
Automated Search for Logistic Knowledge Tracing Models
Philip I. Pavlik Jr. and Luke G.

Eglington
University of Memphis, Amplify Edu-

cation Inc.

ppavlik@memphis.edu, legling-
ton@amplify.com

ABSTRACT
This paper presents a tool for creating student models in logistic

regression. Creating student models has typically been done by ex-

pert selection of the appropriate terms, beginning with models as

simple as IRT or AFM but more recently with highly complex mod-

els like BestLR. While alternative methods exist to select the

appropriate predictors for the regression-based models (e.g., step-

wise selection or LASSO), we are unaware of their application to

student modeling. Such automatic methods of model creation offer

the possibility of better student models with either reduced com-

plexity or better fit, in addition to relieving experts from the burden

of searching for better models by hand with possible human error.

Our new functions are now part of the preexisting R package LKT.

We explain our search methods with two datasets demonstrating

the advantages of using the tool with stepwise regression and regu-

larization (LASSO) methods to aid in feature selection. For the

stepwise method using BIC, the models are simpler (due to the BIC

penalty for parameters) than alternatives like BestLR with little

lack of fit. For the LASSO method, the models can be made simpler

due to the fitting procedure involving a regularization parameter

that penalizes large absolute coefficient values. However, LASSO

also offers the possibility of highly complex models with excep-

tional fit.

Keywords
Logistic regression, student modeling, knowledge tracing.

1. INTRODUCTION
Adaptive learning technology requires some way to track a stu-

dent’s learning in order to make decisions about how to interact

with the student. The general assumption is that a model of students

provides values (e.g., probability estimates typically) that are used

to make decisions on pedagogy, the most common decisions being

about when or whether to give practice and also how much practice

to give (e.g., has the student mastered the proficiency) [13].

This paper describes a tool to build logistic regression models au-

tomatically from student data. We focus on finding models that are

explainable and parsimonious for a variety of reasons. One reason

is because of the needs of open learner models to provide interpre-

tation of the student data, e.g. in a student dashboard, means that

there are benefits if it is scrutable, can be made cooperative, and is

editable [4]. Complex models make these things more difficult to

achieve. Trust is another advantage of explainable systems [10],

which can approve adoption by stakeholders.

A common practice in research into student modeling is concerned

with choosing models based on fit statistics such as AUC and

RMSE. However, the practical benefits of going from an AUC of

.85 to .88 (for instance) may be close to zero depending on how the

model is being used. If it is being used for reporting proficiency to

a dashboard (e.g., in binary terms such as mastered or not), both

models may come to the same conclusions. In adaptive instruc-

tional systems, whether the better fitting model changes practice

sequences depends on the decision rules utilizing the model predic-

tions. Frequently, the same recommended practice sequences will

be recommended from both models. In short, there are dramatically

diminishing returns from improving model fit, and if the improve-

ment reduces of interpretability and costs 100x more features it

likely unjustified. In the present work, we sought to address this

tension between optimal model fits and practical considerations.

Unfortunately, because student models differ by content area and

the type of learning technology, it often seems necessary to hand-

craft new models to maximize model accuracy [1, 3, 7, 8, 9, 14,

18, 22]. This has created a parade of alternatives such that a huge

amount of researcher knowledge is necessary before a practitioner

can easily transfer these methods to new systems. The researcher

must be an expert in quantitative methods of knowledge tracing,

have a deep understanding of the domain, and understand which

learning science principles are important in that domain (repetition,

spacing, forgetting, etc.). In addition to these base technical skills

there are all the complexities of model building itself such as over-

fitting and the need for generalization. This base knowledge

necessary for model creation creates a long learning curve.

We suppose that the long learning curve in our area can be solved

by building better tools to build models. We have been using LKT,

which subsumes a large number of prior logistic models by provid-

ing a flexible model-building framework in R [15]. However,

although LKT enables the use of many predictive features, it

doesn’t select features for the user. The present work is a demon-

stration of ongoing work to automatically select a subset of features

for the user.

With the excellent model fits of recent deep learning models, some

readers will see this prior research as a dead end that people need

to move away from, but from these authors’ perspective, that is un-

likely to be the case. Deep learning student modeling e.g., [17], has

been around for several years but can be more complicated to im-

plement within adaptive practice systems than regression and

harder to interpret model parameters and interpret errors. New deep

learning models can fit well, but do not seem to fit reliably better

than simpler alternatives [8]. In many cases, the complexity may be

Do not delete, move, or resize this block. If the paper is accepted, this block will

need to be filled in with reference information.

P. I. P. Jr. and L. G. Eglington. Automated search for logistic knowl-
edge tracing models. In M. Feng, T. Käser, and P. Talukdar, editors,
Proceedings of the 16th International Conference on Educational
Data Mining, pages 17–27, Bengaluru, India, July 2023. Interna-
tional Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115673

17

unwarranted for applications unless there is some demonstration

that these models can predict student knowledge better than simpler

methods like logistic regression.

On the other hand, the simplicity of regression means that software

developers and educational content developers can incorporate stu-

dent models of astounding complexity using basic algebra. Such

capability means that incorporating such models as pedagogical de-

cision-makers in educational software is relatively straightforward

and has been well described. So, in this paper, we look more deeply

at one of the remaining stumbling blocks in the more widespread

use of logistic regression to trace student learning.

While the LKT R package allows the application of more than 30

features, it did not previously provide any direction of how to

choose these features for a the components (e.g. KCs, students,

items) of the data. Choosing such components is also difficult for

an expert, since despite an expert perhaps understanding the palette

of possible features, given 3 levels of components (as in BestLR)

there can be more than 90 possible choices to add to a model (as-

suming we search across all 30 for each component). Best LR is

formulated with the following equation. Where alpha is the student

ability, delta is item difficulty, theta is the function log(x+1), beta

is the KC difficulty, and gamma and rho capture the effect of prior

success and failures for the KC. Sigma transforms the linear meas-

ure to the logistic prediction probability.

