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Preface

The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the In-
ternational Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the
annual flagship conference of the International Educational Data Mining Society.

The theme of this year’s conference is “Educational data mining for amplifying human potential.”
Not all students or seekers of knowledge receive the education necessary to help them realize their
full potential, be it due to a lack of resources or lack of access to high quality teaching. The dearth
in high-quality educational content, teaching aids, and methodologies, and non-availability of ob-
jective feedback on how they could become better teachers, deprive our teachers from achieving
their full potential. The administrators and policy makers lack tools for making optimal decisions
such as optimal class sizes, class composition, and course sequencing. All these handicap the na-
tions, particularly the economically emergent ones, who recognize the centrality of education for
their growth. EDM-2023 has striven to focus on concepts, principles, and techniques mined from
educational data for amplifying the potential of all the stakeholders in the education system.

The spotlights of EDM-2023 include:

• Five keynote talks by outstanding researchers of eminence

• A plenary Test of Time award talk and a Banquet talk

• Five tutorials (foundational as well as advanced)

• Four thought provoking panels on contemporary themes

• Peer reviewed technical paper and poster presentations

• Doctoral students consortium

• An enchanting cultural programme.

The keynote speakers are: Sihem Amer-Yahia (CNRS, France), Ayelet Baram-Tsabari (Israel Insti-
tute of Technology, Israel), Anand Deshpande (Persistent Systems, India), Hiroaki Ogata (Kyoto
University, Japan), and Jeffrey D. Ullman (Stanford University, Turing Laureate, USA). We are
honoured to have them as keynote speakers. Cristina Conati (University of British Columbia,
Canada) is the plenary speaker, honoured for winning the 2022 Prof. Ram Kumar EDM Test of
Time Paper Award, teaming up with Saleema Amershi (Microsoft Research, USA). D.N. Prahlad
(Surya Soft, India) is the banquet speaker.

The programme features five tutorials and four panel sessions. The tutorials are: (1) Core methods
in EDM; (2) Introduction to neural networks and uses in EDM; (3) Learning through Wikipedia
and generative AI technologies; (4) Data efficient machine learning for educational content cre-
ation; and (5) How to open science: Promoting principles and reproducibility processes within
the EDM community. The panels are: (1) Turing prize worthy research problems in EDM; (2)
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MOOCs: Hype or transformative force for amplifying human potential?; (3) Education in the age
of generative AI; (4) Indian national education policy: EDM opportunities.

The venue is the sylvan campus of the premier research and education institution of India, the
Indian Institute of Science. The host city, Bengaluru, aka Bangalore, is known variously as the
Silicon Valley of India, Hi-tech industry capital of India, and the startup capital of India. It is also
famous for its historical and cultural roots.

EDM 2023 received 68 submissions to the full papers track (10 pages), 36 to the short papers track
(6 pages), and 15 to the poster and demo track (4 pages). The program committee accepted 18 full
papers, 11 short papers, and 10 posters. The conference also provided a venue for selected papers
from the Journal of Educational Data Mining to be presented to a live audience.

EDM 2023 also continued its tradition of providing opportunities for young researchers to present
their work and receive feedback from their peers and senior researchers. The doctoral consortium
this year features 10 such presentations.

A highlight of EDM 2023 is the tremendous geographic and gender diversity in the choice of the
functional chairs and keynote speakers. It has a unique Ambassador program for young researchers
and students to interact with distinguished delegates. A proud achievement of EDM 2023 is that it
is providing financial support to nearly fifty first time attendees from developing nations.

We thank the sponsors of EDM 2023 for their generous support: Indian Institute of Science; Prof.
Ram Kumar Memorial Foundation; Atria University; Duolingo; Accel Ventures; Infosys Tech-
nologies; Playpower Labs; Metals CMU; Carnegie Learning; Seekh; Google research; Microsoft
Research India; Talent Sprint. We thank all the authors who submitted their work and the pro-
gram committee members and reviewers for their expert inputs. We thank the various functional
chairs for their leadership that made this conference possible. And, a big Thank You to the local
arrangements committee which made this event memorable.

Mingyu Feng WestEd Program Chair
Tanja Käser EPFL Program Chair
Partha Talukdar Google Research and Indian Institute of Science Program Chair
Rakesh Agrawal Data Insights Laboratories General Chair
Y. Narahari Indian Institute of Science General Chair
Mykola Pechenizkiy Eindhoven University of Technology General Chair

July 10th, 2023
Bengaluru, India, IN
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Keynotes

The Gradiance Automated Homework System
Jeffrey D. Ullman, Turing Laureate, Stanford W. Ascherman Professor of Computer Science (Emer-
itus), Stanford University, US

We shall describe a free automated homework system and in particular the way it tries to combat
cheating and its method for giving guidance as well as assessment. Central to this effort is the idea
of a “root question,” which is a way of phrasing multiple-choice questions in a way that enables
students with incorrect answers to be given advice and then take the same homework again, without
eventually discovering the correct answers by process of elimination.

Towards AI-Powered Data-Informed Education
Sihem Amer-Yahia, CNRS Research Director, FR

The Covid-19 health crisis has seen an increase in the use of digital work platforms from video-
conferencing systems to MOOC-type educational platforms and crowdsourcing and freelancing
marketplaces. These levers for sharing knowledge and learning constitute the premises of the fu-
ture of work. Educational technologies coupled with AI hold the promise of helping learners and
teachers. However, they are still limited in terms of social interactions, user experience and learn-
ing opportunities. I will describe research at the intersection of data-informed recommendations
and education theory and conclude with ethical considerations in building educational platforms.

LEAF: Learning and Evidence Analytics Framework in Japan: Connecting Researchers,
Practitioners and Policy-makers
Hiroaki Ogata, Professor at Kyoto University, JP

The LEAF system is a Learning and Evidence Analytics infrastructure that supports the collec-
tion, analysis, and utilization of learning logs. LEAF system consists of a Learning Management
System (LMS), an eBook reader (BookRoll), Learning Record Store (LRS), and a Learning An-
alytics tool (Log Palette). BookRoll works as a behavior sensor and records student log data.
Log Palette analyzes and visualizes the log data obtained from BookRoll and LMS. The log data
can be further used for interactive lectures, reflection, recommendations, and class improvement.
LEAF system has been used in over 120 educational institutions, from elementary to higher edu-
cation, within eight countries and regions. Our goal is to scientifically analyze those data, support
teachers and students, and transform from “education and learning based on their experiences”
into “education based on data and evidence.” This talk will introduce: (1) research for support-
ing data-and-evidence informed education, (2) practices of data-informed education with LEAF in
K12 schools and universities, and (3) policies for educational data utilization in Japan.

Challenges and Opportunities in Higher Education
Anand Deshpande, Founder and Chairman, Persistent Systems, IN
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As a practitioner and recruiter of college graduates, I will share perspectives of the changes in job
market and how students and colleges can explore new ways to thrive in the ever changing world.

Communicating science for amplifying human potential in a post-truth era
Ayelet Baram-Tsabari, Professor at Israel Institute of Technology, IL

Science is a communication-driven endeavor – without it, we cannot build on previous research,
collaborate with practitioners, or convince policymakers and stakeholders, such as parents and
students, to use the resulting technology or its outcomes. In this talk, we’ll explore what science
communication is and why it’s crucial? What do people know, and how is that related to what they
do? How do we decide who to believe in? How is our worldview, the things we love and value,
related to what we know? Do people need to know what they are talking about to form an opinion?
And more specifically, what do people know about AI, and how can we communicate the results
of AI research to diverse audiences? Finally, we will discuss what can be done so that people can
make informed decisions about scientific issues. To put it more practically: what works and what
doesn’t when it comes to communicating science to diverse audiences?

The Prof. Ram Kumar Educational Data Mining Test of Time Award:
Combining unsupervised and supervised classification to build user models for exploratory
learning environments (ELE)
Cristina Conati, Professor at University of British Columbia, CA

In this talk, I will present the approach we proposed in the paper recipient of the “The Prof. Ram
Kumar Educational Data Mining Test of Time Award” for building data-driven user models that can
drive real-time support to students interacting with exploratory learning environments (ELEs). I
will summarize the results we obtained in the past 12 years in applying extensions of this approach
to a variety of ELEs, moving to discussing lessons learned and opportunities for future research.
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Using Demographic Data as Predictor Variables: a Questionable Choice

Ryan S. Baker University of Pennsylvania
Lief Esbenshade Google
Jonathan Vitale Google
Shamya Karumbaiah University of Wisconsin

Predictive analytics methods in education are seeing widespread use and are producing increas-
ingly accurate predictions of students’ outcomes. With the increased use of predictive analytics
comes increasing concern about fairness for specific subgroups of the population. One approach
that has been proposed to increase fairness is using demographic variables directly in models, as
predictors. In this paper we explore issues of fairness in the use of demographic variables as pre-
dictors of long-term student outcomes, studying the arguments for and against this practice in the
contexts where this literature has been published. We analyze arguments for the inclusion of demo-
graphic variables, specifically claims that this approach improves model performance and charges
that excluding such variables amounts to a form of ‘color-blind’ racism. We also consider argu-
ments against including demographic variables as predictors, including reduced actionability of
predictions, risk of reinforcing bias, and limits of categorization. We then discuss how contextual
factors of predictive models should influence case-specific decisions for the inclusion or exclusion
of demographic variables and discuss the role of proxy variables. We conclude that, on balance,
there are greater benefits to fairness if demographic variables are used to validate fairness rather
than as predictors within models.

Using Auxiliary Data to Boost Precision in the Analysis of A/B Tests on an Online Educational
Platform: New Data and New Results
Adam C. Sales Worcester Polytechnic Institute
Ethan B. Prihar Worcester Polytechnic Institute
Johann A. Gagnon-Bartsch University of Michigan
Neil T. Heffernan Worcester Polytechnic Institute

Randomized A/B tests within online learning platforms represent an exciting direction in learn-
ing sciences. With minimal assumptions, they allow causal effect estimation without confounding
bias and exact statistical inference even in small samples. However, often experimental samples
and/or treatment effects are small, A/B tests are underpowered, and effect estimates are overly
imprecise. Recent methodological advances have shown that power and statistical precision can
be substantially boosted by coupling design-based causal estimation to machine-learning models
of rich log data from historical users who were not in the experiment. Estimates using these tech-
niques remain unbiased and inference remains exact without any additional assumptions. This
paper reviews those methods and applies them to a new dataset including over 250 randomized
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A/B comparisons conducted within ASSISTments, an online learning platform. We compare re-
sults across experiments using four novel deep-learning models of auxiliary data and show that
incorporating auxiliary data into causal estimates is roughly equivalent to increasing the sample
size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and by about 10%
on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased estimates
that use only data from the experiments. We show that the gains can be even larger for estimat-
ing subgroup effects, hold even when the remnant is unrepresentative of the A/B test sample, and
extend to post-stratification population effects estimators.

4



Best Paper AIED 2022 Presentation

CurriculumTutor: An Adaptive Algorithm for Mastering a Curriculum

K. M. Shabana Indian Institute of Technology Palakkad
Chandrashekar Lakshminarayanan Indian Institute of Technology Madras
Jude K. Anil Indian Institute of Technology Palakkad

An important problem in an intelligent tutoring system (ITS) is that of adaptive sequencing of
learning activities in a personalised manner so as to improve learning gains. In this paper, we
consider intelligent tutoring in the learning by doing (LbD) setting, wherein the concepts to be
learned along with their inter-dependencies are available as a curriculum graph, and a given con-
cept is learned by performing an activity related to that concept (such as solving/answering a
problem/question). For this setting, recent works have proposed algorithms based on multi-armed
bandits (MAB), where activities are adaptively sequenced using the student response to those ac-
tivities as a direct feedback. In this paper, we propose CurriculumTutor, a novel technique that
combines a MAB algorithm and a change point detection algorithm for the problem of adaptive
activity sequencing. Our algorithm improves upon prior MAB algorithms for the LbD setting by
(i) providing better learning gains, and (ii) reducing hyper-parameters thereby improving person-
alisation. We show that our tutoring algorithm significantly outperforms prior approaches in the
benchmark domain of two operand addition up to a maximum of four digits.
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ABSTRACT
Due to the precautionary measures during the COVID-19
pandemic many universities offered unproctored take-home
exams. We propose methods to detect potential collusion
between students and apply our approach on event log data
from take-home exams during the pandemic. We find groups
of students with suspiciously similar exams. In addition, we
compare our findings to a proctored comparison group. By
this, we establish a rule of thumb for evaluating which cases
are “outstandingly similar”, i.e., suspicious cases.

Keywords
collusion detection, unproctored online exams, clustering al-
gorithms

1. INTRODUCTION
During the COVID-19 pandemic many universities, e.g., in
Germany, were forced to switch to online classes. More-
over, most final exams were held online. In pre-pandemic
times, computer-based final exams have already proven their
worth, but with the difference that they were proctored in
the classroom. During the pandemic this was mostly unfea-
sible and students had to take the exam from a location of
their choice.

There exists a wide range of supervisory measures for take-
home exams. E.g., one could use a video conference software
to monitor students. At many universities, however, this is
legally prohibited due to data protection regulations. The
exams are therefore conducted as open-book exams, i.e., stu-
dents are allowed to use notes or textbooks. Yet, students
must not cooperate with each other. Any form of coopera-

tion or collusion is regarded as attempted cheating.

To our knowledge, it exists no universally-applicable method
for proctoring take-home exams. It is therefore hardly fea-
sible to stop students from illegally working together. How-
ever, one can attempt to identify colluding students post-
exam. The attempt alone could have a deterring effect on
students. Research in this area, however, is scarce. [3]
present a method for comparing exam event logs to detect
collusion. They use a simple distance measure for time se-
ries, i.e., the event logs of two different students, to quantify
the similarity of these student’s exams. Building on this,
we propose an alternative distance measure, as well as the
use of hierarchical clustering algorithms, to detect groups
of potentially colluding students. We find that our method
succeeds in finding groups of students with near identical
exams. Furthermore, we present an approach to categorise
student groups as “outstandingly similar”, by providing a
proctored comparison group.

The remainder of this paper is organised as follows: Sec-
tion 2 provides a brief overview of related work. Section 3.1
describes the available data. Section 3.2 presents our method,
including the calculation of the distance matrices. Section 4
discusses the empirical results. Section 5 concludes.

2. RELATED WORK
Due to the limited relevance of unproctored exams at uni-
versities before the pandemic, there exists little research
about this topic. Recent work from [3] presents a method
for analysing exam event logs for the detection of collusion
in unproctored exams. They visually compare the event
logs of pairs of students and quantify these by calculating a
distance measure. They find some suspicious pairs of stu-
dents with very similar event logs. Still, the authors remark
that these findings might be purely coincidental. We en-
hance their approach by including a comparison group for
drawing the line between “normal degree of similarity” and
“outstandingly similar”.

In other contexts, collusion in exams has been a relatively
well studied topic. [9, 14] quantify the similarity of pro-

J. Langebein, D. T. Massing, J. Klenke, M. Striewe, M. Goedicke,
C. Hanck, and N. Reckmann. A data mining approach for detecting
collusion in unproctored online exams. In M. Feng, T. Käser, and
P. Talukdar, editors, Proceedings of the 16th International Confer-
ence on Educational Data Mining, pages 6–16, Bengaluru, India,
July 2023. International Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115649
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gramming exams. For this, they calculate distance mea-
sures based on student’s keyboard patterns. [13] further
provide an overview of relevant work in educational data
mining in programming exams. Complementary, our work
does not focus on keyboard patterns in programming but
on the submissions of answers and achieved points in intro-
ductory statistics classes. Thus, our calculation of distance
measures follows a different approach.

Furthermore, a major body of related literature focuses on
a different methodology. E.g., [1, 10, 16, 18, 21] use sur-
veys or interviews with students to collect data. Due to
issues inherent to surveys and interviews, like nonresponse
or incorrect responses, there is little knowledge on student
collusion based on actual student behaviour. We attempt to
bridge this gap by directly using student’s exam data.

Generally, there exists a wide range of proctoring options
during take-home exams. [6, 12] introduce and compare
some of these options. A supervisor could, for example,
use video conference software to observe students during the
exam. This provides conditions similar to those at classroom
exams and thus prevents students from colluding. Such ac-
tions have two drawbacks: First, [4] argue that proctoring
take-home exams is relatively costly, so that the costs exceed
the potential benefits. Second, as mentioned before, most
proctoring options are strictly illegal in some countries, e.g.,
Germany.

On the other hand, e.g., [17] advise against unsupervised on-
line exams. They argue that, logically, with no supvervision
there is no way to prevent students from colluding during
the exam. To date, there are only few studies examining the
impact of unattended online examinations on the integrity of
students, see, e.g., [15]. [7] use a regression model that pre-
dicts final exam scores to detect collusion in unproctored on-
line exams. Their findings suggest that collusion took place
when the final exam was not proctored. [11] compares the
Grade Point Average (GPA) of students who wrote a proc-
tored exam and students who wrote an unproctored exam.
There was no evidence of a significant difference in the mean
GPA between the two groups, which, however, does not es-
tablish that the students did not collaborate illegally. [5]
also compare the GPA in a proctored vs. an unproctored
online exam and use a regression analysis to measure stu-
dent collusion. The data used in these studies were final
exam scores or the GPA. None of them uses data collected
during the exam.

3. METHODOLOGY
In the following we give a brief overview about the data used
in our analysis. We further describe our approach to build
a suitable distance metric.

3.1 Data
The data we use stems from the introductory statistics course
“Descriptive Statistics” at the Faculty of Business Adminis-
tration and Economics at the University Duisburg-Essen,
Germany.1 The exam of our test group was taken unproc-

1All personal data was pseudonymised. The chair and
the authors have followed the General Data Protec-
tion Regulations (GDPR) by the EU as well as na-

Table 1: This table gives summary statistics for all students
considered in our empirical analysis

Year Minutes Points Subtasks Students

Comparison
Group
(18/19)

70 60 19 109

Test Group
(20/21) 70 60 17 151

tored during the global COVID-19 pandemic in the winter
term 2020/21. The exam of our comparison group took place
in the winter term 2018/19, i.e., before the pandemic.2 It
was a proctored exam located in a PC-equipped classroom
at the university. Both exams use the e-assessment platform
JACK [20].

Both exams consist mainly of arithmetical problems, where
students are expected to submit numerical results. More-
over, there exist some tasks where students are obliged to
use the programming language R [19]. The test group also
had to answer a short essay task which should contain 4-5
sentences. All but the free-text tasks are evaluated auto-
matically by JACK. The latter is manually graded by the
examiner.

During the exam, the students’ activities are stored in said
event logs. Hence, these contain the exact time for all inputs
in all tasks. For all tasks students can change and re-submit
their entries. The last submission will be evaluated. For this
reason, one task can list multiple events in the event log.

In addition to the event logs we also use the points achieved
per task for our analysis.

Table 1 displays the basic data for both exams. Namely,
these are the duration and maximum points to achieve, as
well as the number of subtasks and participants per group.
The wide disparity in student participants between both ex-
ams can be explainend by a change in examination regu-
lations. During the COVID-19 pandemic, ergo in the test
group, students were allowed to fail exams without any penal-
ties. In order to prevent this from biasing our results, we
removed students who attended the exam for only a few
minutes and those who achieved merely a fraction of the
maximum points.3 We also removed twelve students from
the test group who reported internet problems during the
exam.

tional law. Reproducible Code and toy data can be
found at https://github.com/Janine-Langerbein/EDM_
Detecting_Collusion_Unproctored_Online_Exams. For
information on access to the actual dataset, please contact
the Dean of the Faculty of Business Administration and Eco-
nomics at the University of Duisburg-Essen (dekanat@wiwi-
essen.uni-due.de).
2The course is jointly offered by two chairs and therefore
held on a rotating basis. Hence, the exam data is only com-
parable every two years.
3We also conducted the analysis without the removal of
these students, with no effect but a reduced interpretabil-
ity of the following clustering algorithms.
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From our perspective, the setup is reasonably comparable in
both groups. Although the lecture of the comparison group
was held in presence and the lecture of the test group was
held online, both groups shared the same content and learn-
ing goals. Both times students were given the opportunity to
ask questions during the lecture. The amount of those ques-
tions remained approximately stable. Due to the sheer size
of the course, with more students attending classes than par-
ticipating in the exam, direct discussions were sparse even
pre-pandemic.

3.2 Model
We adopt an exploratory approach for finding clusters of stu-
dents with similar event patterns and points achieved during
the exam. For this, we use agglomerative, i.e., bottom-up,
hierarchical clustering algorithms. The results are depicted
in a dendrogram. We build on previous work by [8] and [2].

In general, clustering algorithms attempt to group N objects
according to some predefined dissimilarity measure. Those
objects have measurements xij for i = 1, 2, . . . , N , on at-
tributes j = 1, 2, . . . , h. The global pairwise dissimilarity
D(xi, xi′), with xi being xij over all j, between two objects
i and i′ is defined as

D(xi, xi′) =
1

h

h∑

j=1

wj · dj(xij , xi′j);
h∑

j=1

wj = 1, (3.1)

with dj(xij , xi′j) the pairwise attribute dissimilarity between
values of the jth attribute and wj the weight of the attribute.
The clustering algorithm therefore takes a distance matrix
as input.

In our case, the students are the objects to be clustered, with
N = 151 students. As attributes we use the dissimilarities in
the student’s event patterns and the dissimilarities in their
points achieved. Both need to be calculated differently, but
over all subtasks. Hence, we split dj(xij , xi′j) into two parts.

We call the attribute dissimilarity for the points achieved
dPj (sij , si′j) with wPj its corresponding weight. sij denotes
the points achieved by student i in the jth subtask. Since
there are 17 subtasks we obtain a total of h = 34 attributes.
To receive a dissimilarity measure we calculate the absolute
differences

dPj (sij , si′j) = |sij − si′j |. (3.2)

Next, dLj (vij , vi′j) describes the dissimilarities in the event
patterns per subtask. To calculate these we divide the ex-
amination time into m = 1, . . . ,K intervals of one minute.
Since both exams each took 70 minutes, we obtain K = 70
intervals. We count each student’s answer per interval. The
count is denoted with vijm.4 To obtain a pairwise attribute
dissimilarity measure for all subtasks, we calculate the Man-
hattan metric over all counted quantities

dLj (vij , vi′j) =

K=70∑

m=1

|vijm − vi′jm|. (3.3)

4We consider this an enhancement of the distance measure
used in [3], as it enables us to analyse exams with more than
one answer per task.

The corresponding weight is denoted by wLj . To ensure bet-
ter transparency, we provide a detailed explanation of each
variable in Appendix A.

Finally, we modify (3.1) so that

D(si, si′ , vi, vi′) =
1

h

h∑

j=1

(
wPj · dPj (sij , si′j)

+ wLj · dLj (vij , vi′j)
)

with

h∑

j=1

wPj + wLj = 1. (3.4)

The attribute weights wj control the influence of each at-
tribute on the global object dissimilarity. If all 34 attributes
are to be weighted equally, each attribute would be assigned
a weight of 1

34
. Here, however, we weight the attributes with

regard to our research question. Specifically, we observe that
students submit entries more often in the case of R-tasks,
viz. subtasks 6a, 6b and 6c. One possible interpretation of
this is that students submit their code more often to check
its executability. Furthermore, task 7 demands the answer
to be a short text which was corrected manually. This could
lead to insufficient comparability between students due to
accidental arbitrariness during correction. Based on these
aspects, it appears reasonable to reduce the weight of said
subtasks.

We further reduce the influence of the points achieved dur-
ing the exam by decreasing their weight. This follows from
the fact that prior to the exam we must define all (partially)
correct answers in JACK. In doing so, it is not feasible to an-
ticipate all types of mistakes resulting from, e.g., calculation
errors made by students.5 Students might receive no points
due to careless mistakes, while still having employed a cor-
rect solution strategy. In our view, this might impede the
detection of colluding students, e.g., if there exist large dif-
ferences in points as one student makes more frequent care-
less mistakes due to the random numbers in the tasks. On
this account, we assign smaller weight to the points achieved.
For greater clarity, an overview with all exact final weights
for all attributes can be found in Appendix B.6

The influence of each attribute on object dissimilarity fur-
ther depends on its scale. We therefore normalise each at-
tribute.

From these pairwise object dissimilarities, we create the dis-
tance matrices. We then apply agglomerative hierarchical
clustering. This builds a hierarchy by merging the most simi-
lar pairs of students, viz. those with the lowest object dissim-
ilarity D(xi, xi′), into a cluster. This is repeated N−1 times,
until all students are merged into one single cluster. The
merging process is implemented with different linkage meth-
ods. These differ in their definition of the shortest distance
between clusters. Here, we use single, average and complete

5The tasks are randomised, i.e., there exist variations so that
sharing exact results is not expedient for the students.
6A robustness check regarding the object weights can be
found in Appendix D. In this analysis, the weights of the
objects are equal. The results are basically identical.
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Figure 1: Dendrogram produced by average linkage clustering for the test group 2020/21. The dissimilarity of each group’s node
is displayed on the y-axis. Its value corresponds to the dissimilarity of the group’s left and right member. A - F denotes the six
lowest dissimilarity clusters. Of these especially, clusters A, B, and E are notable.

linkage. The former merges clusters with the closest mini-
mum distance, the latter uses the closest maximum distance.
The average linkage method (here: unweighted pair group
method with arithmetic mean) defines the distance between
any two clusters as the average distance among all pairs of
objects in said clusters.

4. EMPIRICAL RESULTS
We present the results of the hierarchical clustering algo-
rithms in a dendrogram. This provides a complete visual
description of the results from the agglomerative hierarchi-
cal clustering algorithm. A dendrogram resembles a tree
structure where each object is represented by one leaf. In a
bottom-up approach, the objects are merged into groups one
by one according to their dissimilarity. Hence, each level of
the tree corresponds to one step of the clustering algorithm.
The junction of a group is called a node.

There exist various hierarchical clustering algorithms. Each
has a different definition of the distance between groups of
observations as a function of the pairwise distances. We
calculate the cophenetic correlation coefficent to assess how
faithfully each algorithm represents the original structure
in the data. Appendix C, Table 5 gives an overview of
the cophenetic correlation coefficient for the different link-
age methods for the test and comparison groups. Based on
this, we deem average linkage clustering the most suitable
algorithm. Figure 1 shows the corresponding dendrogram.
The dissimilarity of each group’s node is plotted on the ver-
tical axis. Its value corresponds to the dissimilarity of the
group’s left and right member.

It is important to note that a dendrogram only gives an

indication of clusters which best fit the data. It is up to
the analyst to decide which are to be examinated in further
detail.

The dendrogram has a slightly elongated form. Still, com-
pact clusters were produced at medium dissimilarities. This
general shape is typical for the underlying algorithm, as av-
erage linkage clustering combines the long form of single
linkage clustering with the smaller, tighter clusters of com-
plete linkage clustering. Additionally, we observe three no-
table clusters (A, B and E) which form at a significantly
lower height. Each of these three clusters consists of two
students. Prima facie, this indicates the absence of collu-
sion in larger groups.

As explained above, the hierarchical algorithm does not clus-
ter the data itself, but imposes a structure according to the
students’ dissimilarities. There exist various formal meth-
ods to decide on an optimal number of clusters given this
established hierarchy. Since our primary interest lies in the
detection of clusters at low dissimilarities, instead of the gen-
eral structure of the data, we exemplary investigate the six
lowest clusters (A - F) in Figure 1.

Figure 2 shows the exact course of events for the described
selection of clusters. Each scatterplot plots all answers of
the students in the cluster against their time of submission.
We expect students’ chronology to be more similar if their
cluster’s node is a lower height, i.e., lower dissimilarity. We
also add the points achieved on top in a barchart.

As expected, all scatterplots show some kind of similarity. In
particular, clusters A, B and E bear a striking resemblance.
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Figure 2: Comparison of the event logs and achieved points for each of the test group’s (2020/21) six lowest dissimilarity clusters
(A - F). The letters of the sub-figures correspond to the marked clusters in Figure 1. The number behind the letters refers to
the node’s left and right arm, respectively. At the bottom of each sub-figure, the sub-tasks are plotted against the clock time.
Above the scatterplot, a bar chart is added to compare the points per subtask.
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Their respective barchart further reveals these students to
almost always achieve an equal number of points per sub-
task. In direct comparison, the plots of the remaining clus-
ters C, D and F look less similar. This shows that clusters
with lower node heights indeed contain more similar exams.

To assess whether these similarities are the result of collusion
or coincidence, we repeat our approach on the comparison
group, the final exam of the same course from two years ago.
The plots were created analogously to the plots of the test
group.

For the comparison group we also focus on average link-
age clustering. The associated dendrogram, however, has a
slightly different shape (see Figure 3). The most prominent
difference, in contrast to the test group, is the absence of
any visually outstanding clusters. We rather observe most
nodes at a comparatively similar height.

Figure 4 shows the scatter- and barplots of the six lowest
clusters in the comparison group. We find there to be signif-
icantly less similarities not only in the chronological aspect,
but also in the points achieved.

The results from the comparison group support our assump-
tion that widespread collusion over the entire exam is hardly
achievable in presence. Moreover, the clear visual differences
between comparison- and test group indicate that our find-
ings in the latter might not be coincidental.

In the test group it is relatively simple to identify at least
three suspicious clusters. In the less obvious cases it can be
challenging to decide which clusters to investigate further, as
there exists no clear rule on where to draw the line between
suspicious and unsuspicious cases. We address this issue by
defining a “normal degree” of similarity, which can be used
as a bound to classify whether a pair of students is deemed
suspicious or not. For our data of the test group, there is
no indication of the existence of suspicious clusters of more
than two students. Hence, we refocus on the global pairwise
dissimilarity D(xi, xi′).

To assess the “normal degree” of similarity, we first stan-
dardise both distributions to improve their comparability.
For the comparison group, we define a lower bound below
which we categorise observations as extreme outliers. This
bound is then used on the lower tail of the distribution of
the test group. We want to identify cases in the unproc-
tored test group which are rather extreme compared to the
proctored comparison group. For this we calculate the lower
bound as Q1 − 3 ∗ IQR with Q1 being the first quartile of
the data and IQR being the interquartile range.

The boxplots in Figure 5 show the distributions of the global
pairwise dissimilarityD(xi, xi′) of all students in the comparison-
and test group. A boxplot provides a graphic overview of
location and dispersion of a distribution. The eponymous
box marks the upper and lower quartile of the data. Out-
liers are displayed by individual points.

On the left hand side of Figure 5 we observe that both distri-
butions posess a similar shape, but a different median. The
median value of the test group is significantly lower, indi-

cating a lower average global pairwise dissimilarity in this
group. Furthermore, we discover a high number of outliers
in both groups, albeit at different positions in their respec-
tive distribution. In the test group, more outliers lie on the
lower side of the box, with a greater distance to the main
part of the distribution. We also find three observations with
extremely small values on the lower tail of the test group’s
distribution. Unsurprisingly, these belong to the clusters A,
B and E.

The right side of Figure 5 shows the normalised distribu-
tions. It is apparent that the normalised distribution of the
test group still contains more outliers.

We apply the above mentioned lower bound on the test
group’s distribution to identify groups of students which are
“outstandingly similar”. Here, the before mentioned three
cases (clusters A, B and E) fall below the lower bound for
extreme outliers. While it is no surprise that these clusters
were detected, our approach still aids us in deciding on when
to stop inspecting further groups of students, as their level
of similarity might as well occur in the comparison group.

To summarise, our approach offers a rule of thumb for nar-
rowing down the number of suspicious cases. This is partic-
ularly useful if the visual distinction of cases is not clear-cut.

