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ABSTRACT 
We propose an innovative, effective, and data-agnostic method to 
train a deep-neural network model with an extremely small train-
ing dataset, called VELR (Voting-based Ensemble Learning with 
Rejection). In educational research and practice, providing valid 
labels for a sufficient amount of data to be used for supervised 
learning can be very costly and often impractical. The shortage of 
training data often results in deep neural networks being overfit-
ting. There are many methods to avoid overfitting such as data 
augmentation and regularization. Though, data augmentation is 
considerably data dependent and does not usually work well for 
natural language processing tasks. Moreover, regularization is of-
ten quite task specific and costly. To address this issue, we 
propose an ensemble of overfitting models with uncertainty-
based rejection. We hypothesize that misclassification can be 
identified by estimating the distribution of the class-posterior 
probability P(y|x) as a random variable. The proposed VELR 
method is data independent, and it does not require changes to the 
model structure or the re-training of the model. Empirical studies 
demonstrated that VELR achieved classification accuracy of 0.7 
with only 200 samples per class on the CIFAR-10 dataset, but 
75% of input samples were rejected. VELR was also applied to a 
question generation task using a BERT language model with only 
350 training data points, which resulted in generating questions 
that are indistinguishable from human-generated questions. The 
paper concludes that VELR has potential applications to a broad 
range of real-world problems where misclassification is very 
costly, which is quite common in the educational domain.  
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1. INTRODUCTION 
When applying a deep-neural network to real-world classification 
tasks, it is sometimes the case that only a very small amount of 
labeled data is available for training a model. When a deep neural-
network (DNN) model is trained with a small amount of data, the 
model often overfits to the training data due to over-parameteri-
zation. We call such a problematically small amount of data the 
extremely low data regime [36]. 

Regularization is a widely used technique to prevent the model 
from overfitting. However, it requires the hyperparameters to be 
fine-tuned a priori, and the model must be retrained each time the 
hyperparameters are changed. 

Another commonly used technique that is known to be an effec-
tive solution to the overfitting problem is semi-supervised 
learning, which utilizes unlabeled data in conjunction with la-
beled data for training [30, 33]. In recent years, data augmentation 
using Generative Adversarial Networks (GAN) has been actively 
studied to synthetically inflate data, significantly improving the 
performance of semi-supervised learning [4, 6, 10, 19]. However, 
there are situations where only a small amount of labeled data is 
available and data augmentation is not a suitable option. Text 
analysis in natural language processing is an example of one such 
data-augmentation incompatible task.  

Although some research has demonstrated that DNN models can 
generalize well with extremely small data regimes, the perfor-
mance is still lower than that of when an abundant amount of data 
is available [26, 32]. Low performance due to overfitting is a se-
rious problem, especially when the model is used for real-world 
tasks where misclassification can be very costly and even unethi-
cal such as medical diagnoses or educational interventions. To 
further expand the application of DNN to real-word tasks, it is 
therefore critical to develop a technique that can overcome the 
overfitting problem with extremely low data regimes. 

In this study, we propose a rigorous ensemble technique for esti-
mating class-posterior probabilities based on a collection of 
overfitting models. Our proposed method does not use any regu-
larization techniques or generative models for data augmentation 
to avoid overfitting. Instead of preventing overfitting while train-
ing models, we propose to identify unreliable classification using 
a soft voting ensemble method based on the distribution of the 
estimated class-posterior probability P(y|x) among the collection 
of overfitting models. 

In other words, we aggregate the class-posterior probabilities 
P(y|x) from multiple isomorphic models (aka soft voting) instead 
of aggregating the class prediction y (aka hard voting) [37]. We 
treat P(y|x) as a random variable while considering a predicted 
class-posterior probability from each model as an observation to 
estimate the distribution of this random variable.  

An unreliable classification will be rejected to reduce the risk of 
giving wrong predictions. We shall call our proposed method Vot-
ing-based Ensemble Learning with Rejection (VELR). 

With a lack of theoretical work in the design of a voting technique, 
we explored two soft-voting methods: min-majority voting and 
uniform voting. The min-majority voting estimates Gaussian 
Mixture Models and takes the minimum probability in a majority 
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cluster, whereas uniform voting sums the probabilities with a uni-
form weight. Although uniform voting itself is not novel, voting 
among overfitting models due to the extremely low data regime 
has not been studied, as far as we are aware.  

In addition, it is not clear in the current literature how classifica-
tion with rejection works in conjunction with voting over an 
ensemble of overfitting models. We demonstrated that classifica-
tion with rejection with voting shows a better performance than 
that with a single model when only an extremely low data regime 
is available. 

To validate VELR, we conducted evaluation studies on two tasks: 
(1) image classification on a commonly used bench-mark dataset 
and (2) pedagogical question generation for online courseware 
engineering. The results showed that voting-based ensemble 
learning with rejection was able to identify incorrect predictions 
and accuracy of classification increased significantly by rejecting 
those predictions.  

