meaningfulness
of their results. Daud et al. [7] predict whether a stu-
dent will finish their degree based on socio-demographic fea-
tures using a dataset from several universities in Pakistan.
They considered many features not typically available and
potentially extremely problematic such as e.g., family ex-
penditures. Daud et al. report high F1-scores, with their
best method generally being the Support Vector Machine
followed by Naive Bayes, but do not compare this against
predictions using previous performance data. Hoffait et al.
[12] predict which students are at-risk at the time of regis-
tration for their degree using a dataset from Belgium. Due
to their setting, they only have some previous performance
data from school and no activity information, but most of
their data is demographic. Yet, they achieve relatively high
F1-scores. Their Random Forest model slightly outperforms
other models, such as Logistic regression or a Neural Net-
work.

3.2 Demographic Features Are Not Important
Tomasevic et al. [31] also used the OULAD to predict per-
formance and compared several Machine Learning models
with different sets (demographic, performance, activity) of
features against each other in a very thorough study. Usu-
ally, the prediction accuracy did not vary much when using
or not using demographic features as long as the other sets
of study-related features were used, leading them to con-
clude that these features were not important, although using
demographic features usually slightly improved the model.
At least for this dataset, this is very strong evidence that
demographic features do not significantly add to the pre-
diction accuracy. It should be noted that they apparently
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did not use all demographic features available. Their best-
performing model was the Neural Network. Al-Zawqari and
Vandersteen [1] use a subset of the OULAD dataset to distin-
guish between high-performing and failing students. They
compared F1-scores using and not using demographic data
along with activity data and found that using demographic
data did not improve results much. It should be noted that
it is unclear how they selected and handled their data. Ran-
dom Forests and Neural Networks performed almost equally
well. Jha et al. [14] used the same dataset to predict fail-
ure using a variety of methods and different feature subsets.
In accordance with the other papers, they found that ac-
tivity data was the most predictive feature set. When they
used activity data, it did not matter what other features
were included regarding the model’s performance. Trsten-
jak and Donko [32] used data from the Information System
of Higher Education Institutions databases, predicted suc-
cess using Support Vector Machines and Naive Bayes, and
ranked feature importance using several metrics such as in-
formation gain and gain ratio. They showed that most (but
not all) demographic features had very little impact and ex-
perimented with leaving some (the least important ones) of
them out, which even led to slightly increased accuracy. Sup-
port Vector Machines outperformed Naive Bayes. Miguéis
et al. [19] predicted the overall study success of students of
a technical university and then looked at the Gini-index of
features. They found that performance data was more im-
portant than demographic data, with AdaBoost being their
most accurate model.

3.3 Demographic Features Are Somewhat Im-
portant

Khasanah et al. [15] predicted overall study success with
data from Indonesia using Decision Trees and Bayesian Net-
works, with Bayesian Networks being more accurate. They
used Information Gain to evaluate demographic feature im-
portance and found that some were important, but others
were not. It should be noted that the data they had avail-
able on previous performance and activity was rather lim-
ited. Sweeney et al. [30] looked at the feature importance of
one large dataset as they tried to predict study success using
a Factorization Machine for the courses a student enrolled
in the next term. They found that demographic data were
more important in the beginning when little past perfor-
mance data was available than later on. They had relatively
few demographic features in their dataset, however. Zhao et
al. [35] use admissions data to predict who will perform well
in a specific Master’s program based on admission data. Due
to the nature of their setting – that they try to learn who
should be admitted to the program – their performance data
is restricted to data on high school and Bachelor results, and
they have no activity data. Though they make no difference
between demographic and non-demographic features, their
most important predictors show that some demographic fea-
tures (gender, nationality) tend to be important while oth-
ers are not. Random Forest or ensemble methods tend to be
the best-performing models. Cortez and Silva [6] predicted
grades of Portuguese middle school students in math and
Portuguese. They found that the relative importance of pre-
vious performance scores was higher, but socio-demographic
features still mattered. They provide a detailed list of their
preprocessing, typically including binning or ordinal recod-
ing. Random Forests tended to perform best.

3.4 Overall Evidence
Overall, for the case of OULAD, despite Batool et al.’s re-
sults [4], the evidence appears to be pretty clear that accu-
racy does not increase when using demographic data along
with performance or activity data [31, 14]. In general, stud-
ies that included study-related features typically found de-
mographic features to be less important. However, in other
settings where fewer performance data is available, results
suggest that demographic data does play a role. Those that
explicitly investigated feature importance typically reported
that it is somewhat important. Furthermore, note that only
very few studies explicitly reported on feature engineering
of demographic characteristics. Yet, feature engineering is
often non-trivial for demographic data as it often consists of
(high-cardinality) categorical data.

4. RESEARCH OBJECTIVE AND QUESTIONS
Both our review of existing evidence and our theoretical con-
siderations lead us to the hypothesis that using demographic
features will not increase model performance as long as we
have study-related features from previous performance or
activity but that they will have predictive power if we do
not have study-related features.