5. CONCLUSIONS AND DISCUSSION
During the COVID-19 pandemic many exams at universities
had to be converted into unproctored take-home exams. We
propose a method for detecting potentially colluding stu-
dents in said exams. For this, we calculated a distance
measure based on the students’ event logs and their points
achieved from the exam. Compared to former approaches
adressing this topic, we use a distance measure which also
applies if there exist multiple events per task. Subsequently,
we use hierarchical clustering algorithms to detect clusters
of potentially colluding students. The results show that our
method is able to detect at least three clusters with near
identical exams.

To decide which degree of similarity might be more than a
coincidence we compare the normalised distributions of the
distance measures of our test and comparison group. We
find pairs of students in the test group with values below
the minimum of the comparison group. Thus, our approach
provides a basis for deciding on which clusters are to be
examined further. A limitation of this approach is that we
do not know the ground truth in our groups and only be
able to back up our reasoning on a comparison.

In summary, we have been successful in providing an op-
portunity to detect colluding students after the exam. We
cannot say if this is sufficient evidence to initialise legal con-
sequences. Nevertheless, we are confident that the higher
chance of getting caught has a deterring effect on students.
This would be an interesting direction for further research.
Moreover, one could collect complementary evidence. By
doing so, we found at least two of our suspicious students
confirmed.
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Figure 3: Dendrogram produced by average linkage clustering for the comparison group 2018/19. The dissimilarity of each
group’s node is displayed on the y-axis. Its value corresponds to the dissimilarity of the group’s left and right member. G - L
denotes the six lowest dissimilarity clusters.
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clock time. Above the scatterplot, a bar chart is added to compare the points per subtask.
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APPENDIX
A. VARIABLE DESCRIPTION

Table 2: Variable Description.

Variable Description

sij
Points achieved in the jth subtask by the
ith student.

vij
Even patterns for the jth subtask by the
ith student.

xij

Measurement for the ith object and jth
attribute. Here, xij only functions as
a variable for explaining the general
clustering approach.

B. ATTRIBUTE WEIGHTS
Below we list the attribute weights used for building the
global object dissimilarity.
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Table 3: The weights for all attributes in the test group
(2020/21), rounded to three decimal places.

weights

(sub-)tasks event patterns points

1.1 - 5.2 0.052 0.013

6a - 6c 0.026 0.013

7 0.026 0.013

Table 4: The weights for all attributes in the comparison
group (2018/19), rounded to three decimal places.

weights

(sub-)tasks event patterns points

1.1 - 5.2 0.045 0.011

6a - 6c 0.022 0.011

C. DENDROGRAM AND COPHENETIC COR-
RELATION COEFFICIENT

Table 5: The cophenetic correlation coefficient for all three
linkage methods for the comparison (2018/19) and test
(2020/21) group.

C

Linkage method 2020/21 2019/18

single 0.6610 0.6659
complete 0.4424 0.5051
average 0.6964 0.7595

We must consider that clustering algorithms enforce a hi-
erarchical structure on the data. This structure, however,
does not have to exist. There exist a good amount of meth-
ods to assess how faithfully each algorithm represents the
original distances in the data. Here, we use the cophenetic
correlation coefficent (C). This is defined as the linear corre-
lation between the pairwise dissimilarity D(xi, xi′) from the
original distance matrix and the corresponding cophenetic
dissimilarity from the dendrogram t(xi, xi′), i.e., the height
of the node of the cluster. Let D be the mean of D(xi, xi′)
and t be the mean of t(xi, xi′). Then, C can be written as

C =

∑
i<i′

((
D(xi, xi′)−D

) (
t(xi, xi′)− t

))
√∑

i<i′
(
D(xi, xi′)−D

)2∑
i<i′

(
D(xi, xi′)− t

)2 .

(B.1)

Table 5 shows C for all three linkage methods. The cluster-
ing with the complete linkage method seems to be the most
unsuitable. The results of the single and average linkage
clustering seem to be an adequate representation, with the
latter a slightly better fit. We therefore proceed with the

average linkage method in all further steps.

D. ROBUSTNESS CHECK
We repeat our analysis on the same data, but we assign the
same weight to each attribute while calculating the global
object dissimilarity matrix. In simple terms, we replace the
weighted arithmetic mean in equation 3.1 in chapter 3.2 with
the ordinary arithmetic mean.

Figure 7 shows the dendrogram for the test data with equal
weights. The algorithm still manages to identify the three
suspicious clusters. Furthermore, these clusters are still
merged at a comparatively low height.
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Figure 6: Comparison of the dendrograms for all three linkage methods in the test group 2020/21.
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Figure 7: Dendrogram of average linkage clustering with the test data and equals weights.
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ABSTRACT 
This paper presents a tool for creating student models in logistic 

regression. Creating student models has typically been done by ex-

pert selection of the appropriate terms, beginning with models as 

simple as IRT or AFM but more recently with highly complex mod-

els like BestLR. While alternative methods exist to select the 

appropriate predictors for the regression-based models (e.g., step-

wise selection or LASSO), we are unaware of their application to 

student modeling. Such automatic methods of model creation offer 

the possibility of better student models with either reduced com-

plexity or better fit, in addition to relieving experts from the burden 

of searching for better models by hand with possible human error. 

Our  new functions are now part of the preexisting R package LKT. 

We explain our search methods with two datasets demonstrating 

the advantages of using the tool with stepwise regression and regu-

larization (LASSO) methods to aid in feature selection. For the 

stepwise method using BIC, the models are simpler (due to the BIC 

penalty for parameters) than alternatives like BestLR with little 

lack of fit. For the LASSO method, the models can be made simpler 

due to the fitting procedure involving a regularization parameter 

that penalizes large absolute coefficient values. However, LASSO 

also offers the possibility of highly complex models with excep-

tional fit. 

Keywords 
Logistic regression, student modeling, knowledge tracing. 

1. INTRODUCTION 
Adaptive learning technology requires some way to track a stu-

dent’s learning in order to make decisions about how to interact 

with the student. The general assumption is that a model of students 

provides values (e.g., probability estimates typically) that are used 

to make decisions on pedagogy, the most common decisions being 

about when or whether to give practice and also how much practice 

to give (e.g., has the student mastered the proficiency) [13]. 

This paper describes a tool to build logistic regression models au-

tomatically from student data. We focus on finding models that are 

explainable and parsimonious for a variety of reasons. One reason 

is because of the needs of open learner models to provide interpre-

tation of the student data, e.g. in a student dashboard, means that 

there are benefits if it is scrutable, can be made cooperative, and is 

editable [4]. Complex models make these things more difficult to 

achieve. Trust is another advantage of explainable systems [10], 

which can approve adoption by stakeholders.  

A common practice in research into student modeling is concerned 

with choosing models based on fit statistics such as AUC and 

RMSE. However, the practical benefits of going from an AUC of 

.85 to .88 (for instance) may be close to zero depending on how the 

model is being used. If it is being used for reporting proficiency to 

a dashboard (e.g., in binary terms such as mastered or not), both 

models may come to the same conclusions. In adaptive instruc-

tional systems, whether the better fitting model changes practice 

sequences depends on the decision rules utilizing the model predic-

tions. Frequently, the same recommended practice sequences will 

be recommended from both models. In short, there are dramatically 

diminishing returns from improving model fit, and if the improve-

ment reduces of interpretability and costs 100x more features it 

likely unjustified. In the present work, we sought to address this 

tension between optimal model fits and practical considerations.  

Unfortunately, because student models differ by content area and 

the type of learning technology,  it often seems necessary to hand-

craft new models  to maximize model accuracy [1, 3, 7, 8, 9, 14, 

18, 22]. This has created a parade of alternatives such that a huge 

amount of researcher knowledge is necessary before a practitioner 

can easily transfer these methods to new systems. The researcher 

must be an expert in quantitative methods of knowledge tracing, 

have a deep understanding of the domain, and understand which 

learning science principles are important in that domain (repetition, 

spacing, forgetting, etc.). In addition to these base technical skills 

there are all the complexities of model building itself such as over-

fitting and the need for generalization. This base knowledge 

necessary for model creation creates a long learning curve. 

We suppose that the long learning curve in our area can be solved 

by building better tools to build models. We have been using LKT, 

which subsumes a large number of prior logistic models by provid-

ing a flexible model-building framework in R [15]. However, 

although LKT enables the use of many predictive features, it 

doesn’t select features for the user. The present work is a demon-

stration of ongoing work to automatically select a subset of features 

for the user. 

With the excellent model fits of recent deep learning models, some 

readers will see this prior research as a dead end that people need 

to move away from, but from these authors’ perspective, that is un-

likely to be the case. Deep learning student modeling e.g., [17], has 

been around for several years but can be more complicated to im-

plement within adaptive practice systems than regression and 

harder to interpret model parameters and interpret errors. New deep 

learning models can fit well, but do not seem to fit reliably better 

than simpler alternatives [8]. In many cases, the complexity may be 
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Proceedings of the 16th International Conference on Educational
Data Mining, pages 17–27, Bengaluru, India, July 2023. Interna-
tional Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115673

17



unwarranted for applications unless there is some demonstration 

that these models can predict student knowledge better than simpler 

methods like logistic regression.  

On the other hand, the simplicity of regression means that software 

developers and educational content developers can incorporate stu-

dent models of astounding complexity using basic algebra. Such 

capability means that incorporating such models as pedagogical de-

cision-makers in educational software is relatively straightforward 

and has been well described.  So, in this paper, we look more deeply 

at one of the remaining stumbling blocks in the more widespread 

use of logistic regression to trace student learning. 

While the LKT R package allows the application of more than 30 

features, it did not previously provide any direction of how to 

choose these features for a the components (e.g. KCs, students, 

items) of the data. Choosing such components is also difficult for 

an expert, since despite an expert perhaps understanding the palette 

of possible features, given 3 levels of components (as in BestLR) 

there can be more than 90 possible choices to add to a model (as-

suming we search across all 30 for each component). Best LR is 

formulated with the following equation. Where alpha is the student 

ability, delta is item difficulty, theta is the function log(x+1), beta 

is the KC difficulty, and gamma and rho capture the effect of prior 

success and failures for the KC. Sigma transforms the linear meas-

ure to the logistic prediction probability.  

𝐵𝑒𝑠𝑡𝐿𝑅(𝑎𝑠,𝑡+1 = 1|𝑞𝑠,𝑡+1, 𝑥𝑠,1:𝑡)

=  𝜎(𝑎𝑠 − 𝛿𝑞𝑠,𝑡+1
 + 𝜙(𝑐𝑠)  + 𝜙(𝑓𝑠)

+ ∑ 𝛽𝑘

𝑘𝜖𝐾𝐶(𝑞𝑠,𝑡+1)

+ 𝛾𝑘𝜙(𝑐𝑠,𝑘) + 𝜌𝑘𝜙(𝑓𝑠,𝑘)) 

Table 1. Start and end stats for each approach with each da-

taset (BIC and AUC, and par count) 

To address this problem in the inefficiency of logistic regression 

modeling, we here describe and test our tool for stepwise student 

model search in LKT. For the expert, this will save either the need 

to use cookie cutter models that they know, but that may not be 

appropriate or the countless hours of manual search that is often 

necessary when trying to understand modeling in a new domain. 

For the practitioner the this LKT package update will allow fast 

creation of models tailored to multiple purposes and domains, sav-

ing time and likely opening the possible options. For the student 

student modeler, the updated package provides a way to begin 

building models quickly and with sufficient feedback so as to think 

deeply about the functioning of those models. The example vignette 

in the LKT package shows many examples from this paper. 

2. METHODS 

2.1 Stepwise 
In the function, the user may set the objective function (BIC, AIC, 

AUC, R2, or RMSE), but these behave quite similarly in our testing 

except for BIC, which corrects heavily for the potential of overfit-

ting due to high parameter counts. The user may specify forward or 

backward search or alternate between forward and backward (bidi-

rectional search). The user also has control over the initial features 

and components in the model, allowing the exploration of theoreti-

cal hypotheses for completed models and the optimization of those 

models. For example, in our tests, we illustrate starting with the 

BestLR model and then allowing the algorithm to simplify the 

model while simultaneously add a key new predictor. The user can 

also specify the forward and backward step size needed in terms of 

the objective function (fit statistic) which is also chosen. 

2.2 LASSO 
An alternative approach to stepwise regression is LASSO regres-

sion, a form of regularization. In this method, a penalty term is 

added to the loss function equal to the sum of the absolute values 

of the coefficients times a scalar lambda. This penalty term may 

result in the best fitting model having fewer features if they are cor-

related. Larger lambda values will result in fewer features. A 

common method to use this approach is to attempt a large number 

of potential lambda values, and choose the value with the best 

cross-validated performance. In the present case, we are particu-

larly concerned with finding interpretable models that are easier to 

implement, and so larger values that may have slightly worse per-

formance may be preferred. To evaluate the resultant models from 

LASSO we began by using the glmnet R package to fit both da-

tasets with 100 values starting at the lowest value that would reduce 

all coefficients to zero (the maximum lambda) decreasing in incre-

ments of .001 (the default strategy with glmnet, [6]. At each step, 

25-fold cross-validation was performed. This allowed us to evalu-

ate the stability of the candidate lambda values. Subsequent model 

fitting and analyses used specific lambdas intended to evaluate the 

fit and interpretability of LASSO models with varying levels of 

complexity to determine the usefulness of LASSO in comparison 

to stepwise regression. An important distinction between LASSO 

and the stepwise approach employed in this work is that for lasso 

the coefficients for individual KCs may be dropped. For instance, 

if two different KCs are essentially redundant a LASSO model may 

reduce a coefficient for one of them to zero if the lambda value is 

large enough. In contrast, the stepwise regression approach we em-

ployed treats the KC model as a single feature, it is either included 

or it is not. 

For nonlinear features logitdec, propdec, and recency, features 

were generated with parameters from .1 to 1 in .1 increments (e.g., 

propdec with decay parameters .1, .2, up to 1). All the resultant fea-

tures were included in the LASSO models to allow us to evaluate 

which parameter values remained and whether more than one was 

beneficial. 

3. RESULTS 

3.1 Bidirectional Stepwise Method  
For the stepwise method, it is possible to use any collection of fea-

tures as a “start” model that is subsequently added to and subtracted 

from. Using different starts helps us understand how the method 

can have problems with local minima but also helps us see that 

these problems are rather minimal as the different starts converge 

on similar results. At the same time, showing how the method im-

proves upon “stock” models is an important part of the 

Start 

Model 

Start 

BIC 

End 

BIC 

Start 

AUC 

End 

AUC 

AUC 

Δ 

Pa-

ramet

ers Δ 
AFM 

cloze 

61563.15 52312.33 0.842 0.858 0.016 -607 

BestLR 

cloze 

61001.05 52227.29 0.856 0.862 0.006 -715 

Empty 

cloze 

75977.87 52544.5 0.5 0.861 0.361 139 

AFM 

MATHia 

51480.63 45602.94 0.811 0.816 0.005 -502 

BestLR 

MATHia 

50728 45209.36 0.831 0.822 -0.009 -610 

Empty 

MATHia 

59296.01 45611.19 0.5 0.816 0.316 14 
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demonstration, showing that these “stock” models are not found to 

be particularly precise, and we might question whether better local 

minima are actually an improvement. 

Table 2. AFM start results, cloze data. 

 

Table 3. BestLR start results, cloze data. 

 

Table 4. Empty start results, cloze data. 

We choose to use AFM [1] and BestLR [8] models as starting 

points, in addition to using an empty start (which included a global 

intercept to account for the grand mean of performance, as did all 

our models without explicit intercepts). AFM and BestLR starts are 

interesting since they illustrate the advantages of using the search 

method by arriving at models that fit better or equivalently with 

fewer parameters. Furthermore, using these start points allows us 

to show that these canonical models are not even local minima, 

which highlights how our methods are useful. If these models are 

particularly strong, it should not be possible to add terms to them, 

and the current terms should not be dropped. See Table 1 for sum-

mary. 

Using these starts we search over a preset group of features that is 

meant to be “complete enough” to produce interesting relevant re-

sults and goes beyond BestLR features (which it includes), to also 

include some of the simplest and most predictive non-linear fea-

tures we have developed in other work [15]. 

We used several features, which we crossed with all the possible 

components (listed below) for each dataset. A $ indicates that the 

feature is fit with 1 coefficient per level of the component (e.g., one 

coefficient for each KC, student, or item). Intercept (a fixed coeffi-

cient for each level of the feature) does not require the $ notation 

since it is always fit this way. In contrast, without a $ indicates that 

all levels of the KC behave the same, so for example lineafm$ for 

the student means that there would be a continuous linear increase 

in performance for each trial for each student, with a different rate 

for each student. 

We choose a limited set of likely features from the LKT software 

to search across. These included 

• Intercept–one coefficient for each level of the component 

factor 

• Lineafm–one coefficient to characterize the linear change 

with each repletion of the component 

• Logafm– one coefficient to characterize the logarithmic 

change with each repetition for each level of the compo-

nent. 1 is added to prior repetitions. 

• Logsuc– one coefficient to characterize the logarithmic 

change with each successful repetition for each level of 

the component. 1 is added to prior repetitions. 

• Logfail– one coefficient to characterize the logarithmic 

change with each failed repetition for each level of the 

component. 1 is added to prior repetitions. 

• Linesuc– one coefficient to characterize the linear change 

with each successful repetition for each level of the com-

ponent 

Table 5. AFM start results, MATHia data. 

 

Table 6. BestLR start results, MATHia data. 

 

Table 7. Empty start results, MATHia data. 

R2 par

ams 

BIC AUC RMS

E 

action 

0.287 676 61563.15 0.842 0.401 starting model 

0.354 678 56461.99 0.872 0.380 add: recency-KC..Default. 

0.352 643 56251.40 0.871 0.381 drop: intercept-KC..Cluster. 

0.362 644 55532.05 0.876 0.377 
add: logsuc-CF..Correct.An-

swer. 

0.356 580 55275.79 0.873 0.379 
drop: lineafm$-CF..Cor-

rect.Answer. 

0.351 544 55247.92 0.871 0.381 drop: lineafm$-KC..Cluster. 

0.358 546 54698.11 0.874 0.379 add: recency-KC..Cluster. 

0.284 69 55130.90 0.840 0.403 
drop: intercept-Anon.Stu-

dent.Id 

0.326 71 51965.35 0.860 0.389 
add: propdec-Anon.Stu-

dent.Id 

0.321 69 52312.33 0.858 0.391 drop: recency-KC..Cluster. 

R2 par

ams 

BIC AUC RMS

E 

action 

0.319 849 61001.05 0.856 0.392 starting model 

0.371 851 57098.22 0.879 0.374 add: recency-KC..Default. 

0.337 374 54422.55 0.865 0.386 
drop: intercept-Anon.Stu-

dent.Id 

0.337 303 53650.51 0.865 0.386 drop: intercept-KC..Default. 

0.336 267 53327.24 0.865 0.386 drop: logfail$-KC..Cluster. 

0.331 203 53063.81 0.862 0.388 
drop: logfail$-CF..Cor-

rect.Answer. 

0.328 168 52849.33 0.861 0.389 drop: intercept-KC..Cluster. 

0.325 132 52731.07 0.859 0.390 drop: logsuc$-KC..Cluster. 

0.332 134 52227.29 0.862 0.388 add: recency-KC..Cluster. 

R2 par

ams 

BIC AUC RMS

E 

action 

0.000 1 75977.87 0.500 0.498 null model 

0.174 65 63428.69 0.746 0.440 
add: logsuc$-CF..Cor-

rect.Answer. 

0.219 67 60095.24 0.788 0.425 add: recency-KC..Default. 

0.282 138 56024.84 0.839 0.404 add: intercept-KC..Default. 

0.328 140 52544.50 0.861 0.389 
add: propdec-Anon.Stu-

dent.Id 

      

R2 para

ms 

BIC AUC RMS

E 

action 

0.226 517 51480.64 0.811 0.390 starting model 

0.247 519 50275.13 0.823 0.384 add: recency-KC..MATHia. 

0.163 20 49815.16 0.771 0.408 
drop: intercept-Anon.Stu-

dent.Id 

0.227 22 46094.29 0.812 0.390 
add: logitdec-Anon.Stu-

dent.Id 

0.224 13 46120.77 0.810 0.391 
drop: lineafm$-KC..MA-

THia. 

0.234 15 45602.94 0.816 0.388 add: logitdec-KC..MATHia. 

R2 para

ms 

BIC AUC RMS

E 

action 

0.258 626 50728.00 0.831 0.381 starting model 

0.275 627 49762.34 0.840 0.375 add: linesuc-Problem.Name 

0.241 128 46362.18 0.822 0.385 
drop: intercept-Anon.Stu-

dent.Id 

0.252 130 45749.90 0.828 0.382 add: recency-KC..MATHia. 

0.240 32 45377.63 0.821 0.385 
drop: intercept-Prob-

lem.Name 

0.250 34 44841.98 0.827 0.383 add: recency-Problem.Name 

0.246 25 44959.37 0.825 0.384 
drop: logfail$-KC..MA-

THia. 

0.240 16 45209.36 0.822 0.386 
drop: logsuc$-KC..MA-

THia. 
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• Linefail– one coefficient to characterize the linear change 

with each failed repetition for each level of the compo-

nent 

• Logitdec–one coefficient to characterize the logit of prior 

success and failures for the component (seeded with 1 

success and 2 failures resulting in a start value of 0, e.g. 

log(.5/.5)=0). Uses a nonlinear exponential decay to 

weight priors according to how far they are back in the 

sequence for the component traced. 

• Propdec–one coefficient to characterize the probability of 

prior success and failures for the component (seeded with 

1 success and 2 failures resulting in a start value of 0, e.g.  

.5/1)=.5). Uses a nonlinear exponential decay to weight 

priors success and failures according to how far they are 

back in the sequence for the component traced. 

• Recency– one coefficient to characterize the influence of 

the recency of the previous repetition only, where t is the 

time since the prior repetition at the time of the new pre-

diction and d characterize non-linear decay. The value is 

computed as t-d. 

• Logsuc$–like logsuc above, except one coefficient is 

added per level of the component (e.g., different effects 

for each KC or item) 

• Logfail$– like logfail above, except one coefficient is 

added per level of the component (e.g., different effects 

for each KC or item) 

3.1.1 Cloze practice 
The statistics cloze dataset included 58,316 observations from 478 

participants who learned statistical concepts by reading sentences 

and filling in missing words. Participants were adults recruited 

from Amazon Mechanical Turk. There were 144 KCs in the dataset, 

derived from 36 sentences, each with 1 of 4 different possible 

words missing (cloze items). The number of times specific cloze 

items were presented was manipulated, as well as the temporal 

spacing between presentations (narrow, medium, or wide). The 

post-practice test (filling in missing words) could be after 2 

minutes, 1 day, or 3 days (manipulated between students).  

The stimuli type, manipulation of spacing, repetition of KCs and 

items, and multiple-day delays made this dataset appropriate for 

evaluating model fit to well-known patterns in human learning data 

(e.g., substantial forgetting across delays, benefits of spacing). The 

dataset was downloaded from the Memphis Datashop repository. 

As components we choose to use the ids for the student (Anon.Stu-

dent.Id), sentence itself (KC..Cluster, 32 levels due to each 

sentence having 2 feedback conditions which we do not investigate 

here), specific items (KC.Default.) and the response word 

(CF..Correct.Answer.). KC..Default. and CF..Correct.Answer. had 

a good deal of overlap with KC..Default. since there were 72 items 

with 64 different responses. Here are two examples of these items, 

"The standard deviation is a __________ that describes typical var-

iability for a set of observations.", and "Standard deviation is the 

__________ of the variance, also known as root mean squared er-

ror."     

Tables 2, 3 and 4 show the results for the different start models.  

For the AFM start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 2 and Figure 1 for the 

step actions that led to this final model. 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. )
+ 𝑙𝑜𝑔𝑠𝑢𝑐(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. )
+  𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) 

 

Figure 1. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for AFM model start with Cloze data. 

For the BestLR start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 3 and Figure 2 for the 

step actions that led to this final model. 

𝑙𝑜𝑔𝑠𝑢𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑. ) + 𝑙𝑜𝑔𝑓𝑎𝑖𝑙(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑. )
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. )
+ 𝑙𝑜𝑔𝑠𝑢𝑐$(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. 𝐷𝑒𝑓𝑎𝑢𝑙𝑡)
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) 

R2 para

ms 

BIC AUC RMS

E 

action 

0.000 1 59296.01 0.500 0.452 null model 

0.161 3 49773.24 0.768 0.409 
add: logitdec-KC..MA-

THia. 

0.189 11 48207.27 0.787 0.402 
add: intercept-KC..MA-

THia. 

0.218 13 46506.96 0.806 0.393 
add: propdec-Anon.Stu-

dent.Id 

0.233 15 45611.19 0.816 0.388 
add: recency-KC..MA-

THia. 
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Figure 2. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for BestLR model start with Cloze 

data. 

For the empty start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 4 and Figure 3 for the 

step actions that led to this final model. 

𝑙𝑜𝑔𝑠𝑢𝑐$(𝐶𝐹. . 𝐶𝑜𝑟𝑟𝑒𝑐𝑡. 𝐴𝑛𝑠𝑤𝑒𝑟. ) + 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. )
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝐷𝑒𝑓𝑎𝑢𝑙𝑡. )
+ 𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) 

 

Figure 3. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for empty model start with Cloze 

data. 

3.1.2 MATHia Cognitive Tutor equation solving 
The MATHia dataset included 119,379 transactions from 500 stu-

dents from the unit Modeling Two-Step Expressions for the 2019-

2020 school year. We used the student (Anon.Student.Id), MATHia 

assigned skills (KC..MATHia.), and Problem.Name as the item. 

This meant that our item parameter was distributed across the steps 

in the problems. There were 9 KCs and 99 problems. We chose not 

to use the unique steps as an item in our models for simplicity. This 

dataset included skills such as such as “write expression negative 

slope” and “enter given, reading numerals”. 

Tables 5, 6 and 7 show the results for the different start models.  

For the AFM start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 5 and Figure 4 for the 

step actions that led to this final model. 

𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. ) 

 

Figure 4. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for AFM model start with MATHia 

data. 

For the BestLR start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 6 and Figure 5 for the 

step actions that led to this final model. 

𝑙𝑜𝑔𝑓𝑎𝑖𝑙(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑙𝑜𝑔𝑠𝑢𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑)
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒)
+ 𝑙𝑖𝑛𝑒𝑠𝑢𝑐(𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒) 
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Figure 5. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for BestLR model start with MATHia 

data. 

For the empty start the final model is specified in feature(compo-

nent) notation, see equation below. See Table 7 and Figure 6 for the 

step actions that led to this final model. 

𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. ) 

 

Figure 6. Scaled fit statistic (Z-score) changes during BIC bidi-

rectional stepwise search for empty model start with MATHia 

data. 

3.2 Cloze with stepwise 
For the cloze dataset, the models from the 3 starting points produce 

somewhat different results, illustrating the problem with any step-

wise method due to it not being a global optimization. However, 

considering the fact that our goal is to practically implement these 

models, the result also suggests a solution to this local minima 

problem. By using more than one starting point we can identify the 

essential feature that explain the data.  

For example, in these cloze results note that the recency feature 

used for the KC-Default is particularly predictive. In this dataset 

simply means that the time since the last verbatim repetition (KC 

Default) was a strong predictor with more recent time since last 

repetition leading to higher performance. 

Successes were also important, but curiously they matter most for 

the KC-Correct-Answer. In all case the log of the success is the 

function best describing the effect of the correct responses. In this 

dataset, this mens that each time they responded with a fill-in word 

and it was correct, they would be predicted to do better the next 

time that word was the response. The log function is just  a way to 

bias the effect of successes to be stronger for early succeses. 

While the recency being assigned to the exact repetitions (KC-De-

fault) indicates the importance of memory to performance, the 

tracking of success (as permanent effects) across like responses 

suggests that people are actually learning the vocabulary despite 

showing forgetting. 

Consistent across all three final models is also the attention to stu-

dent variability modeling. In BestLR, the log success and failure 

predictors for the student in the model mean that the student inter-

cept is removed in an elimination step as redundant (this is also due 

to the BIC method, which penalizes the student intercept as unjus-

tifiably complex). Interestingly, in the AFM and empty start 

models, we find that the propdec feature is added to capture the 

student variability after the intercept is removed, since there starts 

did not trace student performance with their start log success and 

failure feature as did BestLR from the start. The MATHia data has 

the same “problem” with BestLR start due to BestLR serving as 

enough of a local minima to block the addition of terms. More on 

this in the limitations section. Practically these features are im-

portant, since they allow the model to get an overall estimate for 

the student that greatly improves prediction of individual trials. 

In summary, there appears to be no great advantage to starting with 

a complex starting model. Indeed, in all cases the stepwise proce-

dure using BIC greatly simplifies the models by reducing the 

number of coefficients. It appears that prior models produced by 

humans (in this case, AFM and BestLR) do not produce better re-

sults in the model space than simply starting with an empty null 

hypothesis for the model. Furthermore, all three start models result 

in final models have no fixed student parameters, so should work 

for new similar populations without modifications, unlike AFM 

and BestLR which relied on fixed student intercepts 

3.3 MATHia with stepwise 
Practically speaking for the MATHia case we also see the im-

portance of student variability, recency, and the correctness at fine 

grain by KC and item for all the models. Digging into the detail, 

ewe can see the BestLR start has some effect on the quantitative fit 

and chosen model. Most notably, while AFM and empty starts re-

sult in the student intercept being dropped in favor of logitdec and 

propdec respectively, the BestLR start retains the log success and 

failures predictors for the student. At the same time, Best LR, per-

haps because it begins with the Problem.Name intercept as a 

covariate, adds features more features for Problem.Name, such as 

linesuc and recency. It seems clear that BestLR causes a different 

result. At this time, we might favor the simpler results of AFM or 

empty starts, but consider that the BestLR start fits the data by AUC 

slightly better than the BestLR result. This implies that AFM and 
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empty starts are simply producing overly simplistic results. Con-

sider we only dropped and removed terms when BIC gain was at 

least 500. We expect that running from an empty start to a lower 

BIC threshold would result in more commonality with BestLR 

start. To test this, we ran the empty start and indeed we found that 

the result became more similar to the BestLR result with the addi-

tion of linesuc and recency for the problems. Since this model 

(shown below) is still slightly worse than the BestLR start it implies 

that the algorithm favors composite features despite better fit from 

individual features (logsuc and logfail). We discuss this in the lim-

itations and future work sections. 

𝑝𝑟𝑜𝑝𝑑𝑒𝑐(𝐴𝑛𝑜𝑛. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. 𝐼𝑑) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑙𝑜𝑔𝑖𝑡𝑑𝑒𝑐(𝐾𝐶. . 𝑀𝐴𝑇𝐻𝑖𝑎. )
+ 𝑙𝑖𝑛𝑒𝑠𝑢𝑐 (𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒)
+ 𝑟𝑒𝑐𝑒𝑛𝑦(𝑃𝑟𝑜𝑏𝑙𝑒𝑚. 𝑁𝑎𝑚𝑒) 

Finally, all the models retained an intercept for the KCs, and all of 

the models capture MATHia KC performance change with the 

logitdec feature.  

3.4 LASSO Method 
A primary goal of the LASSO analyses is to determine how well 

the approach can inform a researcher about which features are most 

important, and guide the researcher toward a fairly interpretable, 

less complex, but reasonably accurate model. See Figures 7 and 8 

plotting the relationship between the number of features and AUC 

across 50 values of lambda ranging from .192 (a large penalty) to 

.0001 (very small penalty). For both datasets, there is clearly dimin-

ishing fit benefits as the number of features is increased (from a 

smaller lambda). Both curves have clear inflection points. At the 

inflection point, the coefficients for most features have been 

dropped to zero (see Table 8). Note in Table 8 that the MATHia 

dataset in particular fits quite well without many parameters for in-

dividual KCs. What remains appear to be the more robust and 

important features. 