Our contributions are as follows: (1) We propose voting-based 
ensemble learning with rejection, VELR, a practical and data-ag-
nostic solution for training deep-neural network models with 
extremely small datasets that would otherwise be overfit to the 
training data. (2) We show that a combination of soft voting 
among overfitting models and rejection can significantly increase 
performance of a model that relies on estimation of a class-poste-
rior probability. (3) We demonstrated that VELR is data agonistic 
through two empirical studies—image and text analyses. (4) The 
code and data used for the current study have been open sourced1. 

2. VELR: VOTING-BASED ENSEMBLE 
LEARNING WITH REJECTION 

2.1 Training the Base Models 
VELR applies to any deep-neural network model that outputs nor-
malized posterior probability (or certainty), P(y|x) = [0, 1], which 
means that when multiple certainties are output (e.g., multi-label 
classification), the sum of P(yi|x) are 1 across all outputs. In the 
current paper, we assume multiple certainties are output, but it 
sshould be clear that the same logic applies to models with a sin-
gle certainty, e.g., a binary classification.  

 

1 The code and data are available at https://github.com/IEClab-
NCSU/VELR 

Suppose we have an input x ∈ X in a multi-dimensional space and 
class labels Y = {y1, y2, ..., yC}. In general, to train a classification 
model is to optimize a set of certainties P(yiÎY|x) in a training 
dataset.  

When trained with an extremely low data regime, the model will 
unavoidably overfit. We therefore propose to create a collection 
of models that are independently trained using the same deep-
neural network structure, the same training dataset, and the same 
hyperparameter settings. It is only that the random initial weights 
are different. Accordingly, a set of certainty Pm(yiÎY|x) for a sam-
ple x are computed, each independently by an individual model 
m (m = 1, …, M) as depicted in Figure 1. The question is how to 
make a consensus among multiple certainties. The next section 
describes a voting technique to compute the consensus certainty 
P*(yiÎY|x). 

2.2 Voting on Estimated Certainty Distribu-
tion 

An essential problem of ensemble learning is to determine which 
posterior probability, among a collection of competing ones, 
should be taken. In the current literature, one approach takes 
model as the unit of analysis—i.e., individual models make a pre-
diction based on their own posterior probabilities and then a 
majority vote is taken from the set of those predictions, aka hard 
voting [2]. 

VELR takes a different approach, where certainty is used as the 
unit of analysis. Namely, for each class yi Î Y, VELR makes an 
ensemble decision about the posterior probability P*(yiÎY|x) 
based on a set of certainties, Pm(yiÎY|x), m = 1, …, M, as shown 
in Figure 1. In the current literature, this approach is called soft 
voting [37]. In the rest of this paper, we call P*(yiÎY|x) as the 
consensus certainty2.  

We explored two different methods for voting: min-majority vot-
ing and uniform voting, as shown in the following subsections. 
Our basic hypothesis is that voting decisions should be made 
based on the distribution of the certainty P(yi|x) per class yi among 
the M models. Therefore, we define a random variable 𝑣!! =
{𝑣𝒙,$

!! = 𝑃$(𝑦%|𝒙); 	𝑚 = 1,… ,𝑀} for each sample x and class yi. 
We hypothesize that the decision of classification should be made 
based on voting among 𝑣’s.  

2.2.1 Min-majority voting 
For the min-majority voting, we assume that 𝑣!!  follows the 
Gaussian Mixture Model (GMM) defined as:   

𝑃(𝑣!!) =3 𝜋&𝒩(𝑣!!|𝜇& , 𝜎&)
'

&()
 

Σ&()' 𝜋& = 1, 
		𝒩(𝑣!!|𝜇& , 𝜎&)	:	Gaussian	Density	function	 

	𝐾: Number	of	clusters 
As Salman and Liu [25] analyzed, when models are overfitting, 
the probability distribution of the random variable 𝑣  tends to 
skew towards 0 and 1. We therefore assume K = 2 in the current 
implementation of VELR.  

For each sample x, the estimation of π, μ, and σ is done by the EM 
algorithm [7] over the random variable 𝑣 as mentioned above. 