𝐵𝑒𝑠𝑡𝐿𝑅(𝑎𝑠,𝑡+1 = 1|𝑞𝑠,𝑡+1, 𝑥𝑠,1:𝑡)

= 𝜎(𝑎𝑠 − 𝛿𝑞𝑠,𝑡+1
 + 𝜙(𝑐𝑠) + 𝜙(𝑓𝑠)

+ ∑ 𝛽𝑘

𝑘𝜖𝐾𝐶(𝑞𝑠,𝑡+1)

+ 𝛾𝑘𝜙(𝑐𝑠,𝑘) + 𝜌𝑘𝜙(𝑓𝑠,𝑘))

Table 1. Start and end stats for each approach with each da-

taset (BIC and AUC, and par count)

To address this problem in the inefficiency of logistic regression

modeling, we here describe and test our tool for stepwise student

model search in LKT. For the expert, this will save either the need

to use cookie cutter models that they know, but that may not be

appropriate or the countless hours of manual search that is often

necessary when trying to understand modeling in a new domain.

For the practitioner the this LKT package update will allow fast

creation of models tailored to multiple purposes and domains, sav-

ing time and likely opening the possible options. For the student

student modeler, the updated package provides a way to begin

building models quickly and with sufficient feedback so as to think

deeply about the functioning of those models. The example vignette

in the LKT package shows many examples from this paper.

2. METHODS

2.1 Stepwise
In the function, the user may set the objective function (BIC, AIC,

AUC, R2, or RMSE), but these behave quite similarly in our testing

except for BIC, which corrects heavily for the potential of overfit-

ting due to high parameter counts. The user may specify forward or

backward search or alternate between forward and backward (bidi-

rectional search). The user also has control over the initial features

and components in the model, allowing the exploration of theoreti-

cal hypotheses for completed models and the optimization of those

models. For example, in our tests, we illustrate starting with the

BestLR model and then allowing the algorithm to simplify the

model while simultaneously add a key new predictor. The user can

also specify the forward and backward step size needed in terms of

the objective function (fit statistic) which is also chosen.

2.2 LASSO
An alternative approach to stepwise regression is LASSO regres-

sion, a form of regularization. In this method, a penalty term is

added to the loss function equal to the sum of the absolute values

of the coefficients times a scalar lambda. This penalty term may

result in the best fitting model having fewer features if they are cor-

related. Larger lambda values will result in fewer features. A

common method to use this approach is to attempt a large number

of potential lambda values, and choose the value with the best

cross-validated performance. In the present case, we are particu-

larly concerned with finding interpretable models that are easier to

implement, and so larger values that may have slightly worse per-

formance may be preferred. To evaluate the resultant models from

LASSO we began by using the glmnet R package to fit both da-

tasets with 100 values starting at the lowest value that would reduce

all coefficients to zero (the maximum lambda) decreasing in incre-

ments of .001 (the default strategy with glmnet, [6]. At each step,

25-fold cross-validation was performed. This allowed us to evalu-

ate the stability of the candidate lambda values. Subsequent model

fitting and analyses used specific lambdas intended to evaluate the

fit and interpretability of LASSO models with varying levels of

complexity to determine the usefulness of LASSO in comparison

to stepwise regression. An important distinction between LASSO

and the stepwise approach employed in this work is that for lasso

the coefficients for individual KCs may be dropped. For instance,

if two different KCs are essentially redundant a LASSO model may

reduce a coefficient for one of them to zero if the lambda value is

large enough. In contrast, the stepwise regression approach we em-

ployed treats the KC model as a single feature, it is either included

or it is not.

For nonlinear features logitdec, propdec, and recency, features

were generated with parameters from .1 to 1 in .1 increments (e.g.,

propdec with decay parameters .1, .2, up to 1). All the resultant fea-

tures were included in the LASSO models to allow us to evaluate

which parameter values remained and whether more than one was

beneficial.

3. RESULTS

3.1 Bidirectional Stepwise Method
For the stepwise method, it is possible to use any collection of fea-

tures as a “start” model that is subsequently added to and subtracted

from. Using different starts helps us understand how the method

can have problems with local minima but also helps us see that

these problems are rather minimal as the different starts converge

on similar results. At the same time, showing how the method im-

proves upon “stock” models is an important part of the

Start

Model

Start

BIC

End

BIC

Start

AUC

End

AUC

AUC

Δ

Pa-

ramet

ers Δ
AFM

cloze

61563.15 52312.33 0.842 0.858 0.016 -607

BestLR

cloze

61001.05 52227.29 0.856 0.862 0.006 -715

Empty

cloze

75977.87 52544.5 0.5 0.861 0.361 139

AFM

MATHia

51480.63 45602.94 0.811 0.816 0.005 -502

BestLR

MATHia

50728 45209.36 0.831 0.822 -0.009 -610

Empty

MATHia

59296.01 45611.19 0.5 0.816 0.316 14

18

demonstration, showing that these “stock” models are not found to

be particularly precise, and we might question whether better local

minima are actually an improvement.

Table 2. AFM start results, cloze data.

Table 3. BestLR start results, cloze data.

Table 4. Empty start results, cloze data.

We choose to use AFM [1] and BestLR [8] models as starting

points, in addition to using an empty start (which included a global

intercept to account for the grand mean of performance, as did all

our models without explicit intercepts). AFM and BestLR starts are

interesting since they illustrate the advantages of using the search

method by arriving at models that fit better or equivalently with

fewer parameters. Furthermore, using these start points allows us

to show that these canonical models are not even local minima,

which highlights how our methods are useful. If these models are

particularly strong, it should not be possible to add terms to them,

and the current terms should not be dropped. See Table 1 for sum-

mary.

Using these starts we search over a preset group of features that is

meant to be “complete enough” to produce interesting relevant re-

sults and goes beyond BestLR features (which it includes), to also

include some of the simplest and most predictive non-linear fea-

tures we have developed in other work [15].