 

Figure 7. AUC for cloze dataset as a function of the number of 

retained features. There is a clear elbow at AUC = ~.86 with 

123 features (including KC intercepts) beyond which there are 

diminishing returns. For comparison, BestLR was .856 with 

849 coefficients. 

 

Figure 8. AUC for MATHia dataset as a function of the number 

of retained features. There is a clear elbow at AUC = ~.82 with 

29 features (including KC intercepts) beyond which there are 

diminishing returns. For comparison, BestLR was .831 with 

626 coefficients. 

Table 8. Proportion of features with nonzero coefficients in 

Lasso model at AUC inflection points in Figures 7 and 8. 

Feature Cloze MATHia 

KC intercepts .4069 .1111 

KC logsuc .0116 .027 

KC logfail .1104 0 

Student Intercept .0083 .002 

Student logsuc 0 0 

Student logfail .002 0 

 

The final features that remained for LASSO models near the inflec-

tion points partially overlapped with those found with our stepwise 

regression approach as expected. Below the top 10 features for each 

dataset are listed in order of relative importance (see Tables 9, 10, 

and 11 below). When the results didn’t agree with the stepwise re-

sults, it appears that it may be because a stricter LASSO should be 

employed. For instance, a recency feature for the Problem.Name 

KC with decay parameter .1 remained in the MATHia dataset. 

However, it has a negative coefficient, which is challenging to in-

terpret given that the negative sign implies correctness probability 

increases as time elapses. A larger lambda value may be justified. 

For the Cloze dataset, a large number of features remained even at 

the inflection point (123) and they were missing many features we 

stepwise added. Inspecting the 123 features we saw that the vari-

ance stepwise captured in single terms was distributed across many 

terms in LASSO. Given that one goal of this work is to make sim-

pler and more easily interpretable models for humans, we tried a 

larger penalty to reduce the number of features to 24. The resulting 
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top 10 are in Table 10. This model is more interpretable to a human, 

with mostly recency features, recency-weighted proportion fea-

tures, and counts of success for KC. While the match to stepwise is 

not exact we can now see it attending to student and KC successes 

and failures with features like logitdec in the top 10. It appears that 

lambda values are a sort a human interpretability index. Larger val-

ues make the resultant models more human interpretable, and in 

this case still create well-fitting models. Overall, the agreement be-

tween the approaches is encouraging evidence that these methods 

may be useful for researchers. 

Table 9. Top 10 features in Cloze model at inflection point near 

AUC = .86. Bolded features were also in the final empty start 

stepwise regression model. 

Feature Standardized 

coefficient 

Feature Type 

RecencyKC..De-

fault_0.4 

4.4072 Knowledge 

Tracing 

KC..Default._1 1.4984 Intercept 

KC..Default._2 -1.4870 Intercept 

KC..Default._3 -1.3911 Intercect 

KC..Default._4 -1.3922 Intercept 

KC..Default._5 -1.2857 Intercept 

recencyKC..Cluster.0.2 0.9533 Knowledge 

Tracing 

KC..Default._6 0.9834 Intercept 

CF..Correct.Answer._1 -0.9438 Intercept 

KC..Default._7 0.8427 Intercept 

 

Table 10. Top 10 features in Cloze model when a larger lambda 

is imposed to reduce the total number of features to 24. Result-

ing AUC = .818. Bolded features were also in the final empty 

start stepwise regression model. 

Feature Standardized 

coefficient 

Feature Type 

recencyKC..De-

fault._0.3 

1.8569 Knowledge 

Tracing 

recencyCF..Correct.An-

swer._0.2 

1.4381 Knowledge 

Tracing 

recencyKC..Clus-

ter._0.3 

0.7548 Knowledge 

Tracing 

recencyAnon.Stu-

dent.Id_0.1 

-0.6053 Knowledge 

Tracing 

logsucKC..Default. 0.4211 Knowledge 

Tracing 

logitdecCF..Correct.An-

swer._0.9 

0.3766 Knowledge 

Tracing 

logitdecAnon.Stu-

dent.Id_1 

0.2204 Knowledge 

Tracing 

recencyKC..De-

fault._0.2 

0.3870 Knowledge 

Tracing 

KC..Default._2 -0.1350 Intercept 

logitdecAnon.Stu-

dent.Id_0.9 

0.1343 Knowledge 

Tracing 

 

Table 11 Top 10 features in MATHia model at inflection point 

near AUC = .82. Bolded features were also in the final empty 

start stepwise regression model. 

Feature Standardized 

coefficient 

Feature Type 

recencyKC..MA-

THia._0.2 

1.1103 Knowledge 

Tracing 

KC..MATHia._1 1.1777 Intercept 

KC..MATHia._2 1.0789 Intercept 

KC..MATHia._3 0.9621 Intercept 

recencyKC..MA-

THia._0.3 

0.9831 Intercept 

 

recencyProb-

lem.Name_0.1 

-0.4848 Knowledge 

Tracing 

KC..MATHia._4 -0.4080 Intercept 

logitdecKC..MA-

THia._0.9 

0.3138 Knowledge 

Tracing 

Problem.Name_2 -0.2098 Intercept 

logitdecAnon.Stu-

dent.Id_0.9 

0.1682 Knowledge 

Tracing 

 

If minimum BIC is used instead of the AUC inflection point, the 

“optimal” models have slightly more features (e.g., 154 for cloze 

instead of 123, and 96 instead of 29 for MATHia), but still far fewer 

than the full model. The BIC minimum as a function of features is 

displayed in Figures 9 and 10. 

 

Figure 10. BIC as a function of number of features in Lasso 

model with cloze dataset. Minimum BIC has 154 features in-

cluding intercepts, with AUC = .8655 and RMSE = .3868. 
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Figure 11. BIC as a function of number of features in Lasso 

model with MATHia dataset. Minimum BIC has 96 features in-

cluding intercepts, with AUC = .8301 and RMSE = .3816. 

Below in Table 12 we provide a final contrast of three example 

models with small, medium, and large lambda penalty terms. Inter-

estingly, both datasets can achieve approximately AUC = .80 with 

~10 features! Intercepts are considered features in this case, which 

means that a majority of the KC and student intercepts were 

dropped. This highlights a potential benefit of the LASSO approach 

for evaluating the fit of the KC model. It also suggested that student 

intercepts may not always be necessary in the presence of features 

like logitdec and propdec, which can stand in for intercepts to adjust 

for student differences. 

Table 12. Lasso model fits with three levels of regularization. 

The strictest (fewest parameters) demonstrates how well a 

much smaller model can perform if needed. The medium-level 

model is the model at the AUC inflection points in Figures 10 

and 11. The least strict model demonstrates the diminishing re-

turns of increased parameters. 

Dataset R2 N 

params 

BIC AUC RMSE 

MATHia .2955 10 48459.54 .7951   0.4011    

MATHia .3396 28 45617.33 .8208 0.3871 

MATHia .3805 555 47884.99 .8450 0.3730 

Cloze .2024 11 61065.81 .8115 0.4310 

Cloze .3328 123 52419.37 .8638 0.3882 

Cloze .3587 508 54157.31 .8743 0.3795 

 

4. DISCUSSION 
The results suggest both stepwise and LASSO methods work ex-

cellently to create, improve, and simplify student models using 

logistic regression. Both approaches generally agreed that recency 

features, logsuc, and recency-weighted proportion measures like 

propdec and logitdec were important. They also agreed that the 

number of necessary features was substantially less than the full 

models. While some have argued against stepwise methods [19], 

we think that stepwise methods worked relatively well here because 

the feature choices were not arbitrary. We did not simply feed in all 

the features we could find. Instead, we choose a set of features that 

can be theoretically justified. 

Interpreting the results from these models needs to begin from con-

sideration of the individual features. Each individual feature being 

found for a model means that the data is fit better if we assume the 

feature is part of the story for learning in the domain the data comes 

from. Clearly, we might expect different features for different do-

mains of learning, and practically, knowing the features predicting 

learning means that we can better understand the learning better. 

For example, knowing that recency is a factor, or knowing that 

overall student variability is a big effect. The models this system 

builds might simply be used to understand online learning in some 

domain, but the expert building instruction technology might also 

use them in an adaptive learning environment to make decisions 

about student pedagogy or instruction. 

4.1 Limitations and Future Work 
A primary limitation of the present work is that we only included a 

subset of the features that are already known and established theo-

retically. There were also known features we did not include (e.g., 

specific time window features and interactions among features). An 

extension of this work will be to include more features as well as a 

step to generate and test novel features that may be counterintuitive. 

For instance, KC model improvement algorithms could be incorpo-

rated into the process [12]. However, how much variance is left to 

explain that is not covered by the set of features we used? With both 

datasets, models with AUC > .8 were found using only a relatively 

small subset of the potential features. Some fraction of unexplained 

variance is always to be expected due to inherent noise, KC model 

errors, and measurement error. A significant amount of remaining 

variance may be individual student differences that justify different 

types of models that update automatically to attempt to estimate in-

dividual learning rates, for example. These approaches are beyond 

the scope of this paper but an important topic for future work.  

An opportunity for future work may also be to use these features as 

components in other model architectures, such as Elo or deep learn-

ing approaches. There are ongoing efforts to make deep learning 

models more interpretable, but for the present work we focused on 

a model architecture that is relatively interpretable to non-experts, 

logistic regression. Elo modeling is also particularly promising due 

to its simplicity and self-updating function [16]. Elo can be adjusted 

to include KT features like counts of successes and failures [11], 

but standard Elo without KT features also serves as a strong null 

model since it does reasonably well without KT features.  

A key limitation of the stepwise method is the individuality of fea-

tures. This is illustrated by the way that logsuc and logfail are 

retained in the BestLR MATHia model, but they are not added in 

any of the other models. Their retention in BestLR, may be best, 

but it may also reflect the standard tendency of stepwise methods 

to block the addition of new terms (possibly better) that are collin-

ear with prior terms. This may be unavoidable, but also an 

uncommon problem we think. In contrast the fact that logsuc and 

logfail are not added for the student when nothing is already present 

might be because this requires 2 steps of the algorithm, while add-

ing composite features like propdec or logitdec requires 1 step. 

Since stepwise selection is based on a greedy step optimization it 

ignores better gains that might occur in 2 steps.  
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A solution to this problem of feature grainsize, in which complex 

features are favored because they contain multiple sources of vari-

ability, might be to create synthetic linear feature groupings that 

can be chosen as an ensemble for addition to the model with each 

step. This was suggested by our results which showed logsuc and 

logfail being retained for the student for the BestLR start as dis-

cussed above. Future work will allow some “features” to actually 

test a combination of features for a component. Such a fix will al-

low us to add the combination feature logsuc and logfail (e.g., for 

the students) using 2 coefficients as usual, but in one stepwise step. 

This will allow it to compete with other terms such as logitdec or 

propdec, which incorporate success and failure already in the re-

ported version here. More advanced methods can use factor 

selection which might be applied in both stepwise and LASSO 

within LKT, such as grouping specific features together such as KC 

models [21]. 

While the work here used BIC to reduce model complexity, and 

BIC works similarly to cross-validation in constraining unjustifia-

ble complexity. We plan to confirm our results with out of sample 

validation methods in future work, also allowing us to further con-

firm that BIC is adequate. However, BIC likely underfits our final 

models relative to cross-validation [20]. So, it seems rather implau-

sible that our models are invalid due to overfitting. Rather we may 

be running the risk of too little complexity, leaving explainable var-

iability out of our model. Certainly, this highlights that out BIC 

stepwise threshold for addition and subtraction of terms was chosen 

arbitrarily to allow for interpretable models. We were pleased to 

see they also fit well. 

4.1.1 Presets 
To make the process of logistic regression modeling efficient, yet 

still retain some flexibility and user control, our tool includes a 

number of preset feature palettes that users will have available in-

stead of specifying their own list. These presets are essentially a 

collection of theoretical hypotheses about the nature of the student 

model, given some goal of the modeler. The presets include the fol-

lowing four presets. 

• Static - This present will contains only the intercept fea-

ture. It allows for neither dynamic nor adaptive solutions, 

essentially finding the best IRT type model, unless the 

item or KC component is not used, in which case it could 

simply find a single intercept for each student. Essen-

tially it fits the LLTM model [5]. 

• AFM variants (i.e. dynamic but not adaptive) – This pre-

set fits linear and log versions of the additive factors 

model[2], including LLTM terms that represent different 

learning rates or difficulties based on KC groupings (us-

ing the $ operator in LKT syntax). 

• PFA and BestLR variants (dynamic and adaptive but re-

cency insensitive) – This preset contains all of the above 

mechanisms, and also included the success and failure 

linear and log growth terms used in PFA [14] and 

BestLR[8]. 

• Simple adaptive – This catchall preset will include 

rPFA[7] inspired terms such as logitdec and propdec, de-

scribed in the is paper and elsewhere [15]. In addition it 

will include temporal recency functions using only a sin-

gle non-linear parameter, the best example of which, 

recency, was described in this paper and has been previ-

ously described [15].  

Finally, future work might explore how Lasso also offers a conven-

ient opportunity to evaluate the learner and KC model 

simultaneously. Within the Lasso approach, the coefficient of each 

KC can be pushed to zero and this could be used to allow refine-

ment of the KC model. A limitation of our work here is that we did 

not explore this further, merely observing that in the models only 

some KCs were being assigned intercepts. 

5. CONCLUSION 
We find that the first few selected features in most models produced 

by the stepwise procedure are both effective AND interpretable. 

Articulating a theory to describe the simple models is relatively 

easy, since each feature can be justified by some research-based 

argument. For example, we see the importance of tracing student 

level individual differences in all the models, and we see the re-

cency feature as indicating forgetting occurs. The LASSO 

procedure largely confirms the stepwise models are not far from a 

more globally optimal solution for our test cases and may reveal the 

future of the endeavor because of higher likelihood of a more global 

solution with LASSO despite the somewhat less interpretable mod-

els. 

The present work sought to simplify the learner model building pro-

cess by creating a model building tool, released as part of the LKT 

R package. Our promising interim results demonstrate too modes 

our tool has available to build models automatically. With stepwise, 

they can start with an empty model, provide sample data, and the 

fitting process will provide a reasonable model with a reduced set 

of features according to a preset criterion for fit statistic change. 

Alternatively, with the LASSO approach, the user provides data, 

and the resulting output will be a set of possible models of varying 

complexity based on a range of lambda penalties.  The tool high-

lights models from lambda values based on minimum BIC and 

inflection points like those depicted in Figures 1 and 2.  
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ABSTRACT
Knowledge components (KCs) have many applications. In
computing education, knowing the demonstration of specific
KCs has been challenging. This paper introduces an entirely
data-driven approach for (i) discovering KCs and (ii) demon-
strating KCs, using students’ actual code submissions. Our
system is based on two expected properties of KCs: (i) gen-
erate learning curves following the power law of practice, and
(ii) are predictive of response correctness. We train a neural
architecture (named KC-Finder) that classifies the correct-
ness of student code submissions and captures problem-KC
relationships. Our evaluation on data from 351 students
in an introductory Java course shows that the learned KCs
can generate reasonable learning curves and predict code
submission correctness. At the same time, some KCs can be
interpreted to identify programming skills. We compare the
learning curves described by our model to four baselines,
showing that (i) identifying KCs with naive methods is a
difficult task and (ii) our learning curves exhibit a substan-
tially better curve fit. Our work represents a first step in
solving the data-driven KC discovery problem in computing
education.

Keywords
Computing Education, Knowledge Component, Interpretable
Deep Learning, Neural Network, Code Analysis, Learning
Representation

1. INTRODUCTION
Modeling new learning domains is a common task for re-
searchers and educators [44, 23] which often involves identi-
fying a set of domain-relevant skills1, and determining when
(e.g., in which problems) students practice each individual
skill. Multiple data-driven approaches have been proposed

1Skills and knowledge components are used interchangeably
in this paper. Knowledge components (KCs) are defined
in [23] and introduced in Section 2.1.

to either improve existing learning domain models or to dis-
cover fully new models automatically using student log data.
The benefit of such approaches is that they can alleviate
the need for expert authoring (e.g., via cognitive task analy-
sis [11]), and can reveal skills and problem relationships that
may be counter-intuitive to the domain experts (e.g., due to
blind spots [32]). Traditionally, these methods (e.g. [7, 9,
38, 24, 8, 15, 25, 34, 33]) output a Q-matrix, which maps
the discovered skills to individual practice problems. With
a defined Q-matrix, researchers and educators can leverage
student modeling techniques such as knowledge tracing [13]
to assess what exact skills the student knows and doesn’t
know and can provide personalized problems recommenda-
tions that target the student’s specific knowledge gaps [7].

However, in domains such as programming where there ex-
ists heterogeneity in viable solution paths, simply knowing
which skills are relevant to a given problem is often insuffi-
cient – we also want to know when each of those individual
skills is successfully demonstrated in student practice, and
when it is not. For example, if a student attempts a problem
that requires the use of multiple skills (e.g. conditionals,
iteration, logic, etc.), it is helpful to know which of these
skills they have demonstrated successfully. This can aid us
(i) better understand how students struggle and learn, and
(ii) adapt teaching to individual student’s needs by offering
personalized help and instruction. In other words, rather
than viewing success on a problem as a binary outcome (cor-
rect/incorrect), it would be helpful if a model could detect
how successful a student’s attempt is along the dimensions
of each of the problem-relevant skills (e.g., loop correctness,
iteration correctness, etc.). In domains like programming,
many problems require students to apply multiple skills, and
it is difficult to break problems down into single-skill sub-
steps. Doing so requires making use not only of binary cor-
rectness information, as in prior work [9, 24, 38], but also in-
formation from students’ actual code submissions. Note that
this goal is distinct from that of predictive student modeling
(i.e., knowledge tracing [13]), which in programming tasks
predicts students’ binary submission correctness (such has
been done in [49]); instead, we are concerned with detecting
more fine-grained evidence of knowledge being demonstrated
during practice (i.e. successful or unsuccessful demonstra-
tion of multiple skills, rather than a whole problem).

As a first step towards this goal, this work explores how well
a data-driven approach can discover candidate KCs (skills)
that (i) can be detected automatically from student code
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submissions – allowing us to track when students success-
fully demonstrate each of them, and that (ii) conform to the
learning theoretic properties of KCs suggested in prior liter-
ature [23]. For (ii) specifically, we attempt to discover can-
didate KCs that fit idealized learning curves [53] – meaning
that students get better as they practice individual skills,
quickly at first and then more slowly. The student error
rate reduction over time is assumed to follow a power law
(namely the power law of practice) [53]. KCs are also ex-
pected to be informative for predictions of students’ suc-
cess on the current problem [13]. Our goal in this work is
to first understand how well the discovered candidate KCs
meet these criteria, and then to explore how they can in-
form our understanding of student learning. We propose
the KC-Finder algorithm which takes as input sequence data
describing students’ code submissions on a series of practice
problems, and that outputs: (i) a set of candidate KCs; (ii)
a Q-matrix mapping these KCs to individual practice prob-
lems where they are relevant; and (iii) a detector that can
estimate, for a given student attempt on a problem, con-
fidence values describing which of the relevant KCs were
demonstrated correctly, allowing us to reason about why an
incorrect attempt was made. We introduce a loss function
inspired by learning curve analysis to train a deep learn-
ing model whose predictions conform to idealized learning
curve [9]. We evaluate our approach by answering two re-
search questions (RQs) using data from 351 undergraduate
students in an introductory Java course:

• RQ1: To what degree do the discovered candidate KCs
conform to the learning theoretical properties of KCs?

• RQ2: What kind of patterns have we discovered as
KCs in students’ code and how do they inform our
understanding of student learning?

For RQ1 we evaluate the candidate KCs by calculating a loss
describing the fit to expected learning curves. For RQ2, we
conduct a case study analysing concepts and skills tracked in
student submissions. Our findings suggest that the KCs dis-
covered by our data-driven approach induce learning curves
conforming to the power law of practice. The discovered
KCs are sometimes (but not always) meaningful and non-
obvious to domain experts. However, we also found that
the discovered KCs were no more predictive of student suc-
cess than random, laying the groundwork to explore how to
satisfy both learning theory and predictive performance.

2. RELATED WORK
2.1 Knowledge Components
We use “knowledge component” (KC) as a term to describe
the skills students learn by practicing a set of program-
ming problems in the computing education domain. The
concept of KCs was introduced in the Knowledge-Learning-
Instruction (KLI) framework by Koedinger et al. [23]. The
KLI framework connects teaching and assessment via ob-
servable and unobservable events in the student learning pro-
cess: instructional events, assessment events, and learning
events. Learning events are defined as cognitive (or from
a biological view, brain) changes occurring when students
learn. While learning events cannot be directly observed
or controlled, they are caused by instructional events such

as explanations and lectures which are observable. Assess-
ment events (exams, discussions, etc.) are used to probe the
student’s knowledge state which on its own is not directly
observable. The framework defines the knowledge students
learn through unobservable learning events as KCs which are
a concept that builds the bridge between learning events and
assessment events. In the general KLI framework, KCs can
also refer to other terms (e.g. concept, principle, or fact). In
this specific paper, we refer to KCs as skills, and by knowing
a skill, we mean knowing certain concepts/principles/facts
and how/when to use them. While there may be different
kinds of skills (procedural, declarative, etc.), we do not dis-
tinguish these since this paper’s focus is to find any skills rel-
evant to programming tasks regardless of their nature. KCs
can have different levels of granularity: for example, in pro-
gramming, “knowing how to write iterations” is a skill, how-
ever, a more fine-granular KC can be “knowing how to use
for correctly”. Problem-KC relationships enable us to track
students’ knowledge mastery as they work through a set of
problems [1] via knowledge tracing algorithms. Well-defined
KCs and problem-KC relationships are essential for knowl-
edge tracing algorithms such as Bayesian knowledge tracing
(BKT) [13], AFM [9], PFA [37] and DKT [39] which esti-
mate a student’s mastery of skills based on the correctness
of their responses to previous practice questions. The mod-
eling of student knowledge states enables intelligent tutoring
systems (ITSs) to adapt the workflow to individual students.
For example, SE-COACH [12] uses KC-driven models to de-
cide steps that need explanations, and Salden et al. [45] used
KC-based student models to examine the process of study-
ing worked examples and how knowledge is transfered when
solving problems. In our work, KC-Finder automatically
discovers candidate KCs from student code submissions for
these systems to work in the CS education discipline.

2.2 KC Discovery & Data-Driven Refinement
Many student modeling tasks require the definition of KCs
and problem-KC relationships. The task of identifying a set
of suitable KCs and assigning them to individual practice
problems is complex and requires substantial effort from do-
main experts and techniques such as cognitive task analysis
(CTA) [11]. Even then the resulting KCs can suffer from bi-
ases and blind spot effect [32] inducing a need for additional
refinement techniques (e.g., [7, 9, 16]). Further, the design of
detectors that determine when a KC is demonstrated when a
student attempts a certain practice problem is highly labor-
intensive [24]. Data-driven techniques that leverage student
log data have been proposed to refine existing expert Q-
matrices (e.g., [7, 9, 24, 16, 34]) and to discover new KCs
(e.g., [38, 8, 25, 34, 33]). These approaches demand less ef-
fort from human experts and can mitigate blind spot effects,
but they may lead to less interpretable KCs.

One common method to evaluate KCs is learning curve (LC)
analysis [9]. When evaluating KCs one hypothesis underly-
ing LC analysis is that the collective error rate of a popu-
lation of students in a KC decreases as they practice more.
This trend is assumed to follow an exponential curve (e.g.,
the power law of practice [53]). Multiple methods have been
proposed to improve the domain-specific Q-matrix using LC
analysis. For example, learning factors analysis (LFA) [9]
combines the additive factors model (AFM) with A* search
to refine an expert Q-matrix, and relies on learning curve fit
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as optimization criterion. In this paper, our idea is similar to
LFA. We also use learning curves to guide the optimization
process, but differences exist. The biggest difference is that
we do not require initially defined KCs and Q-matrix, and
our main output is a set of discovered KCs. In addition to us-
ing learning curves in our loss function and evaluation met-
rics, inspired by performance predictions approaches (such
as BKT [13] and DKT [39], and newer models that use learn-
ing curves in knowledge tracing [55]), we also add response
correctness and actual student code submission information
into the model optimization process to discover KCs suitable
for performance predictions. This is similar to the work by
Shi et al. [49] who incorporated code information into DKT.
Shi et al. [49] also worked on a deep learning model, but the
key difference is that we propose to discover KCs, while they
focus solely on predicting student performance.

2.3 Student Modeling in CS Education
Student modeling in computer science education has its own
challenges which set it apart from other domains such as
math and science education. For example, open program-
ming problems are hard to perform knowledge tracing on
due to the inherent complexity of the individual problems
and the heterogeneity of viable solutions. Some prior works
aimed at finding KCs suitable for CS education. While the
Lisp tutor [3] introduces KCs with the tutor’s design, it does
not allow students to write code freely, which greatly con-
strains the space of possible student code submission. It
is difficult for teachers to perform CTA for open coding
problems and to find suitable KCs. Gusukuma et al. [21]
proposed a framework to identify misconceptions and find
KCs accordingly, but the approach still requires substantial
effort from domain experts, and the KCs they discovered
have not yet been evaluated quantitatively. Rivers et al. [44]
proposed using normalized nodes from abstract syntax tree
(AST) representations of student code as KCs, and evalu-
ated them with learning curve analysis. However, some KCs
discovered by their model did result in learning curves not
conforming to the power law of practice. One can hypoth-
esize that this might be due to limitations of canonicaliza-
tion algorithms (the process of converting student code into
a standardized format). We look at this problem from a
different point of view and hypothesize that the guidance
of learning curves in the KC discovery process can help re-
cover better fitting learning curves. We use a neural network
structure subjected to a constraint inspired by ideal learning
curves to identify KCs that warrant well-fitting representa-
tions. There is also related work with focus on applications
of student models in CS education. Yudelson et al. [56]
extracted student code features and used them for code rec-
ommendation; finding KCs can also help us attribute errors
from student code, and thus may aid in subgoal detection
tasks [31] and may enable better feedback [40] and hints [43]
to students. Some recent works focused on student perfor-
mance prediction [30, 28, 22, 58] by leveraging code submis-
sions (though using experts or data-driven code features).
Finding suitable KCs may help such models make more ac-
curate predictions. Discovering KCs is still a key mission in
CS education to improve many of these applications.

2.4 Deep Code Learning for CS Education
The advancement of deep learning and big data analysis
algorithms has significant impacts in diverse domains in-

cluding code analysis [2, 57, 10]. Many related techniques
have found application in the CS education domain due to
the increasing size of available datasets [26]. A frequently
applied model is code2vec [2], which has been used to de-
tect bugs and misconceptions from student code [50, 52, 51],
and recent extensions also approach student performance
prediction tasks [49, 29]. Other research used code2vec for
general classifications of educational code in a block-based
setting [19]. The recent Codex model (and the related CoPi-
lot tool [10]) caught the attention of many CS educators.
Codex is widely used for code auto-generation tasks, and
has also achieved promising resulting when used to gener-
ate student code explanations [46]. While deep learning-
based approaches often yield high predictive performance,
they tend to be less interpretable then traditional modeling
approaches (despite the effort from [17]) and it is difficulty
to extract insights into the learning process that can be ex-
plained to students and teachers. Our approach leverages
learning curve analysis to guide the model training process
and aims to build a more trustworthy and explainable deep
learning model for student modeling tasks in CS education.

3. METHOD
Our target is to discover KC candidates using constraints
inspired by learning theory. Suitable KCs are expected to be
informative in student performance predictions and should
induce learning curves that follow the power law of practice.
Overall, there are four assumptions about KCs made in our
work to build the KC discovery model. They are introduced
below along with the theoretical rationales behind them.

3.1 Assumptions
The assumptions underlying the model design are A1: The
collective error rate of students on a given KC decreases with
subsequent opportunities to practice that KC. This decreas-
ing trend is assumed to follow the power law of practice [9,
53]. A2: The demonstration of KCs in a problem solution
attempt should be predictive of the attempt’s correctness.
A3: KCs are detectable from a student’s current code sub-
mission. A4: All problems have a fixed set of KCs, meaning
that the related KCs for a problem are fixed, independent of
the submissions from students. A5: All KCs have the same
initial error rate and learning rate.

A1 states that observations from students practicing KCs
should induce learning curves that conform to the power
law of practice. It is natural to assume that when practicing
KCs, as students practice more, they become more proficient
in these KCs, and thus make fewer mistakes. The power
law of practice postulates that the collective error rate from
all students decreases as students practice more following
a power function (Y = aX−b). This assumption has been
made by multiple prior student modeling approaches [9, 44].

A2 assumes that if a student knows all KCs relevant to a
problem, it indicates they are likely to answer the problem
correctly. When incorporating this assumption into a data-
driven model, it implies that the demonstration of KCs rele-
vant to a problem in a solution attempt should be predictive
of attempt correctness. For example, if a problem requires
the application of KCs A and B, a successful demonstration
of KC A should suggest an increased likelihood of getting
the problem right. This assumption has been used in many
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knowledge tracing models [13, 6, 35, 47] that make predic-
tions on future submissions with a focus on domains with
closed and structured questions. However, for open-ended,
free-form computer science problems, the complexity and in-
tertwinedness of individual KCs may cause more difficulty
in performance prediction. We thus limit our assumption to
the current submission correctness.

A3 postulates that KCs are observable and detectable from
students’ code submissions. We only have access to the code
submissions, and in this work we only focus on KCs that
can be extracted from code submissions. While some KCs
may exist that are not directly observable through code sub-
missions (for example, reading skills are also required when
students try to solve programming tasks specified by text
requirements), various KCs can be observed in code submis-
sions. For example, Rivers et al. [44] extracted various KCs
represented by AST nodes derived from code submissions.

A4 and A5 are assumptions specifically made in the design
process of our current model. They may not necessarily be
true, but we use them to facilitate the creation and training
of the KC-Finder model. Future work can focus on loosen-
ing these assumptions. A4 as a limitation, states that the
number of practiced KCs is fixed for each problem. In many
cases this is true, but whether students practice certain KCs
can also be affected by the code they write and the solution
path they choose. For example, in an open-ended program-
ming problem, the instructor may expect students to solve
the problem by using nested if conditions, but some stu-
dents may choose more complex logic operations to avoid
nested if. Under this assumption, we assume that the stu-
dent did not demonstrate a correct practice of the required
KC “nested if”, while the student actually indeed correctly
practiced the KC “complex logic operations” and “nested
if” is not required by the problem. We use this assump-
tion to allow the usage of the Q-matrix since if KCs are de-
pendent on submissions, one Q-matrix cannot represent the
KC-problem relationship since the relationship varies across
different submissions. In A5, we have an assumption that
requires all candidate KCs we discover to have the same
starting error rate (a) and learning rate (b) in the power
function for their learning curves. We set this assumption
as a start for using properties of the power law curve, and
save the automatic fitting of more specific learning curve pa-
rameters for later work. Our experiments show that we can
still discover meaningful KCs under this assumption.

3.2 KC-Finder Model
Under the guidance of these theoretical properties, we define
the KC-Finder model structure below. Figure 1 provides an
overview of the model. We show a single student and their
T code submissions {S1,S2, ...,ST } for a course as example
to illustrate the process of the model. The output of the
model is specified in orange in the figure, where the current
submission correctness is indicated as {y1,y2, ...,yT }.