2 We use the term “posterior probability”, “prediction”, and “cer-
tainty” interchangeably unless otherwise noted. 

 
Figure 1. Set of posterior probability (or “certainty”)  
𝑷𝒎(𝒚𝒊 ∈ 𝒀|𝒙) computed by a collection of models. 
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Once the density functions are estimated, VELR finds the major-
ity cluster that indicates the most dominant distribution of 𝑣!! as 
defined below:   

𝑘$,-./%0! = 𝑎𝑟𝑔𝑚𝑎𝑥&∈'	𝜋& 

Let 𝑣𝒙,$
!!  be an observation of 𝑣!! ,	which is 𝑃$(𝑦%|𝒙). Then, like 

a normal clustering method, we assign each certainty 𝑣𝒙,$
!! 	=

𝑃$(𝑦%|𝒙)	to a cluster ki (i Î {1, 2}):  

𝑘(𝑣𝒙,$
!! 	) = 	𝑎𝑟𝑔𝑚𝑎𝑥&∈'

𝜋&𝒩(𝑣𝒙,$
!! 	|𝜇& , 𝜎&)

∑ 𝜋&"𝒩(𝑣𝒙,$
!! 	|𝜇&2, 𝜎&2)'

&2()
 

Our goal is to reject samples whose prediction is likely to be 
wrong. To make the model prediction more conservative, we hy-
pothesize that the least confident certainty (i.e., posterior 
probability) should be taken. Therefore, for min-majority voting, 
the minimum Pm(yi|x) in the majority cluster is taken as the con-
sensus prediction for the posterior probability, denoted as 
P*(yi|x): 

𝑃∗(𝑦%|𝒙) = min
$∈44𝒙

$!	
𝑣𝒙,$
!! 	 

𝑀𝑀𝒙
!!	 = {𝑚 ∶ 𝑚 ∈ 𝑀	where	𝑘(𝑣𝒙,$

!! 	) = 	𝑘$,-./%0!	} 

By taking the majority cluster, the value of P*(yi|x) by min-ma-
jority voting is less likely to be zero.  

2.2.2 Uniform voting 
Uniform voting takes the mean of the certainty distribution per 
class yi, 𝑣𝒙,$

!! 	 = Pm(yi|x): 

𝑃∗(𝑦%|𝑥) = 	
1
𝑀Σ$∈4	𝑣𝒙,$

!! 	 

Notice that uniform voting is equivalent to soft voting with the 
uniform weight of one (1.0) [9]. 

2.3 Rejecting Uncertain Predictions 
Once the consensus certainty P*(yi|x) is determined for each class 
yi, a rejection method is applied. The rejection is made based on 
a hypothesis that a reliable prediction should agree with highly 
certain posterior probabilities across models.  

Our rejection function r(x) is defined with pre-defined threshold 
θ: R(0, 1) as: 

𝑟(𝒙) = max
!!∈6

𝑃∗(𝑦%|𝒙) − 𝜃 

The sample x is rejected if r(x) ≤ 0 and accepted otherwise. There-
fore, our classification function f(x) is:  

𝑓(𝑥) = ]
𝑅𝑒𝑗𝑒𝑐𝑡																																		𝑖𝑓	𝑟(𝑥) ≤ 0

𝑎𝑟𝑔𝑚𝑎𝑥!!∈6𝑃
∗(𝑦%|𝒙)															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Rejection increases the risk of not being able to make a prediction 
but decreases the risk of creating a wrong prediction. In some do-
mains, including education, the quality of the model output is 
more important than the quantity, and often making a wrong pre-
diction results in a harmful consequence. The task of pedagogical 
question generation, which is reposted later in section 4.2 as a 
sample task, is an example of such a sensitive task.  

3. RELATED WORK 
3.1 Training with Extremely Low Data Re-

gime 

Deep neural networks (DNN) are prone to overfit small training 
data. There has been extensive research conducted on preventing 
overfitting. Three commonly used techniques are: (1) restricting 
models and data, (2) pre-training models, and (3) augmenting 
data. 

Restricting the model and data is used to prevent the model from 
being too complex. Regularization techniques are commonly 
used, including dropout [29], dropconnect [31], random noise [20, 
22], and many others (for example, [11, 32]). Reducing the di-
mensionality of the input can also increase the generalizability of 
the model [1, 16]. However, it is not clear whether these regular-
ization techniques work for extremely low data regimes. 

Pre-training methods are used to initially train a model with data 
from a related task before fine-tuning the model using the target 
data. In NLP tasks, it is common to use pre-training models [8, 
28, 35]. Although fine-tuning might be done with less amounts of 
data when a model is sufficiently pre-trained, it does not always 
work. Indeed, fine-tuning did not work for the question genera-
tion task that we used for an evaluation (section 4.2).  

Data augmentation is conducted to increase the amount of train-
ing data. There are various methods proposed for DNN-based 
data augmentation [5, 14, 15, 18]. When unlabeled data are avail-
able, a generative technique model can be combined with semi-
supervised learning [3, 12, 34]. These generative models might 
apply to extremely low data regimes. Zhang et al. [36] proposed 
a GAN-based data-augmentation technique, called DADA, spe-
cifically for extremely low data regimes. DADA involves a 
device called Augmenter that generates a new image given ran-
dom noise and a label. DADA also involves a Discriminator, 
which acts as a classifier that outputs a binary decision for each 
class category, indicating whether the input belongs to the distri-
bution of the real data for the target class. 