To test our hypothesis, we formulate the following main re-
search questions:

• RQ1: Are demographic characteristics useful in ex-
plaining at least some of the differences in student
performance; in other words, are models using only
demographic features better than guessing?

• RQ2: Are demographic characteristics still useful if
study-related information is available; in other words,
do models trained on study-related and demographic
features perform better than models trained only on
study-related features?

• RQ3: Which features should ultimately be used in
EDM predictions; in other words, models trained on
which feature subsets outperform models trained on
other subsets?

• RQ4: If RQ2 is answered with no, do models trained
on the whole data learn that demographic information
is irrelevant; in other words, do models trained on the
whole data place close to zero importance on the de-
mographic features?

Furthermore, we are interested in the following research
questions:

• RQ5: How complex is the relationship between predic-
tive features and student performance; in other words,
how large are the differences in performance between
linear and nonlinear models?

• RQ6: How relevant is the treatment of categorical fea-
tures; in other words, do different encoding methods
affect performance?
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5. EXPERIMENTAL DESIGN
In this section, we describe our experimental setup to eval-
uate the formulated research questions. We proceed by first
describing the used datasets and model classes used for pre-
diction. Afterward, the hyperparameter tuning procedure,
methods to treat categorical data, and the evaluation setup
are described.

5.1 Datasets
We use four publicly available EDM datasets. Two datasets
are from online learning systems and two from in-class ed-
ucation, of which one is from secondary education in high
schools and one from tertiary university education. In this
subsection, we briefly describe the used datasets and the
corresponding preprocessing. Furthermore, we describe the
assignment of features to the feature types (demographic,
performance-related, activity-related, and others) discussed
in Subsection 2.1. We will use the resulting feature sub-
sets in Section 6 to train models for answering the research
questions. An overview of the datasets can be seen in Table
1.

5.1.1 Dataset of Academic Performance Evolution
for Engineering Students

The dataset of academic performance evolution for engi-
neering students [8] consists of the academic, social, and
economic information of 12, 411 Columbian engineering stu-
dents. Student performance was assessed at two points in
time: in the final year of high school and in the final year of
pursuing a professional career in Engineering. We refer to
this dataset as Engineering. The first assessment evaluates
five generic academic competencies: mathematics, critical
reading, citizen competencies, biology, and English. The sec-
ond assessment evaluates critical reading, quantitative rea-
soning, citizen competencies, written communication, En-
glish, and the formulation of engineering projects. As the
target for predictions, we use the global score of the sec-
ond performance assessment and treat the task as a regres-
sion task. The five dimensions of the first assessment are
used as performance information. There is no information
about student activity in the dataset. Demographic fea-
tures include gender, parental education and occupation, ge-
ographic information, school information, and whether dif-
ferent items, such as a car or computer, were available in the
family. Other available information is the university and the
academic program a student attends. The identifier features,
as well as all dimensions and variants of the performance
assessment besides the global score, are excluded. Further
dataset-specific preprocessing is not necessary. Thirteen cat-
egorical features are in the dataset, of which two are of very
high cardinality. There are students from 3,735 schools and
134 universities.

5.1.2 Dataset of Portuguese Secondary School Stu-
dent Performance

The dataset [6] consists of students from secondary edu-
cation in two Portuguese schools and can be used to pre-
dict student achievement in math and Portuguese language
courses. We refer to this dataset as PortSecStud The target
is the final course grade, which is measured on a discrete
scale between 0 and 20. Some authors categorize the grade
into pass and fail for binary classification or into five levels

for classification. However, we consider it a regression prob-
lem, as it better represents the nature of the problem. As
performance information, the first and second-period grade
is available, as well as the number of past class failures.
Activity information consists of the weekly study time, ab-
sences, and whether the student participated in extracurric-
ular activities. The demographic information includes gen-
der, age, and address, as well as school and family-related
information. Furthermore, we considered travel time from
home to school, educational support from family, extra paid
classes within the course subject, and having internet ac-
cess as demographic features since they are highly influ-
enced by socioeconomic factors. Other features are lifestyle-
related ones such as alcohol consumption, health status, or
whether the student is engaged in a romantic relationship.
The datasets for the math and Portuguese courses are com-
bined and a feature indicating the course is added. Further
dataset-specific preprocessing is not necessary.

5.1.3 xAPI-Edu-Data
The Students’ Academic Performance Dataset (xAPI-Edu-
Data) [3] consists of 480 students, where most are from
Kuwait (179) and Jordan (172). The target is students’
performance in %, which is only available in groups: 0-69,
70-89, and 90-100. Hence, we treat the task as a multi-class
classification problem. There is no information about previ-
ous student performance in the dataset. Student activity is
measured according to four behavioral aspects during inter-
actions with the e-learning system: participation in discus-
sion groups, visiting resources, raising a hand in class, and
viewing announcements. In addition, absence days are avail-
able. Demographical features are nationality, gender, place
of birth, and the parent responsible for the student. Other
information includes the academic background (e.g., course,
semester, grade level), and the parents’ participation (an-
swering a survey, school satisfaction). No dataset-specific
preprocessing is required. The categorical features with the
most expressions are nationality, with 14 possible national-
ities, and field of study, with 12 possible subjects.