In a submission St, two types of information are available to
the model for the correctness classification task: the problem
ID pt and the actual code submission ct. While both can-
not be immediately processed by a mathematical model, we
separately represent the problem ID and code submission in-
formation as real-valued vectors. For the problem ID, we use

one-hot vectors to represent the IDs as vectors, using a vec-
tor xt to represent pt, where the length of the vector equals
the number of problems in the dataset, with all elements as-
signed as 0, except the element associated with the problem
assigned as 1. Note that this setting is similar but different
to typical knowledge tracing tasks [39, 49, 4] which also use
one-hot representations for problem IDs. Knowledge trac-
ing includes the correctness information in the task of the
next submission performance prediction (which is denoted as
yt+1). In contrast, we do not include the correctness infor-
mation since our task is to classify the correctness of the cur-
rent submission yt, and to discover KCs through the model
learned from this task. Code submissions ct are embedded
through a code2vec model [2], which has been recently in-
troduced to educational analytics in multiple tasks [51, 19].
The code2vec model can embed a code snippet ct into a
vector zt. This part of the model updates parameters in the
training process, along with other layers in the model.

Neural networks have a common structure. Linear layers
(also called fully-connected layers) are defined by weight
matrices and apply linear transformations to vector inputs.
The product of these multiplications is often followed by
non-linear functions such as sigmoid or tanh to introduce
non-linearity into the model. In the KC-Finder model, all
linear layers (WKC ,Wc and Wp) have the same mathemat-
ical operations (with different weights), which first multiply
with the input vectors and then apply the sigmoid function
(denoted as ϕ(·)) to every element to compute the output.
For example, when a code vector zt passes through the linear
layer Wc, the equation for this process is ht = ϕ(Wczt).

The vector ht is of dimension L, where L is the total num-
ber of KCs. We intend to interpret ht as the error rate of
students practicing KCs {l = 1, 2, ...L}, but there are some
challenges. First, not all problems practice all KCs, and
our model needs to learn problem-KC relationships. To this
end, we leverage the one-hot problem embeddings xt to infer
weights and represent the KCs corresponding to the current
problem. We use linear layer WKC to learn a relationship
between potential KCs and problems, and use a sigmoid
function to scale the output of layer m to the [0, 1] range.
The layer-m weights then multiply with the values of ht and
generate a vector kt. The intuition behind this is that every
problem can have a probability of practicing certain KCs,
and we use m as this probability and multiply the ht vec-
tor to represent the selected KC values. The output kt is a
masked representation of the knowledge status of a student.
When using an ideal learning curve to force the distribu-
tion of the representations across students in a batch, it can
readily be interpreted as the error rate of students practic-
ing KCs as we expect it to follow the power law of practice.
For a batch of students’ submissions that practiced a KC,
cumulatively they should also follow the power law of prac-
tice, and preserve their ability to predict the submission’s
correctness. These two properties lead to the design of the
loss function which is used to train the KC-Finder model:

L = α(
1

N

∑

N

H(y, ŷ))+(1−α)(
∑

T,L

| 1

N

∑

N

kn,t,l−k̂t,l|)+γ(||WKC ||1).

(1)
In Equation 1, the loss when the model has a batch of N stu-
dent submissions comes from three sources. The first part
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Figure 1: KC-Finder Model structure, where blue nodes are vectors, and green blocks represent neural network structures.

H(·) is the binary cross-entropy [14] of the classified results
y and the ground truth correctness ŷ, leading the model to
learn weights that produce a low submission correctness pre-
diction error. The second part is the loss for the fitness of the
learning curve to encourage predictions that conform to the
power law of practice. Since the learning curve is calculated
through a batch of students, we first average the error rate of
practiced KCs for every student in the batch. For a certain
knowledge component l, we calculate the assumed learning
curve, where k̂t = at−b. In the equation, a stands for the
starting error rate for students when they have not practiced
a skill, while b denotes the learning rate. Because we cannot
estimate KC-specific a, b parameters a priori without em-
ploying additional information or assumptions, we assume
all KCs have the same a, b parameters. This learning curve
fitness loss is optimized so that the model produces k vectors
that can be interpreted as the error rate of practiced KCs.
We use an α hyperparameter to control the importance of
the classification loss and the fitness loss. The last part of
the loss is an L1-norm regularization term weighted by hy-
perparameter γ which ensures sparsity in the WKC weights
and thus creates a more sparse masks m, allowing KCs to be
removed from unrelated problems. While the output of this
classification is a binary label describing whether a student
succeeds in their submission, the key product of the work
is the Q-matrix specified in m and the learning curves k on
the corresponding knowledge components.

4. EXPERIMENT
4.1 Dataset
Our experiments use the publicly available CodeWorkout
dataset2. The dataset is collected from an introductory Java
course at Virginia Tech in Spring 2019. The dataset is stored
in ProgSnap2 [42] format and is released to the public in the
2nd CSEDM data challenge3. No identifiable information

2https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
3https://sites.google.com/ncsu.edu/csedm-dc-2021/home

(such as geographical information, GPA, etc) on individual
students is released, and the dataset has been anonymized
for ethical considerations. The dataset includes submissions
from 410 students for 50 programming problems, which are
grouped into 5 assignments according to the topics. For
example, the first assignment mainly focuses on the if con-
ditions, while a later assignment has more problems on for

loops. The typical length of the student code submissions is
10 to 20 lines and 41.86 tokens, submitted to the CodeWork-
out [18] platform, and tested by pre-defined test cases. The
unknown tokens are specifically assigned as a unique identi-
fier [unk] in the model. To avoid overfitting to the problems,
user-defined variables and strings are also normalized to a
fixed string in students’ code. On average, 23.68% of all
submissions (from all students) are correct, meaning they
passed all test cases. Our model involves training, valida-
tion, and testing phases. We split the dataset according to
students by a ratio of 3:1:1 for each of the three phases. We
train the model with training data, use the validation set to
tune hyperparameters, and test and evaluate the model on
the testing set. The results are averaged through 5 times
repeated sampling to ensure the result are reliable.

4.2 Data Preprocessing
Code submissions are complex, and we only use the first at-
tempts of students on each problem for potential KC discov-
ery. One reason is that it has been common for knowledge
tracing tasks to only consider the first submissions for prob-
lems [48, 4], as students practice skills when they first see the
problem and have not received any feedback on the specific
problems. Another reason is that for code submissions, stu-
dents tend to debug on their later submissions. This process
involves more complicated behavior, which may not be fully
explainable by conventional knowledge component model-
ing. Sometimes students even get intimidated by problems
in case of repeated incorrect submissions, only to click the
submit button multiple times and thus make invalid sub-
missions that do not show what they know and don’t know.
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Therefore, as it would be a non-trivial task to evaluate can-
didate KCs for multiple submission situations, we only use
the first submissions from students for every problem. This
is also different from other analyses such as “learning tra-
jectory analysis” [54], as we only focus on the submissions
when students practice skills for the first time.

Some students may also have exhibit cheating behavior in
the dataset (since the system used to collect data don’t have
a detector for cheating, unfortunately). We also observed
students submitting partial code as their first submission or
potential cheating. For example, some students struggled
with easier problems, but suddenly are able to make correct
submissions on their first try after a certain problem, and
those later problems are generally more complicated than
the ones they failed many times before.

We added preliminary filters to keep only the first attempt
submissions from students and avoid students with possible
cheating behavior. To only keep the first submissions, we im-
plemented a filter to detect the first submissions that are not
too short (longer than 3 lines of code) and only kept these
first submissions. We also implemented a filter to remove
students with sudden changes in their submission patterns.
Out of 410, we finally kept 351 students in the dataset for
the KC discovery task.

4.3 Hyperparameter Tuning
We used validation sets for hyperparameter tuning. Specifi-
cally, we applied grid search to find hyperparameters yield-
ing the highest classification AUC scores on validation sets
for model evaluations. This process is repeated 5 times to
reduce the risk of overfitting. We selected the learning rate
for the model as 0.005 through space of 0.001, 0.003, 0.005,
and the training epochs are selected as 80 through the early-
stopping process. We also tuned the α parameter (specified
in Equation 1) and used a value of 0.97 (in a range of 0.03
through 0.97). At the same time, the lower weight on learn-
ing curve fitting loss does not have a significant effect on the
potential KCs discovered (they still produce good learning
curves even if set low). Still, a higher weight on classification
loss is needed for the classification task. The γ parameter
controls the speed of removing potential KCs from unrelated
problems and is set to a low value of 3e−5. The other model
hyperparameters are kept the same as the default ones in the
settings of the code2vec and DKT models [2, 39]. We did not
tune on the different combinations of the a and b parameters
of the expected learning curves of the KCs since it is hard
to evaluate the quality of potential KCs quantitatively, as
in real applications, it is also feasible to try different a and
b parameters and check the quality of potential KCs found
under various combinations. In our experiments, we used
the values a = 0.7, b = 0.6. We also assumed that L = 30
potential KCs exist in the dataset, and while the model is
able to reduce the number by learning a candidate KC not
practiced in any problem, the number is an educated guess
by the authors after checking through the problems. Future
experiments can be introduced to evaluate more value com-
binations. We kept these values since there is no direct way
to quantitatively evaluate the quality of programming skills
or misconceptions discovered by the models. The model is
trained with a computer equipped with an Nvidia GeForce
RTX 2080 Ti GPU. A single run of the training takes less

than 10 minutes, and inference of a single batch of students
takes seconds of computation. The code is implemented in
PyTorch [36] and publicly available4.

4.4 Baseline KC Models
We compared the KC discovered by our model with four
baseline methods. One can argue that topics of the prob-
lems can be extracted and assigned as the KCs in each
question. As the first baseline in our experiment, one of
the authors manually examined the problem requirements
and code solutions, identified a set of 15 Topic KCs, and
manually tagged each problem with a set of relevant KCs.
The second baseline used an alternative way to extract KCs
that examines the student code submissions and extracts
the most frequently used code components (show up in more
than 20% of all solutions) in correct submissions as KCs for
certain problems. This is a simplified KC model compared
to [44], as we do not have an automatic hint generator for
Java compared to their work for Python programs. We im-
plemented this method to extract the nodes from the AST
representation of student code, and filtered nodes that show
up in more than 20% of correct submissions as KCs required
by the problem, resulting in 21 Node KCs. Textual and nu-
merical leaf nodes of ASTs were removed from KCs since
they vary among problems. Lastly, we considered two stan-
dard baselines from prior work [37] one which uses a single
KC for all problems (i.e., general programming knowledge),
and another that defines a separate KC for each problem
(i.e., each problem is its own KC). We compared our discov-
ered candidate KCs with the four baselines using the fitness
errors of the induced learning curves.

5. RESULTS
5.1 Learning Curves
We first show three example learning curves generated from
our model using the testing dataset shown in Figure 2. To
evaluate the fitness of the learning curves of each of the po-
tential KCs, we calculated an average absolute error e =
1
T

∑
T |kt− k̂t| to compare the curves to the expected curves

under the exponential curve k̂t = at−b, where the a and
b parameters are automatically fitted. Note that for each
KC candidate, only problems practicing the KC are counted
when calculating the error e. For example, the KC candi-
date #5 is practiced in almost all problems. The KCs shown
in Figure 2 all have a relatively low error compared with the
assumed exponential curve. KC candidate #5 has an er-
ror of 0.037, KC candidate #4 has an error of 0.026, and
KC candidate #2 has an error of 0.032 All KCs candidates
we extracted have a e < 0.1, and the mean error is 0.034,
showing that the learning curves of the potential KCs are
generally consistent to the learning curve, and follow the
power law of practice. On the other hand, the baseline KCs
do not create KCs that fit the expected exponential learn-
ing curve. We show four learning curves created from the
baseline Topic KCs and the node KCs in Figure 3. The two
learning curves on the left represent the error rate of the
submissions when certain Topic KCs are practiced, and the
right side shows learning curves when node KCs are prac-
ticed. We can clearly see that neither KC models on the

4Code Repository:
https://github.com/YangAzure/KC-finder
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Figure 2: Learning curves of different KC candidates generated from students in test set.
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Figure 3: Learning curve examples of Topic KCs and Node
KCs on concepts of if and for statements.

if or for statements show an exponential, or even decreas-
ing trend in error rates. When calculating their fit to the
assumed exponential learning curve for the model (with au-
tomatically fit parameters), we show in Table 1 that both
KCs have very high fitness errors. Only a small subset of
the KCs has a valid learning rate factor (b), presenting Topic
KCs and node KCs cannot generate learning curves fitting
the exponential curve with a fixed set of parameters. When
looking at more learning curves generated from both KCs,
they are similar to the examples in Figure 3 and do not have
a decreasing trend over opportunities. The learning curves
for Topic KCs and node KCs are similar to each other for a
certain concept (for example the first two learning curves for
if concept), which confirms that the expert extracted KCs
are represented in code submissions as well. However, one
limitation here is that the correctness may not directly rep-
resent the correct practice of certain KCs. The correctness
metric represents students practicing all KCs in a certain
problem correctly, but not on certain KCs. We use the cor-
rectness of the submissions to validate these two KC extrac-
tion methods as an approximation, which shows that our
work can represent the learning curve for certain KCs with-
out the need for a specifically designed partial evaluation of
the submissions – only if we can explain the potential KCs
discovered by the model.

5.2 KC Interpretation
Our model discovers KC candidates represented as vectors
that generate reasonable learning curves, and we show the
interpretability of the KC candidates in this section. We
manually examined the code and their corresponding KC
values and found that we could find meaningful and inter-
pretable KCs from these automatically discovered KC can-
didates. We manually inspected the discovered KCs across
multiple problems, and show one example for the presenta-
tion purpose. In Figure 4, we show an example case of a KC
candidate (KC #4) and explain what has been tracked in
this KC in one problem. The problem requires students to
use if conditions with logic operators, and one typical and
non-obvious error from students is to use the order wrongly
and return incorrect values that cause test cases to fail. It
should be noted that the values do not indicate whether the
KCs are practiced or not in certain problems. A low KC
value means a failed demonstration of the candidate KC.
Code A submission is correct, with a high KC value on KC
candidate #4. Code C has a wrong order and has a low
KC value on the same KC. While other reasons could cause
the difference in KC values, Code C is incorrect due to the
wrong order. This KC could possibly track bracket usage, as
the only difference between Code A and Code B is bracket
usage. Using brackets led to a lower KC value for Code B.

We also found some other concepts associated with KC can-
didate #4, for example, in one problem, all students who
have an error in using = as comparison operator == got lower
KC values. One KC may not represent a clearly defined con-
cept by experts. The KC candidates are almost certainly
amalgamations of different concepts, and no single behavior
seems to explain the KC itself. Some of these concepts are
consistent through different problems, as the example shows
are all related to the if condition, and some of the concepts
are problem-specific. As we do not have any specific design
in the mode, KCs can be conceptual and can be distinct
when they tend to improve together. Some candidate KCs
are meaningful and important skills for the problem (e.g. the
sequence of if conditions as shown in 4), which instructors
might not have intuited; however

5.3 Code Classification
In our experiments, we report the classification results through
5 times running and calculate the average of the runs to get
the classification results. KCs should be informative to pre-
dict the correctness of the code submission. To serve as
a sanity check, before we evaluate the discovered potential
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Figure 4: Comparison of code submissions and their corresponding scores of KC #4. Frames show the possible code difference
that triggered the KC value difference.

Table 1: Fitness error of Topic KCs, Node KCs, and KCs
discovered by our model. The Valid LCs column indicates
the number of LCs with a positive learning rate parameter
(b > 0). A negative learning rate indicates a degenerate KC
(students get worse with practice).

KC Error Valid LCs
Topic KC 0.0663 1
Node KC 0.0785 5
Model KC 0.0342 30

Table 2: AIC, BIC of Topic KCs, node KCs, one KC, all KCs,
and KCs discovered by this model.

KC Model AIC BIC
One KC 3223.92 3651.62
All KC 3179.95 4189.79

Topic KC 3220.99 3672.45
Node KC 3214.84 3678.18

Random KC 3076.08 3848.31
Model KC 3081.44 3853.67

KCs, we evaluated an average of running the model on dif-
ferent splits of training and validation sets five times and
reached an average AUC score of 77.26%. Considering that
no correctness information is given to the model, and only
discovered KCs are used for making the classification, the
potential KCs can be used to classify the code correctness,
showing the necessity of using the correctness information
in the loss function.

5.4 Q-Matrix Analysis

We present the Q-matrix we found from the testing dataset,
ranked by the number of problems in Figure 5, and compare
the corresponding AIC and BIC scores in Table 2 to eval-
uate how well the discovered and baseline KCs predict stu-
dent performance/correctness, following prior methods [9].
These metrics are frequently used to evaluate the goodness
of fit. More detailed equations for the metrics can be found
in prior works (e.g. [9]). The Q-matrix shows that the KCs
are relatively evenly distributed through all problems with
good sparsity. In the comparison results, the model scores
are similar to a random KC model. It would be unsur-
prising to have this result, as the model learned KC candi-
dates that were amalgamations of different and overlapping
micro-concepts; therefore, it makes sense that a Q-matrix
involving these KCs would not be meaningful. While our
KC model does not generate better AIC/BIC scores than
random KC, the other baseline models (even manually de-
fined KC models). This shows that it is difficult to create
a predictive KC model with the dataset. Furthermore, it
suggests that fitting a learning curve itself is sufficient to
discover KCs for domain modeling. We did not manually
inspect the baselines’ KC quality since they are specifically
designed to represent different levels of KCs. For example,
one KC and all KC are naive baselines that any domain
could use, while the remaining baselines are expert-defined,
and thus already fit to expert understanding of KCs. One
direction for future work would be to seed the model with an
expert-authored Q-matrix and allow the model to discover
KC candidates which match the pre-specified pattern. This
KC-refinement task has been explored by various works (e.g.
[24]). However, doing so with our approach would help to
address the challenge of figuring out which relevant KC a
student is struggling with when they get a problem wrong.
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6. DISCUSSION
6.1 Expected Properties
We first answer RQ1 in this discussion section: How closely
do the candidate KCs detect match the expected properties
of KCs?

Our goal was to discover candidate KCs that matched two
important properties of high-quality KCs. First, students
should be more successful at demonstrating KCs as they
practice them, following the power law of practice [9, 24].
Second, a student’s success on a given problem should be
predicted by how successfully they demonstrated relevant
KCs for that problem [13, 47]. To address this, we trained
a model to detect candidate KCs and then evaluated those
KCs on a separate dataset. Our findings suggest that the
discovered KCs largely meet these two goals, much more so
than the four baselines we compare with (see Section 4.4).

First, the resulting learning curves appear high quality, fit-
ting well to a power law curve. By contrast, none of our
baselines produced viable learning curves, suggesting that
naive approaches for defining KCs are ineffective with our
dataset. Similarly, prior work [44] has found that learn-
ing curves in programming often fail to align with learning
curves. This result suggests that our model could detect
patterns in student code that become more frequent as stu-
dents practice – quickly at first and then slower with time –
as suggested by the power law of practice [9]. As we discuss
below, some of these patterns likely correspond to skills that
students develop over time, such as the usage of if condi-
tions, or (the absence of) misconceptions that become rare
over time, such as using an assignment operator (=) instead
of comparison (==) inside of a conditional statement. How-
ever, some of these patterns may simply correspond to code
constructs that are used more frequently as the semester
progresses (e.g. variables, which are rare in early assign-
ments), and thus naturally increase in frequency, without in
reality having much to do with practice. Matching learning
curves is not itself enough to say a KC is meaningful, but
it does suggest that some of the discovered KC candidates
may correspond to learned skills.

Second, we found that, for a given problem, the relevant KC
candidates were, collectively, predictive of students’ correct-
ness on programming practice problems (AUC = 77.26%).
These results suggest that whether a student successfully
demonstrates a candidate KC discovered by our model gives
insight into whether they will succeed at the current prob-
lem. In other words, the code patterns underlying these
candidate KCs are also important code patterns for solving
the programming problems in our dataset.

Overall, these results suggest that the candidate KCs we dis-
covered do match the expected properties of idealized KCs in
these two dimensions. Importantly, the results we presented
were from a hold-out test dataset with unseen students, sug-
gesting that KC candidates can generalize across different
students within a course. However, while these criteria are
necessary, they are not sufficient, and we will explore the
limitations of the discovered KCs below.

6.2 Skill Tracking

KC#

Problem

Figure 5: Q-Matrix representation of KCs and problems,
where yellow cells represent a presence of the KCs in a prob-
lem, and dark cells represent an absence.

We answer RQ2 in this section: What properties do the dis-
covered KC candidates have? What kind of patterns have we
discovered as KCs in students’ code?

First, we found that there are important differences between
the discovered KC candidates and how experts would likely
define KCs for a given domain. Rather than discrete con-
cepts (conditionals), the KCs are amalgamations of differ-
ent micro-concepts (e.g. correct ordering of the primary
if-statements in a problem), where no single behavior seems
to explain the KC itself, and different KCs overlap. Some of
these micro-concepts show up across different problems (e.g.
KC #4 detects the misuse of = in conditions (or assignment
in conditional) misconception across various problems).
Some of these are also problem-specific, e.g. the order of
two if statements in the problem shown in 4. This suggests
the need for further research on operationalizing the idea
of a KC’s ”consistency” – that a KC should mean the same
thing when detected across students and problems. This
is a non-trivial idea to encode in a model, which lacks any
domain expertise. Ideally, such a definition should be de-
fined based on student behavior (e.g. if a KC is consistent,
students’ performance for problems that use the KC will be
correlated). In some ways, this idea is operationalized by
approaches such as AFM [9]. However, since the actual do-
main information is not used, it would not be feasible to
evaluate the performance of such methods. Although the
Q-matrix learned by the model was not meaningful, we also
found that the candidate KCs can inform our understanding
of what skills students develop in a domain. For example,
we found that KC #4 clearly detected a micro-concept fo-
cused on students’ use of brackets in code. Importantly,
these brackets did not change the function of the student’s
code, and it is unlikely an expert would have thought to in-
clude them as a discrete skill. However, our model identified
this pattern as being predictive of student success and fit-
ting a good learning curve. In retrospect, this makes sense
as skill students develop: acquiring familiarity with syntax
and style conventions (e.g. when brackets are and are not
necessarily) can help students succeed on various problems,
even if it does not directly affect their correctness. We also
found that candidate KCs included misconceptions, such as
the confusion of = and == in if conditions. More work is
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needed to develop methods for extracting the meaning of
these data-driven KC candidates, and use this understand-
ing to develop insight.

6.3 Design Choices
We made design choices according to our assumptions (See
details in Section 3.1). Assumption A3 specified that KCs
should be detectable from code, and thus we used the code2vec
model to process code into vectors z [2]. Code2vec has been
used for educational data mining tasks recently [50, 49, 19],
and the code embedding extracting module can be other
models such as ASTNN [29, 57] as well. Assumption A4
specified that problems should have a fixed set of KCs, and
we thus 1-hot embedded the problem IDs into vectors x,
and use them to calculate a set of masks m to specify the
KCs active for different problems. The masks select relative
KCs for processed code vectors h, and the selected values k
participate in the loss calculation. According to assumption
A1, one requirement is that if we let k correspond to KCs,
they should follow the power law of practice. We designed
the loss so that k values fit an exponential curve, generated
by a fixed set of parameters, relaxed by assumption A5. Fi-
nally, since A2 specifies the performance of KCs should be
predictive of the code correctness, we use k values to make
the predictions and have the model also train on the clas-
sification loss. When we assume the learning curves have
the same parameters, the model may overlook KCs with
very different starting error rates and learning rates. We
thus used an L1-regularization to encourage the sparsity of
WKC and allow KCs to drop. While many variations and
improvements can be made, this model is a proof of concept
and serves as a prototype for the KC discovery task in the
programming education domain.

6.4 Research and Educational Implications
This work introduced a fully data-driven KC-discovery al-
gorithm designed for the CS education domain. It uses stu-
dent log data describing the correctness of student responses
and actual student code submissions to discover KCs and
map them to individual programming problems. It connects
pieces of computer science education with learning theories
to discover a Q-matrix which conforms to the power law of
practice [53]. It has been a different task from the KC refine-
ment methods such as LFA, which uses learning curve analy-
sis for KC-refinement, but it requires an initial Q-matrix [9,
24]. These student model improvement methods can reduce
the load on experts when performing cognitive tasks analysis
[11]. In contrast, our model directly reduces expert effort by
providing a student model that produces KCs with learning
curves fitting the power law of practice. Our model leverages
deep learning structures, typically known as “black boxes”,
however, we specifically designed the model such that the
middle layer information can be interpreted as the KC abil-
ity estimates and thus made this model interpretable. The
discovered KCs can be applied for performance prediction
tasks by directly using the KC values or plugging the model
structure to current knowledge tracing models for CS educa-
tion [49]. While there are vector representations of student
code submissions, they can also serve as language-agnostic
representations to represent the mastery of KCs [27]. Our
model can also be seen as a misconception attribution tool.
When a student is predicted to have a high error probability
on a certain KC, an automated hint or interference can be

generated in an adaptive way to help the learning process
[41]. Finally, the model can also be used to analyze the KCs
covered by a set of problems using submission data from
a semester, and thus to make more informed pedagogical
decisions [20].

6.5 Limitations
Besides the assumptions we made to guide the model design,
there are also other limitations present in this study. First,
we did not incorporate the factor of using test cases. The
run-time results of carefully designed test cases may con-
tribute to the attribution of errors when students practice
KCs. However, we do not have the full test case informa-
tion for every problem in the dataset, and it is non-trivial
to match KCs with specific test cases. Future work may in-
tegrate information about test case results into the existing
method to enhance the KC discovery process. Second, we
followed the tradition of knowledge tracing tasks and only
used students’ first submissions in model training and eval-
uation. One major limitation is that we cannot track the
actual opportunities of practicing KCs in repeated submis-
sions, especially if we don’t assume that problems have fixed
sets of KCs. We made this decision after the exploratory
data analysis, during which we found lots of students made
debugging submissions that are unnecessary. We found it
can be complicated to explain this behavior, and are unsure
if students actually intend to practice KCs when submitting
a debugged code (for example, they may hit submission but-
tons multiple times, or they just wanted to exhaust possible
choices to reach the correctness), as pointed out by Baker
et al. [5]. It could also be interesting to investigate student
behavior after their first submissions for programming prob-
lems. Finally, this model serves as a prototype and many
variations could possibly generate better KCs. However, we
do not have a metric to quantitatively evaluate the extent of
KCs being reasonable and interpretable. While we do have a
metric to examine the fitness of the learning curves and the
classification of the code correctness, one limitation of the
results is that the classification results are no better than
random, and the discovered KCs are sometimes meaningful
and non-obvious. The limited size of dataset may also cause
a limited generalization on other datasets. We will explore
ways to use expert knowledge to evaluate the quality of KC
models, using this research to guide our future direction.
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ABSTRACT
Problem decomposition into sub-problems or subgoals and
recomposition of the solutions to the subgoals into one com-
plete solution is a common strategy to reduce difficulties in
structured problem solving. In this study, we use a data-
driven graph-mining-based method to decompose historical
student solutions of logic-proof problems into Chunks. We
design a new problem type where we present these chunks
in a Parsons Problem fashion and asked students to re-
construct the complete solution from the chunks. We in-
corporated these problems within an intelligent logic tutor
and called them Chunky Parsons Problems (CPP). These
problems demonstrate the process of problem decomposi-
tion to students and require them to pay attention to the
decomposed solution while they reconstruct the complete
solution. The aim of introducing CPP was to improve stu-
dents’ problem-solving skills and performance by improv-
ing their decomposition-recomposition skills without signif-
icantly increasing training difficulty. Our analysis showed
that CPPs could be as easy as Worked Examples (WE).
And, students who received CPP with simple explanations
attached to the chunks had marginally higher scores than
those who received CPPs without explanation or did not
receive them. Also, the normalized learning gain of these
students shifted more towards the positive side than other
students. Finally, as we looked into their proof-construction

traces in posttest problems, we observed them to form iden-
tifiable chunks aligned with those found in historical solu-
tions with higher efficiency.

Keywords
Parsons Problem, Intelligent Tutors, Data-driven Subgoal,
Problem Decomposition

1. INTRODUCTION
Computational thinking, a set of skills and practices for
complex problem solving, provides a foundation for learning
21st-century skills, particularly computer science (CS). Edu-
cational researchers and teaching professionals acknowledge
problem decomposition-recomposition skill as a key compo-
nent of computational thinking and complex problem solv-
ing [11, 23, 13, 22]. Efficient problem solving using the prob-
lem decomposition skill or strategy involves several steps: 1)
identifying sub-problems (i.e. subgoals) to reduce the diffi-
culty associated with the problem, 2) constructing a solution
for each of those sub-problems, and 3) recomposing the sub-
problem solutions to form the larger solution [5]. Research
showed that experts carry out problem decomposition and
recomposition (PDR) steps more than novices [41]. How-
ever, several studies also showed that novices often attempt
to decompose problems [26, 40]. But while they may demon-
strate correct decomposition in easier problems, novices fail
to decompose sophisticated problems [26].
Despite problem decomposition-recomposition (PDR) being
vital to complex problem-solving, it is rarely mentioned ex-
plicitly in instructional materials for computer science (a
discipline focused on complex problem solving using com-
puters) [30]. Also, existing research lacks guidance on how
to motivate students to adopt this PDR process or how to
improve their skills associated with PDR. A few studies an-
alyzed the differences between experts and novices in adopt-
ing this PDR process, indicating that experts use PDR more
than novices [27, 20]. And, a few studies aimed at introduc-
ing this PDR skill to students, mostly during programming
problem solving, using varying methods [for example, us-
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ing pattern-oriented instruction [32], programming problem
decomposition exercise [42], guided inquiry-based instruc-
tion [36], etc.]. However, PDR remains under-explored in
the instruction of other structured problem-solving domains.

In this study, we design, implement, and evaluate a problem-
based training intervention, named Chunky Parsons Prob-
lem (CPP), that introduces to students the concept of prob-
lem decomposition-recomposition (PDR) while engaging them
in these processes during problem solving within an intelli-
gent logic tutor, DT (Deep Thought). To generate CPP, we
decomposed students’ historical solutions to each logic-proof
construction problem stored in DT’s problem bank into sub-
proofs (referred to as chunks) using a data-driven method.
These chunks are presented in a Parsons Problem fashion.
In a traditional Parsons Problem, all steps contributing to
the complete solution of a problem are presented in a jum-
bled order. On the contrary, within CPP, the solution to
a logic-proof problem is presented as jumbled-up chunks
(groups of connected statements) instead of individual state-
ments. By design, CPP is a partially worked example where
all the required statements are shown in chunks. However,
the missing connections among the chunks give the students
an opportunity to recompose the solution while having them
pay attention to the decomposition to understand the com-
position of each chunk, how each chunk contributes to other
chunks, and the overall solution. Thus, CPPs can be thought
of as problems that are partially worked examples and par-
tially problem-solving (PS) problems.
We deployed DT with CPP implemented within its train-
ing session in an undergraduate classroom of CS majors and
conducted a controlled experiment. In the controlled exper-
iment, we implemented three training conditions: 1) Con-
trol(C): received only worked example (WE) and problem-
solving (PS) logic-proof construction problems, 2) Treat-
ment 1(T1): received CPP (without explicit explanation of
the chunks) along with PS/WE, and 3) group who receive
CPP (with explicit explanation attached to the chunks) along
with PS/WE. Since prior research showed that explicit in-
struction on what to learn or take away from an intervention
may help to improve students’ decomposition ability [36], we
introduced the last training condition to identify the more
effective representation (between with/without explanation)
of CPP. Finally, we evaluated the efficacy of CPP by answer-
ing the following research questions:

• RQ1: How do Chunky Parsons Problems impact stu-
dents’ performance and learning?

• RQ2: What are the difficulties associated with solving
a Chunky Parsons Problem?

• RQ3: How do Chunky Parsons Problems impact stu-
dents’ Chunking (problem decomposition-recomposition)
behavior and skills while solving a new problem?