Unlike the above-mentioned methods, VELR does not require 
changing a model structure or input data. Theoretically, VELR is 
thoroughly data-agnostic—it can be easily adapted to any classi-
fication or prediction tasks including NLP tasks. Practically, 
VELR should work as a reliable solution for many existing mod-
els with an extremely low data regime. 

3.2 Classification with Rejection 
For classification tasks that involve a high risk for misclassifica-
tion, there has been research on classification with rejection, 
where a classifier may choose not to make a prediction in order 
to avoid wrong predictions [21]. The original study on classifica-
tion with rejection [21] is based on a single model. It is not clear 
how classification with rejection works in conjunction with vot-
ing over an ensemble of overfitting models. The empirical study 
reported in the next section demonstrated that classification with 
rejection with voting shows a better performance than that with a 
single model in an extremely low data regime. 

4. EVALUATION STUDY 
An evaluation study was conducted to test the effectiveness of 
VELR. To validate the generality of the algorithm, VELR was 
applied to two different tasks—image classification and educa-
tional question generation. An NVIDIA GeForce RTX 3090 was 
used for the evaluation. 

4.1 First task: Image classification 
4.1.1 Method: Image classification 
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The first task used a subset of CIFAR-10 datasets [13] to simulate 
VELR being applied to an extremely low data regime.  

CIFAR-10 contains 10 classes with 5000 samples per class. The 
training datasets we used consist of 50 (1% of complete training 
dataset), 150 (3%), 200 (4%), 500 (10%), and 1000 (20%) sam-
ples per class randomly sampled from the CIFAR-10 dataset.  

To increase the reliability of the results, we created four different 
subsets of training data for each of the five different sample sizes 
mentioned above. The results reported below in the results section 
show the averaged performance among four subsets.  

For each training subset, we trained 5000 models, applied VELR, 
and validated the ensemble outcome using the CIFAR-10 test da-
taset, which contains 10,000 samples. 

The architecture of the classification model consists of two con-
volutional layers with max-pooling and three fully connected 
layers, as shown in Table 2 in Appendix. Each model was trained 
for 9000 steps. The batch size was 32. The learning rate was 10-3. 
No regularization technique was used.  

By applying VELR to this task, 10 consensus predictions 
P*(y1|x), …, P*(y10|x) were computed (cf. Figure 1). 

The results were compared with a state-of-the-art model for en-
semble learning with the extremely low data regimes, DADA 
[36]. Note that DADA uses data augmentation and regularization.  

For this task, we also explored how the size of ensemble, i.e., the 
number of models trained, influences the performance of the clas-
sifier. 

4.1.2 Results: Image classification 
Figure 2 shows the accuracy of the prediction (y-axis) with dif-
ferent numbers of training data (x-axis). The accuracy was 
averaged over 4 trials. Since the standard deviation was smaller 
than 0.01 for all data points, it is not shown in the figure.  

Figure 2-a shows results for min-majority voting, Figure 2-b 
shows uniform voting. Each line corresponds to a particular re-
jection threshold θ as shown in the legend. The numbers 
associated with a data point show the predicted ratio as defined as 
follows (not all data points show the predicted ratio for simplic-
ity): 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑟𝑎𝑡𝑖𝑜 =
#	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛	

#	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑡𝑒𝑠𝑡	𝑑𝑎𝑡𝑎 	 

The figure only shows data with 0.4 < θ < 0.8, because there was 
a clear trend that the larger the θ, the higher the accuracy becomes 
regardless of other factors (e.g., size of data and voting method). 
Also, when the threshold became greater than 0.8, a considerable 
number of samples was rejected.  

The figure shows that VELR with min-majority voting outper-
formed DADA when θ ≥ 0.6. VELR with uniform voting also 
outperformed DADA when θ ≥ 0.7. The current data demon-
strates that a very simple ensemble model with no data 
augmentation and regularization can outperform a complex 
model that includes a generative model for data augmentation.  

As shown in Figure 2 when the training data size was fixed (for 
example, see 500 per class), the larger the θ, the higher the accu-
racy but the lower the predicted ratio was. This indicates a trade-
off between the accuracy and the predicted ratio. We therefore 
investigated the trade-off of each voting method as shown next. 

We also plotted the trade-off between accuracy (y-axis) and the 
predicted ratio (x-axis), comparing training models with 200 (Fig-
ure 4-a in Appendix) and 1000 (Figure 4-b) samples per class. 
The plots clearly show a trade-off between accuracy and pre-
dicted ratio. Together with the fact that threshold and accuracy 
are negatively correlated, this finding suggests that when the 
threshold is increased, the accuracy also increases at the cost of 
predicted ratio (or the number of rejections). Figure 4 also shows 
that uniform voting was clearly better than a single model predic-
tion, and consistently better than or equal to min-majority voting. 
Because of this, we used uniform voting for the second task as 
shown in the next section.  