We used several features, which we crossed with all the possible

components (listed below) for each dataset. A $ indicates that the

feature is fit with 1 coefficient per level of the component (e.g., one

coefficient for each KC, student, or item). Intercept (a fixed coeffi-

cient for each level of the feature) does not require the $ notation

since it is always fit this way. In contrast, without a $ indicates that

all levels of the KC behave the same, so for example lineafm$ for

the student means that there would be a continuous linear increase

in performance for each trial for each student, with a different rate

for each student.

We choose a limited set of likely features from the LKT software

to search across. These included

• Intercept–one coefficient for each level of the component

factor

• Lineafm–one coefficient to characterize the linear change

with each repletion of the component

• Logafm– one coefficient to characterize the logarithmic

change with each repetition for each level of the compo-

nent. 1 is added to prior repetitions.

• Logsuc– one coefficient to characterize the logarithmic

change with each successful repetition for each level of

the component. 1 is added to prior repetitions.

• Logfail– one coefficient to characterize the logarithmic

change with each failed repetition for each level of the

component. 1 is added to prior repetitions.

• Linesuc– one coefficient to characterize the linear change

with each successful repetition for each level of the com-

ponent

Table 5. AFM start results, MATHia data.

Table 6. BestLR start results, MATHia data.

Table 7. Empty start results, MATHia data.

R2 par

ams

BIC AUC RMS

E

action

0.287 676 61563.15 0.842 0.401 starting model

0.354 678 56461.99 0.872 0.380 add: recency-KC..Default.

0.352 643 56251.40 0.871 0.381 drop: intercept-KC..Cluster.

0.362 644 55532.05 0.876 0.377
add: logsuc-CF..Correct.An-

swer.

0.356 580 55275.79 0.873 0.379
drop: lineafm$-CF..Cor-

rect.Answer.

0.351 544 55247.92 0.871 0.381 drop: lineafm$-KC..Cluster.

0.358 546 54698.11 0.874 0.379 add: recency-KC..Cluster.

0.284 69 55130.90 0.840 0.403
drop: intercept-Anon.Stu-

dent.Id

0.326 71 51965.35 0.860 0.389
add: propdec-Anon.Stu-

dent.Id

0.321 69 52312.33 0.858 0.391 drop: recency-KC..Cluster.

R2 par

ams

BIC AUC RMS

E

action

0.319 849 61001.05 0.856 0.392 starting model

0.371 851 57098.22 0.879 0.374 add: recency-KC..Default.

0.337 374 54422.55 0.865 0.386
drop: intercept-Anon.Stu-

dent.Id

0.337 303 53650.51 0.865 0.386 drop: intercept-KC..Default.

0.336 267 53327.24 0.865 0.386 drop: logfail$-KC..Cluster.

0.331 203 53063.81 0.862 0.388
drop: logfail$-CF..Cor-

rect.Answer.

0.328 168 52849.33 0.861 0.389 drop: intercept-KC..Cluster.

0.325 132 52731.07 0.859 0.390 drop: logsuc$-KC..Cluster.

0.332 134 52227.29 0.862 0.388 add: recency-KC..Cluster.

R2 par

ams

BIC AUC RMS

E

action

0.000 1 75977.87 0.500 0.498 null model

0.174 65 63428.69 0.746 0.440
add: logsuc$-CF..Cor-

rect.Answer.

0.219 67 60095.24 0.788 0.425 add: recency-KC..Default.

0.282 138 56024.84 0.839 0.404 add: intercept-KC..Default.

0.328 140 52544.50 0.861 0.389
add: propdec-Anon.Stu-

dent.Id

R2 para

ms

BIC AUC RMS

E

action

0.226 517 51480.64 0.811 0.390 starting model

0.247 519 50275.13 0.823 0.384 add: recency-KC..MATHia.

0.163 20 49815.16 0.771 0.408
drop: intercept-Anon.Stu-

dent.Id

0.227 22 46094.29 0.812 0.390
add: logitdec-Anon.Stu-

dent.Id

0.224 13 46120.77 0.810 0.391
drop: lineafm$-KC..MA-

THia.

0.234 15 45602.94 0.816 0.388 add: logitdec-KC..MATHia.

R2 para

ms

BIC AUC RMS

E

action

0.258 626 50728.00 0.831 0.381 starting model

0.275 627 49762.34 0.840 0.375 add: linesuc-Problem.Name

0.241 128 46362.18 0.822 0.385
drop: intercept-Anon.Stu-

dent.Id

0.252 130 45749.90 0.828 0.382 add: recency-KC..MATHia.

0.240 32 45377.63 0.821 0.385
drop: intercept-Prob-

lem.Name

0.250 34 44841.98 0.827 0.383 add: recency-Problem.Name

0.246 25 44959.37 0.825 0.384
drop: logfail$-KC..MA-

THia.

0.240 16 45209.36 0.822 0.386
drop: logsuc$-KC..MA-

THia.

19

• Linefail– one coefficient to characterize the linear change

with each failed repetition for each level of the compo-

nent

• Logitdec–one coefficient to characterize the logit of prior

success and failures for the component (seeded with 1

success and 2 failures resulting in a start value of 0, e.g.

log(.5/.5)=0). Uses a nonlinear exponential decay to

weight priors according to how far they are back in the

sequence for the component traced.

• Propdec–one coefficient to characterize the probability of

prior success and failures for the component (seeded with

1 success and 2 failures resulting in a start value of 0, e.g.

.5/1)=.5). Uses a nonlinear exponential decay to weight

priors success and failures according to how far they are

back in the sequence for the component traced.

• Recency– one coefficient to characterize the influence of

the recency of the previous repetition only, where t is the

time since the prior repetition at the time of the new pre-

diction and d characterize non-linear decay. The value is

computed as t-d.