5.1.4 OULAD
The OULAD dataset is a large dataset with diverse oppor-
tunities for educational data mining [16]. It is a relational
database of five tables with information on students, assess-
ments, courses, registrations, online learning materials, and
students’ interactions with those. We focus on the same
prediction task with the same dataset, features, and prepro-
cessing as Jha et al. (2019) [14]. For predictions, we consider
all students who did not drop out before the course ended
to predict whether they failed or passed. As information
about the previous performance, we use the average scores
achieved in previous assignments. Jha et al. (2019) [14] con-
ducted analyses on different data subsets as well; however,
they counted the so-far achieved credits and the number of
previous attempts as demographic features. This does not
match our definition of demographic features. Hence we
define those features as performance-related. Student activ-
ity is obtained as two types of interaction with 20 different
content types resulting in 40 features. The types of inter-
action are the sum of the clicks and the number of visits
for each type of content. Examples of content types are
homepage, subpage, quiz, wiki, and other platform-related
types. As demographic features, we use gender, region,
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Table 1: Description of the used datasets.

Engineering [8] PortSecStud [6] xAPI-Edu [3] OULAD [16]
No. of samples 12411 1044 480 22437
No. of features 33 34 17 51
Performance features 5 3 0 4
Demographic features 25 17 4 6
Activity features 0 6 5 40
Other features 2 7 7 0
Categorical features 13 4 7 4
Total cardinality 3980 17 59 31
% NA 0.0 0 0.0 0.48
Target y ∈ [1..166] [1..19] [1..3] {1,2}

imd band, age band, and disability. There are no other fea-
tures in the dataset. The performance and activity features
are extracted from the database as described by Jha et al.
(2019) [14]. Similarly, the id student, code module, mod-
ule presentation, and exam score features were excluded as
well as all students who had withdrawn before the course
ended. Some mean assessment scores and imd band cate-
gories are missing. As the information on how missing values
are treated is not given in [14], we impute the mean value
for the mean assessment scores and define a new category
for missing imd band values.

5.2 Models
We include two model classes, namely generalized linear
models (GLMs) and XGBoost, in our evaluation. For re-
gression tasks, we use Lasso regression for the regulariza-
tion of the models to prevent overfitting. For classification
tasks, we use logistic regression with the L2-penalty. In the
case of multi-class classification, multinomial loss is used.
GLMs have the benefit of being highly interpretable and,
thus, are ideally suited for (educational) data mining. How-
ever, they make the strong assumption that the relationship
of the target to the features is linear. In contrast, XGBoost
is a highly flexible model capable of learning more complex
relationships. For the OULAD dataset, XGBoost has been
shown to outperform competitive approaches by Jha et al.
(2019) [14]. Furthermore, for tabular datasets, XGBoost has
shown superior performance compared to other methods like
neural networks far beyond the field of educational data min-
ing [26, 10]. Thus, it can be considered the state-of-the-art
model for maximizing performance on a variety of datasets
such that we do not include further models. By comparing
the predictive performance of GLMs and XGBoost, we are
able to answer research question RQ5. In addition, baseline
models for each dataset are included, which predict the tar-
get mean of the training data for regression tasks and the
mode for classification tasks. By comparing models trained
solely on demographic data to these baselines, we are able
to answer research question RQ1.

5.3 Hyperparameter Optimization
We implement a hyperparameter optimization (HPO) pipeline
with 5-fold cross-validation (5CV) for XGB and GLMs. For
parameter tuning, we use Bayesian optimization implemented
in the hyperopt library [5]. To select the best parameters,
the training data is split into five folds again. In each
HPO step, a model with the current hyperparameters is
trained on each fold. The objective function of each step

is the average performance on the held-out datasets of each
fold. Our modeling pipeline is depicted in Figure 2. Perfor-
mance is measured as the mean squared error (MSE) for
regression tasks and log-loss for classification tasks. For
the GLMs, we only tune the regularization strength param-
eter α. The search space for Lasso regression is defined
as α ∈ [10−10, 0.5]. The search space for Logistic regres-
sion is defined as α ∈ [10−10, 1.0]. We run 50 iterations of
Bayesian optimization for each model. For hyperparame-
ter optimization of XGBoost, we implement an algorithm to
iteratively tune different subsets of XGBoost hyperparam-
eters using Bayesian optimization in four steps. (1) Tune
the number of estimators ∈ [50..500] and the learning rate
∈ [0.001, 0.5]. (2) Tune the maximum tree depth ∈ [1..18]
and minimum child weight ∈ [0..10]. (3) Tune both the
number of columns and samples used in each tree ∈ [0.5, 1].
(4) Tune the regularization parameters α ∈ [0..10], λ ∈ [1, 4]
and γ ∈ [10−8, 9]. In each step, 50 iterations of Bayesian
optimization are performed. To speed up the computations
and terminate the training for optimization iterations with
poor parameter choices more quickly, we use early stopping
on the validation data if there is no improvement after ten
training iterations. Overfitting on the validation data is mit-
igated through the 5CV procedure as a configuration needs
to perform well on all five validation sets.