4.2 Second task: Educational Question Gen-
eration 

 
(a) Min-Majority method 

 
(b) Unform method 

Figure 2. Comparison with DADA in terms of accuracy. 
Each line shows the change of accuracy (y-axis) with a given 
threshold θ depending on the number of training samples (x-
axis). The value above each data point shows the predicted 
ratio (i.e., number of samples predicted without rejection / to-
tal number of samples). 
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The task of generating educational questions motivated us to de-
velop the VELR method. This section describes the overview of 
the question generation model that we developed and why we 
needed to invent VELR.  

4.2.1 Model to be trained: Question generation 
As part of our on-going effort to develop evidence-based learn-
ing-engineering methods that facilitate the creation of online 
courseware, called PASTEL [17], we developed a system for au-
tomated question generation, called QUADL [27]. A unique 
characteristic of QUADL is that it is aimed to generate a question 
for a key concept in a given didactic text that is assumed to help 
students attain a specific learning objective. The input to QUADL 
is a didactic text and a learning objective, and the output is a pair 
of a question and an answer.  

QUADL consists of two machine-learning models: (1) An answer 
prediction model that identifies a key token in a given didactic 
text that is related to a specific learning objective. (2) A question 
conversion model that converts the didactic text that contains the 
key token into a question for which the key token is the literal 
answer. Notice that the answer for the generated question can be 
literally identified in the source didactic text. Since the source di-
dactic text is sampled from the actual online courseware, the 
generated questions, by definition, are verbatim questions.  

The technical details of the models used in QUADL is provided 
elsewhere [27]. Here, we provide a quick overview of those mod-
els sufficient to understand how the ensemble technique VELR 
was applied to train QUADL.  

Given a pair of a learning objective LO and a sentence S, QUADL 
generates a question Q that is assumed to be suitable to achieve 
the learning objective LO (Figure 5 in Appendix shows an over-
view of QUADL). The following is an example of LO, S, and Q: 

Learning objective (LO): Describe the basic (overall) struc-
ture of the human brain.  

Sentence (S): The dominant portion of the human brain is the 
cerebrum.  

Question (Q): What is the dominant portion of human brain? 
Answer (A): cerebrum 

Notice that the target token is underlined in the sentence S and 
becomes the answer A for the question Q. 

The input of the answer prediction model is a single sentence S 
(or a “source sentence” for the sake of clarity) and a learning ob-
jective LO. The output from the answer prediction model is a 
target token index <Is, Ie>, where Is and Ie show the index of the 
start and end of the target token within the source sentence S rel-
ative to the learning objective LO. The models may output <Is=0, 
Ie=0>, indicating that the source sentence is not suitable to gen-
erate a question for the learning objective.  

For the answer prediction model, we adopted Bidirectional En-
coder Representation from Transformers (BERT) [8]. The final 
hidden state of the BERT model is fed to two single layer classi-
fication models. One of them outputs a vector of probabilities 
Ps(i) indicating the probability that the i-th token in the sentence 
is the beginning of the target token. Likewise, another classifica-
tion model outputs a vector of probabilities that the end index is 
located at the j-th token, Pe(j). To compute the probability of a 
target token index <Is=i, Ie=j>, a normalized sum of Ps(i) and 
Pe(j) is first calculated as the joint probability P(Is=i, Ie=j) for 
every possible span (Is < Ie) in the sentence. The probability 
P(Is=0, Ie=0) is also computed, which indicates the likelihood 

that the sentence is not suitable to generate a question for the 
learning objective. The index <Is=i, Ie=j> with the largest joint 
probability becomes the final prediction. 

For the question conversion model, we hypothesize that if a target 
token is identified in a source sentence, a pedagogically valuable 
question can be generated by converting that source sentence into 
a verbatim question using a sequence-to-sequence model that can 
generate fluent and relevant questions. Therefore, we decided to 
use the state-of-the-art technology, called ProphetNet [23], for 
now. ProphetNet is an encoder-decoder pre-training model that is 
optimized by future n-gram prediction while predicting n-tokens 
simultaneously.  

4.2.2 Methods: Question generation 
Training QUADL models.  For the current study, QUADL was ap-
plied to an existing online course “Anatomy and Physiology” 
(A&P) hosted on the Open Learning Initiative (OLI) at Carnegie 
Mellon University. The A&P course consists of 490 pages and 
has 317 learning objectives. To create training data for the answer 
prediction model, in-service instructors who actively teach the 
A&P course manually tagged the didactic text. The instructors 
were asked to tag each sentence S in the didactic text to indicate 
the target tokens relevant to specific learning objective LO.  