2. BACKGROUND AND MOTIVATION
Existing research has identified problem decomposition-reco-
mposition (PDR) as difficult for novices as problems get
more complex [26]. However, we found only a few studies
investigating methods to improve this skill. For example,
Pearce et al. [36] explored explicit instruction (openly in-
structing students to learn problem decomposition and de-

scribing how to go about that learning) to improve students’
problem decomposition skills and concluded that explicit in-
struction can lead to significant gains in mastering this skill.
Muller et al. [32] found that pattern-oriented instruction
can have a positive impact on problem decomposition skills.
We found some studies where researchers in the domain of
mathematics and programming, using problem-based meth-
ods, aimed at improving students’ subgoal learning which
is equivalent to the skill of identifying sub-tasks required to
solve a problem (i.e. problem decomposition). The most
common method explored by researchers in this regard is
subgoal-labeled worked examples or instructional materi-
als [29, 8, 7]. Studies showed that worked examples with
abstract labels that give away structural information help
improve students’ problem-solving skills measured by test
scores. However. these studies do not evaluate or measure
students’ problem decomposition or subgoaling skills after
training. Also, we did not find any established guidance
on how problem-based interventions can be generated au-
tomatically and how they should be designed to be used
within tutors to improve students’ problem decomposition-
recomposition (or chunking) skills.
From our literature review, we concluded that problem-based
interventions specifically designed for tutors to improve stu-
dents’ chunking skills are under-explored. Thus, in this pa-
per, we set our aim to design and implement CPPs to be
used within DT to improve students’ problem-solving and
chunking skills. While extracting chunks to present within
CPP and designing its representation within DT, we consid-
ered three goals: 1) Automating the solution-decomposition
process to extract chunks so that expert effort is not re-
quired; 2) Designing the problem to demonstrate chunking
and engaging students in the process to improve their skills,
and 3) keeping the difficulty-level low so that students can
persist and learn. To set the difficulty level of our prob-
lem, we explored problem types that are of low difficulty
as established by literature: Worked Examples and Parsons
Problems.
Worked Examples: Worked examples (WE) reduce learners’
intrinsic load (i.e. working memory load which is caused
by the complexity of the problem) and help them to learn
better [35]. This improvement in learning due to worked ex-
amples is referred to as the Worked Example Effect [44] in
literature. However, several studies argued the applicabil-
ity of worked examples in certain situations. For example,
worked examples may not be useful for students with high
prior knowledge [34], when problems are structured [34], or
if the problem is strategic but involves only a few interactive
elements [10]. In such cases, problem-solving (PS) supports
the learning process better [10]. Also, for goal or product-
directed problems, a worked example only shows the con-
struction of the solution and does not help students to grow
an understanding of the rationale behind the selection of
certain steps [49]. In this scenario, students fail to acquire a
schema of the problem-solving approach which leads to the
failure to transfer problem-solving skills. Renkl et al. [39]
suggested that worked examples help students to learn bet-
ter only when the examples give away structural information
of the solution and isolate meaningful building blocks.
Parsons Problems: Parsons problems ask students to con-
struct a solution from a given set of jumbled solution steps [14].
Poulsen et al. showed the application of the Parsons problem
in a mathematical proof construction tool, Proof Blocks [38].
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They found that Parsons Problems within Proof Blocks sig-
nificantly reduced the difficulty associated with proof con-
struction. Parsons problem is heavily explored in program-
ming education. Studies found that Parsons problems can
improve students’ code writing capability [48, 24, 14, 17] or
can help in completing programming tasks efficiently with-
out impacting performance on subsequent programming tasks
[51]. Studies also showed that attached explanations [18]
and subgoal labels [31] can help students solve Parsons prob-
lem and improve the learning process.
From the overview of the impact of WEs and Parsons Prob-
lem, we designed CPPs as partially WE and partially PS,
which represent meaningful building blocks of a proof (i.e.
Chunks) in a Parsons Problem fashion. Additionally, we
explored attaching explanations to the chunks to further re-
duce difficulties and support students’ learning process.
Data-driven Solution Decomposition Techniques: Data-driven
solution decomposition refers to the process of automatically
decomposing a problem or its solution into subgoals or sub-
solutions based on the properties found in historical solu-
tions. These historical solutions often come from tutors or
learning platforms that collect students’ solution traces and
thus, are often redundant. While performing data-driven
decomposition, researchers mainly focused on identifying in-
dependent or dependent components of a solution. To do so,
they often presented student solutions as graphs depicting
how they moved from state to state to reach the final solu-
tion [37, 50, 45, 33, 4]. Prior research showed the application
of clustering [37] or connected component detection [50, 45,
16] to extract independent sub-solutions or chunks in these
graphical models. On the other hand, some researchers [12,
19] proposed constraint-based decomposition techniques for
linear problem solutions such that decomposed sub-solutions
can be replaced with alternate solutions without causing any
problem. To decompose computer programs, researchers
have used methods where they looked at the usage of dif-
ferent program components (for ex., variables) to identify
independent parts of the program [46, 47]. In this paper, we
demonstrate a solution decomposition method that extracts
chunks by applying rules/constraints on graphical represen-
tations of historical student solutions similar to Eagle et al.’s
work [16].
Evaluation of Students’ Chunking Skills We observed that
in prior research, researchers have only used test scores to
evaluate methods that were set to teach students chunk-
ing/PDR. Only a few recent studies explored methods to
measure students’ chunking skills from data. Kwon and
Cheon [26] mapped predefined sub-tasks and program seg-
ments in Scratch programs to observe how students decom-
pose and develop programs. In a recent study, Charitsis et
al. [9] used NLP to identify key components and students’
approaches to develop programs and then relate those to per-
formance metrics using linear regression to quantify their de-
composition skills. Kinnebrew et al. [25] also mined frequent
patterns in students’ action sequences and relate that to per-
formance to explain their learning behavior. Overall, to eval-
uate decomposition skills, these studies each sought a base-
line to compare students’ solutions against and explained
performance using solution characteristics. In this paper, to
measure students’ chunking/PDR skills after being trained
with CPPs, we analyzed students’ step sequences during
proof construction to identify potential chunking/PDR in-
stances and tried to explain their performance through the

chunking/PDR characteristics.

3. METHOD
In this study, we explored Chunky Parsons Problems (with
or without explicit explanations attached to them) to im-
prove students’ problem-solving skills (with an emphasis on
Chunking/PDR skills) and learning gain in the context of
logic-proof problems. We derived CPP using a data-driven
method and incorporated them into the training session within
DT [28], an intelligent logic tutor. In the subsequent sec-
tions, we first provide a brief introduction to DT. Then, we
discuss how we derived CPP from data, designed explana-
tions explaining the chunks, and presented them within DT.
Finally, we present the design of our experimental training
conditions and data collection method to facilitate analyses
to answer our research questions

3.1 Deep Thought (DT), the Intelligent Logic
Tutor

DT is an intelligent logic tutor that teaches students logic-
proof construction. Each logic-proof problem within DT
contains a set of given premises and a conclusion presented
as visual nodes [Figure 1a]. To solve a problem, new propo-
sitions (or nodes) are needed to be derived by applying valid
logic rules on the given premises and subsequently on derived
premises to reach the conclusion. Usually, each problem in
DT is either of type Worked Example (WE) or problem-
solving (PS). WEs are solved by the tutor step-by-step as
the students click on a next step (>) button [Figure 1b].
On the other hand, PSs are required to be solved by the
students where they have to derive all the steps of a proof
[Figure 1a]. Here, a step refers to the process of deriving a
single node or proposition.
DT is organized into 7 levels. In the first level, the tutor
starts by showing two sample logic-proof problems (one WE
and one PS) to help students understand how to use different
features of the tutor. Then, the students solve two pretest
PS problems. After the pretest level (i.e. level 1), the stu-
dents go through 5 training levels with 4 problems in each
level. Each of the first three problems in the training levels
is either a WE or PS. For these training-level PS problems,
on-demand step-level hints are available. The last problem
in each training level is always of type PS and is called the
training-level test problem. After the 5 training levels, stu-
dents enter into a posttest level containing 6 PS problems.
During the pretest, training-level test, and posttest prob-
lems, the tutor does not offer any hints or help and the stu-
dents have to solve them independently. For each of these
problems, students receive a score between 0 and 100 (effi-
cient proof construction [less time, fewer step counts, and
incorrect rule applications] receives higher scores) [3, 1].
The pretest scores represent students’ mastery level before
training. On the other hand, the training-level posttest and
posttest scores track how much students learned after each
level of training and after all 5 training levels. More Details
on DT interface and features can be found in Appendix A.

3.2 Deriving Chunky Parsons Problem (CPP)
using a data-driven Graph-Mining
Approach

Data for Deriving CPP: DT has been being deployed in an
undergraduate logic course offered at a public research uni-
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Figure 1: (a) PS and (b) WE Interface in DT

versity in the Fall and Spring semesters since 2012. To de-
rive CPP representation for logic proofs, we used the most
recent log data collected by DT in the Fall and Spring of
the years 2018-2021. These log data detail students’ histor-
ical step-by-step proof-construction attempts for each prob-
lem they solved within DT. Using these data, we gener-
ated high-level graphical representations (Interaction Net-
works [16] and Approach Maps [15]) of students’ solution
approaches for these problems to derive CPP from them.
For each problem, data of approximately 170-200 students
containing altogether 2000-5500 solution steps were used.
To select the students, we performed equal random sampling
from the semesters mentioned before so that the data is rep-
resentative of different student groups who took the course
over the years. The reason for not using all data is to mainly
reduce the computational complexity of the adopted graph
mining approach. Also, the data used is assumed sufficient
enough to capture common student approaches to solve each
logic-proof problem in the problem bank of DT [43].
Interaction Network and Approach Map: For each of the
problems in the DT problem bank, we generated a graphi-
cal representation of how students moved from one state to
another during the construction of a proof for the problem.
Here, a state refers to all nodes (or propositions) a student
had at a particular moment during their proof construction
attempt. Students move from state to state by deriving
or deleting nodes, i.e. via a step. To limit the number of
states in the graph, the propositions at a particular state
are lexicographically ordered, which means that the order
of derivation of the nodes is not considered in the graphical
representation. This graphical representation of students’
proof-construction attempts for a problem is called an inter-
action network since it represents the interaction among the
states [16]. Since interaction networks are often very large
and visually uninterpretable, we applied Girvan-Newman
community clustering [21] on the interaction networks to
identify regions or clusters of closely connected states. Each
cluster contains a set of states containing effective proposi-
tions that contributed to the final proof submitted by the
students and also unnecessary propositions (i.e. proposi-
tions that did not contribute to the final proof) that they
derived along the way. We represented each cluster with one
single graphical node containing only the effective propo-
sitions. Thus, we obtained a graph where the start state
containing the given premises is connected to the conclusion
through clusters of effective propositions. Each path from
start to conclusion represents one student approach (or solu-
tion) to the logic-proof problem [sample approach maps are

visualized in Figure 2]. Thus, this representation is called
an approach map [15]. Later, we used a rule-based approach
to extract chunks from the approach maps.
Extracting Chunks from Approach Maps: As discussed in
Section 2, researchers [12, 19] have decomposed problem
solutions using constraints such that the decomposed sub-
solutions can be replaced with alternate solutions without
causing any problem. Based on this idea, we defined two
rules to extract pivot1 or subgoal propositions that are present
in multiple approaches and/or have multiple replaceable deriva-
tions within an approach map (for example, ¬K ∨N in Fig-
ure 2a has two possible derivations from the start state.).
The rules to identify such pivots are:
Rule 1: First proposition derived within a cluster where
multiple clusters merge is a pivot [¬K ∨N in Figure 2a].
Rule 2: Last proposition derived within a cluster that gen-
erates a fork is a pivot [¬K ∨N and ¬(K ∧ ¬N) in Figure
2a].
Recall that an approach is a path from start to goal in an
approach map. And, being present in multiple paths or ap-
proaches means that a proposition is possibly vital to the
proof and a subgoal in student approaches. Finally, we de-
fined a third rule to identify pivots in approaches that do not
have a common proposition with other approaches, i.e. they
are simply a linear chain of clusters of propositions[Figure
2b]. The third rule is described below:
Rule 3: In a chain of clusters, the last derived node in each
cluster is a pivot [M or ¬Z in Figure 2b]. Note that in this
rule, we simply exploit the clusters identified by Girvan-
Newman algorithm to dismantle a complete solution into
sub-solutions or subgoals.
Finally, Using the three rules, we extracted the subgoals
within the most common student-solution approach for each
DT logic-proof problem while traversing its approach map
from top to bottom. We validated our pivot/subgoal- ex-
traction process by comparing our rule-based subgoals from
approach maps against expert-identified2 subgoals for 15
problems. And, our method was successful in identifying
all expert subgoals for those problems. After validation,
we used the subgoals to decompose the solution to derive
Chunks from them. An example of deriving chunks can be
found in Figure 2b. In the example, pivots/subgoals are col-
ored blue, and using the subgoals three chunks are extracted
from the complete solution. Note here that each chunk is
associated with a subgoal.
Explanations for Chunks: To accompany each of the chunks,

we generated automated explanations using a script that ex-
plains the composition and purpose of the chunks. Before
writing the script, a format for the chunk explanations was
decided through discussion with an expert. Each explana-
tion is written in natural language and tells what a chunk
derives (i.e. the associated subgoal), how the subgoal is de-
rived within the chunk, and why it is derived [Figure 3b].
The why part simply tells that each subgoal is necessary for
the derivation of another subgoal or the final goal. Note
that we paid close attention while crafting the explanation
format so that it does not give away any information about
the final solution beyond the visual representation of the
chunks. Overall, the purpose of the explanations is just to

1major propositions within a proof that can be used to de-
compose the proof, also referred to as Subgoals.
2The experts are two academic professionals with 10+ years
of experience with logical reasoning
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Figure 2: Demonstration of a) Rule 1 and 2; and b) Rule 3
and Chunk Extraction

Figure 3: a) Parsons Problem Interface in DT; b) Explanation
Given to Specific Student Groups for Chunks Presented in a
Parsons Problem.

highlight what the chunks represent (i.e. they are building
blocks of a complete solution each deriving a subgoal).

3.2.1 Chunky Parsons Problem Interface
The Chunky Parsons Problem representation is shown in
Figure 3a. In the presentation, the given premises and con-
clusion are presented as usual. And the chunks are presented
as groups of connected propositions (or nodes) in a Parsons
Problem fashion. The problem shown in Figure 3a has two
chunks. All nodes within the chunks are connected to each
other. However, the givens, the chunks, and the conclusion
need to be connected by students to complete the proof.
Each node within a chunk can be either justified (both an-
tecedents present), partially justified (one of the antecedents
missing as for M∧¬N), or unjustified (all of the antecedents
missing as for ¬O ∨ L or ¬N). For justified and partially
justified nodes, the associated logic rule is also shown. For
example, in Figure 3a, M∧¬N is labeled by MP, i.e. Modus
Ponens is required for its derivation from the antecedents. In
addition to the visual components, textual instructions con-
taining chunk explanations [Figure 3b] were also provided to
students who were assigned to a specific training condition
(more details about training conditions in the next subsec-
tion). Note that the chunk or subgoal IDs (for example, 1.C,
2.C, etc. in the figure) are used to associate an explanation
to a chunk and the IDs do not confirm the order of how the
chunks should be connected to each other.

3.3 Experiment Design

Figure 4: Problem Organization in the Training Levels for
the Three Training Conditions. Note: ‘/’ indicates a ran-
dom selection. For example, ‘PS/WE/CPP’ indicates that
the problem will be randomly presented as either a PS, or a
WE, or a CPP.

Using existing problem types within DT (PS and WE) and
the new problem types (CPP), we designed three training
conditions. The three training conditions are described be-
low:
Control (C): Students assigned to the Control (C) con-
dition received only PS or WE (selected randomly) during
training.
Treatment 1 (T1): Students assigned to this condition,
may receive CPP without explanation in addition to PS/WE
(selected randomly) during training.
Treatment 2 (T2): Students assigned to this condition may
receive CPP with an explanation (i.e. CPPE) in addition to
PS/WE (selected randomly) during training.
Problem organization for each condition in the 5 DT training
levels is demonstrated in Figure 4. Note that the Control
(C) condition gives us a baseline for comparison between
students who received CPP or CPPE [i.e. T1/T2 students])
and those who did not receive CPP at all (i.e. C students).
On the other hand, a comparison between T1 and T2 helps to
understand the impact of the explicit explanation attached
to each chunk in a CPP.
System Deployment and Data Collection: We deployed DT

with the three training conditions in an undergraduate logic
course offered at a public research university in the Spring
of 2022. Each participating student in that course was as-
signed to one of the three training conditions after they com-
pleted the pretest problems. Our training condition assign-
ment algorithm ensures that the pretest scores of students
in each of the training groups have a similar distribution.
Finally, we had 50 students assigned to C, 50 students as-
signed to T1, and 45 students assigned to T2 who completed
all 7 levels (pretest, all training levels, and the posttest
level) of the tutor. We collected their pretest, training-level
test, and posttest scores to compare performance/learning
across the training groups. Additionally, we collected their
solution traces to analyze differences in their proof con-
struction approaches. Note that access to these data is re-
stricted to IRB-authorized researchers. To answer our re-
search questions, we carried out statistical and data-driven
graph-mining-based analyses on the collected data that we
report in the subsequent sections.

4. RESULTS
4.1 RQ1: Students’ Performance and Learn-

ing Gain
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To understand the impact of each of our training conditions
on students’ performance and learning, we analyzed stu-
dents’ test score-based performance and normalized learn-
ing gain (NLG) after training. For these analyses, we fo-
cused on the training-level test problems (2.4-6.4) and the
posttest problems (7.1-7.6) that students solved indepen-
dently without any tutor help. We adopted a combination of
regression and statistical analysis (Kruskal-Walis test with
posthoc pairwise Mann-Whitney test with Bonferroni cor-
rected α = 0.0163) to compare the performance and learn-
ing gain across the three training conditions. These tests
do not make an assumption about the data being perfectly
normal. Since most of our collected data were skewed, these
tests were considered suitable in this case. Note that there
were no significant differences found in performance across
the three groups in the pretest problems.

4.1.1 Test Score-based Performance
To identify the association between the training conditions
and performance, we performed two mixed-effect regression
analyses: one for the training-level test problems and one
for the posttest problems. In each of these two analyses,
problem IDs were defined as the random-effect variable (to
eliminate the impact of differences across problems), train-
ing conditions were defined as the fixed-effect variable, and
problem score was the dependent variable. The analysis
for the training-level test problems [avg. training-level test
scores(C, T1, T2) = 65.1, 61.7, and 65.5] gave a p-value of
0.8 [p < 0.05 indicates significance] indicating that there was
no significant association between training-level test perfor-
mance and the training conditions. However, the analysis
for the posttest problems [avg. posttest scores(C, T1, T2) =
69.3, 68.2, and 73.5] gave a p-value of 0.06 demonstrating a
marginally significant association between the training con-
ditions and posttest performance. Also, the average posttest
scores showed that T2 (who received CPPE) marginally out-
performed the other two groups after 5 levels of training.
To further investigate each training group’s posttest per-
formance, we statistically compared scores across the three
training groups in each of the independent posttest problem-
solving instances (7.1-7.6). The trend in scores for these
problems across the three training groups is shown in Fig-
ure 5. While analyzing the scores in the posttest problems,
we observed that T2 had significantly higher scores than T1

and C in problems 7.1-7.3 [for 7.1, PMW (T2 > T1)4 = 0.003
and PMW (T2 > C) = 0.01, for 7.2, PMW (T2 > T1) = 0.02
and PMW (T2 > C) = 0.01, and for 7.3, PMW (T2 > T1)
= 0.03 (marginal) and PMW (T2 > C) = 0.012] and higher
average scores in problems 7.4-7.6. Note that posttest prob-
lems in DT are organized in increasing order of difficulty.
Our analyses indicate that even though T2 could not sig-
nificantly outperform the other two groups in the harder
posttest problems(7.3-7.6), they performed comparatively
better. This trend can be observed in the ‘Posttest’ frag-
ment in Figure 5.

As shown in the figure, although T2 did not show a signif-

3In the pairwise tests each datapoint was used in at most
three tests: (C, T1), (C, T2), and (T1, T2). Thus, corrected
α = 0.05/3
4PMW (T2 > T1) refers to the p-value obtained from the
Mann-Whitney U test for the hypothesis “T2 had signifi-
cantly higher values than T1 for the metric under consider-
ation.” p < 0.016 indicates significance.

Figure 5: Training-level Test and Posttest Scores across the
Three Training Groups

icantly higher average than the other two conditions in all
problems, starting from problem 6.4, T2 students always had
higher scores (shown by the solid green line) than the other
two groups (shown by the dotted blue line and dashed orange
line). Overall, from our regression and statistical analysis,
we concluded that students’ posttest performance was asso-
ciated with the training conditions, and the T2 training con-
dition that involved CPPE was more helpful in improving
students’ performance after training. However, T2 students
showed evidence of improved performance around the end of
training and in the posttest rather than showing gradual im-
provement over the period of training. A consistent pattern
that indicates improved performance could not be identified
for T1 students who received CPP without an explanation
attached.

4.1.2 Normalized Learning Gain
To identify the training condition that was most effective in
promoting learning, we analyzed students’ normalized learn-
ing gain (NLG) across the three training conditions. NLG is
defined as the ratio between how much the students learned
and the maximum they could have learned between the pe-
riod of pretest and posttest and is represented by the fol-
lowing equation:

NLG = (post− pre)/
√

(100− pre) (1)

Note that NLG is normalized between -1 and 1. A nega-
tive NLG value represents that the posttest scores are lower
than the pretest scores. Negative NLGs could occur if the
students did not learn enough from training or if the posttest
problems are significantly harder than the pretest problems.
NLG for the three groups is shown in Table 1. We compared
the NLGs across the three training groups using statistical
tests. A Kruskal-Walis test demonstrated significant differ-
ences in the NLGs across the three training groups (statis-
tic=5.8, p-val=0.05). As we carried out posthoc pairwise
Mann-Whitney U tests with Bonferroni corrected α=0.016,
we observed T2 students had significantly higher NLGs than
Control (C) (statistic=1283.0, p-val=0.01) and T1 (statis-
tic=1235.0, pvalue=0.02) students. As we plotted the dis-
tribution of NLGs for the training groups in Figure 6, we
observed that the distribution of NLGs for T2 is centered
around positive (+) values, whereas the other two groups
had tails on the negative (-) side. Also, as reported in Table
1, 80% of T2 students had a positive NLG, whereas the per-
centage for the other two groups are only 70% and 72% re-
spectively. The results of this analysis on NLG indicate that
training condition T2 (combination of CPPE with PS/WE)
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Figure 6: NLG across the Three Training Groups

Table 1: Normalized Learning Gain (NLG) across the Three
Training Groups

Group
(n)

Pre Post NLG
%Student
with(+)
NLG

C (50) 61.6(19.7) 70.4(14.4) 0.20(0.35) 70%
T1(50) 61.7(18.3) 68.2(15.1) 0.16(0.37) 72%
T2(45) 60.8(18.9) 73.2(14.8) 0.31(0.33) 80%

helped the students to learn better which moved their NLG
above 0. Possibly, CPPE helped the students to perform
comparatively well even in the harder problems (7.3 to 7.6)
that could have caused negative NLG otherwise.

4.2 RQ2: Difficulties Associated with Solving
Chunky Parsons Problems

The results from students’ performance analysis showed that
CPP with explanations attached to chunks (i.e. CPPE) has
the potential to improve students’ performance and learn-
ing gains. However, since it is a new type of problem-based
training intervention, we acknowledged the necessity of an-
alyzing its difficulty level in comparison to traditional train-
ing interventions like PS or WE. Since tutors like DT are
often used by learners in the absence of a human tutor,
our aim was to avoid increasing the training difficulty so
that the students can persist and learn. Thus, we carried
out a comparative analysis between the difficulty level of
training CPP/CPPE and PS/WE problems. The difficul-
ties associated with each problem type were measured by
the average time that the students needed to solve them
(i.e. the problem-solving time). Additionally, to guide fu-
ture improvements so that the students are better supported
during training with CPP/CPPE, we carried out an analysis
to identify difficulties that could be associated with specific
problem structures where students may need additional help
to succeed. In the subsequent sections, we report the find-
ings from the two analyses.

4.2.1 Comparative Difficulty Level of CPP/CPPE
To understand the comparative difficulty level of CPP/CPPE,
we compared the problem-solving times of CPP/CPPE against
the problem-solving times of PS/WE using Mann-Whitney
U tests. The plot representing problem-solving times for
each of these problem types over the period of training is
shown in Figure 7. Notice that in the first two training
levels, students’ problem-solving time for CPP/CPPE was
almost twice the problem-solving time of PS. This higher

Figure 7: Problem-solving Times for Different Problem Times
over the Period of Training.

problem-solving time in the early training levels could be
potentially associated with the additional time that the stu-
dents needed to figure out how different components in the
CPP/CPPE interface within DT work. However, as train-
ing progressed problem-solving time for CPP became more
aligned with that of PS [notice the problem-solving times
and comparative p-values at training levels 5 and 6 in Fig-
ure 7]. On the other hand, CPPE problem-solving times
were marginally or significantly lower than that of PS at
levels 5 and 6 respectively. Additionally, CPPE problem-
solving times were only marginally higher than that of WEs
in these two levels. These statistics indicate that the diffi-
culty level of Chunky Parsons Problems (with/without ex-
planation) lies in between the difficulty levels of PS/WE.
However, with explanation, it can be a low-difficulty train-
ing task (difficulty level similar to WEs and lower than PS
in terms of problem-solving time) that can help improve stu-
dents’ learning gain.

4.2.2 Difficulties Associated with Specific Problem
Structure

To identify difficulties associated with specific problem struc-
tures, we calculated the average time students spent to com-
plete the proof of each chunk presented in a CPP/CPPE
(by connecting all nodes within a chunk to their correct
predecessor). We call this chunk-solving time. We identi-
fied 10 problems that contained chunks with chunk-solving
time above the 75th percentile (> 2.5 minutes) for at least
10% (>= 10 students) of all T1 (CPP) and T2 (CPPE) stu-
dents. To identify the difficulty patterns in these problems,
we carried out an exploratory analysis of the structures of
these problems and how the students approached to solve
the problem. For simplicity, while explaining the problems
associated with student difficulties, we present only the ab-
stract structure of the problems [Figure 8a, b, and c]. In the
abstract structure, we show how the chunks need to be con-
nected to solve the problem and rule categories instead of the
specific rules required to connect the chunks. We grouped
the available logic rules in DT into 3 categories: 1) Transfor-
mation rules: transform the logic operator in between vari-
ables or reorganize the variables in a proposition (Comm,
Assoc, DN, De Morgan, Impl, CP, Equiv, Dist), 2) Elim-
ination: remove one or more variables from proposition(s)
(MP, MT, DS, Simp, HS), 3) Combination: combines vari-
ables from two propositions in one proposition (Add, Conj,
CD). For the 10 problems, we identified three abstract prob-
lem structures that are shown in Figure 8. Structure 1 was
associated with 6 problems. Structures 2 and 3 were asso-
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Figure 8: Abstract Structure of Problems where Students
Spent Higher Times when Presented as CPP or CPPE. Note:
Dashed components are missing in some problems.

ciated with 2 problems each. Below we present our obser-
vations on student difficulties (i.e. when and where in these
structures students spent more time) associated with each
problem structure:
Structure 1: In structure 1 [Figure 8a], the chunks are se-

quentially connected with different categories of rules. We
observed that within each of the six difficult problems with
this structure, there are almost no visual commonalities
across the chunks. An example problem with this struc-
ture is shown in Figure 8d. In the figure, notice that each
chunk contains propositions composed of variables from al-
most exclusive sets (Chunk 1 variables=S, I, Y, Q), Chunk
2 variables=D, Y), and also each chunk requires a different
rule.
In these 6 problems, we found 71 students (T1 = 39, T2

= 32) who spent time above the 75th percentile to derive
a chunk within at least one of these problems. A total of
247 difficult instances were found for these students solving
problems with structure 1. 132 of those instances were asso-
ciated with forward-directed sequential derivation (i.e., the
students completed the problem in the following sequence,
chunk 1 → chunk 2 → conclusion), 11 were associated with
backward-directed sequential derivation (i.e., the students
completed the problem in the following sequence, conclusion
→ chunk 2 → chunk 1), and 104 instances were associated
with random derivation where students moved from chunk
to chunk without demonstrating a strategical pattern.
Overall, after the analysis of the structure of the 6 problems
and student approaches to solving the problems (forward,
backward, or random), we could not associate a specific ap-
proach with the chunk-solving difficulty. Rather, we con-
cluded that the difficulties could be associated with the di-
versity in rules/variables across chunks within the problems
that possibly increased cognitive load5 introducing difficul-
ties for students.

Structure 2: In structure 2 [Figure 8b], two parallel chunks
(chunk 1 and chunk 2) with very similar derivations are com-
bined to derive the conclusion or a third chunk (chunk 3)

5The amount of working memory being used

that later helps to derive the conclusion. We found 2 dif-
ficult problems associated with structure 2. An example
problem for this structure is shown in Figure 8e.
We identified 40 students (18 T1 students, 22 T2 students)
who at least had one difficult instance (i.e. spent above
75th percentile of time) while solving one of the problems
associated with this structure. 50 difficult instances [16 as-
sociated with forward-directed sequential derivation, 1 as-
sociated with backward-directed sequential derivation, and
33 with random derivation] were found for these students
while solving one of these 2 problems. We observed that the
students spent more time on either chunk 1 (31 instances)
or chunk 2 (19 instances) depending on whichever they at-
tempted to complete first. We also observed that they spent
average or below-average time while deriving the rest of the
chunks.
These observations indicate that the students were able to
identify similarities across the chunks within a problem. Thus,
although they spent more time on the first chunk, after fig-
uring out the derivation of the first chunk, they needed less
time to derive the rest.
Structure 3: Structure 2 and structure 3 [Figure 8c] are vi-
sually very similar. However, the main difference is that the
derivations of chunk 1 and chunk 2 within structure 3 have
no similarities (an example problem is shown in Figure 8f).
We found 2 difficult problems associated with structure 3.
33 students were identified (19 T1 students, 14 T2 students)
who had at least one difficult derivation (i.e. spent above
75th percentile of time) while solving one of the problems
associated with this structure. 45 difficult instances [28 asso-
ciated with FW-directed sequential derivation, 13 associated
with BW-directed derivation, and 4 with random derivation]
were found for these students while solving one of these 2
problems. And, we observed that in most of the cases, stu-
dents spent higher time on both chunk 1 and chunk 2 (total
35 instances).
Overall, our observations indicate that difficulties mostly oc-
curred when chunks within a problem were very dissimilar
(in Structure 1 and Structure 3). On the other hand, if
there are similar chunks within a problem, after deriving
one chunk, the students figured out the derivation of other
similar chunks very quickly.

4.2.3 Learning Efficiency and Correlation Test be-
tween NLG and Training Time

Overall, the training time for T1 (this group received CPP
without any explanation) and T2 (this group received CPP
with explanations) was higher than the control group [Con-
trol (C): 66.4(35.3) minutes, T1 (CPP): 89.7 (60.7) minutes,
T2 (CPPE): 81.8 ( 46.0) minutes]. The skewed distribution
of training times across the three training conditions is vi-
sualized in Appendix B, Figure 12.
Since the training times were higher for the treatment groups,
we calculated the learning efficiency (NLG/Training Time)
for each group. However, we did not find any difference
in learning efficiency across the groups [Control (C): 0.007(
0.011), T1 (CPP): 0.003( 0.005), T2 (CPPE): 0.004(0.009).
Kruskel-Wallis Test: (statistic=2.84, p-value=0.24); Pair-
wise post-hoc Mann Whitney U Tests: (C, T1)=(statistic=
986.0, p-value=0.30), (C, T2)=(statistic=1020.0, p-value =
0.11), (T1, T2)=(statistic=1231.0, p-value=0.43)]. We also
did not find any significant correlation between NLG and
training times [Control (C): coefficient = -0.09, p-value =
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0.32; T1 (CPP): coefficient = -0.21, p-value = 0.96; T2 (CPPE):
coefficient = 0.01, p-value = 0.43]. Therefore, it is unclear
whether or not the differences in NLG across the training
conditions occurred due to differences in training times.