• Logsuc$–like logsuc above, except one coefficient is

added per level of the component (e.g., different effects

for each KC or item)

• Logfail$– like logfail above, except one coefficient is

added per level of the component (e.g., different effects

for each KC or item)

3.1.1 Cloze practice
The statistics cloze dataset included 58,316 observations from 478

participants who learned statistical concepts by reading sentences

and filling in missing words. Participants were adults recruited

from Amazon Mechanical Turk. There were 144 KCs in the dataset,

derived from 36 sentences, each with 1 of 4 different possible

words missing (cloze items). The number of times specific cloze

items were presented was manipulated, as well as the temporal

spacing between presentations (narrow, medium, or wide). The

post-practice test (filling in missing words) could be after 2

minutes, 1 day, or 3 days (manipulated between students).

The stimuli type, manipulation of spacing, repetition of KCs and

items, and multiple-day delays made this dataset appropriate for

evaluating model fit to well-known patterns in human learning data

(e.g., substantial forgetting across delays, benefits of spacing). The

dataset was downloaded from the Memphis Datashop repository.

As components we choose to use the ids for the student (Anon.Stu-

dent.Id), sentence itself (KC..Cluster, 32 levels due to each

sentence having 2 feedback conditions which we do not investigate

here), specific items (KC.Default.) and the response word

(CF..Correct.Answer.). KC..Default. and CF..Correct.Answer. had

a good deal of overlap with KC..Default. since there were 72 items

with 64 different responses. Here are two examples of these items,

"The standard deviation is a __________ that describes typical var-

iability for a set of observations.", and "Standard deviation is the

__________ of the variance, also known as root mean squared er-

ror."

Tables 2, 3 and 4 show the results for the different start models.

For the AFM start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 2 and Figure 1 for the

step actions that led to this final model.

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟.) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.)
+ 𝑙𝑜𝑔𝑠𝑢𝑐(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟.)
+ 𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑)

Figure 1. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for AFM model start with Cloze data.

For the BestLR start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 3 and Figure 2 for the

step actions that led to this final model.

𝑙𝑜𝑔𝑠𝑢𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑.) + 𝑙𝑜𝑔𝑓𝑎𝑖𝑙(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑.)
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟.)
+ 𝑙𝑜𝑔𝑠𝑢𝑐$(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟.)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟.)

R2 para

ms

BIC AUC RMS

E

action

0.000 1 59296.01 0.500 0.452 null model

0.161 3 49773.24 0.768 0.409
add: logitdec-KC..MA-

THia.

0.189 11 48207.27 0.787 0.402
add: intercept-KC..MA-

THia.

0.218 13 46506.96 0.806 0.393
add: propdec-Anon.Stu-

dent.Id

0.233 15 45611.19 0.816 0.388
add: recency-KC..MA-

THia.

20

Figure 2. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for BestLR model start with Cloze

data.

For the empty start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 4 and Figure 3 for the

step actions that led to this final model.

𝑙𝑜𝑔𝑠𝑢𝑐$(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟.) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.)
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡.)
+ 𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑)

Figure 3. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for empty model start with Cloze

data.

3.1.2 MATHia Cognitive Tutor equation solving
The MATHia dataset included 119,379 transactions from 500 stu-

dents from the unit Modeling Two-Step Expressions for the 2019-

2020 school year. We used the student (Anon.Student.Id), MATHia

assigned skills (KC..MATHia.), and Problem.Name as the item.

This meant that our item parameter was distributed across the steps

in the problems. There were 9 KCs and 99 problems. We chose not

to use the unique steps as an item in our models for simplicity. This

dataset included skills such as such as “write expression negative

slope” and “enter given, reading numerals”.

Tables 5, 6 and 7 show the results for the different start models.

For the AFM start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 5 and Figure 4 for the

step actions that led to this final model.

𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)

Figure 4. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for AFM model start with MATHia

data.

For the BestLR start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 6 and Figure 5 for the

step actions that led to this final model.

𝑙𝑜𝑔𝑓𝑎𝑖𝑙(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑙𝑜𝑔𝑠𝑢𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑)
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒)
+ 𝑙𝑖𝑛𝑒𝑠𝑢𝑐(𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒)

21

Figure 5. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for BestLR model start with MATHia

data.

For the empty start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 7 and Figure 6 for the

step actions that led to this final model.

𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)

Figure 6. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for empty model start with MATHia

data.

3.2 Cloze with stepwise
For the cloze dataset, the models from the 3 starting points produce

somewhat different results, illustrating the problem with any step-

wise method due to it not being a global optimization. However,

considering the fact that our goal is to practically implement these

models, the result also suggests a solution to this local minima

problem. By using more than one starting point we can identify the

essential feature that explain the data.

For example, in these cloze results note that the recency feature

used for the KC-Default is particularly predictive. In this dataset

simply means that the time since the last verbatim repetition (KC

Default) was a strong predictor with more recent time since last

repetition leading to higher performance.

Successes were also important, but curiously they matter most for

the KC-Correct-Answer. In all case the log of the success is the

function best describing the effect of the correct responses. In this

dataset, this mens that each time they responded with a fill-in word

and it was correct, they would be predicted to do better the next

time that word was the response. The log function is just a way to

bias the effect of successes to be stronger for early succeses.

While the recency being assigned to the exact repetitions (KC-De-

fault) indicates the importance of memory to performance, the

tracking of success (as permanent effects) across like responses

suggests that people are actually learning the vocabulary despite

showing forgetting.

Consistent across all three final models is also the attention to stu-

dent variability modeling. In BestLR, the log success and failure

predictors for the student in the model mean that the student inter-

cept is removed in an elimination step as redundant (this is also due

to the BIC method, which penalizes the student intercept as unjus-

tifiably complex). Interestingly, in the AFM and empty start

models, we find that the propdec feature is added to capture the

student variability after the intercept is removed, since there starts

did not trace student performance with their start log success and

failure feature as did BestLR from the start. The MATHia data has

the same “problem” with BestLR start due to BestLR serving as

enough of a local minima to block the addition of terms. More on

this in the limitations section. Practically these features are im-

portant, since they allow the model to get an overall estimate for

the student that greatly improves prediction of individual trials.