5.4 Methods for Categorical Data Treatment
All of the used datasets include categorical data. As the
treatment of categorical data can affect predictive perfor-
mance in data mining tasks [22], we want to evaluate whether
our models are affected by different encoding methods. Hence,
to answer research question RQ6, we evaluate if and how
much different encodings of categorical features impact the
prediction. Each categorical feature with three or more
unique values is considered. Ordinal features are treated as
categorical as well. One-Hot-Encoding (OHE) is included
as it is the most frequently used method to handle categor-
ical data. Categories in the test data which did not appear
in the train data are ignored such that the encoding vector
consists solely of 0s. As sometimes categorical features can
be of high cardinality, OHE can suffer from overparameter-
ization and unnecessary sparsity, leading to increased train-
ing times and memory requirements. Therefore, we include
ordinal encoding as it can be a simple and more compact
encoding and is frequently used for XGBoost. However, for
linear models, ordinal encoding is not appropriate as there
is no natural order between the categories. Unknown val-
ues are encoded in a new category. A generally applicable
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Table 2: Description of the allocations of features to subsets.

Demographic Features Study-Related Features Other Features
Engineering [8] gender, parental, geographic,

and school information, item
availability in family

first assessment on five dimen-
sions (MAT, CR, CC, BIO,
ENG)

university, academic program

PortSecStud [6] gender, age, address, family and
school related information, paid
classes, internet access

first and second period grade,
past failures, absences, study
time, extracurricular activities

lifestyle related features, e.g. al-
cohol consumption, romantic re-
lationships, amount of free time

xAPI-Edu [3] gender, nationality, place of
birth, parent responsible

interaction with the e-learning
system, absences

general academic information
(e.g. semester), parental partic-
ipation

OULAD [16] Gender, region, imd band,
age band, disability, high-
est education

num of prev attempts,
avg cma, avg tma, stud-
ied credits, sum of clicks and
count of visits for each of the
20 VLE activity types

-

method is target encoding and its variants [18]. In target
encoding for regression, each categorical value is encoded as
the target mean of the training samples belonging to this
value. For classification, the posterior probability of the
target given the categorical value is used. As this approach
is sensitive to overfitting, the encoding is further blended
with the global mean value for regression and the prior tar-
get probability for classification. In the case of multi-class
classification, we use a one vs. rest approach to obtain an
encoding for each class. For unknown categories in the test
data, the global mean or prior probability is used. In ad-
dition, the Catboost encoder is included as it was specially
designed for improving categorical data handling in gradient
boosting [24]. The method is similar to target encoding but
considers the frequency counts of expressions of a categor-
ical feature in a more principled way. For high-cardinality
features, regularized target encoding was shown to be the
superior method for a variety of datasets in a large bench-
mark study [22]. Therefore, we also include 5CV-GLMM,
the best-performing method from that study, in our eval-
uation. The method first fits a simple generalized linear
mixed model (GLMM) for each categorical feature and uses
the estimated random effects coefficients of the model as en-
codings. To prevent overfitting, this procedure is combined
with 5-fold cross-validation (5CV). The train data is sepa-
rated into five parts, and five GLMMs are fitted to 80% of
the data, and the estimated random effects of the model are
used as encodings for the remaining data. The test data
is encoded using a model trained on the whole train data.
We implement 5CV-GLMM encoding using the gpboost li-
brary [27, 28] as it provides a very efficient implementation
of GLMMs.

5.5 Predictive Performance Evaluation
For regression tasks, the target is normalized to zero mean
and unit variance for training the models, and the predic-
tions are denormalized afterward to interpret the perfor-
mance on the original scale. All continuous features were
normalized to zero mean and unit variance as well to be
able to interpret GLM coefficients as feature importance.
For each configuration, we use 5-fold cross-validation (5CV)
for evaluation. As an evaluation metric, we use root mean
squared error (RMSE) for regression (lower is better) and
F1-score with macro averaging for classification (higher is

Preprocess Dataset 

(e.g. OULAD)

Choose Feature Subset

(e.g. Demographic)

Fold 1 …

HPO

Train

Train Model

Evaluate

Model

Test

Fold 1.1 Fold 1.5…

Use Parameters Achieving

Best Mean Over Folds

Report Mean

…

Fold 5

HPO

Train

Train Model

Evaluate

Model

Test

Fold 5.1 Fold 5.5…

Use Parameters Achieving

Best Mean Over Folds

Use 5-fold Cross Validation

Figure 2: Data pipeline for model development and evalua-
tion.

better).