5. RQ3: STUDENTS’ CHUNKING BEHAV-
IOR

CPP and CPPEs were incorporated within DT training lev-
els to demonstrate chunking (i.e. decomposed problem so-
lutions), engage students in the process (by having them
recompose complete solutions from chunks), and motivate
them to adopt chunking (i.e. decomposition-recomposition
(PDR)) to reduce difficulties while solving new problems.
To investigate if students successfully captured the notion
of chunking while solving CPP/CPPE and if they tried to
form chunks when solving problems independently (which
we refer to as chunking behavior), we adopted a data-driven
approach. From log data collected within DT, we tried to
infer if the students showed chunking/PDR behavior and
how the behavior was associated with their performance.
Method to Identify Chunking Behavior: We analyzed stu-
dents’ chunking behavior in the posttest problems that they
solved independently [7.1-7.6]. To do so, first, we derived
baseline chunks from historical student solutions to these
problems. For problems 7.1-7.6, using the method described
in Section 3.2, we generated approach maps using historical
data collected in DT to capture previous students’ solutions
and identified baseline chunks in those solutions. The base-
line chunks answer ’What to look for in the solutions of the
students participating in this study’. Next, to confirm the
presence of the baseline chunks or chunking/PDR behavior
in a student’s proof construction attempt, we sequentially
scanned through the student’s steps while constructing a
proof and identified consecutive steps as chunking when the
step sequence has the following characteristics:
1. The propositions derived in the step sequence overlaps
with propositions and subgoal associated with only one of
the baseline chunks [we applied the ‘Intersection’ set opera-
tion to find an overlap].
2. The step sequence may or may not be separated from the
rest of the steps by a time gap above the average step time
(the time spent on a single step) of 1.6 minutes. The two
cases of separation by time gaps are shown in Sample 1 and
Sample 2 in Figure 9.
The process of identifying chunking in a student solution at-
tempt is further illustrated in Figure 9.
Learning and Chunking Behavior: Following prior research [9,

25], to validate our method to identify chunking behavior,
we sought to explain students’ learning gain that reflects
their problem-solving skills through derivation efficiency in
the chunking instances detected using our method.
We hypothesized that a higher number of treatment group
students (who received CPP/CPPE) will have chunking in-
stances in their solutions of posttest problems than the con-
trol(C) group students. However, we identified that most of
the students (121 out of the 145 students) regardless of their
training conditions had baseline chunks present in their solu-
tions. Only 24 students (C=8,T1=9,T2=6) never showed any
identifiable chunking behavior. This indicates that students
might have a natural tendency to identify sub-problems and
construct logic proofs in chunks. Whereas the presence of
some chunking instances is desirable, too many chunks in a
problem solution do not represent better performance and

Figure 9: Method to Identify Chunking using Approach Map
and Students’ Solution Traces [showing the mapping between
step sequence and chunks].

more learning. Deep Thought proofs are usually 7-15 steps
long and an ideal solution for each problem mostly contains
2-3 chunks. Since the Deep Thought problem score which
impacts NLG is designed as a function of time, step counts,
and rule application accuracy, to achieve higher scores and
NLG, students need to demonstrate only correct baseline
chunks within their solutions and each of those chunks needs
to be derived efficiently with less time and fewer steps. This
fact was validated by a mediation analysis. In the analy-
sis, we used training condition as the independent variable
(IV), NLG as the dependent variable (DV), and average #
chunks/problem as the mediator (MD). The analysis gave
an insignificant p-value [Appendix B, Figure 14] indicating
that the impact of the training treatments on learning or
NLG is not mediated by the amount of chunking present in
students’ logic-proof solutions.
Thus, in subsequent analyses, instead of focusing on the
number of chunks present in student solutions, we focused
only on students’ efficiency in deriving the baseline chunks.
We calculated efficiency in terms of time spent on deriv-
ing different chunks and # of steps within the chunks. We
also analyzed NLGs across different pretest score groups to
understand the impact of CPP/CPPEs on students with dif-
ferent levels of prior knowledge.
Moderation Analysis on Different Pretest Score Groups: Prior
studies showed that both worked examples and Parsons prob-
lems may have a different impact on students based on their
prior knowledge or skill level [34, 17]. We carried out a
moderation analysis to understand how NLG and chunking
behavior and efficiency varied across different pretest score
groups and training conditions. The pretest score distri-
bution is visualized in Appendix B, Figure 13. We classi-
fied students based on their pretest scores (low, medium,
and high) and used this classification as the moderator in
our analysis. Within this classification, we considered train-
ing condition as the independent variable. For each pretest
score group and training group, we analyzed 4 dependent
variables: average # chunks/problem, average chunk time,
avg. chunk step count, and the NLG. Table 2 shows the
groupings and values for the dependent variables. To com-
pare the dependent variables across pretest score groups and
training conditions, we carried out Kruskal Wallis test and
pairwise posthoc Mann Whitney U tests with Bonferroni
correction (corrected α = 0.05/3 or 0.016). Note that a to-
tal of 36 tests(3 pretest score groups, 4 dependent variables,
and 3 pairwise tests for each group and dependent variable)
were carried out to compare the metrics presented in Table

48



2. Thus, a more conservative Bonferroni correction could
be carried out to eliminate false positives. However, to not
introduce many false negatives while eliminating false posi-
tives, we decided the level of correction based on the number
of unique pairwise tests each datapoint participated in [6]
rather than on the number of related tests (for example, the
9 tests on NLG across the pretest scores groups though inde-
pendent could be considered related and a more conservative
correction could be carried out). We explain the results for
each pretest score group below:
Low Pretest Scorers: We considered students with pretest
scores below the 25th percentile as low scorers. In this
group, we observed that T2 who received CPPE had sig-
nificantly higher and less negative NLGs than the other two
training conditions [pKW < 0.001, pMW (T2 > C) = 0.011,
pMW (T2 > T1) < 0.001]. We also observed that T2 stu-
dents with low pretest scores had lower average chunk time
and significantly lower step counts per chunk [pKW < 0.03,
pMW (T2 < C) = 0.004, pMW (T2 < T1) < 0.014]. Overall,
T2 students with low pretest scores demonstrated compara-
tively more efficient chunking (in terms of less time and step
counts) and higher NLG. However, a difference in the num-
ber of chunks per problem was not found across the training
conditions as expected.
Medium Scorers: Students with pretest scores between 25th-
75th percentile were identified as the medium scorers. Within
this group, we observed that the T2 condition again showed
significantly or marginally higher NLG than the other two
training conditions [pKW < 0.001, pMW (T2 > C) = 0.002,
pMW (T2 > T1) < 0.021]. We observed differences in the av-
erages of chunk time across the three training conditions,
however, a significant difference was not found in chunk
count, time, or step counts.
High Scorers: We did not observe any significant differences
in NLG across the three training conditions for students with
high pretest scores (above 75th percentile). However, we
observed that T1 and T2 students in the high pretest score
group demonstrated comparatively more chunking (in the
range of 3-4 chunks per problem) in posttest than the con-
trol (C) group (in the range of 2-3 chunks per problem).
Overall, the results of the moderation analysis indicate that
T2 students with low and medium pretest scores achieved
significantly higher NLGs than students from the other two
training conditions with similar levels of prior knowledge.
There were no significant differences in the amount of chunk-
ing per problem across the training conditions. However,
we observed differences in the chunking efficiency where T2

had lower chunk derivation times and fewer steps within
chunks in some cases. Thus, next, we analyze and present
the chunking efficiency across the three training conditions
on different posttest problems in further detail.
Chunk Derivation Efficiency: We compared the chunk deriva-
tion efficiency of the students across the three training condi-
tions who had identifiable chunks in their solutions. Toward
that, we analyzed two metrics for the baseline chunks identi-
fied in student solutions to the posttest problems: 1) Time to
derive a chunk (shorter chunk derivation time [CTime] indi-
cates students figured out ‘how to derive the chunk ’ quickly),
2) unnecessary proposition count [UProp]6 (fewer unneces-
sary propositions indicate students correctly identified ‘what

6Unnecessary propositions are propositions that students
derived during proof construction but later deleted and those
were not part of the final proof.

to derive within the chunk ’). Lower values for these two met-
rics indicate higher chunk derivation efficiency.
In Figure 10, we show the chunks commonly found in stu-
dents’ proof for each of the posttest problems. For simplicity,
for each of the chunks, we only show what subgoal the chunk
derives. To identify significant differences in the derivation
efficiency of these chunks (in terms of CTime or UProp)
across the three training conditions, we carried out Kruskal-
Wallis tests. The chunks for which there is a significant
difference in derivation efficiency across the training condi-
tions in terms of at least one of UProp or CTime are marked
with thicker edges and green nodes in the figure. The results
of the statistical tests are shown along the thicker edges. We
observed that the significant differences were found mostly
for non-trivial chunks, i.e. chunks that involve several propo-
sition derivations. For example, there are two chunks in the
solution of 7.1: the first chunk derives ¬R which requires
multiple steps (i.e. non-trivial), and the second chunk de-
rives R ∨ ¬T which can be derived after a Simplification
rule application on the given premise (R ∨ ¬T ) ∧ X (triv-
ial derivation). We found significant differences only in the
derivation efficiency of chunk 1 (the non-trivial chunk). To
identify the training condition that was the most efficient
in deriving the green chunks in Figure 10, we carried out
posthoc pairwise Mann-Whitney U tests [for the pairs (C,
T1), (C, T2), and (T1, T2)] with Bonferroni correction (cor-
rected α=0.016) comparing UProb and CTime. The results
of the tests are shown in Table 3. As shown in the table, in
most of the cases, T2 is the most efficient group in deriving
the chunks, i.e. the tests for the hypotheses ‘T2 < C’ and
‘T2 < T1’ in terms of UProp/CTime gave p-value < 0.016.
Overall, these results indicate that although most students
naturally derived chunks, T2 students achieved higher effi-
ciency in deriving non-trivial chunks.

Figure 10: Chunk Derivation Efficiency in Posttest Problems.

6. DISCUSSION
Overall, our analysis showed that Chunky Parsons problem
could be a low-difficulty training intervention, specifically
when presented with an explanation hinting at what the
chunks mean and how they contribute to the complete so-
lution. However, while being a low-difficulty training inter-
vention, it has the potential to improve students’ learning
gain and problem-solving skills, specifically chunking skills.
We observed that most students formed some chunks dur-
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Table 2: Moderation Analysis across the Three Training Conditions Categorized on Pretest Scores. [Note: Blue* indicates a
significant difference. Boldface indicates comparatively better averages (e.g. higher for NLG/lower for extra steps).]

Moderator Independent Variable (IV) Dependent Variables (DV)

Pretest
Quantile

Training
Condition

Avg.
# chunks/
prob.

NLG
Avg. Chunk
Time
(minutes)

Avg. Chunk
Step Count

Low Scorers
(< 25th percentile)
N = 35

Control(n=12) 2.02(3.25) -0.20(0.35) 3.42(1.45) 2.01(0.81)
T1-CPP(n=12) 2.47(3.62) -0.40(0.39) 2.78(3.80) 2.06(1.03)
T2-CPPE(n=11) 2.19(3.54) -0.07(0.22)* 2.21(3.26) 1.94(0.90)*

Medium Scorers
(25th-75th percentile)
N = 75

Control(n=25) 2.51(3.98) 0.34(0.23) 2.88(4.51) 2.25(1.38)
T1-CPP(n=26) 2.58(3.96) 0.35(0.25) 3.03(5.15) 2.05(1.08)
T2-CPPE(n=23) 2.26(3.60) 0.48(0.22)* 2.45(3.90) 2.14(1.14)

High Scorers
(> 75th percentile)
N = 35

Control(n=13) 2.92(3.72) 0.30(0.17) 3.09(4.22) 2.45(1.34)
T1-CPP(n=11) 3.50(4.5) 0.32(0.13) 4.03(5.64) 2.16(0.89)
T2-CPPE(n=11) 3.13(3.96) 0.33(0.17) 2.94(3.47) 2.31(1.26)

Table 3: Chunk Derivation Efficiency across the Three Train-
ing Groups (only significant p-values are shown).

Problem Chunk Metric
Pairwise Mann-
Whitney U Test

7.1 Chunk 1 UProp
p(T1<C)=0.005
p(T2<C)=0.012

7.2 Chunk 2 UProp
p(T2<C)=0.016
p(T2<T1)=0.006

7.3
Chunk 1
+ Chunk 2

CTime
p(T2<C)=0.015
p(T2<T1)=0.002

7.4 Chunk 3 CTime
p(T2<C)=0.013
p(T2<T1)=0.014

7.5
Chunk 2
+ Chunk 3

CTime
p(T2<C)=0.010
p(T2<T1)=0.030

7.6
Chunk 2
+ Chunk 3

CTime
p(T1<C)=0.010
p(T2<C)=0.020

ing proof construction. However, students from all training
conditions were not equally efficient in chunking. Our statis-
tical tests showed that T2 (who received CPP with an expla-
nation attached to chunks) derived non-trivial chunks with
higher efficiency. However, this efficiency often was not ob-
served for all chunks within a problem. Another limitation
of CPP/CPPEs is the difficulties associated with it when
students first encounter CPP/CPPE in early training levels
or when the chunks within a CPP/CPPE are very diverse.
Thus, we recommend providing additional guidance or tu-
tor help in these scenarios to ensure a better student experi-
ence while solving and learning through CPP/CPPE. Never-
theless, our analyses have established that Chunky Parsons
Problems with explanations can be an effective problem-
based training intervention to improve students’ Chunking
skills (i.e. problem decomposition into chunks and recom-
posing them to construct a complete solution).
Also, our data-driven method to derive subgoals can be
adopted for any structured problem-solving domain as long
as each step during problem solving can be presented as a
state transition. For example, in a math-expression evalu-
ation problem, a state can be the set of all evaluated parts
of the equation at a particular moment. A step or an action
(for example, applying a math operator) changes the prob-
lem state. Once the state transitions or interaction is defined
within a domain, generating the approach maps and extract-

ing subgoals from them can be carried out generically (graph
construction, applying clustering, and simplifying the graph
in approach maps). Similarly, the chunking efficiency eval-
uation method can be adopted in other domains, as long
as each point in the students’ sequential problem solution
traces can be presented as a state from a finite state space.

7. CONCLUSION AND FUTURE WORK
The contributions of this paper are 1) the demonstration
of a data-driven graph-mining-based method to decompose
problem solutions into expert-level chunks, 2) the design of a
problem-based training intervention called Chunky Parsons
Problem to be used within an intelligent tutor to teach stu-
dents the concept of structural decomposition-recomposition
(or Chunking) of problems, 3) an evaluation of the impact of
Chunky Parsons Problem on learning and students’ chunk-
ing skills, and 4) a mechanism to identify Chunking in stu-
dents’ solution traces using historical baseline chunks. As
discussed earlier, our data-driven methods to derive Chunky
Parsons Problem and to identify Chunking in student so-
lution traces can be adapted for any domain where prob-
lem solving is structured and the states and transitions of
students during problem solving can be defined definitely.
Likewise, Chunky Parsons Problem can be adapted for any
problem-based tutor within such domains.
However, this study has several limitations. First, the de-
sign decisions for Chunky Parsons Problems (CPPs) and
their explanations were made based on prior literature, with-
out any user studies to validate them. Second, while we
validated chunks found in participants’ solutions, our data-
driven evaluation method may not be able to detect new
chunks that were not previously seen in prior student data.
Also, the outcomes of this study are dependent on how we
defined different data-driven metrics (for example, difficulty
or efficiency). Third, although our evaluation can identify
the impact of interventions, it cannot validate the source of
the impact. Thus, future user studies involving interviews
or talk-aloud protocols could help address these three is-
sues and validate the findings on the usability and impact of
Chunky Parsons Problem. Finally, our study focused only
on logic-proof problems and should be replicated in other
domains to understand the generalizability of the findings.
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APPENDIX
A. DEEP THOUGHT INTERFACE AND

FUNCTIONALITIES
Figure 11 shows the different components and architecture
of Deep Thought or DT, including one property worth men-
tioning: during training problems, the tutor colors student-
derived propositions based on their frequency in prior stu-
dent solutions. This coloring is designed to help the students
to understand if they are on the right track or not.

A.1 Problem-Solving Strategies within Deep
Thought

Logic Proof Construction problems in Deep Thought can be
constructed using one of the three following strategies: 1)
Forward Problem Solving; 2) Backward Problem Solving;
and 3) Indirect Problem Solving. The three strategies are
briefly described below:

Forward Problem Solving: In this strategy (Figure 15a),
proof construction progresses from the given premises to-
ward the conclusion. At each step, a new node is derived
by applying rules on the given premises or derived justified
nodes. To derive a new node in the forward direction, stu-
dents first need to select the correct number of premise(s)
or already justified node(s) and then select the rule to apply
to the selected node(s).

Backward Problem Solving: In this strategy (Figure 15b),
proof construction progresses from the conclusion toward
the given premises. At each step, the conclusion is refined
to a new goal. In this strategy, students can add unjusti-
fied nodes in the proof that they wish to derive from the
given premises. To derive a node backward, students need
to select the ‘?’ button above a node, then select the rule,
and then input the proposition(s) which are the antecedents
of the selected node as per the selected rule. For example,
in Figure 15b, the conclusion ¬N is first refined into an-
tecedents ¬T → ¬N and ¬T using the Modus Ponens (MP)
rule. ¬T → ¬N (given) is already justified. So, ¬T becomes
the new goal since it is still unjustified. Then, ¬T is refined
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Figure 11: Deep Thought Interface

to a new goal ¬E ∨¬T using the Simplification (Simp) rule.
In this way, the unjustified goal(s) are refined to the given
premises to complete the proof.

Indirect Problem Solving: Indirect problem solving [2]
refers to the ‘Proof by contradiction’ approach. To construct
a proof using this strategy, students first need to click on the
‘Change to Indirect Proof’ button (Figure 11) which adds
the negation of the original conclusion to the list of givens
(as in ¬¬N in Figure 15c). From there, students need to
derive two contradictory statements (for example, ¬¬N and
¬N) to prove the contradiction (∅).

Note that usually within Deep Thought, students are not
required to follow any particular strategy. They can use any
strategy at any point in a proof construction attempt.

B. SUPPLEMENTARY FIGURES
Figure 12, 13, and 14 supplement the analyses presented in
Section 4.2.3 and 5.

Figure 12: Training Time across the Three Training Condi-
tions.

Figure 13: Distribution of Pretest Scores across the Three
Training Conditions.

Figure 14: Mediation Analysis to Analyze the Impact of
Amount of Chunking on Learning.
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(a) Forward Strategy (b) Backward Strategy (c) Indirect Strategy

Figure 15: Problem-Solving Strategies Implementable in Deep Thought
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ABSTRACT
Teachers increasingly rely on online social media platforms
to supplement their educational resources, greatly influenc-
ing PK-12 education through the swift and extensive diffu-
sion of teacher-curated resources. Understanding this diffu-
sion process is crucial, but current educational studies pri-
marily report resource diffusion through small-scale analy-
ses, such as teacher interviews or anecdotal accounts. To
bridge this gap, we conduct a pioneering, large-scale, quan-
titative, and data-driven analysis of the diffusion of teacher-
curated resources on Pinterest, a platform widely embraced
by educators. Our study begins by defining a resource’s
diffusion tree, which encapsulates the cascade of resource
sharing across the social network. Based on this diffusion
tree, we identify three measures to characterize a resource’s
diffusion process: volume, virality, and velocity. Equipped
with these three measures, we conduct an in-depth analysis
of the diffusion of over one million resources curated by thou-
sands of teachers on Pinterest. Our investigation concludes
by examining the correlation between a resource’s attributes
and its curator’s attributes and the diffusion of the resource.

Keywords
Teachers, Social Media, Diffusion, Pinterest, Education

1. INTRODUCTION
Historically, teachers expanded their knowledge base through
formal and informal professional development channels. They
formed networks through direct, face-to-face interactions with
peers and, more recently, through online communities for
exchanging knowledge, experiences, and social capital. The
emergence of online social media platforms like Facebook,
Twitter, and Pinterest has provided teachers with a new
platform for connecting with like-minded peers and shar-
ing pedagogical resources. This phenomenon has stimu-
lated a surge in academic studies focused on teachers’ en-
gagement with social media [1, 2, 3, 4, 5, 6]. Contrasting

traditional methods of educational resource curation, which
can be time-consuming and scale-limited, the accessibility
of sourcing educational resources from fellow teachers on so-
cial media platforms has become highly appealing. Teachers
can now readily access materials from those they admire or
perceive as field experts.

Additionally, the diffusion of these resources can occur swiftly,
often within the same day, enabling teachers to integrate
new materials into their classroom practices efficiently. Across
social media, the established social networks and profes-
sional communities of teachers have facilitated the diffusion
of information and instructional resources on an unprece-
dented scale [7]. Previously, teachers might have had only
a handful of colleagues to turn to for advice or information.
Now, they can access a broad spectrum of instructional re-
sources and interact with “teacherpreneurs” from across the
globe [8]. Consequently, the fast and efficient diffusion of
resources has become a new norm, significantly influencing
pedagogical practices and educational dynamics.

While previous research has explored the diffusion of infor-
mation among teachers, often referred to as the exchange
of knowledge or resources [9], there remains to be a signif-
icant gap in our understanding of the large-scale propaga-
tion of teacher-curated resources on social media platforms.
Specifically, investigations need to be more into how these
resources navigate through the network and the influence of
the resource attributes and its curator on this propagation
process.

To address this, we conduct a comprehensive, large-scale
analysis of the diffusion of teacher-curated resources on Pin-
terest, a platform popular among teachers [10]. We start
by gathering a substantial sample of Pinterest-using teach-
ers and detailed information about their curated resources.
Subsequently, we construct the diffusion process for over one
million teacher-curated resources on Pinterest. This process
encapsulates several vital elements: the initial curator of a
resource, subsequent users who have re-shared the resource,
and the timeline of the resource’s re-sharing.

These vital details about a resource’s diffusion process are
captured in a diffusion tree, as demonstrated in Figure 1,
where we also display the pin curation time beneath each
node (more about diffusion trees in Section 3.3). This ex-
ample illustrates the speed of resource diffusion via social
media, highlighting the platform’s power in swiftly dissemi-
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u1

u2

u3

u4

u6

u5

Sat, 13 Jun 2015 00:05:36

Thu, 18 Jun 2015 11:22:03

Sun, 14 Jun 2015 05:22:45

Wed, 17 Jun 2015 22:37:44

Sat, 13 Jun 2015 05:16:19

Sat, 13 Jun 2015 14:47:40

Figure 1: An example of a diffusion tree illustrating the prorogation of a teacher-curated resource on Pinterest

nating educational resources.

We then introduce three key measures that characterize the
diffusion process: the number of users who have received
a teacher-curated resource (volume), the structure-related
penetration of a resource in the network (virality), and the
speed of resource diffusion (velocity). Leveraging these mea-
sures, we conduct a large-scale analysis of teacher-curated
resource diffusion and address two pivotal research ques-
tions. First, do resource attributes, such as their topics or
sources, impact diffusion? Second, how do teacher-related
attributes, such as the number of online followers, influence
the diffusion of their curated resources?

This study’s novel analysis and findings significantly con-
tribute to the knowledge surrounding teaching and teacher
learning with social media. Specifically, it helps illuminate
how social media assists teachers in acquiring resources for
their pedagogical practices. In summary, our contributions
in this study are as follows:

➤ We construct the diffusion trees for over one million

resources shared by thousands of teachers on Pinter-
est, offering a comprehensive visualization of resource
propagation.

➤ We introduce three key measures - volume, virality,
and velocity - to effectively characterize the diffusion
of resources based on the constructed diffusion trees.

➤ We conduct a large-scale analysis of the diffusion of
teacher-curated resources, outlining the relationship
between the attributes of a resource and a teacher and
how these relate to resource diffusion.

The rest of this paper is organized as follows. First, in Sec-
tion 2, we present a brief literature review. Next, in Sec-
tion 3, we discuss the dataset. Then, in Section 4, we intro-
duce measures characterizing the diffusion process. Section 5
includes our analysis of the diffusion of teacher-curated re-
sources. Finally, we conclude the paper in Section 6.
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2. RELATED WORK
Online social media platforms offer significant benefits to
teachers, notably in the domain of instructional resource
curation [3]. Pinterest, an image-based personalized social
media platform, is pivotal in this regard, boasting 440 mil-
lion active users per month [11]. American teachers widely
adopt it as a professional platform and a virtual repository
of resources [8, 12, 13]. A national survey by the RAND
Corporation underscores this trend, revealing that most ele-
mentary and secondary teachers in the United States utilize
Pinterest to cater to their instructional needs [10].

The qualitative analysis conducted by the authors in [13],
based on interviews with eight teachers, sheds light on the
functionality of Pinterest in the educational sphere. They
recruited teachers through snowball sampling on Twitter
and found that educators viewed Pinterest as a digital orga-
nizer, compiling resources they discovered online or devel-
oped themselves. This echoes findings from previous stud-
ies that emphasized Pinterest’s role as a content curation
tool [14, 15, 16, 17].

Further exploring this theme, Schroeder et al. [18] con-
ducted a qualitative study involving 117 teachers and found
that educators predominantly used Pinterest to find resources
tailored to their classroom requirements. Moreover, Torphy
Knake et al. [8] investigated teacherpreneurial behaviors on
Pinterest. After analyzing the source of 140,287 resources
curated by 197 teachers, they found that educational blogs
were the primary origin of these resources. In addition, mar-
ket websites specifically targeting teachers, notably teachers-
payteachers.com, also contributed significantly to the source
of pins.

Additionally, their study revealed that a substantial ma-
jority of pins (82.8%) were monetized. Hu et al. [12] ex-
amined the curation mechanism of mathematical resources
on Pinterest, discovering that these resources typically ex-
hibited low cognitive demand. Their research also demon-
strated the role of socialized knowledge communities in as-
sisting mathematics teachers in finding relevant resources.
Lastly, [19] provided insightful analysis into the curation
practices of mathematical resources, identifying three types:
self-directed, incidental, and socialized. A key takeaway
from their study is their insight into how Pinterest-sourced
educational resources are utilized in the classroom.

The work most closely related to our study is that by Liu
et al. [20], which examined the process of Pinterest resource
curation among 34 early career teachers (ECTs) from three
states in the Midwest. They focused on the diffusion of
resources among an ECT and their colleagues within the
same school, whom the ECT nominated as close colleagues.
Their findings suggest that Pinterest serves as a conduit
between weakly connected teachers in the same school.

However, our study presents several significant improvements
compared to [20]. Firstly, we operate on a much larger
scale, investigating the diffusion of over one million resources
among thousands of teachers. Secondly, while their study
examined diffusion through a single direct re-pinning be-
tween two teachers, we delve into the entire cascade of in-
formation diffusion as represented by the diffusion trees.

Thirdly, their study was limited to teachers within the same
school who have potential face-to-face interactions. In con-
trast, we examine diffusion among teachers on an online
platform without consideration for potential real-life inter-
actions.

3. DATASET
This section provides an overview of the dataset we utilized
for our study. We detail the process of teacher sampling, ex-
plain our approach to automatic teacher identification, and
illustrate how we construct the diffusion trees.

3.1 Teacher Sampling
As a part of an interdisciplinary project called “Teachers in
Social Media”1, we surveyed 540 teachers across five U.S.
states: Illinois, Indiana, Michigan, Ohio, and Texas. We
then harnessed the Pinterest API (Application Program-
ming Interface) to gather data about these surveyed teach-
ers and their online connections, including followers and fol-
lowees. The collected data for each user encompasses their
pins and boards. Every pin carries an image (or, in recent
times, a video), a description, a title, a link to its source,
a board, the parent pin, and other supplementary informa-
tion. The parent pin refers to the preceding pin from which
the current pin has been re-pinned (re-shared). A board
is a user-generated catalog that organizes pins with similar
themes (for instance, all pins related to ‘multiplication table
instruction’).

3.2 Automatic Teacher Identification
As stated earlier, the principal aim of this paper is to con-
duct a large-scale analysis of the diffusion of resources cu-
rated by teachers. However, utilizing data from only the
surveyed teachers would not suffice to accomplish this goal,
as we have surveyed a relatively small number of teachers.
Therefore, one might suggest increasing the number of sur-
veyed teachers. However, surveying is a time-consuming and
expensive process. As such, developing a method capable of
identifying teachers automatically becomes highly beneficial,
especially considering that we have already collected data
from thousands of users connected to the surveyed teach-
ers. Moreover, based on the principle of homophily (i.e., the
tendency for individuals to associate with others similar to
themselves [21]), which is prevalent in (online) social net-
works, it is highly probable that a significant portion of the
surveyed teachers’ online connections are indeed teachers.

Fortunately, in our prior study [5], we introduced a machine
learning-based method capable of efficiently and effectively
identifying teachers on Pinterest. For reference, Figure 2
provides a comprehensive view of our previously proposed
method. The input for this method is the data of an unla-
beled user (i.e., an online friend of a surveyed teacher), and
the output is the probability that this user is a teacher, de-
noted as p. We establish a threshold τ ; if p > τ , the user is
considered a teacher; otherwise, they are classified as a non-
teacher. Employing a conservative threshold of τ = 0.9,
we automatically identified approximately 16,000 additional
teachers. Our rigorous evaluation of this method in our pre-
vious study indicated a minimal error in teacher classifi-
cation. Specifically, we conducted an exhaustive resiliency

1https://www.teachersinsocialmedia.com/
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analysis of this method, ensuring it is a robust and reliable
approach for automatic teacher identification on Pinterest.
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Figure 2: An overall illustration of our previously developed
automatic teacher identification method

Table 1: Basic statistics of our constructed dataset

#Users (teachers) 13,267
#Pins 1,162,983
#Boards 865,655
#Followees 11,84,940
#Followers 1,046,729

Table 1 presents basic statistics of our compiled dataset. As
the table indicates, our dataset comprises 13,267 teachers,
who were either surveyed directly or identified automatically
using our method. Furthermore, these teachers have curated
over one million pins.

3.3 Diffusion Trees
We constructed diffusion trees for these resources to investi-
gate the diffusion of curated resources on Pinterest. A diffu-
sion tree is a directed graph, symbolized as T = (U,E, p, r),
representing the cascade of user information. Here, U de-
notes the set of users engaged in the diffusion, E is the set of
directed edges between users in U , p is the pin being dissem-
inated among users in U , and r is the origin or root of the
tree—a teacher who initially curated the pin p. Each edge
e = (ui, uj) ∈ E suggests that the user ui ∈ U has received
pin p from user uj ∈ U and subsequently re-pinned it. For
instance, in Figure 1, user u1 (the root) has curated a re-
source that has been disseminated throughout the network
and re-pinned by users u2, u3, u4, u5, and u6.

We constructed diffusion trees for 1,162,983 unique pins that
our identified teachers curated, meaning the root node of
each tree was one of the teachers we identified, as described
in Section 3.1. It is important to note that not all users in
U were necessarily teachers. Furthermore, we created trees
for all types of resources curated by teachers, both educa-
tional and non-educational. This was done for two main
reasons. Firstly, including non-educational pins allows us to
better contextualize the diffusion patterns of educational re-
sources compared to non-educational ones. Secondly, apart
from studying the diffusion of teacher-curated resources on
Pinterest, a secondary objective of this paper is to ana-
lyze teachers’ general behavior on the platform. Therefore,
examining the diffusion of all types of teacher-curated re-
sources contributes to this secondary objective. Lastly, it is

worth mentioning that our dataset of diffusion trees repre-
sents the largest dataset of diffused resources on Pinterest
to date, offering the potential for future research on infor-
mation diffusion on social media.