In summary, there appears to be no great advantage to starting with

a complex starting model. Indeed, in all cases the stepwise proce-

dure using BIC greatly simplifies the models by reducing the

number of coefficients. It appears that prior models produced by

humans (in this case, AFM and BestLR) do not produce better re-

sults in the model space than simply starting with an empty null

hypothesis for the model. Furthermore, all three start models result

in final models have no fixed student parameters, so should work

for new similar populations without modifications, unlike AFM

and BestLR which relied on fixed student intercepts

3.3 MATHia with stepwise
Practically speaking for the MATHia case we also see the im-

portance of student variability, recency, and the correctness at fine

grain by KC and item for all the models. Digging into the detail,

ewe can see the BestLR start has some effect on the quantitative fit

and chosen model. Most notably, while AFM and empty starts re-

sult in the student intercept being dropped in favor of logitdec and

propdec respectively, the BestLR start retains the log success and

failures predictors for the student. At the same time, Best LR, per-

haps because it begins with the Problem.Name intercept as a

covariate, adds features more features for Problem.Name, such as

linesuc and recency. It seems clear that BestLR causes a different

result. At this time, we might favor the simpler results of AFM or

empty starts, but consider that the BestLR start fits the data by AUC

slightly better than the BestLR result. This implies that AFM and

22

empty starts are simply producing overly simplistic results. Con-

sider we only dropped and removed terms when BIC gain was at

least 500. We expect that running from an empty start to a lower

BIC threshold would result in more commonality with BestLR

start. To test this, we ran the empty start and indeed we found that

the result became more similar to the BestLR result with the addi-

tion of linesuc and recency for the problems. Since this model

(shown below) is still slightly worse than the BestLR start it implies

that the algorithm favors composite features despite better fit from

individual features (logsuc and logfail). We discuss this in the lim-

itations and future work sections.

𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎.)
+ 𝑙𝑖𝑛𝑒𝑠𝑢𝑐 (𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒)
+ 𝑟𝑒𝑐𝑒𝑛𝑦(𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒)

Finally, all the models retained an intercept for the KCs, and all of

the models capture MATHia KC performance change with the

logitdec feature.

3.4 LASSO Method
A primary goal of the LASSO analyses is to determine how well

the approach can inform a researcher about which features are most

important, and guide the researcher toward a fairly interpretable,

less complex, but reasonably accurate model. See Figures 7 and 8

plotting the relationship between the number of features and AUC

across 50 values of lambda ranging from .192 (a large penalty) to

.0001 (very small penalty). For both datasets, there is clearly dimin-

ishing fit benefits as the number of features is increased (from a

smaller lambda). Both curves have clear inflection points. At the

inflection point, the coefficients for most features have been

dropped to zero (see Table 8). Note in Table 8 that the MATHia

dataset in particular fits quite well without many parameters for in-

dividual KCs. What remains appear to be the more robust and

important features.

Figure 7. AUC for cloze dataset as a function of the number of

retained features. There is a clear elbow at AUC = ~.86 with

123 features (including KC intercepts) beyond which there are

diminishing returns. For comparison, BestLR was .856 with

849 coefficients.

Figure 8. AUC for MATHia dataset as a function of the number

of retained features. There is a clear elbow at AUC = ~.82 with

29 features (including KC intercepts) beyond which there are

diminishing returns. For comparison, BestLR was .831 with

626 coefficients.

Table 8. Proportion of features with nonzero coefficients in

Lasso model at AUC inflection points in Figures 7 and 8.

Feature Cloze MATHia

KC intercepts .4069 .1111

KC logsuc .0116 .027

KC logfail .1104 0

Student Intercept .0083 .002

Student logsuc 0 0

Student logfail .002 0

The final features that remained for LASSO models near the inflec-

tion points partially overlapped with those found with our stepwise

regression approach as expected. Below the top 10 features for each

dataset are listed in order of relative importance (see Tables 9, 10,

and 11 below). When the results didn’t agree with the stepwise re-

sults, it appears that it may be because a stricter LASSO should be

employed. For instance, a recency feature for the Problem.Name

KC with decay parameter .1 remained in the MATHia dataset.

However, it has a negative coefficient, which is challenging to in-

terpret given that the negative sign implies correctness probability

increases as time elapses. A larger lambda value may be justified.

For the Cloze dataset, a large number of features remained even at

the inflection point (123) and they were missing many features we

stepwise added. Inspecting the 123 features we saw that the vari-

ance stepwise captured in single terms was distributed across many

terms in LASSO. Given that one goal of this work is to make sim-

pler and more easily interpretable models for humans, we tried a

larger penalty to reduce the number of features to 24. The resulting

23

top 10 are in Table 10. This model is more interpretable to a human,

with mostly recency features, recency-weighted proportion fea-

tures, and counts of success for KC. While the match to stepwise is

not exact we can now see it attending to student and KC successes

and failures with features like logitdec in the top 10. It appears that

lambda values are a sort a human interpretability index. Larger val-

ues make the resultant models more human interpretable, and in

this case still create well-fitting models. Overall, the agreement be-

tween the approaches is encouraging evidence that these methods

may be useful for researchers.

Table 9. Top 10 features in Cloze model at inflection point near

AUC = .86. Bolded features were also in the final empty start

stepwise regression model.

Feature Standardized

coefficient

Feature Type

RecencyKC..De-

fault_0.4

4.4072 Knowledge

Tracing

KC..Default._1 1.4984 Intercept

KC..Default._2 -1.4870 Intercept

KC..Default._3 -1.3911 Intercect

KC..Default._4 -1.3922 Intercept

KC..Default._5 -1.2857 Intercept

recencyKC..Cluster.0.2 0.9533 Knowledge

Tracing

KC..Default._6 0.9834 Intercept

CF..Correct.Answer._1 -0.9438 Intercept

KC..Default._7 0.8427 Intercept

Table 10. Top 10 features in Cloze model when a larger lambda

is imposed to reduce the total number of features to 24. Result-

ing AUC = .818. Bolded features were also in the final empty

start stepwise regression model.