5.6 Methods for Determining the Impact of
Demographic Features in Models

As we investigate the importance of demographic data in
EDM predictions, performance is not the only relevant met-
ric. It is equally important to analyze the extent to which
the models use demographic data. Hence, to answer our re-
search question RQ4, we analyze the feature importance of
trained models with a focus on demographic data. We ana-
lyze the learned coefficients of the linear models as well as the
feature importance of the XGBoost models. As we normal-
ized the data, the coefficients of linear models can directly
be interpreted as feature importance scores. For the linear
models, we first normalize the absolute coefficient values to
sum to one. Afterward, we sum the normalized coefficients
for the demographic features to obtain an assessment of the
extent to which the models use demographic data for pre-
dictions. For XGBoost the feature importances reflect how
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often certain features are used and how useful they are for
the prediction in a single decision tree. Precisely, the im-
portance of a single tree is calculated as the amount that
each split improves the performance measure, weighted by
the number of samples the node is responsible for. After-
ward, the feature importances are averaged across all of the
decision trees and normalized to sum to one. In addition, we
analyze the extent to which the utilization of demographic
data affects the actual predictions on linear models; this is
considered important information in the fairness literature
[17]. Given a dataset with n samples and d features in a ma-
trix X ∈ Rn×d and a target y ∈ Rn, we apply the following
procedure:

1. Train a linear model to predict the target

2. Obtain predictions as ŷ = σ(Xβ), where β is the coef-
ficient vector of the linear model and σ is the inverse
link function depending on the target, e.g., linear for
continuous and sigmoid for binary targets

3. Remove the k demographic features from X and the
respective coefficients β and obtain predictions ỹ =
σ(X:,d−kβd−k)

4. Compute score for the impact of demographic features
as

(a) 1
n

∑n
i ŷi − ỹi for regression

(b) 1
n

∑n
i {1 if ŷi ̸= ỹi, 0 otherwise } for classification

For regression, this corresponds to evaluating the mean abso-
lute difference of predictions with and without demographic
features. For classification, this corresponds to evaluating
the percentage of samples for which not using the demo-
graphic features changes the class assignment.

6. RESULTS
In this section, we report and discuss our results to evaluate
the stated research questions. We start with analyzing the
effect of the categorical data treatment method. Afterward,
we proceed with a comparison of models trained on different
data subsets with a focus on demographic data. Finally, we
evaluate the feature importance of the final models to assess
whether demographic data is used.

6.1 Impact of Categorical Data Treatment Method
Table 3 shows the results for the different datasets and cate-
gorical data treatment methods. In general, it appears that
the treatment method does not matter. According to a t-
test over the folds, for three datasets, ignoring the cate-
gorical features works just as well as using the categorical
data, regardless of the encoding method. For the Engineer-
ing dataset, the target scale is rather large, such that per-
formance differences on the digits after the decimal point do
not matter. Hence, for this dataset, too, we can consider
the encoding method irrelevant. As most of the categori-
cal features are demographic features, this indicates a low
importance of demographic characteristics. Finally, our con-
clusion to RQ6 is that the treatment of categorical features
does not affect performance. Hence, we use 5CV-GLMM en-
coding for GLMs and ordinal encoding for XGBoost in the
following experiments.

6.2 Performance Comparison of Different Fea-
ture Subsets

Table 4 shows the results for different data subsets as defined
in section 5.1.

6.2.1 Predictive Capability of Demographic Features
For OULAD, no difference can be seen between the base-
line and using solely demographic features for prediction.
Hence, predicting that every student passes the course works
equally well as training a model solely using demographic
features. For the PortSecStud dataset, the improvement
over the baseline is small, such that the usefulness of the
demographic features can be considered small also for this
dataset. For the Engineering dataset, there is a considerable
improvement over the baseline, and for the xAPI-Edu-Data,
the improvement over the baseline is the largest. Hence, for
these two datasets, it can be said that there is an impact of
the demographic features on the performance. Considering
RQ1, we conclude that demographic characteristics can be
used to explain differences in student achievement. How-
ever, this does not hold in every setting and for every type
of demographic characteristic.

6.2.2 Mediation Capability of Study-Related Features
For all datasets, using only study-related features achieves
far better performance than using only demographic fea-
tures. Using only study-related features achieves approx-
imately the same performance as additionally considering
demographic features in almost every setting. Only for XG-
Boost on the xAPI-Edu-Data, there is a noteworthy mean
difference; however, given the large standard deviations, it
cannot be said that it is meaningful in practice. These re-
sults confirm the hypothesis that study-related information
mediates the effect of demographic characteristics on student
achievement. As soon as meaningful information about the
student’s activity and/or previous performance is available,
the demographic features are not required anymore for ac-
curate predictions. Hence, considering RQ2, demographic
characteristics are generally not useful anymore if study-
related information is available.