4. DIFFUSION MEASURES
We present three measures to characterize the diffusion pro-
cess, inspired by those introduced in [22]. These measures
aim to evaluate the large-scale and fast diffusion of educa-
tional resources on social media, as documented in previous
studies [12, 20, 23]. Specifically, these measures are designed
to echo the two critical aspects emphasized in prior research
on the diffusion of educational resources on social media,
particularly Pinterest: a) educational resources are dissem-
inated on a large scale among teachers, and b) this dissem-
ination of educational resources occurs rapidly [20, 12].

4.1 Volume
The first measure, volume (V L), is defined as the total num-
ber of nodes in a diffusion tree:

V L(T ) = |U | (1)

For instance, the volume of the tree depicted in Figure 1
is 6. Despite its apparent simplicity, the volume measure
carries significant implications as it indicates how much in-
formation has diffused. Specifically, the count of users that
have received the information is used in predicting or assess-
ing the popularity of information on social media [24, 25].
Relevant to our study, we can determine the level of interest
other users or teachers have in a teacher-curated resource by
examining its volume.

T1 T2 T3

VI (T1) = 0.875 VI (T2) = 1.26 VI (T3) = 1.5

Figure 3: Three diffusion trees with the same volume but
different virality values

4.2 Virality
While the volume measure is important, it only reports the
number of individuals who have re-shared a resource. How-
ever, depending on the structure of a diffusion tree, the
dissemination can take different forms. To illustrate this,
Figure 3 presents three distinct diffusion trees, all having a
volume of 8 but exhibiting very different forms of dissemi-
nation. In T1, there is a broadcast from the root to other
nodes, with only the root participating in the information
propagation. In contrast, T2 involves more nodes in the dif-
fusion process. T3 represents an extreme scenario with a
chain-wise ’deep’ tree, where the message has been passed
on consecutively. Distinguishing between diffusion scenarios
based on their tree structure provides insight into the vi-
rality and penetration of a message across the network [22].
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Figure 4: The CCDF plots of the defined diffusion measures (x-axes are in log scale)

Table 2: Some statistics of the introduced diffusion measures of the constructed diffusion trees

Diffusion Measure Min Max Mean Median Std top 0.1% top 0.01%

Volume 2 1,129 5.4 2 13.58 > 174 > 434
Virality 1 29.72 1.33 1 0.54 > 5.99 > 11.45
ART 0.0012 2,159.4 192.4 35.8 317.3 > 1,950.7 > 2,113.2
FRT 0.0008 65,655.0 1,814.4 12.5 4,975.0 > 45,020.7 > 56,960.9

Therefore, we define the virality (V I) of a diffusion tree as
follows:

V I(T ) =
2

(|U |)× (|U | − 1)

∑

∀ui,uj∈U
d(ui, uj) (2)

Here, d(ui, uj) represents the shortest distance between two
users ui and uj in the diffusion tree T . The sum of the
shortest distances between nodes in a graph is known as the
Wiener Index [26, 27]. The term 2

(|U|)×(|U|−1)
normalizes

the Wiener Index. Based on this measure, we can observe
that T3 has the highest virality among the trees in Figure 3.

4.3 Velocity
Alongside volume and virality, the speed of diffusion is also
crucial. Previous studies have highlighted the rapid diffusion
of educational resources on social media, especially Pinter-
est, making these platforms highly appealing to teachers [28,
23]. Thus, our third diffusion measure pertains to the ve-
locity (or speed) of diffusion. For this, we introduce two
metrics.

The first metric is the average re-pin time, which calculates
the average time between two re-pins in the diffusion tree.
The average re-pin time (ART ) for a diffusion tree is defined
as:

ART (T ) =
1

|U | − 1

∑

∀e∈T
uj(t)− ui(t) (3)

Here, (ui, uj) is an edge in the diffusion tree and ui(t) (uj(t))
represents the re-pin time by user ui (uj). In Eq. 3, we have
subtracted ui(t) from uj(t) as the user ui received the pin
earlier. Given the rapid diffusion of information on social

media, we use an hour as the time scale. The ART for the
example tree shown in Figure 1 is 46.2 hours.

However, sometimes a resource can continue to be diffused
for an extended period (for example, months), which can
result in a large ART . Therefore, to better capture the
diffusion velocity, we define the first re-pin time (FRT ). It
represents the time duration from the initial curation of a
pin to its first re-pin:

FRT (T ) = min{ui(t)− r(t)} s.t. (r, ui) ∈ E (4)

Here, r(t) denotes the time the root curated the pin. The
FRT for the example tree in Figure 1 is 5.16 hours.

5. DIFFUSION ANALYSIS
In this section, we examine the diffusion trees we have con-
structed. First, in Section 5.1, we provide statistical data on
diffusion measures. Next, in Section 5.2, we discuss how dif-
ferent resource types are diffused. Lastly, in Section 5.3, we
explore the relationship between the earlier diffusion mea-
sures and specific attributes related to teachers.

5.1 Statistics of Diffusion Measures
This section delves into the statistics and distributions of the
three diffusion measures. Table 2 provides specific statis-
tics about virality, volume, and velocity measures. In ad-
dition, the CCDF (complementary cumulative distribution
function) of the diffusion measures is depicted in Figure 4.

As depicted in Figures 4a and 4b, both volume and virality
exhibit a power-law distribution. This suggests that while
most resources have low volume and virality, a small percent-
age displays exceptionally high values for these measures.
Further, as per Table 2, the top 0.1% of diffused resources
exhibit a volume and virality exceeding 174 and 5.99 hours,
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Figure 5: A sample of a popular pin from moffatt-
girls.blogspot.com account, a prolific educator, that has been
received (re-pinned) by 936 other users

respectively. This indicates that certain resources curated
by teachers have gained considerable popularity. These find-
ings align with prior studies on the virality and popularity of
information on social media, demonstrating that some infor-
mation can become significantly viral across the network [29,
30, 22]. On average, approximately five users have re-pinned
each teacher-curated resource on Pinterest.

Contrary to volume and virality, the velocity measures do
not adhere to a power-law distribution as seen in Figures 4c
and 4d. Furthermore, a notable disparity exists between the
mean and median for ART and FRT . While the median av-
erage re-pin and first re-pin times are relatively short (35.56
and 12.56 hours, respectively), their means are skewed due
to the presence of outliers.

In conclusion, teacher-curated resources diffuse rapidly and
reach a significant number of other users on Pinterest, in-
cluding other teachers. Although this observation has been
suggested in anecdotal reports [20, 12], our study offers the
first large-scale data-driven analysis to confirm it.

5.2 Resource Attributes and Diffusion
In this part, we explore the diffusion measures in relation to
two key attributes of pins: their topics and domains.

5.2.1 Topic
Every pin on Pinterest is associated with a pre-defined topic
(or category), such as travel, education, or fashion. Fig-
ure 6a presents the average volume value for each topic. As
evidenced by this figure, pins categorized under education
exhibit the highest volume, with each such pin being re-
ceived by an average of six users on Pinterest. Interestingly,
kids ranks second in terms of volume, a fact that could be
partially attributed to this topic’s similarity to education
and its appeal to teachers, particularly for resources spe-
cific to pre-kindergarten or homeschooling. All other topics
exhibit lower volumes, generally below 4. Given that the
dominant topic is education, and there is limited data for
other topics, these topics demonstrate relatively high stan-
dard deviations.

Figure 6b displays the average virality value for each topic.
As with volume, education also records the highest viral-
ity, indicating the extensive penetration of teacher-curated
educational resources across Pinterest. The topic kids also
showcases a relatively high average virality value. Moreover,
comparing the volume and virality values in Figure 6a and
Figure 6b suggests that high volume does not necessarily
equate to high virality. For example, pins categorized under
quotes exhibit relatively high virality, but their volume is
not as impressive.

Figure 7 depicts the median values for the average and first
re-pin times. We opted to use the median for these plots
since, as discussed in Section 5.1, the ART and FRT val-
ues of our constructed diffusion trees include some outliers.
Moreover, specific topics have limited data, resulting in skewed
velocity measures. Therefore, for clarity, we present the me-
dian velocity measures for topics with a pin proportion of at
least 10%.

From the results of the velocity measures, we observe two key
points. Firstly, the topic education has both a short average
re-pin time and first re-pin time. Specifically, the median of
the first re-pin time for education is just 12 hours, suggesting
that a teacher-curated resource takes roughly half a day to
be received by another user on Pinterest. This underscores
the rapid diffusion of educational materials across Pinterest.
Secondly, the average re-pin time is generally longer than
the first re-pin time. We posit that this may be due to a
user quickly saving a pin curated by the root, with the pin
then spreading across the network at a slower rate. How-
ever, there are a few exceptions to this, such as travel and
art. This could be attributed to the unique appeal of these
topics to teachers, whose pins may take some time to attract
attention initially. However, once they gain traction, they
diffuse more rapidly.

5.2.2 Domain
Pinterest allows users to pin resources from anywhere on
the web. Given this property, examining the diffusion of
pins from various sources becomes essential. In this sec-
tion, we analyze the diffusion of teacher-curated resources
based on the domains of their sources. For this analysis,
we consider only the top 10 domains preferred by teachers.
Figure 8 presents the average volume and virality values for
these top 10 domains. Figure 9 displays the median of the
average re-pin time and the first re-pin time for the exact
top 10 domains. From these results, we draw the following
observations:

❏ Except for youtube.com and Uploaded by User (re-
sources directly uploaded from the user’s device), the
remaining domains are predominantly education-related,
for example, moffattgirls.blogspot.com. Interestingly,
pins from moffattgirls.blogspot.com record the highest
volume. This blog is managed by a former elementary
school teacher who exclusively creates educational ma-
terials. Further investigation reveals that this teacher
is highly active and influential on teacherspayteach-
ers.com– the largest online marketplace for instruc-
tional resources. Therefore, it is not surprising that
her educational materials garner significant interest.
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Figure 6: Mean of volume and virality per topic
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Figure 7: Median of the velocity measures for the top topics

Additionally, the pins from this domain exhibit high
virality and rapid diffusion. Such active and inspiring
teachers exemplify the influential role of teachers on
social media and the impact they can have on their
peers in the digital age. Figure 5 showcases a popular
sample pin from moffattgirls.blogspot.com.

❏ Materials from teacherspayteachers.com also demon-
strate high volume and virality, suggesting the popu-
larity of educational materials from this source. Inter-
estingly, the velocity measures for pins from teachers-
payteachers.com reveal a short first re-pin time but a
relatively longer average re-pin time. This is because
pins from this popular source continue to be diffused
across Pinterest over an extended period, resulting in
a longer average re-pin time.

❏ Another observation is the long first re-pin time for
pins from the Uploaded by User domain. We surmise
that this may be due to the following reason: since
these pins do not originate from a specific internet web-
site (i.e., they have no domain), other users might be
hesitant to save them promptly, possibly due to trust
issues. However, once these pins gain (intial) popular-
ity, they become more widespread and diffuse across
the network.

5.3 Teacher Attributes and Diffusion

In addition to the resource itself, a resource producer (e.g., a
teacher) can also influence the diffusion process [31]. There
exists a substantial body of literature focused on identify-
ing influential spreaders in social media, based on their at-
tributes [32, 33, 34]. Consequently, in this section, we in-
vestigate whether teacher attributes are associated with the
diffusion of the resources they curate. To achieve this, we
considered the following ten teacher-related attributes and
analyzed their relationship with diffusion metrics:

1. Number of pins: Assessing whether a teacher’s activity
level leads to widespread and fast diffusion of their
materials.

2. Number of boards: Similar to the number of pins, this
attribute also evaluates the impact of a teacher’s ac-
tivity level on diffusion.

3. Number of followers: Investigating whether resources
of a teacher with more followers have a higher chance
of being disseminated in the network.

4. Number of followees: Examining how this attribute
affects the diffusion measures.

5. Total number of friends (followers and followees com-
bined): Analyzing the impact of this attribute on dif-
fusion measures.
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Figure 8: Mean of volume and virality for the top 10 domains of teacher-curated resources
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Figure 9: Median of the velocity measures for the top 10 domains of teacher-curated resources

6. Reciprocity: Investigating the relationship between reci-
procity and diffusion, in order to determine whether
having a stronger connection between a teacher and
their online friends affects the diffusion.

7. Eigenvector centrality: Assessing whether resources
of more central teachers have a higher chance to be
adopted by other users and perhaps at a faster rate.

8. Betweenness centrality: Similar to eigenvector central-
ity, this attribute also evaluates the structural impor-
tance of a teacher in the network.

9. Closeness centrality: Another measure of centrality,
investigating the influence of a teacher’s structural im-
portance on the diffusion of resources.

10. Local clustering coefficient: Quantifying how close a
user’s neighbors are to a complete graph (a clique),
as previous studies [35, 36] have shown that cliques in
school-level teacher networks can lead to better diffu-
sion of information.

To explore the relationship between teacher attributes and
diffusion measures, we conducted four regression analyses.
In each analysis, teacher attributes served as the indepen-
dent variables, while the corresponding diffusion measure
acted as the dependent variable. Our goal was to determine
the extent to which each teacher’s attributes could explain

a diffusion measure. It is important to note that we focused
only on teachers who were the roots of the diffusion trees, as
our aim was to identify the attributes of the pin producers,
not those who further engaged in re-pinning. Consequently,
a teacher could be associated with multiple diffusion trees as
the root. In order to perform a teacher-level analysis, we ag-
gregated the values of each diffusion measure for all diffusion
trees associated with a teacher. For volume and virality, we
calculated the mean values. For the velocity measures, we
opted for the median, as it provides a more accurate esti-
mation than the mean, as previously discussed. Finally, we
utilized the statsmodels package [37] in Python to fit ordi-
nary least squares (OLS) for each regression analysis. The
results are shown in Tables 3 and 4. We make the following
observations based on these results:

❏ The adjusted R-squared values are high for volume and
virality, indicating that teacher attributes can signif-
icantly explain these measures. Conversely, these at-
tributes fail to sufficiently explain the velocity mea-
sures, as reflected by the low adjusted R-squared val-
ues. This interpretation is corroborated by examining
the mean squared errors: while these values are low
for volume and virality, suggesting a good model fit,
they are high for the velocity measures, indicating a
less accurate fit.

❏ Regarding the number of pins, the coefficients for all
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Table 3: Regression analysis results of predicting volume and virality using teacher attributes

Volume

Attribute Coefficient Std error t P > |t|
#Pins 4.449e-07 2.44e-06 0.182 0.855

#Boards -0.0011 0.000 -3.049 0.002
#Followers -0.0005 0.000 -3.590 0.000
#Followees 0.0003 0.000 2.539 0.011
#Friends -0.0003 9.35e-05 -2.976 0.003

Reciprocity 0.2359 0.084 2.816 0.005
Eigenvector Cent 54.8268 12.913 4.246 0.000
Betweenness Cent 28.2263 75.308 0.375 0.708
Closeness Cent 7.4408 0.190 39.110 0.000

LCC 1.7113 0.283 6.039 0.000
Mean squared error: 2.19 Adj. R-squared: 0.539

Virality

Coefficient Std error t P > |t|
-2.419e-06 2.29e-07 -10.574 0.000
-0.0001 3.31e-05 -3.861 0.000

-1.318e-05 1.41e-05 -0.936 0.349
-3.879e-05 9.63e-06 -4.029 0.000
-5.197e-05 8.77e-06 -5.923 0.000
0.0894 0.008 11.379 0.000
2.5898 1.211 2.138 0.033
24.0530 7.065 3.405 0.001
3.5286 0.018 197.698 0.000
0.6131 0.027 23.064 0.000

Mean squared error: 0.04 Adj. R-squared: 0.965

Table 4: Regression analysis results of predicting velocity using teacher attributes

Average re-pin time

Attribute Coefficient Std error t P > |t|
#Pins -0.0015 0.000 -4.077 0.000

#Boards 0.1079 0.061 1.781 0.075
#Followers 0.0096 0.022 0.440 0.660
#Followees 0.0020 0.016 0.127 0.899
#Friends 0.0116 0.014 0.822 0.411

Reciprocity -143.80 17.34 -8.290 0.000
Eigenvector Cent -8090.16 1884.5 -4.293 0.000
Betweenness Cent 8936.45 1.1e+04 0.811 0.417
Closeness Cent 607.29 36.66 16.5 0.000

LCC 410.17 62.89 6.522 0.000
Mean squared error: 85667.98 Adj. R-squared: 0.263

The first re-pin time

Coefficient Std error t P > |t|
0.0308 0.005 -6.450 0.000
1.3398 0.691 1.940 0.052
0.3589 0.294 1.223 0.222
-0.3620 0.201 -1.804 0.071
-0.0031 0.183 -0.017 0.986

-1005.0319 163.868 -6.133 0.000
-8.951e+04 2.53e+04 -3.544 0.000
1.404e+05 1.47e+05 0.953 0.340
85375.8527 372.131 14.446 0.000
4871.5493 554.231 8.790 0.000

Mean squared error: 18323220.30 Adj. R-squared: 0.143

measures were generally low. This suggests that a high
activity rate of a pin’s producer does not necessarily
correlate with the diffusion of pins. This is logical, as
simply saving more pins and creating more boards on
Pinterest does not guarantee widespread diffusion of
these resources. The only notable exception was the
number of boards for the first re-pin time, where the
coefficient was both positive and relatively large. This
can be attributed to the fact that Pinterest users can
follow a board independently, without having to follow
its curator. Consequently, the more boards a user has,
the higher the likelihood that someone could quickly
re-pin from any of these boards. However, based on
our findings, such rapid adoption does not necessarily
translate to high volume and virality for the pin.

❏ The coefficients related to the number of connections,
namely the number of followers, followees, and friends,
were notably low. Although the coefficient of the num-
ber of followers was relatively high for the first re-pin
time, it lacked statistical significance, as indicated in
the P>|t| column. We posit that the low coefficient
values for the number of connections can be attributed
to Pinterest’s nature as a social curation platform. On
this website, users have the ability to re-pin resources
from others without necessarily following them.

❏ Reciprocity exhibits a low coefficient for virality, yet
a relatively high one for volume. Teachers with high
reciprocity tend to have strong relationships with their
online friends, fostering a trusting environment for re-

pinning their resources. However, virality is a complex
measure that cannot be sufficiently explained by reci-
procity alone. As for the velocity measures, the co-
efficients of reciprocity are large and negative, a phe-
nomenon that warrants further exploration.

❏ The most significant observation from this section is
the relationship between the centrality metrics and
the volume and virality. With the exception of be-
tweenness centrality for volume, the centrality metrics
provide a comprehensive explanation for both virality
and volume. This is likely due to the centrality metrics
taking into account the network’s structure, a crucial
factor in information diffusion. For example, a teacher
with high eigenvector centrality is connected to other
users with high centrality. Consequently, when these
central neighbors re-pin a resource, the likelihood of
wide diffusion increases due to their significant struc-
tural influence. Furthermore, both closeness and be-
tweenness centrality are related to the shortest paths
in the network, which play a critical role in the diffu-
sion of information [38].

❏ As previously noted, the local clustering coefficient
plays a pivotal role in the diffusion of information within
school-level teacher networks [35, 36]. Moreover, find-
ings from this section of the dissertation demonstrate
that this attribute is equally significant in the diffu-
sion of information across the network of teachers on
Pinterest.
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From the observations discussed, we can infer that teacher
attributes have a substantial impact on the volume and vi-
rality of the resources they curate. Specifically, a teacher’s
structural characteristics at the network level play a cru-
cial role in determining their resources’ volume and viral-
ity. However, these attributes do not adequately predict the
speed at which these resources are diffused.

6. CONCLUSION AND FUTURE WORK
This paper extensively analyzed the diffusion process of teacher-
curated resources on Pinterest. Our first task involved con-
structing a comprehensive set of diffusion trees for these re-
sources on the platform. Subsequently, we defined three crit-
ical measures to capture the essence of the diffusion process:
volume, virality, and velocity. Finally, our in-depth analy-
sis revealed that educational materials experience wide and
rapid dissemination across Pinterest.

To further our understanding of diffusion dynamics, we ex-
ecuted multiple regression analyses to identify the teacher
attributes that significantly influence the diffusion process.
Our findings underscored the crucial role of structural at-
tributes in the diffusion of teacher-curated resources on Pin-
terest. This is an important insight, demonstrating the
relevance of network-level structural characteristics in pre-
dicting the volume and virality of resources. However, our
study also indicated that these teacher attributes do not
adequately explain the speed of diffusion, pointing to the
complexity of the diffusion process and suggesting the need
for further investigation.

Our large-scale, data-driven study not only deepens the un-
derstanding of how teacher-curated materials diffuse on Pin-
terest but also sets the stage for future research. The insights
garnered here could be instrumental in optimizing informa-
tion dissemination strategies on social curation platforms
like Pinterest and beyond. By identifying the key factors
that influence diffusion, educational stakeholders can har-
ness these attributes to enhance the reach and impact of
curated resources. Additionally, our findings may inspire
researchers to delve deeper into the mechanisms underlying
the diffusion process, encouraging the exploration of other
factors and attributes we have not covered in this study.
This research opens up a rich avenue for further inquiry and
innovation in information diffusion in online educational net-
works.

There are a couple of interesting future directions:

➜ In-depth Analysis of Velocity Measures: Our study in-
dicated that teacher attributes do not sufficiently ex-
plain the speed of diffusion (velocity). Therefore, fu-
ture research could focus on a more detailed investiga-
tion into the factors influencing the velocity of resource
diffusion. This might include considering additional
user attributes, the nature of the content being shared,
or even network-level factors such as pins’ timing and
user engagement dynamics over time.

➜ Role of Content Characteristics: This study primarily
focused on the role of teacher attributes in the diffusion
process. Future research could extend this to consider

the curated resources’ characteristics. This could in-
volve analyzing the resources’ content, format, topic,
or even aesthetic appeal and how these factors might
influence their diffusion.

➜ Temporal Analysis of Diffusion: Another interesting di-
rection could be the temporal analysis of diffusion pro-
cesses. How do teacher attributes and the diffusion of
their resources evolve over time? Longitudinal studies
could provide further insights into the dynamic nature
of information diffusion on Pinterest.

➜ Cross-platform Studies: This research was focused on
Pinterest. Future studies could examine diffusion pro-
cesses on other social curation platforms or across mul-
tiple platforms. Such studies could reveal platform-
specific characteristics influencing diffusion and offer a
comparative perspective.

➜ Impact of Algorithmic Recommendations: Pinterest,
like many other platforms, uses recommendation algo-
rithms to suggest pins to users. Future research could
explore how these algorithms influence the diffusion
process. This could involve studying the interaction
between user behavior and the platform’s algorithmic
curation in shaping diffusion patterns.
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ABSTRACT
Exploring students’ discourse in academic settings over time
can provide valuable insight into the evolution of learner
engagement and participation in online learning. In this
study, we propose an analytical framework to capture topics
and the temporal progression of learner discourse. We em-
ployed a Contextualized Topic Modeling technique on mes-
sages posted by undergraduates in online discussion forums
from Fall 2019 to Spring 2020. We further evaluated if top-
ics were originating from specific courses or more generally
distributed across multiple courses. Our results suggested
a significant increase in the number of general topics after
the onset of the pandemic, suggesting emergent topics be-
ing discussed in a range of courses. In addition, using Word
Mover’s Distance, we examined the semantic similarity of
topics in adjacent months and constructed topic chains. Our
findings indicated that previously course-centric topics such
as public health developed into more general discussions that
emphasize inequities and healthcare during the pandemic.
Furthermore, emergent topics around students’ lived experi-
ences underscored the role of discussion forums in capturing
educational experiences temporally. Finally, we discuss the
implications of current findings for post-pandemic higher ed-
ucation and the effectiveness of our framework in exploring
unstructured large-scale educational data.

Keywords
Topic Modeling, Topic Detection and Tracking, Natural
Language Processing, Discourse Analysis

1. INTRODUCTION

Social learning theories suggest that learning occurs through
interaction with peers and instructors[52]. In fully online
learning contexts, interpersonal interaction plays an even
more important role and discussion forum is one of the
most commonly used tool to enable interactions and facil-
itate classroom community. As such, examining text and
language in a discussion forum allows us to gain insights on
learning since language plays an instrumental role in pro-
moting thinking and knowledge construction as well as social
activities occurring in computer-mediated environments[51].
While the use of discussion forums has been prominent on
informal learning platforms such as Massive Open Online
Courses (MOOCs) [4], the adoption of discussion forums for
social learning and communication across accredited insti-
tutions has been less systematic until the contingency shift
to remote learning due to COVID-19.

In late 2019, news began to spread about a respiratory illness
appearing throughout parts of the globe. By March 2020,
the World Health Organization officially declared COVID-
19 a global pandemic [57]. In response to the global health
crisis, universities and schools quickly suspended in-person
classes and shifted to fully online instruction[50]. Although
online learning and teaching are already prevalent, the ur-
gent shift to online education created a nontrivial disrup-
tion to students’ educational experience[50]. During this un-
precedented time, undergraduate students were confronted
with new health concerns, challenges adapting to online
learning, and seeking ways to build the relationships and
connect with peers that are essential for students’ college
success. The outbreak has also posed challenges for instruc-
tors to ensure instructional delivery and quality through a
variety of tools such as video conferencing, forum discussions
and assignment submission through Learning Management
Systems (LMS).

As learners were prompted to fully remote learning, the
amount of educational data generated day by day became
unprecedented. Since the pandemic was a major disruption
to regular instruction, the shift to fully remote instruction
derived a need to harvest insight into how learning activities
were impacted [33]. Recent advances in data mining tech-
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niques provide efficient and promising tools to effectively
process large-scale educational data to model learner be-
havior in real-time [1]. Moreover, leveraging objective in-
dicators rather than self-report data allows a non-intrusive
way to explore the consequences of the transition to online
learning and the impact of COVID-19 on the educational
process [11]. Digital trace data generated from learner’s
activities in LMS are not only useful in tracking engage-
ment patterns and predicting learning outcomes across in-
formal and formal education context [30], but features such
as textual data also allow for non-intrusive means to ana-
lyze social and cognitive dynamics compared to interviews
or questionnaire for data sampling [46]. The applications
of Natural Language Processing (NLP) techniques in educa-
tion have been proven to be powerful and effective tools for
modeling learner behavior and extracting meaningful infor-
mation to enhance our understanding of social interactions
in computer-mediated learning environments [20, 32, 17, 19,
22]. A recent systematic review also identifies textual anal-
ysis of asynchronous discussion forums arises as an emer-
gent theme in learning analytics given the increasing use of
online LMS platforms[2]. This suggests that increased at-
tention in the field of learning analytics has been given to
exploratory approaches to harvesting insights from educa-
tional discourse.

Given the COVID-19 circumstances and the constantly
changing nature of the pandemic and policy responses, auto-
mated methods focused on detecting the temporal aspect of
learning activities could be valuable in providing insights to
policymakers and instructors on the overall changing land-
scape in online learning. Indeed, text mining techniques
offer a viable way to extract meaningful information and
unravel latent patterns from large-scale educational data.
Taken together, we built on our previous study [15] to pro-
pose an analytical framework that characterizes the evolu-
tion of topics in unstructured student discourse present in
online discussion forums. We applied this framework to de-
rive a series of semantically meaningful topic chains that we
believe reflect the changes in online learning activities due to
the emergency shift to remote learning and the COVID-19
pandemic influence.

This paper employs novel NLP approaches to explore the
emergent topics in LMS and reveal the temporal develop-
ment of teaching and learning activities in online discussion
forums. Specifically, we investigate the topics before and
after universities transitioned to a fully remote format to
reflect the organic responses from teachers and students to
this significant disruption in teaching and learning. As a
methodological contribution, our framework combines state-
of-the-art topic modeling techniques (i.e., Contextualized
Topic Modeling and Word Mover Distance) to construct se-
mantically relevant topics on a month-to-month granularity.
This framework offers an opportunity to examine topical
evolution in educational data. Despite the popularity of
topic modeling in social media research, it remains a niche
cluster in educational research [2] and focuses on static con-
tent classification[25]. In contrast, the temporal dynamics
of topics highlighted in our framework would be a unique
contribution in this area. Additionally, we extracted course
centrality as a course-level feature to further contextualize
topic chains. This allows us to distinguish topics that are

specific to a discipline from more generally occurring topics
in the entire forum environment. Finally, our study presents
an exploratory rather than prescriptive view based on emer-
gent student discourse revealing the impact of larger societal
events on educational activities and a transparent analytic
process to harvest information that aids decision-making.

The rest of the paper is organized as follows. First, we pro-
vide a brief overview of text mining practices in education
in recent years. Second, we describe specific topic model-
ing techniques for processing large-scale text corpus. We
then introduce our research questions and the methodolog-
ical approach of the current study. Finally, we present our
findings with a discussion on the implications of our study
and the potential adaptation of this analytical framework
for the broader education data mining community.

2. BACKGROUND
2.1 Text Mining in Education
Language is a channel for expressing people’s opinions and
experiences. The advances in computational linguistics offer
ways to systematically explore these experiences and capture
trends in discourse through individuals’ language use. In
educational contexts, the exponential growth of learner data
generated in the digital environment has prompted the need
to apply data-driven approaches to handle and make sense of
learner data at scale [26]. Student essays, online forums, and
online assignments are major venues and resources for large-
scale text mining analysis to derive informative insights for
evaluating performance or providing analytics insights for
instructors and students to support learning[25]. NLP and
machine learning algorithms are promising tools to automate
this process. Previous studies have assessed discourse using
text summarization [27], examined sociocognitive processes
in collaborative conversations [21, 46], and modeled learner
trajectories using neural network-based predictive methods
[13].

Amongst an array of NLP techniques, topic modeling is an
unsupervised method to extract emergent thematic struc-
ture in large textual data by connecting documents that
share similar patterns[3, 34]. Topic modeling is deemed a
powerful tool for education data mining and learning ana-
lytics research[48]. In empirical studies, topic modeling has
been applied to examine course reviews to extract learner
interests in order to provide personalized course recommen-
dations to improve the quality of online courses[38, 42], to
identify themes in asynchronous online discussions for pro-
viding adaptive support to individual students[23], or char-
acterize chat dialogues within learning groups to support
collaborative learning[12], or evaluating students’ reflective
writing to examine their learning experiences and engage-
ment associated with course content[14].

Previously, research has pointed out discussion forums as
an under-explored territory, where rich textual dialogue
could offer the potential to support student learning[23].
While discussion forums may appear to be plagued by in-
formation overload and chaos, applying appropriate analytic
techniques can help bring structure and identify important
threads for students and teachers[56]. A growing body of
learning analytics research focuses on discussion forum data
to measure learner participation, and examine the associ-
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ations between discourse behavior and learning[54]. Some
studies leverage linguistic features such as sentiment valence
to predict learning gains and retention for individual learn-
ers [55][37]. Other studies took a more exploratory perspec-
tive to investigate the temporal changes in MOOC learners’
language and discourse characteristics at a high level [18].
As we have seen online discussion forums delivering promis-
ing results for social learning and student-teacher interac-
tions in MOOCs[10], a question arises when a large number
of courses at accredited universities started to rely on dis-
cussion forums during the pandemic: How can we leverage
the large-scale, extensive data that emerged in the months
before and after the outbreak of COVID-19 to understand
discussion forum activities better? In fully remote instruc-
tions under the pandemic influence, the discussion forum is
considered one of the most commonly used tools for sup-
porting social interactions within online courses to meet the
needs of a diverse student population[41]. Therefore, get-
ting a better picture of the emergent topic and trends in
this instructional environment would be beneficial to under-
standing how teaching and learning were affected during the
critical months of the pandemic impact.