A total of 8 instructors generated 350 pairs of <LO, S> for mon-
etary compensation. Those 350 pairs of token index data were 
used to fine-tune the answer prediction model. As expected, fine-
tuning the BERT model with only 350 training data points re-
sulted in severe overfit—in average, only 38% of predicted target 
tokens were correct relative to the ground truth data (i.e., 350 
pairs of <LO, S>). VELR was then applied to training the answer 
prediction model to overcome the model overfit.  

To make an ensemble prediction, 400 answer prediction models 
were trained independently using the same training data, but each 
with a different parameter initialization. Using all 400 answer pre-
diction models, an ensemble model prediction was made as 
follows.  

To begin with, recall that for each answer prediction model APk 
(k = 1, ..., 400), two vectors of probabilities are output, one for the 
start index Psk(i), and another one for the end index Pek(j). Uni-
form voting was then applied for each vector. That is, those 
probabilities were averaged across all models to obtain the en-
semble predictions Ps*(i) and Pe*(j) for the start and end indices, 
respectively. The final target token prediction P*(Is=i, Ie=j) was 
then computed using Ps*(i) and Pe*(j) as described in section 
4.2.1. 

In the current study, we used threshold of 0.4 for rejection because 
otherwise the accuracy of the model is too low (token precision 
<0.60) or the recall is too small (token recall < 0.20) on the test 
dataset. How the token precision and the token recall were com-
puted is described in section 4.2.3 

For the question conversion model, we used an existing instance 
of ProphetNet that was already trained on the SQuAD1.1 dataset 
[24], one of the most commonly used datasets for question gener-
ation tasks that contains question-answer pairs retrieved from 
Wikipedia.  

Generating questions using QUADL.  Once trained, QUADL was 
applied to the pages of OLI A&P courseware (excluding pages 
that were used in the training dataset for the answer prediction 
model). A total of 2191 questions were generated from 490 pages 
with 317 learning objectives.  
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State-of-the-art question generation model. We used Info-
HCVAE [6], a state-of-the-art question generation model, as a 
baseline. Info-HCVAE generates questions without taking a 
learning objective into account. Instead, it extracts key concepts 
from a given paragraph and generates questions for them. There-
fore, our primary motivation to use Info-HCVAE as a baseline 
(besides its outstanding performance at the time of writing this 
paper) is to compare question generation with and without taking 
learning objectives into account. The details of the evaluation of 
question generation are beyond the scope of this paper but can be 
found in [27]. 

Survey. Five in-service instructors who actively teach the OLI 
A&P course (the “participants” hereafter) were recruited for a 

survey study. The survey contained 100 items, each consisting of 
a paragraph, a learning objective, a question, and an answer.  

Participants were asked to rate the prospective pedagogical value 
of proposed questions using four evaluation metrics on a 5-point 
Likert scale that we developed for the current study: answerabil-
ity, correctness, appropriateness, and adoptability. 

Answerability refers to whether the question can be answered 
from the information shown in the proposed paragraph. Correct-
ness is whether the proposed answer adequately addresses the 
question. Appropriateness is whether the question is appropriate 
for helping students achieve the corresponding learning objective. 
Adoptability is how likely the participants would adapt the pro-
posed question to their class.  

Each individual participant rated all 100 survey items. The ques-
tions used in the survey were created either by QUADL, Info-
HCVAE, or a human expert. There were 34 questions generated 
by QUADL, 33 questions by Info-HCVAE, and 33 human-gen-
erated questions from the same OLI A&P course. Since the 
survey did not mention the source of the included questions, the 
participants blindly evaluated the prospective pedagogical value 
of those questions.  

Consequently, five responses per question were collected, which 
is notably richer than any other human-rated study for question 
generation in the current literature, as these studies often involve 
only two coders.   

4.2.3 Results: Question generation 
Our primary research questions regarding the use of VELR with 
QUADL are: (1) How does VELR improve the accuracy (token 
precision) of the answer prediction? (2) How pedagogically ade-
quate are the questions generated by QUADL when combined 
with VELR? 

Accuracy of Answer Prediction Model. To investigate how 
VELR improved the accuracy of the answer prediction model 
used in QUADL, we evaluated the token precision with different 
threshold values.  

We operationalized the accuracy of target token identification us-
ing two metrics: token precision and token recall. Token precision 
is the number of correctly predicted tokens divided by the number 
of tokens in the prediction. Token recall is the number of correctly 
predicted tokens divided by the number of ground truth tokens. 
For example, suppose a sentence “The target tissues of the nerv-
ous system are muscles and glands” has the ground truth tokens 
as “muscles and glands.” When the predicted token is “glands,” 
the token precision is 1.0 and recall is 0.33. 

Figure 3 shows the change of token precision (a) and token recall 
(b) depending on the threshold when VELR is applied on 10 an-
swer prediction models vs. 400 models. The figure shows the 
aggregated average over 7 runs.   