6.2.3 Feature Subsets Achieving the Best Performance
It can be seen that for all datasets, using the whole data is
always among the best subsets, as can be expected. Fur-
thermore, according to the t-test for the OULAD dataset,
using only study-related information performs equally well
as using the whole available information for both GLMs
and XGB. The same holds for XGB on the PortSecStud
dataset and GLMs on the xAPI-Edu-Data. Given the range
of the target values of the Engineering and the PortSecStud
datasets, the performance differences are not meaningful in
practice, despite the significant differences in the t-test. We
conclude that using only study-related features suffices as
well for this dataset. For XGBoost on the xAPI-Edu-Data,
using all features performs significantly better than solely
using study-related features. However, this is rather due
to the other features included in the dataset than due to
the demographic features, as the performance increase in
using demographic data in addition to study-related data
is insignificant. Hence, also for this dataset, it would be
suitable not to use demographic features without significant
loss of performance. In summary, models using all except
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Table 3: Means and standard deviations of 5CV Performance results on different data subsets. Mean squared error is reported
for Engineering and PortSecStud and F1-score for xAPI-Edu and OULAD. Results per row for methods that are not significantly
different from the best method in a paired t-test (alpha=0.05) are highlighted in bold.

Dataset Baseline Ignore OHE Target Ordinal Catboost 5CV-GLMM
Engineering GLM 23.11 (0.26) 14.36 (0.26) 14.11 (0.29) 14.55 (0.23) 14.36 (0.25) 14.22 (0.29) 14.13 (0.29)

XGB 23.11 (0.26) 14.28 (0.25) 14.11 (0.26) 14.38 (0.23) 14.15 (0.25) 14.17 (0.28) 14.04 (0.28)
PortSecStud GLM 3.86 (0.17) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1)

XGB 3.86 (0.17) 1.51 (0.12) 1.51 (0.08) 1.46 (0.06) 1.52 (0.06) 1.57 (0.08) 1.5 (0.06)
xAPI-Edu GLM 0.2 (0.02) 0.75 (0.06) 0.76 (0.03) 0.75 (0.06) 0.73 (0.05) 0.73 (0.09) 0.75 (0.06)

XGB 0.2 (0.02) 0.76 (0.05) 0.78 (0.04) 0.78 (0.06) 0.78 (0.08) 0.72 (0.07) 0.76 (0.02)
OULAD GLM 0.81 (0.0) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01)

XGB 0.81 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0)

Table 4: Means and standard deviations of 5CV Performance results on different data subsets. Mean squared error is reported for
Engineering and PortSecStud and F1-score for xAPI-Edu and OULAD. Results per column for methods that are not significantly
different from the best method in a paired t-test (alpha=0.05) are highlighted in bold.

Dataset Baseline Demo only Study only Demo + Study All
Engineering GLM 23.11 (0.26) 20.53 (0.3) 14.47 (0.22) 14.35 (0.25) 14.14 (0.29)

XGB 23.11 (0.26) 20.43 (0.34) 14.39 (0.2) 14.28 (0.23) 14.05 (0.29)
PortSecStud GLM 3.86 (0.17) 3.76 (0.11) 1.57 (0.1) 1.58 (0.1) 1.56 (0.1)

XGB 3.86 (0.17) 3.83 (0.15) 1.49 (0.09) 1.54 (0.14) 1.54 (0.05)
xAPI-Edu GLM 0.2 (0.02) 0.39 (0.04) 0.74 (0.03) 0.74 (0.05) 0.74 (0.06)

XGB 0.2 (0.02) 0.54 (0.03) 0.74 (0.03) 0.75 (0.05) 0.78 (0.05)
OULAD GLM 0.81 (0.0) 0.81 (0.0) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01)

XGB 0.81 (0.0) 0.81 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0)

the demographic features do not perform significantly worse
than models additionally considering demographic features.
Given the sensitive nature of demographic features, we con-
clude RQ3 with the recommendation to use only study-
related and other than demographic features for predicting
student success. If sufficient study-related information is not
available but predictive performance matters, demographic
features may still be helpful.

6.2.4 Comparison between GLMs and XGBoost
For the regression datasets, the difference between GLMs
and XGBoost is small for all models, such that we would
prefer GLMs as the simpler solution. For the xAPI-Edu-
Data [3], XGBoost is superior for models trained on the
whole data on average. However, this has to be viewed with
care as the standard deviation between folds is large. Fur-
thermore, GLMs perform equally well as XGBoost when us-
ing only the study-related data. Hence, using GLMs solely
on performance and activity data could be an alternative
for this dataset. For the OULAD dataset, there is a clear
performance benefit in using nonlinear methods. As the
dataset is large, the results are more robust, with a small
standard deviation between folds. Hence, we can say that
for this dataset, using XGBoost solely on activity and per-
formance data would be the preferred solution. Considering
RQ5, there is evidence that for some educational data mining
datasets, using linear models for at-risk prediction suffices.
However, when larger datasets with thousands of students
are available, nonlinear methods can perform better. These
datasets can especially be collected in online settings sim-
ilar to the OULAD datasets. However, for small in-class
datasets, linear models should be the first choice.