Feature Standardized

coefficient

Feature Type

recencyKC..De-

fault._0.3

1.8569 Knowledge

Tracing

recencyCF..Correct.An-

swer._0.2

1.4381 Knowledge

Tracing

recencyKC..Clus-

ter._0.3

0.7548 Knowledge

Tracing

recencyAnon.Stu-

dent.Id_0.1

-0.6053 Knowledge

Tracing

logsucKC..Default. 0.4211 Knowledge

Tracing

logitdecCF..Correct.An-

swer._0.9

0.3766 Knowledge

Tracing

logitdecAnon.Stu-

dent.Id_1

0.2204 Knowledge

Tracing

recencyKC..De-

fault._0.2

0.3870 Knowledge

Tracing

KC..Default._2 -0.1350 Intercept

logitdecAnon.Stu-

dent.Id_0.9

0.1343 Knowledge

Tracing

Table 11 Top 10 features in MATHia model at inflection point

near AUC = .82. Bolded features were also in the final empty

start stepwise regression model.

Feature Standardized

coefficient

Feature Type

recencyKC..MA-

THia._0.2

1.1103 Knowledge

Tracing

KC..MATHia._1 1.1777 Intercept

KC..MATHia._2 1.0789 Intercept

KC..MATHia._3 0.9621 Intercept

recencyKC..MA-

THia._0.3

0.9831 Intercept

recencyProb-

lem.Name_0.1

-0.4848 Knowledge

Tracing

KC..MATHia._4 -0.4080 Intercept

logitdecKC..MA-

THia._0.9

0.3138 Knowledge

Tracing

Problem.Name_2 -0.2098 Intercept

logitdecAnon.Stu-

dent.Id_0.9

0.1682 Knowledge

Tracing

If minimum BIC is used instead of the AUC inflection point, the

“optimal” models have slightly more features (e.g., 154 for cloze

instead of 123, and 96 instead of 29 for MATHia), but still far fewer

than the full model. The BIC minimum as a function of features is

displayed in Figures 9 and 10.

Figure 10. BIC as a function of number of features in Lasso

model with cloze dataset. Minimum BIC has 154 features in-

cluding intercepts, with AUC = .8655 and RMSE = .3868.

24

Figure 11. BIC as a function of number of features in Lasso

model with MATHia dataset. Minimum BIC has 96 features in-

cluding intercepts, with AUC = .8301 and RMSE = .3816.

Below in Table 12 we provide a final contrast of three example

models with small, medium, and large lambda penalty terms. Inter-

estingly, both datasets can achieve approximately AUC = .80 with

~10 features! Intercepts are considered features in this case, which

means that a majority of the KC and student intercepts were

dropped. This highlights a potential benefit of the LASSO approach

for evaluating the fit of the KC model. It also suggested that student

intercepts may not always be necessary in the presence of features

like logitdec and propdec, which can stand in for intercepts to adjust

for student differences.

Table 12. Lasso model fits with three levels of regularization.

The strictest (fewest parameters) demonstrates how well a

much smaller model can perform if needed. The medium-level

model is the model at the AUC inflection points in Figures 10

and 11. The least strict model demonstrates the diminishing re-

turns of increased parameters.

Dataset R2 N

params

BIC AUC RMSE

MATHia .2955 10 48459.54 .7951 0.4011

MATHia .3396 28 45617.33 .8208 0.3871

MATHia .3805 555 47884.99 .8450 0.3730

Cloze .2024 11 61065.81 .8115 0.4310

Cloze .3328 123 52419.37 .8638 0.3882

Cloze .3587 508 54157.31 .8743 0.3795

4. DISCUSSION
The results suggest both stepwise and LASSO methods work ex-

cellently to create, improve, and simplify student models using

logistic regression. Both approaches generally agreed that recency

features, logsuc, and recency-weighted proportion measures like

propdec and logitdec were important. They also agreed that the

number of necessary features was substantially less than the full

models. While some have argued against stepwise methods [19],

we think that stepwise methods worked relatively well here because

the feature choices were not arbitrary. We did not simply feed in all

the features we could find. Instead, we choose a set of features that

can be theoretically justified.

Interpreting the results from these models needs to begin from con-

sideration of the individual features. Each individual feature being

found for a model means that the data is fit better if we assume the

feature is part of the story for learning in the domain the data comes

from. Clearly, we might expect different features for different do-

mains of learning, and practically, knowing the features predicting

learning means that we can better understand the learning better.

For example, knowing that recency is a factor, or knowing that

overall student variability is a big effect. The models this system

builds might simply be used to understand online learning in some

domain, but the expert building instruction technology might also

use them in an adaptive learning environment to make decisions

about student pedagogy or instruction.

4.1 Limitations and Future Work
A primary limitation of the present work is that we only included a

subset of the features that are already known and established theo-

retically. There were also known features we did not include (e.g.,

specific time window features and interactions among features). An

extension of this work will be to include more features as well as a

step to generate and test novel features that may be counterintuitive.

For instance, KC model improvement algorithms could be incorpo-

rated into the process [12]. However, how much variance is left to

explain that is not covered by the set of features we used? With both

datasets, models with AUC > .8 were found using only a relatively

small subset of the potential features. Some fraction of unexplained

variance is always to be expected due to inherent noise, KC model

errors, and measurement error. A significant amount of remaining

variance may be individual student differences that justify different

types of models that update automatically to attempt to estimate in-

dividual learning rates, for example. These approaches are beyond

the scope of this paper but an important topic for future work.

An opportunity for future work may also be to use these features as

components in other model architectures, such as Elo or deep learn-

ing approaches. There are ongoing efforts to make deep learning

models more interpretable, but for the present work we focused on

a model architecture that is relatively interpretable to non-experts,

logistic regression. Elo modeling is also particularly promising due

to its simplicity and self-updating function [16]. Elo can be adjusted

to include KT features like counts of successes and failures [11],

but standard Elo without KT features also serves as a strong null

model since it does reasonably well without KT features.