Figure 3-a shows that VELR improves the token precision of the 
answer prediction model. When VELR is not used, the average 
token precision was 0.38 (as shown in the black dashed line). 
When VELR was used with a threshold of 0.6, for example, the 
token precision was 0.63.  

There was a trade-off between precision and recall as predicted. 
As Figure 3-b shows the token recall decreased when the thresh-
old increased. The plots in the figure also suggest that there was 
no significant difference between 10 models and 400 models 
when unified voting was applied.  

 
(a)Token Precision 

 
(b) Token Recall 

Figure 3. Average of token precision (a) and token recall (b) 
when VELR is used with 10 models (blue triangle markers) 
and 400 models (orange round markers). The dashed line 
(black) shows token precision and token recall by a single an-
swer prediction model with no rejection. 
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In sum, VELR improved the performance of the answer prediction 
model (which is based on the BERT architecture) even when it 
was trained with only 350 data points. For uniform voting, the 
number of models did not significantly impact the performance 
of the ensemble model. Due to the rejection, there is a clear trade-
off between the soundness (token precision) and the completeness 
(token recall) of the ensemble model prediction.  

As discussed before, the use of VELR is beneficial for tasks 
where soundness is valued over completeness—for pedagogical 
question generation, it is far more useful to generate a small num-
ber of pedagogically valuable questions than to generate lots of 
harmful questions. So, a further research question is: How peda-
gogically adequate are the questions generated by QUADL when 
combined with VELR? 

Quality of the generated questions. The results on the answer 
prediction model shown above promisingly suggest that VELR 
has a practical application for generating questions for existing 
online courseware. The current survey results supported this ex-
pectation. Table 1 shows the survey results.  

To see if there was a difference in ratings between questions with 
the different sources (QUADL vs. Infor-HCVAE vs. Human), a 
one-way ANOVA was applied separately to each metric. The re-
sults revealed that source is a main effect for ratings on all four 
metrics; F(2, 97) = 36.38, 24.15, 26.11, and 25.03, for answera-
bility, correctness, appropriateness, and adoptability, respectively. 
A post hoc analysis using Tukey’s test showed that there was a 
statistically significant difference between QUADL and Info-
HCVAE; t(97)=1.87, 1.50, 1.52, 1.39 for each metric, p < 0.05 
for all metrics. There was, however, no significant difference be-
tween QUADL and human-generated questions for each of the four 
metrics: t(97)=0.40, 0.25, 0.16, 0.25, p = 0.19, 0.53, 0.78, 0.45 
respectively.  

In sum, the results from the current survey data suggest that 
QUADL-generated questions were evaluated as on-par with hu-
man-generated questions when VELR is applied to the answer 
prediction model trained with an extremely small data regime. 

We further investigated how the consensus certainty of ensemble 
prediction of the answer prediction model impacted the quality of 
the generated questions. We sampled a subset of questions used 
in the survey by excluding the questions whose source target sen-
tences would have been rejected if a threshold higher than 0.4 had 
been applied. In other words, we investigated the following re-
search question: How does the rejection threshold used by VELR 
when applied to the answer prediction model impact the ratings 
of the QUADL-generated questions? We plotted how the ratings 
change if thresholds higher than 0.4 were applied (Figure 6 in 
Appendix). The figure shows a trend that the participants would 
have increased their rating when higher values for rejection 
threshold were used, though the differences were relatively small 
and not monotonic.  

Table 1. Survey results. Average rating by five participants 
(± standard deviations). The rating values range from 1 as 
strongly disagree to 5 as strongly agree. The rejection 
threshold for the answer prediction model was set to 0.4. 

 

 QUADL Human Info-
HCVAE 

Answerability 4.19 ± 0.74 3.79 ± 0.89 2.32 ±1.15 
Correctness 4.05 ± 0.72 3.80 ± 0.83 2.55±1.21 

Appropriateness 4.04 ± 0.74 3.88 ± 0.76 2.52±1.25 
Adoptability 3.79 ± 0.62 3.53 ± 0.78 2.39±1.10 

5. DISCUSSION AND LIMITATIONS 
Building a valid prediction model with extremely low data re-
gimes is an omnipresent challenge in education research and 
many other domains when human annotation is required. There-
fore, developing a data-agnostic technique to overcome this issue 
is vital to advance the pragmatic theory of learning engineering.  

We proposed a voting function based on the distribution of the 
predicted posterior probability (or “certainly”). The experiment 
with CIFAR-10 showed that both min-majority and uniform vot-
ing can achieve better accuracy than the state-of-the-art method, 
DADA [36], even without any regulation or data augmentation 
technique on the image classification task.  