6.3 Feature Importance of Demographic Data
The previous subsections have provided clear evidence that
demographic features are not necessary for at-risk predic-
tions when sufficient information about students’ study ac-
tivities or previous performance is available. However, our
theoretical considerations indicate that demographic features
might correlate with other study-related features. Thus, it
is possible that models use these demographic features when
they are included in the training data. To further inspect
whether the tuned models learn that demographic features
are not necessary for high predictive performance, we ana-
lyze the learned coefficients of the linear models as well as
the feature importances of the XGBoost models as described
in Subsection 5.6. Surprisingly, Table 5 shows that despite
the fact that an equally good model could have been learned
for all models without demographic features, those are still
used for all models and datasets. Even for the PortSecStud
dataset and the OULAD dataset, where we previously found
that demographic features do not help at all compared to the
naive baseline, the features are still used. For the XGBoost
model trained on study-related and demographic data of the
PortSecStud dataset, the demographic information even ac-
counts for 26% of the feature importance despite not being
necessary to achieve the performance. Furthermore, Table 6
shows that in every case, the utilization of demographic data
directly affects the predictions of the models. For regression,
the effect is not large considering the scales of the targets.
Nevertheless, it might lead to biases for some students. For
classification, the impact of demographic features on actual
predictions is large. In general, if practitioners would be to
use these models and look for an explanation for predictions,
demographic features would be included, although this is not
necessary.
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Table 5: Means and standard deviations of relative feature importances of demographic data compared to the rest of the data
in the model on different data subsets over all folds.

Dataset Demo only Demo + Study All
Engineering GLM 1.0 (0.0) 0.25 (0.03) 0.23 (0.02)

XGB 1.0 (0.0) 0.23 (0.06) 0.19 (0.09)
PortSecStud GLM 1.0 (0.0) 0.08 (0.04) 0.03 (0.02)

XGB 1.0 (0.0) 0.26 (0.04) 0.16 (0.04)
xAPI-Edu GLM 1.0 (0.0) 0.32 (0.14) 0.23 (0.1)

XGB 1.0 (0.0) 0.26 (0.03) 0.21 (0.02)
OULAD GLM 1.0 (0.0) 0.13 (0.0) 0.13 (0.0)

XGB 1.0 (0.0) 0.08 (0.0) 0.08 (0.01)

Table 6: Means and standard deviations of the effect of de-
mographic features on the predictions over all folds. For
regression datasets, the mean absolute difference between
predictions with and without demographic data is reported.
For classification datasets, the percentage of predictions that
change when excluding the demographic features from the
model is reported.

Dataset Effect of demographics
Engineering 0.97 (0.07)
PortSecStud 0.28 (0.06)
xAPI-Edu 0.11 (0.05)
OULAD 0.33 (0.01)

One might think that the unnecessary use of demographic
features is related to our extensive hyperparameter opti-
mization, which chose a hyperparameter configuration that
considered all features, although it is not significantly better
than another model with fewer features could be. However,
we found that using the default configurations for sklearn
linear models and XGBoost, either reproduces the same pat-
terns or is not applicable due to bad performance. Hence,
some kind of parameter selection or tuning is necessary.
Generally, the models could be prevented from using all
features by adjusting the regularization parameters accord-
ingly. However, automatic parameter tuning does not guar-
antee finding this solution, as different parameterizations
might achieve equal performance. In any case, our answer
to RQ4 is that just throwing in all features leads to models
which use information from demographic features, although
this is not necessary. That, combined with the previous re-
sults of this section, leads us to the general recommendation
to consider completely leaving demographic features out for
at-risk predictions whenever sufficient activity and/or pre-
vious performance information is available.

7. DISCUSSION
Our evaluation shows that using demographic features does
not lead to better model performance as long as we include
study-related features. Considering the fairness and privacy
concerns, it is, thus, strongly advisable for both researchers
and practitioners not to use these features for at-risk pre-
diction.

7.1 The Importance of Demographic Features
Of course, this does not mean that we should never explore
the impact of demographic features on academic achieve-
ment or that demographic features are not important. On

the contrary, it is very important to investigate how demo-
graphic characteristics impact academic achievement so that
we can intercept mechanisms that would lead to disadvan-
tages of certain populations [21]. For example: If we notice
that people from a lower socioeconomic background tend to
a) live further away from campus and b) have to work a
lot and that both of these influence the time they have for
studying, which in turn influences their academic achieve-
ment, then we can come up with solutions for this on several
levels. For example, the study management and academic
staff might be able to come up with an adjusted study pro-
gram and timetable. The university might provide cheap
student housing close to the university; the state might pro-
vide funding for disadvantaged students.
Hence, we certainly do not want to discourage research on
causal mechanisms of demographic characteristics on aca-
demic achievement. Rather, we want to highlight the im-
portance of thinking about demographic features. Looking
at the fairness literature, two aspects need to be highlighted.
First, it might still be helpful to have demographic features
available. This allows us to estimate a model’s Demographic
Parity Ratio or other common metrics in evaluating the fair-
ness of a model’s prediction [17]. Second, our theoretical
model in 1 indicates that there might be proxy features that
transport information about demographic features even if
we do not include demographic features. It could, there-
fore, also be argued that demographic biases in these proxy
features should be mitigated to receive a truly fair model
[17]. Then, we would also need the demographic features to
perform a form of bias mitigation.