A key limitation of the stepwise method is the individuality of fea-

tures. This is illustrated by the way that logsuc and logfail are

retained in the BestLR MATHia model, but they are not added in

any of the other models. Their retention in BestLR, may be best,

but it may also reflect the standard tendency of stepwise methods

to block the addition of new terms (possibly better) that are collin-

ear with prior terms. This may be unavoidable, but also an

uncommon problem we think. In contrast the fact that logsuc and

logfail are not added for the student when nothing is already present

might be because this requires 2 steps of the algorithm, while add-

ing composite features like propdec or logitdec requires 1 step.

Since stepwise selection is based on a greedy step optimization it

ignores better gains that might occur in 2 steps.

25

A solution to this problem of feature grainsize, in which complex

features are favored because they contain multiple sources of vari-

ability, might be to create synthetic linear feature groupings that

can be chosen as an ensemble for addition to the model with each

step. This was suggested by our results which showed logsuc and

logfail being retained for the student for the BestLR start as dis-

cussed above. Future work will allow some “features” to actually

test a combination of features for a component. Such a fix will al-

low us to add the combination feature logsuc and logfail (e.g., for

the students) using 2 coefficients as usual, but in one stepwise step.

This will allow it to compete with other terms such as logitdec or

propdec, which incorporate success and failure already in the re-

ported version here. More advanced methods can use factor

selection which might be applied in both stepwise and LASSO

within LKT, such as grouping specific features together such as KC

models [21].

While the work here used BIC to reduce model complexity, and

BIC works similarly to cross-validation in constraining unjustifia-

ble complexity. We plan to confirm our results with out of sample

validation methods in future work, also allowing us to further con-

firm that BIC is adequate. However, BIC likely underfits our final

models relative to cross-validation [20]. So, it seems rather implau-

sible that our models are invalid due to overfitting. Rather we may

be running the risk of too little complexity, leaving explainable var-

iability out of our model. Certainly, this highlights that out BIC

stepwise threshold for addition and subtraction of terms was chosen

arbitrarily to allow for interpretable models. We were pleased to

see they also fit well.

4.1.1 Presets
To make the process of logistic regression modeling efficient, yet

still retain some flexibility and user control, our tool includes a

number of preset feature palettes that users will have available in-

stead of specifying their own list. These presets are essentially a

collection of theoretical hypotheses about the nature of the student

model, given some goal of the modeler. The presets include the fol-

lowing four presets.

• Static - This present will contains only the intercept fea-

ture. It allows for neither dynamic nor adaptive solutions,

essentially finding the best IRT type model, unless the

item or KC component is not used, in which case it could

simply find a single intercept for each student. Essen-

tially it fits the LLTM model [5].

• AFM variants (i.e. dynamic but not adaptive) – This pre-

set fits linear and log versions of the additive factors

model[2], including LLTM terms that represent different

learning rates or difficulties based on KC groupings (us-

ing the $ operator in LKT syntax).

• PFA and BestLR variants (dynamic and adaptive but re-

cency insensitive) – This preset contains all of the above

mechanisms, and also included the success and failure

linear and log growth terms used in PFA [14] and

BestLR[8].

• Simple adaptive – This catchall preset will include

rPFA[7] inspired terms such as logitdec and propdec, de-

scribed in the is paper and elsewhere [15]. In addition it

will include temporal recency functions using only a sin-

gle non-linear parameter, the best example of which,

recency, was described in this paper and has been previ-

ously described [15].

Finally, future work might explore how Lasso also offers a conven-

ient opportunity to evaluate the learner and KC model

simultaneously. Within the Lasso approach, the coefficient of each

KC can be pushed to zero and this could be used to allow refine-

ment of the KC model. A limitation of our work here is that we did

not explore this further, merely observing that in the models only

some KCs were being assigned intercepts.

5. CONCLUSION
We find that the first few selected features in most models produced

by the stepwise procedure are both effective AND interpretable.

Articulating a theory to describe the simple models is relatively

easy, since each feature can be justified by some research-based

argument. For example, we see the importance of tracing student

level individual differences in all the models, and we see the re-

cency feature as indicating forgetting occurs. The LASSO

procedure largely confirms the stepwise models are not far from a

more globally optimal solution for our test cases and may reveal the

future of the endeavor because of higher likelihood of a more global

solution with LASSO despite the somewhat less interpretable mod-

els.

The present work sought to simplify the learner model building pro-

cess by creating a model building tool, released as part of the LKT

R package. Our promising interim results demonstrate too modes

our tool has available to build models automatically. With stepwise,

they can start with an empty model, provide sample data, and the

fitting process will provide a reasonable model with a reduced set

of features according to a preset criterion for fit statistic change.

Alternatively, with the LASSO approach, the user provides data,

and the resulting output will be a set of possible models of varying

complexity based on a range of lambda penalties. The tool high-

lights models from lambda values based on minimum BIC and

inflection points like those depicted in Figures 1 and 2.

6. ACKNOWLEDGMENTS
This work was partially supported by the National Science Foun-

dation Learner Data Institute (NSF #1934745) project and a grant

from the Institute of Education Sciences (ED #R305A190448).

7. REFERENCES
[1] Cen, H., Koedinger, K., and Junker, B., 2006. Learning

Factors Analysis: A General Method for Cognitive Model

Evaluation and Improvement. In International Conference on

Intelligent Tutoring Systems, M. Ikeda, K.D. Ashley and T.-

W. Chan Eds. Springer, Jhongli, Taiwan, 164-176.

[2] Cen, H., Koedinger, K.R., and Junker, B., 2008. Comparing

two IRT models for conjunctive skills. In Proceedings of the

Proceedings of the 9th International Conference on

Intelligent Tutoring Systems (Montreal, Canada2008), 796-

798.

[3] Chi, M., Koedinger, K.R., Gordon, G., Jordan, P., and

VanLehn, K., 2011. Instructional factors analysis: A

cognitive model for multiple instructional interventions. In

Proceedings of the 4th International Conference on

Educational Data Mining (EDM 2011), M. Pechenizkiy, T.