Although concepts of soft-voting and classification with rejection 
have already been studied in the current literature, VELR is the 
first in the literature that combines soft-voting technique with re-
jection to carry out ensemble learning to overcome the issue of 
overfitting when a model is trained with an extremely low data 
regime.  

In this paper, we explored only the Gaussian mixture model for 
min-majority voting, there are various ways to implement a vot-
ing technique by fitting different probability distributions. We 
conjecture that using a voting technique that better estimates a 
distribution of the posterior probability will further expand the 
potential of the proposed ensemble method. 

We demonstrated that VELR is useful for a real-world applica-
tion: pedagogical question generation as a learning-engineering 
tool for online courseware creation. However, the observations 
related to the evaluation of VELR on QUADL needs some atten-
tion. Since the total number of QUADL-generated questions used 
in the survey is small (34) due to the cost of the human-evalua-
tion, the number of questions included in a subset when a higher 
threshold was applied was significantly small, too (Figure 6 in 
Appendix). The survey study should be replicated with a larger 
number of questions to further validate the current findings. 

6. CONCULSION 
We found that combining soft voting among overfitting models 
and rejection based on the distribution of the learned posterior 
probability leads to remarkable accuracy on tasks even when 
models were trained with extremely low data regimes and were 
hence severely overfit.  

While a conventional solution for overfitting due to extremely 
low data regimes is to restrict the flexibility of the model or in-
crease the amount of data using the data-augmentation 
techniques, proposed VELR (Voting-based Ensemble Learning 
with Rejection) applies to any task and any models that estimate 
predicted certainly using posterior probability. VELR combines 
multiple overfitting models to output reliable predictions rather 
than preventing a model from overfitting while training. 

The extremely low data regime is one of the most common prob-
lems in many practical tasks including educational data mining. 
Yet, building a reliable machine-learning model with a limited 
amount of data is an unavoidable demand. Further research to 
study the theoretical foundation for overcoming the overfitting 
problem under an extremely low data regime is therefore needed. 
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9. APPENDIX 
Classification model for CIFAR-10 
Each model was trained for 9000 steps. The batch size was 32. 
The learning rate was 10-3. No regularization technique was used. 

Table 2. The architecture of a model used for the image 
classification task. 

Layer [Output shape] 
5*5 Conv. 2*2 Max-pooling [32, 6, 14, 14] 
5*5 Conv. 2*2 Max-pooling [32, 16, 5, 5] 

Fully connected ReLu [32, 120] 
Fully connected ReLu [32, 84] 

Fully connected [32, 10] 
10-class Softmax [32, 10] 

 

 

 

Trade-off between Accuracy and Predicted Ratio 
The dotted line and solid line show min-majority and uniform 
voting, respectively. Each voting schema has three plots with 
100, 1000, and 5000 models as shown with different markers. 
Each line contains 20 data points (denoted as markers on the 
line). Each data point corresponds to a particular threshold rang-
ing from 0.95 to 0.0 (i.e., no rejection), decreasing by 0.5. Since 
the predicted ratio increases as the threshold is lowered, the 20 
data points on the line are coincidentally arranged in a decre-
mental manner, from left to right, for the threshold (hence the 
threshold values are not displayed on the plot for simplicity). 
For example, the second marker from the right on min-majority 
models shows that when θ = 0.90, the min-majority voting over 
1000 models yielded the accuracy of 0.49 with the predicted ra-
tio of 0.62. 

The figure shows uniform voting was clearly better than a single 
model prediction, and consistently better than or equal to min-
majority voting.  

 
(a)200 samples per class 

 
(b)1000 samples per class 

Figure 4. Trade-off between Accuracy and Predicted Ratio. 
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Overview of QUADL 
The answer prediction model identifies start/end index <Is, Ie> of 
the target token (i.e., key term) in S. When S is not suitable for 
LO, it outputs <0,0>. The question conversion model converts S 
with target token to a verbatim question. 

 
Figure 5. An overview of QUADL used for question gener-
ation task.  

 
Change of Average Rating for Questions Gener-
ated by QUADL 
Figure 6 was plotted to answer the research question: How does 
the rejection threshold used by VELR when applied to the answer 
prediction model impact the ratings of the QUADL-generated 
questions?  

Each data point includes a subset of questions used in the survey 
excluding the questions whose source target sentences would 
have been rejected if a threshold higher than 0.4 had been ap-
plied. 

The figure shows how the ratings change if thresholds higher than 
0.4 were applied. The figure shows a trend that the participants 
would have increased their rating when higher values for rejection 
threshold were used, though the differences were relatively small 
and not monotonic. Appropriateness, for example, increased from 
4.04 to 4.30 when the threshold was changed from 0.4 to 0.75. 
Accordingly, acceptability also increased from 3.53 to 4.10. 

 
Figure 6. Change of average ratings with higher threshold 
VELR. 
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