7.2 Drawbacks of Feature Selection and Fea-
ture Attribution Methods

Most common feature selection or feature attribution tech-
niques rely on the correlation between features and the tar-
get in one way or another. As we have discussed at length by
now, demographic features are, in general, correlated with
the target. This means that employing feature selection
methods that rely on correlation will most likely lead to the
inclusion of at least some of these features. Likewise, mod-
els are likely to place importance on demographic features as
there are several equally good parameterizations leading to
feature attribution methods recognizing these features as im-
portant. It also explains why some scholars who used such
techniques (e.g., Information Gain or relative feature im-
portance) reported that demographic features were at least
partially important [15, 6, 35]. However, our analysis shows
that it is not enough to simply employ such techniques to as-
sess the usefulness of demographic features. While they are
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not necessary to achieve the best-performing model, they
are still correlated with the target. Therefore, we recom-
mend that researchers consciously think about whether and
why they should include demographic features instead of
using automatic (correlation-based) techniques for feature
selection. Furthermore, in addition to feature attribution
techniques, researchers should evaluate whether similar per-
formance can be reached without certain features.

7.3 Implications for Practitioners
This is also one of the major implications of our paper
for practitioners. Educational Data Mining researchers and
practitioners should distinguish between models trained for
deployment, where the goal is to achieve maximum perfor-
mance, and models trained for gaining insights about the
factors driving academic success. Depending on the appli-
cation, the feature subset, especially whether to include de-
mographic information, should be determined. Practition-
ers, when deploying models, should be very careful when
it comes to including demographic features. They can, as
discussed, not rely on technical solutions but should in-
stead think critically about including these features. There
may exist cases for which including demographic features is
meaningful, but practitioners should be absolutely certain
that including these features does not introduce biases pro-
ducing unfairness. [33] state that sensitive features should be
included for fairness reasons if the prediction accuracy itself
is equal. However, Table 6 shows that using demographic
features changed the prediction for some students; this is an
indication that the models using demographic features are,
indeed, unfair [17]. Therefore, leaving them in would proba-
bly not result in an equally fair model. Again, whether and
how to use demographic features has to be carefully evalu-
ated.
The other major recommendation for practitioners result-
ing from our paper concerns the kind of data useful for at-
risk prediction. Our analysis clearly shows that past perfor-
mance is extremely important, while demographic character-
istics alone have little predictive power. In particular, fea-
tures that mirror the requirements necessary to perform well
in the target are highly relevant for the prediction. There-
fore, practitioners should ideally use standardized tests that
capture the kind of abilities relevant to the target. This
would provide the best features for at-risk prediction.

7.4 Limitations of Our Study and Future Work
Despite our solid results, it is important to note certain limi-
tations. We only used four datasets and two types of models
to test our hypotheses. As these datasets are diverse (on-
line, offline, different countries, different levels of education)
as are the model types (linear, non-linear), we believe that
our main findings are still very reliable. Nonetheless, future
work should investigate whether the findings hold when us-
ing other datasets and models.
Additionally, we did not investigate whether the models’ fea-
ture importance may change when using different encoding
methods. This may be the case when the encoding methods
learn that demographic features are not necessary for the
prediction. However, given the correlation between demo-
graphic features and the target, it is unlikely that different
encodings lead to models not contributing importance to
demographic features at all. Still, this should also be inves-
tigated in the future.

Because it is not the major focus of our study, we have
not investigated the relationship between the importance of
activity- and performance-related features. Future research
could investigate what is more important and how the two
feature subsets relate to each other.

8. CONCLUSION
Our analyses show strong evidence that demographic fea-
tures do not increase a model’s performance on at-risk pre-
diction as long as study-related information is available.
Nonetheless, both our theoretic considerations, as well as
our empirical evaluations indicate that demographic features
correlate both with study-related features and the target.
Thus, they are used by the models for the prediction, al-
though this would not be necessary, leading to biases and,
as a result, unfairness. Because of these fairness concerns, we
advise leaving out demographic features and features point-
ing towards demographic characteristics. This should also
make it possible to share more data between researchers,
as it reduces privacy concerns. Nonetheless, our paper also
shows that investigating the causal mechanisms of how de-
mographic features impact academic achievement is worth-
while and should be encouraged. Deployments of at-risk
prediction models should not include demographic features,
though.
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