Calders, C. Conati, S. Ventura, C. Romero and J. Stamper

Eds., Eindhoven, The Netherlands, 61-70. DOI=

http://dx.doi.org/http://doi:10.1.1.230.9907.

[4] Conati, C., Porayska-Pomsta, K., and Mavrikis, M., 2018. AI

in Education needs interpretable machine learning: Lessons

from Open Learner Modelling. arXiv preprint

arXiv:1807.00154.

26

[5] Fischer, G.H., 1973. The linear logistic test model as an

instrument in educational research. Acta Psychologica 37, 6

(1973), 359-374. DOI=

http://dx.doi.org/http://doi:10.1016/0001-6918(73)90003-6.

[6] Friedman, J., Hastie, T., and Tibshirani, R., 2010.

Regularization Paths for Generalized Linear Models via

Coordinate Descent. J Stat Softw 33, 1, 1-22.

[7] Galyardt, A. and Goldin, I., 2015. Move your lamp post:

Recent data reflects learner knowledge better than older data.

Journal of Educational Data Mining 7, 2 (2015), 83-108.

DOI=

http://dx.doi.org/https://doi.org/10.5281/zenodo.3554671.

[8] Gervet, T., Koedinger, K., Schneider, J., and Mitchell, T.,

2020. When is Deep Learning the Best Approach to

Knowledge Tracing? JEDM| Journal of Educational Data

Mining 12, 3 (2020), 31-54.

[9] Gong, Y., Beck, J.E., and Heffernan, N.T., 2011. How to

construct more accurate student models: Comparing and

optimizing knowledge tracing and performance factor

analysis. International Journal of Artificial Intelligence in

Education 21, 1 (2011), 27-46. DOI=

http://dx.doi.org/http://doi:10.3233/JAI-2011-016.

[10] Khosravi, H., Shum, S.B., Chen, G., Conati, C., Tsai, Y.-S.,

Kay, J., Knight, S., Martinez-Maldonado, R., Sadiq, S., and

Gašević, D., 2022. Explainable Artificial Intelligence in

education. Computers and Education: Artificial Intelligence

3(2022/01/01/), 100074. DOI=

http://dx.doi.org/https://doi.org/10.1016/j.caeai.2022.100074.

[11] Papousek, J., Pelánek, R., and Stanislav, V., 2014. Adaptive

practice of facts in domains with varied prior knowledge. In

Proceedings of the 7th International Conference on

Educational Data Mining (EDM 2014), J. Stamper, Z.

Pardos, M. Mavrikis and B.M. Mclaren Eds., 6-13.

[12] Pavlik Jr, P.I., Eglington, L., and Zhang, L., 2021. Automatic

Domain Model Creation and Improvement. In Proceedings

of The 14th International Conference on Educational Data

Mining, C. Lynch, A. Merceron, M. Desmarais and R.

Nkambou Eds., 672-676.

[13] Pavlik Jr., P.I., Brawner, K.W., Olney, A., and Mitrovic, A.,

2013. A Review of Learner Models Used in Intelligent

Tutoring Systems In Design Recommendations for Adaptive

Intelligent Tutoring Systems: Learner Modeling, R.A.

Sottilare, A. Graesser, X. Hu and H.K. Holden Eds. Army

Research Labs/ University of Memphis, 39-68.

[14] Pavlik Jr., P.I., Cen, H., and Koedinger, K.R., 2009.

Performance factors analysis -- A new alternative to

knowledge tracing. In Proceedings of the 14th International

Conference on Artificial Intelligence in Education, V.

Dimitrova, R. Mizoguchi, B.D. Boulay and A. Graesser Eds.,

Brighton, England, 531–538. DOI=

http://dx.doi.org/http://doi:10.3233/978-1-60750-028-5-531.

[15] Pavlik, P.I., Eglington, L.G., and Harrell-Williams, L.M.,

2021. Logistic Knowledge Tracing: A Constrained

Framework for Learner Modeling. IEEE Transactions on

Learning Technologies 14, 5, 624-639. DOI=

http://dx.doi.org/10.1109/TLT.2021.3128569.

[16] Pelánek, R., 2016. Applications of the Elo rating system in

adaptive educational systems. Computers & Education

98(2016/07/01/), 169-179. DOI=

http://dx.doi.org/https://doi.org/10.1016/j.compedu.2016.03.0

17.

[17] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,

Guibas, L.J., and Sohl-Dickstein, J., 2015. Deep Knowledge

Tracing. In Proceedings of the Advances in Neural

Information Processing Systems 28 (NIPS 2015) (2015), 1-9.

[18] Schmucker, R., Wang, J., Hu, S., and Mitchell, T., 2022.

Assessing the Performance of Online Students - New Data,

New Approaches, Improved Accuracy. Journal of

Educational Data Mining 14, 1 (06/24/2022), 1-45. DOI=

http://dx.doi.org/10.5281/zenodo.6450190.

[19] Smith, G., 2018. Step away from stepwise. Journal of Big

Data 5, 1 (2018/09/15), 32. DOI=

http://dx.doi.org/10.1186/s40537-018-0143-6.

[20] Yates, L.A., Richards, S.A., and Brook, B.W., 2021.

Parsimonious model selection using information theory: a

modified selection rule. Ecology 102, 10 (2021/10/01),

e03475. DOI=

http://dx.doi.org/https://doi.org/10.1002/ecy.3475.

[21] Yuan, M. and Lin, Y., 2006. Model selection and estimation

in regression with grouped variables. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 68, 1

(2006/02/01), 49-67. DOI=

http://dx.doi.org/https://doi.org/10.1111/j.1467-

9868.2005.00532.x.

[22] Yudelson, M., Pavlik Jr., P.I., and Koedinger, K.R., 2011.

User Modeling – A Notoriously Black Art. In User

Modeling, Adaption and Personalization, J. Konstan, R.

Conejo, J. Marzo and N. Oliver Eds. Springer Berlin /

Heidelberg, 317-328. DOI= http://dx.doi.org/10.1007/978-3-

642-22362-4_27.

27