In investigating the impact of COVID-19, topic model-
ing has shown effectiveness in reflecting trends and pub-
lic opinions on social media and online responses towards
policy decisions[9, 47]. [39] studied the online mental
health support community on Reddit (e.g., r/HealthAnxiety,
r/schizophrenia) during the COVID-19 pandemic, looking
into how different patterns of behavior can be captured
through language and topic modeling. The increased use
of discussion forum during the pandemic presents an oppor-
tunity to investigate learning activity in formal educational
spaces. In particular, the timeline of COVID-19 spread and
the academic calendar creates an unique alignment for po-
tential changes in discussion forum discourse due to the in-
fluence of the pandemic and the transition to fully online
learning. However, to our knowledge, no study has consid-
ered constructing temporal chains of topics in learner dis-
course that tracks these changes. Therefore, we seek to ex-
amine the rich textual data that exists in the Learning Man-
agement System (LMS) before and after universities shifted
to remote learning.

2.2 Temporal Topic Modeling
With the ever-growing rate of data generation, topic mod-
eling is a widely used approach to find patterns and trends
within large-scale non-annotated data. Among several topic
modeling techniques in NLP [34], one of the most widely
used models is Latent Dirichlet Allocation (LDA) [8]. LDA
is a generative statistical model that is used to extract latent
topics from a text corpus. LDA models document as a prob-
ability distribution over topics where each topic is a prob-
ability distribution over words in the vocabulary. Recent
advances in deep learning have introduced the combination
of neural networks and transformer-based techniques [58, 28]
to yield topics that are more coherent and interpretable than
traditional models that use only bag-of-words (BoW) fea-
tures. For instance, Combined Topic Model (CombinedTM)
[5] is a recently proposed neural topic model that com-
bines the bag of words (BoW) approach and the neural
topic model ProdLDA [49] with the contextualized doc-
ument representations from Sentence-BERT [45] for more

coherent topics. CombinedTM is a Contextualized Topic
Model (CTM) which uses Bag of Words (BoW) document
representation concatenated with the contextualized docu-
ment representations from Sentence-BERT [45] converted to
the same dimensionality as of the BoW vocabulary by using
a hidden neural network layer. This latent representation of
the document is passed through a decoder network that re-
constructs the BoW. The framework is originally based on
a variational inference process [43]. Compared to existing
topic models including the traditional LDA, CombinedTM
showed more coherent topics and added contextual informa-
tion [5]. In this study, we leverage CombinedTM to explore
emerging topics and their evolution in learners’ discussion
forums before and during the onset of the COVID-19 pan-
demic.

Exploring how topics evolve can help us discover how cer-
tain events, such as the global health crisis, remote learn-
ing, and social injustice, impact learners’ lived and aca-
demic experiences and shape their learning activities dur-
ing the pandemic. Previous studies have proposed Dynamic
Topic Model (DTM) [7] and related models [53] to detect
and track topics over time-sequenced texts. However, these
frameworks only model the variation in the probability dis-
tribution of words within a constant set of topics across
time. To track how independent topics emerge, decline, and
shift focus in a sequentially sliced corpus, researchers have
used topic models and similarity metrics to connect topics
in adjacent time steps [35, 31]. Similarity scores, such as
Jaccard Coefficient, used in these studies do not account
for the semantic similarity between words appearing in re-
lated contexts (e.g., college and university). To address this
limitation, we propose a framework to detect and track se-
mantically similar topics using WMD [36]. WMD measures
the dissimilarity between two text documents, leveraging the
power of word embeddings trained on a text corpus using the
Word2Vec model [40]. We use this approach to find topics
that represent a similar broad theme but depict a change
in context in subsequent time steps. Notably, the WMD
between two documents can be computed in a meaningful
way even if the two documents do not have any words in
common. WMD does not consider the order of words, mak-
ing it suitable for tracking the similarity between two sets
of words representing topics.

3. CURRENT STUDY
The objective of this study is to explore the emergent top-
ics and their evolution in undergraduates’ online discussion
forums in the months prior to and after contingency shifts
to fully remote learning due to the COVID-19 pandemic.
Specifically, we aim to address the following questions:

RQ1.a. What are the topics discussed by stu-
dents before and after the pandemic?
RQ1.b. How do these topics connect and evolve
across months?

RQ2: Do these topics represent discussions that
are specific to certain courses or reflect general
discourse across multiple courses?

To address the first research question, we used NLP tech-
niques, specifically topic modeling, to capture the temporal
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Figure 1: Graphical representation of the framework for topic modeling and topic evolution.

characteristics of learner discourse during this critical time
in order to enhance our understanding of the influence of the
pandemic on learning activities and learner discourse in a
formal education setting. To achieve this goal, we introduce
an analytical framework that comprises a CombinedTM [5]
and a contextualized topic modeling (CTM) technique for
extracting coherent themes that emerged in the discussion
forum of the LMS across nine months. We then use Word
Mover’s Distance (WMD) to construct the linkage and tem-
poral nuances of topics across months from October 2019 to
June 2020 in order to build semantically meaningful topic
chains that illustrate topical evolution over time. To address
the second research question, we added a course-centricity
measure to further contextualize whether a topic is specific
to a course or discipline domain or more generic in the dis-
cussion forum.

Figure 2: Frequency of posts in each month from October
2019 to June 2020.

Our current study contributes to the field of learning ana-
lytics by offering an analytic framework that is more inter-
pretable for modeling topics in large-scale discourse data.
The overview of our proposed framework is displayed in
Fig. 1. We aim to extend the current literature by moving
from mining static topics from large-scale student discourse
to a more process-oriented perspective that shows how top-
ics emerge, recur, and evolve over time. This analysis would
allow us to view learner discourse as dynamic rather than
a static picture and uncover relational linkages in the dis-
course.

4. DATA AND PARTICIPANTS
4.1 Participants
Our data were obtained from a large public university in
the United States, which operates on a quarter system. We
retrieved all discussion forum posts in the LMS across all
courses offered in Fall 2019, Winter 2020, and Spring 2020
quarters (a total time span of nine months). We filtered the
dataset to retain posts from a common set of students across
each month (i.e., students who consistently contributed to
the forum discussion). To eliminate individual differences,
we focused on trends and themes of discourse originating
from the same individuals. In addition, we considered posts
that contained less than two words or had a length of fewer
than five characters uninformative and removed them from
the dataset. A total of 32,409 posts created by 449 students
across 636 courses were retrieved, along with the time stamp
of each post and the associated course and academic term.
Given the rapid evolution of the pandemic, we use a month
as the unit of analysis instead of the academic quarter to ob-
tain more granular information about the temporal changes
in student discourse. Fig. 2 shows the frequency of posts
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by month. We observe that term structure impacted the
frequency of messages posted in discussion forums. Conclu-
sion of courses before academic breaks, for example, winter
break (Dec 2019) and summer break (Jun 2020), led to a
lesser engagement in online discussions.

Discussion posts include conversations from 310 female stu-
dents and 139 male students who identified with the fol-
lowing ethnic backgrounds: Asian/Asian American (49.7%),
Hispanic (29.2%), White Non-Hispanic (13.6%), Black
(4.0%), American Indian/Alaskan Native (0.2%), and oth-
ers (3.3%). Overall, 52.5% of students identified as first-
generation college students.

4.2 Pre-processing
To prepare the text for analysis, we pre-processed the data
using Natural Language Toolkit (NLTK) [6] and Gensim
[44], two open-source libraries in Python3. Website links
and email addresses were replaced with “url” and “email” to-
kens, respectively. Contractions were fixed, and irrelevant
and redundant terms such as punctuation, digits, and stop-
words were removed. To retain relevant words for building
topic models, we used the Part-of-Speech Tagger to identify
nouns, verbs, adjectives, and adverbs, which were further
lemmatized using the WordNetLemmatizer from the NLTK
package. Lemmatization retains the base word known as
lemma (e.g., study) from inflected forms of a word (e.g.,
studying, studies, studied).

5. TOPIC DETECTION AND TRACKING
5.1 Topic Detection
Regarding RQ1.a, we first detected the emerging topics in
the student’s discussion forum data. To achieve this, we
trained CombinedTM on the messages posted by students
over each month separately. The quality and interpretabil-
ity of the resulting topics depend on the curated vocabulary
[24]. We constructed the BoW vocabulary by retrieving the
top 10,000 words with maximum TF-IDF (Term Frequency
- Inverse Document Frequency) weights. Sentence-BERT
[45], a modification of the BERT [16] model, was used to ob-
tain meaningful encodings of the messages. To optimize the
number of topics (K) as a hyperparameter for each month,
we ran the model on the corpus of each month with K rang-
ing from 5 to 15 topics heuristically. While having less than
five topics would result in overly generic and less coherent
topics, on the other hand, a large number of topics causes
highly coherent topics with lower topic diversity. Therefore,
to optimize the number of topics, it is necessary to evalu-
ate them on the three metrics used in CombinedTM that
evaluate topic coherence and topic diversity:

1. Normalized pointwise mutual information

2. Word embeddings-based similarity

3. Inversed Rank-Biased Overlap

Normalized pointwise mutual information (NPMI) was used
to measure how related the top-10 words of a topic are to
each other, considering the words’ empirical frequency in the
original corpus. Word embeddings-based similarity refers to
the average pairwise cosine similarity of the word embed-
dings of the top-10 words in a topic, using Word2Vec [40]
word embeddings. The overall average of those values for

all the topics was computed. Inversed Rank-Biased Over-
lap (IRBO) was used to score the diversity of the resulting
topics, and NPMI and Word embeddings-based similarity
were used to measure the average topic coherence. Subse-
quently, we used the soft voting ensemble approach to select
the optimal K corresponding to the model which returned
the highest sum of the normalized values of these metrics.

5.2 Topic Evolution
Previous research on topic tracking uses similarity metrics
such as Kullback-Leibler (KL) divergence, Jaccard Coeffi-
cient, Kendall’s Coefficient, and Cosine similarity between
the probability distribution vectors of two topics. However,
these metrics do not account for the semantic similarity be-
tween words of the same theme (e.g., student and univer-
sity). Hence, in order to measure the semantic and con-
textual similarity between topics, we use the Word Mover’s
Distance (WMD). If there is a connection between two top-
ics in consequent months, we consider that as an evolution
of a topic and call it a ”Topic Chain”. More specifically,
to address RQ1.b, we used the WMD to measure the se-
mantic similarity between two topics. WMD finds an opti-
mal solution to a transportation problem, which determines
the minimum cost to move all words from one document
to another. We trained a Word2Vec model using the skip-
gram algorithm over the discussion posts data with a sliding
window size of five, to obtain a lower-dimensional repre-
sentation (d = 100) of words present in the entire corpus.
Next, we represented each topic as a list of top-30 most fre-
quent words in that topic and computed the WMD between
two topics ϕti and ϕt+1

j for every i, j where i ∈ {0, ...,Kt}
, j ∈ {0, ...,Kt+1} and t, t + 1 represent two consecutive
months. For every topic ϕti in month t, we selected the topic
from month t+1 which had the least WMD from it, thereby
denoting the highest similarity. To keep a record of the con-
nected topics, we created a mapping from ϕti to ϕt+1

j and
saved the corresponding WMD. To avoid multiple topics in
month t being mapped to the same topic in month t+ 1, we
retained only the topic pairs having the least WMD among
them. We created a directed graph connecting nodes (or top-
ics) in consecutive months. Finally, we found all the simple
paths from each root to leaf in this graph using the Net-
workX package [29]. These directed paths are referred to as
“topic chains”. Effectively, we identified the most semanti-
cally similar topic pairs in subsequent months and connected
them to construct topic chains.

5.3 Course-centricity of Topics
As noted above, discussion posts were taken from over 600
different courses. Inevitably, the content of each post can be
heavily influenced by the course. Some discussions may be
prompted by the course instructor or students, which as a re-
sult could impact the discussion forum conversations and the
organic flow of the discussions. Consequently, these course-
specific combined with several related courses could result in
detected topics centered around course-related material. By
contrast, other topics might represent a theme of discussions
that originate from and are present in a broader range of
courses, which makes the topic less dependent on course ma-
terial resulting in more“general” topics. To address RQ2, we
propose a measure of course-centricity to distinguish topics
that are more specific to certain courses from topics that rep-
resent a broader theme that emerged repeatedly across mul-
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Figure 3: Word-clouds of selected topics. The size of words is directly proportional to the topic-term probability, where a larger
size represents higher relevancy to the topic.

tiple courses. We associated the course-centricity of a topic
with the standard deviation of the distribution of message
counts across courses. For each discussion post, we selected
the topic with the highest probability of being assigned as
the main topic of the post. Next, we selected the top ten
courses with the most number of posts in each topic. The
frequencies of the posts corresponding to the top-N(= 10)
most common courses were used to calculate the standard
deviation (σ) of the distribution of posts for each topic. A
lower value of σ denoted a relatively uniform distribution
of courses in a topic, suggesting a topic is more generally
distributed across courses. A higher value of σ denoted a
skewed distribution where very few courses dominate the
discussion, showing that the topic is more “course-centric”.
In addition, we measured the number of messages in each of
the top ten courses for the topic. Topics that were mostly
course-centric would have a disproportionately higher mes-
sage count from one or two courses than from other courses,
while more general topics would have a more even distribu-
tion of message count across the top ten courses.

6. RESULTS AND DISCUSSION
6.1 Topic Detection
The topic modeling resulted in 8-13 topics per month, in-
cluding literature, philosophy, global health, and COVID-

19-related discourse. We also observed that casual discourse
and discussions on academic work remained the most com-
mon topics across all months. This implies that discussion
forum participation includes not only learners’ active knowl-
edge construction that correlates with grades and learning
outcomes, but also social connectedness that might affect
learning experience online. Topics such as immigration and
ethnic diversity, student lived experiences, social effects of
technology and socializing in school revealed a deeper in-
sight into students’ personal views. Moreover, social justice
movements such as the Black Lives Matter movement dur-
ing the spring of 2020 emerged as a novel topic in discussion
and conversation among students. This signals the influence
of contemporary events on learning, and that students are
actively trying to make sense of what is happening in the
world and integrating that reflection into learning. Fig. 3
demonstrates the word clouds of selected topics discussed
below. The topics are inferred by the authors from the dis-
tribution of words and posts representing them. A list of
top-ranked words representing all the identified topics and
their corresponding labels interpreted by the authors are
publicly available1.

1github.com/The-Language-and-Learning-Analytics-Lab
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Figure 4: Degree of course-centricity of topics across nine months. Colored gradient bars represent the number of messages in
each of the top ten courses that contributed to the topic. Green bars represent the standard deviation of messages from the top
ten courses.

6.2 Course-centricity of Topics
In Fig. 4, we demonstrate the course-centricity of topics.
Course-centric topics are represented by fewer variations in
colors in the gradient bars and a greater standard devia-
tion. By contrast, a more uniform distribution of colors
and lower standard deviations such as Socio-cultural De-
viance (T2) and Miscellaneous Discourse (T7) in April 2020
demonstrate that a topic is more generally distributed across
various courses. We note two key findings. First, we found
causal conversations were more generally distributed across
courses while topics such as Global Health (T6) and Social
Inequities (T7) in January 2020 were more course-centric.
Our results suggest a combination of standard deviation and
message count can successfully capture variations in topics’
course-centricity. Second, we observed a decrease in course-
centric topics in the Spring quarter compared to Fall and
Winter quarters, which suggests a shift in students’ conver-
sations as they transitioned to online learning. To empiri-
cally test this shift, we performed a post-hoc Welch’s Two
Sample t-test to compare the standard deviation of Fall and
Winter quarters with that of the Spring quarter. Standard
deviations for the two groups differed significantly (t(5.36)
= p <.001) such that combined, Fall and Winter quarters
had a greater standard deviation (M=.10) than in Spring
quarters (M=.03). Notably, the Spring quarter began a few
weeks after COVID-19 was declared a pandemic and fully
remote learning was implemented. This finding suggests a
general change in the online discussion forum landscape,
from supporting course-centric content discussion prior to
March 2020, to an increased presence of social interactions

and discussion on shared live experiences. This might indi-
cate students seeking opportunities to engage in casual in-
teraction that used to take place in the hallways, walking to
classes, after classes, or instructors’ attempt in facilitating
social presence and creating classroom community as well
as integrating critical reflections between learning material
and contemporary events during remote learning.

6.3 Topic Evolution
Topic chains constructed using WMD illustrate the evolving
and emerging topics (Fig. 5). Our findings reveal two topic
chains (Chains 12-13) that are consistently present through-
out all nine months of the academic year. Some topic chains
are limited to a specific quarter (Chains 1-4) which may re-
flect the classes offered during that quarter. In contrast,
other chains notably stop at (Chains 8-10) or start during
(Chains 4 and 6) the transition to online learning which may
signal the influence of the pandemic on the topics students
discussed. We discuss each of these in turn.

Consistently present, Chain 12 began with Public Health-
related discussions in October 2019. This topic chain subse-
quently linked topics of Health Issues, Healthcare & Social
Inequities, and Healthcare & Government. In March 2020,
this topic evolved into discussions on the Public Health of
China. Notably, this shift occurred at the time COVID-
19 was declared a pandemic. These themes further transi-
tioned to Public Health Inequities and eventually COVID-
19 related discourse in the Spring quarter. Chain 12 also
demonstrates that the topics in earlier months were more
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Figure 5: Topic chains identified using the proposed framework. The heat-map scale denotes the course-centricity of a topic.

course-centric, but starting in April 2020 there was a shift
towards more general discourse regarding public health in-
equities and the COVID-19 pandemic in various courses.
Another long topic chain (Chain 13) represents miscella-
neous messages and casual interactions across all months.
This consistent presence implies that online discussions con-
tained some level of student casual interactions prior to and
at the onset of the pandemic.

Some topic chains either stopped or began during the onset
of the pandemic. For example, Academic writing (Chain
8) and Academic Work (Chain 10) and their respective
subtopics were connected from October 2019 to March 2020.
These chains highlight the various forms of essay and prompt
responses, and reactions to readings or weekly discussion
posts that are often found in online discussion classes. No-
tably, both of these chains contained more “general” top-
ics. We note two possible explanations for the chains’ drop-
off in March 2020. First, this drop-off may suggest that
the courses that prompted these discussions were either no
longer available to students or fewer students signed up for
these courses during the Spring quarter. Second, it is pos-
sible that these discussions surrounding academic work and
writing were still taking place, but outside of online dis-
cussion forums (e.g., virtual groups, breakout rooms on-
line). Similarly, Chain 9, “Life and Philosophy” related

discourse stopped around March 2020. Although most of
the posts under these topics were induced by course-related
prompts, a closer inspection revealed many posts where stu-
dents communicated personal experiences and thoughts with
their peers. The drop-off for more course-centric chains like
Chain 9 could also be due to courses no longer available to
students, or perhaps to fewer discussion-based assignments
in these courses.

Student life and student’s lived experiences were identified
as relatively new topics starting in March 2020 (Chain 6).
Students’ posts included a variety of university-related expe-
riences and major family and life events. A rise in such posts
among students during the switch to a fully online education
system demonstrated an evolved use of discussion forums
to connect with peers and express their thoughts and con-
cerns. These topics were further connected to topics repre-
senting shifts in educational experiences. Students expressed
their struggles in coping with the sudden transition to online
classes and the rapid spread of COVID-19 around the world
which added personal or financial difficulties. Other notable
posts under this topic included activities that helped them
deal with stressful times, their study regime, and new perfor-
mance evaluation strategies. Other prominent topic chains
include Chain 11, “Civil rights” which evolved into related
discussions around sexual assault, law and legal policies as-
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sociated with social media, and social and gender inequali-
ties. Gender inequality also emerged as a topic in Chain 7
and was linked to other social cause issues regarding immi-
gration, cultural and social movements. Social movements
is a diverse topic including terms and events related to fem-
inism, political influence, bias in disseminated information,
and fake news.

6.4 Limitations
Our findings demonstrate a clear influence of the COVID-19
pandemic and online learning activities. However, there are
a few limitations to our study. The unsupervised nature of
topic modeling requires some subjectivity where the authors
create topic labels by interpreting the top-ranked words. Fu-
ture studies should consider blinding the researcher from the
month’s name when viewing top-ranked words to label top-
ics. Although it is a common practice, the topic labeling
could be consequently influenced by the authors’ preconcep-
tions of the impact of the pandemic on students’ discourse.
Moreover, our study does not capture whether a topic is ini-
tiated by students or instructors. Although a topic with high
course-centricity is influenced by the instructor’s prompts
to discuss specific academic topics, in some cases, professors
also direct and facilitate casual interactions (i.e., introduc-
ing themselves, or sharing their experiences during the pan-
demic). Lastly, our findings reflect discourse changes within
asynchronous interactions in online discussions and cannot
infer any discourse that took place in synchronous classroom
settings or in classes that did not utilize discussion forums
for instruction.

6.5 Implications and Future Directions
Large-scale educational data from online discussion forums
is an under-excavated gold mine for understanding learning
behavior. Educational theories such as constructivism em-
phasize the role of social interactions and the construction
of knowledge through experience and reflection. Analyzing
educational discourse can help researchers understand the
process of learners’ sense-making of new concepts, as well as
their attitudes, engagement levels, and experiences.

Extracting meaningful insights from unstructured educa-
tional interactions and discussions requires accurate con-
tent representation and context consideration. Modeling
discourse structure and dynamics pose challenges, such as
identifying key topics, tracking the evolution of ideas, and
capturing the social and emotional dimensions of communi-
cation. To address these challenges, our paper suggests a so-
lution that includes additional LMS features for meaningful
interpretation, and effective NLP methods for capturing the
dynamic of discourse across different domains and contexts.
Specifically, we added LMS features (i.e. message count and
standard deviation) to characterize the course-centricity fea-
ture of topics to strengthen interpretability. With the case of
tracking themes before and after the COVID-19 pandemic,
we prove that CTM and WMD can be effective tools to cap-
ture emergent topics over time.

This framework is a flexible and adaptable tool that can be
adapted to explore other educational research questions in
different contexts to investigate teaching and learning be-
havior in online environments. For instance, future stud-
ies could use this method to examine how discourse evolves

within specific disciplines (e.g., business courses, STEM
courses), potentially for monitoring the consistency of course
discourse space. If an instructor wants to understand how
students’ discourse has changed for a repeatedly offered
foundational course, this analytical framework will also be
effective for revealing the discourse evolution from past to
present to provide insights for the instructor on curriculum
design. Future research might also apply it to other formal
and informal learning contexts, i.e., MOOCs, social media
discussion, and by adding LMS features relevant to self-
regulation, which may provide meaningful interpretations
of the discourse pattern. While our study only focused on
tracking the topics for students who had consistently con-
tributed to the discussion forum, future research may con-
sider how topics evolve across subgroups of students with
different demographic backgrounds and individual charac-
teristics such as learner motivation. Although exploring the
origins of topics is beyond the scope of this paper, it would be
interesting for future research to investigate whether there
are differences between conversations initiated by instruc-
tors versus students.

7. CONCLUSION
We used an NLP-driven topic detection and tracking ap-
proach to detect emergent topics and model the evolution
of various topics in students’ online academic discourse over
time. We demonstrate how this novel NLP technique can be
used to provide meaningful insights on large-scale unstruc-
tured student data from discussion forums effectively. Our
study contributes to the current literature by moving beyond
mining static topics from large-scale student discourse to a
more process-oriented, temporal lens on how topics emerge,
recur and evolve over time. We used contextualized topic
models to identify coherent topics from each month, which
are more interpretable than traditional models that use only
bag-of-words (BoW) features. Some of the identified top-
ics were found to be originating from discussions pertaining
to specific courses, while other topics demonstrated the ex-
pression of personal opinions and beliefs. Using standard
deviation to identify course-centricity, we found that top-
ics posted at the beginning of the pandemic were relatively
more general than those before March 2020. This significant
increase in casual interactions since Spring 2020 indicates a
shift in the discussion forum’s function from predominantly
enabling academic discourse to increasingly facilitating peer
interactions. This evidence supports claims from previous
studies that instructors across disciplines were leveraging
discussion forums to support social interactions and social
learning. The emergent discussion surrounding COVID-19
and other contemporary events in learner discourse suggests
that their impacts on students learning and lived experi-
ence are not mutually exclusive and are exhibited in both
academic and casual discourse. Furthermore, by denoting
topics as a set of top representative words based on topic-
term probability, we computed the Word Mover’s Distance
as a semantic similarity metric between adjacent months’
topics. The most similar topics were connected and topic
chains were constructed to uncover their evolution and iden-
tify newer themes. For researchers and practitioners in the
EDM community, our proposed approach provides a viable
means to characterize topic trends over time in learner dis-
course at different granularity, such as for specific courses
or other online learning contexts. This method might also
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be generalized to other types of educational discourse to
detect and track specific policy impacts or instructional in-
terventions on students’ online discussion activities. Lastly,
although this study focused specifically on the events during
the 2019-2020 academic year, this approach could be further
utilized to understand the temporal dynamics of discussion
data in broader contexts and timeframes, i.e., MOOC dis-
cussions and social media data.
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ABSTRACT
Prediction of student performance in Introductory program-
ming courses can assist struggling students and improve
their persistence. On the other hand, it is important for
the prediction to be transparent for the instructor and stu-
dents to effectively utilize the results of this prediction. Ex-
plainable Machine Learning models can effectively help stu-
dents and instructors gain insights into students’ different
programming behaviors and problem-solving strategies that
can lead to good or poor performance. This study devel-
ops an explainable model that predicts students’ perfor-
mance based on programming assignment submission in-
formation. We extract different data-driven features from
students’ programming submissions and employ a stacked
ensemble model to predict students’ final exam grades. We
use SHAP, a game-theory-based framework, to explain the
model’s predictions to help the stakeholders understand the
impact of different programming behaviors on students’ suc-
cess. Moreover, we analyze the impact of important features
and utilize a combination of descriptive statistics and mix-
ture models to identify different profiles of students based
on their problem-solving patterns to bolster explainability.
The experimental results suggest that our model signifi-
cantly outperforms other Machine Learning models, includ-
ing KNN, SVM, XGBoost, Bagging, Boosting, and Linear
regression. Our explainable and transparent model can help
explain students’ common problem-solving patterns in re-
lationship with their level of expertise resulting in effective
intervention and adaptive support to students.

Keywords
Explainable student modeling, Student programming anal-
ysis, Student programming pattern, Student performance
prediction, Student profiling

1. INTRODUCTION
Introductory programming courses (CS1) have been observ-
ing a constant surge in interest and enrolment of students in

recent years [38]. With this growing interest in Computer
Science, the number of students struggling and dropping
out of courses is also increasing [16, 37, 49]. Automated
prediction systems can help to prevent this by predicting
student performances and enabling instructors to intervene
effectively [20, 46, 52].

Early methods to predict student performances in CS1 ex-
ploited different static approaches based on student starting
data such as age, gender, grades, etc. [1]. However, pre-
dicting student performance statically is challenging as their
behaviors are dynamic that can change with time [37, 45].
More recently, research on performance prediction focused
on data-driven approaches incorporating Machine Learning
(ML) techniques [17, 22, 40, 35]. However, most of these
approaches do not analyze students’ programming behav-
iors focusing instead on intermediate assessment data such
as quiz scores and midterm exam grades. It prevents these
methods from understanding the source of student problems
and generalizing over different CS1 courses. Moreover, many
courses may not even include any interim exams, as in the
case of the dataset used in this study. Moreover, the explain-
ability and transparency of black box ML models are be-
coming as important as high predictive power. An explain-
able model can help instructors and students understand the
predictions and gain more trust. It can enable instructors
to gain insights into students’ problem-solving strategies by
understanding the patterns of different students’ program-
ming behaviors. It can also help in effective intervention to
help struggling students in the learning process. There are
already a few studies that explore explainable performance
prediction models in the field of Education [35, 9]. However,
to the best of our knowledge, no other study has employed
explainable models to analyze student performance based on
students’ programming behaviors without considering exam
or quiz grades.

In this study, we propose an explainable student perfor-
mance prediction model that can predict students’ final exam
grades from their programming assignment submission data.
Predicting final exam grades only from programming as-
signments is a challenging task since the nature of the final
exam can differ from the assignments. We employ a data-
driven feature extraction approach to select features repre-
senting students’ programming behaviors in a CS1 course.
We develop a stacked ensemble regression model to predict
students’ final exam grades. Our stacked ensemble model
has KNN, SVM, and XGBoost as the base models and Lin-

M. Hoq, P. Brusilovsky, and B. Akram. Analysis of an explainable
student performance prediction model in an introductory program-
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ear regression as the meta-model. We compare the perfor-
mance with other baseline techniques, including the indi-
vidual components of our stacked ensemble model: Linear
regression, KNN, SVM, and XGBoost, and other ensemble
techniques such as Bagging and Boosting. The experimen-
tal results suggest that our model significantly outperforms
these baseline techniques. Furthermore, we employ SHAP
[27], a game-theory-based framework, to explain our model’s
predictions based on the importance and impacts of features.
We explain students’ performance predictions to understand
how each feature contributes to the prediction process of
students’ final exam grades at an individual student level
and a global level with all the students. This enables us
to analyze students’ performance predictions based on their
underlying programming behaviors. We also analyze impor-
tant features and utilize a combination of descriptive statis-
tics and mixture modeling to understand student patterns
of behavior. This provides insights for the instructors into
different profiles of students’ learning progressions to make
informed decisions about intervening with struggling stu-
dents and provide adaptive support [4].

The main contributions of this study are as follows:

• Building an explainable stacked ensemble model to
predict the student performance in the final exam us-
ing programming assignment data of students.

• Explaining the predictions of the model at an individ-
ual and a global level of different programming infor-
mation to gain the trust of the stakeholders.

• Analyzing the results of SHAP and important features
of the explainable model to profile students based on
their behavior and gain insight into their problem-
solving strategies and connection to their learning out-
comes.

2. RELATED WORK
In this section, we explore different techniques and studies
done in the field of student performance prediction and the
use of explainable models in programming.

2.1 Student Performance Prediction
Predicting struggling students and their success has been
an important area for researchers in intelligent tutoring sys-
tems. These studies have different goals, i.e., predicting
students’ early success, detecting failing students, detecting
dropouts at an early stage, predicting student performance
in the final exam, etc.

A systematic review of previous research on student per-
formance predictions was conducted in [40]. The review
revealed that most of these studies used features such as
cumulative grade point averages (CGPA) and other assess-
ments (quizzes, midterms, etc.). In [22], an open-source
predictive platform was developed and used in the at-risk
student detection task. The data included demographic and
enrollment information and was classified using ML models
such as SVM and Linear Regression. In a recent study [17],
enrolled students were classified into passing and failing cat-
egories using Decision Tree and SVM from features such as

quizzes and midterm exam scores. Recognition of at-risk
students could be used for early intervention.

Features like weekly assignment scores, midterm exam grades,
etc., were used in [10] to predict failing students in an intro-
ductory programming course. Another study [21] followed
a similar feature set and employed different ML algorithms
to verify their effectiveness in student performance predic-
tion. On event-level analysis, such as predicting students’
success in completing programming exercises, [28] used Re-
cent Temporal Patterns and LSTM. Another study [36] pre-
dicted early dropout of students for online programming
courses. They used features from online platforms, such as
student login times, keystroke latency, correctness, etc., for
the first time. In [35], students’ early performance was pre-
dicted for an introductory programming course from their
midterm exam grade, procrastination time, correctness, the
total number of logical lines in code, copy-paste information,
etc., from an online programming system using XGBoost.

Recently, different Deep Learning frameworks have been no-
ticeably used in students’ success prediction and are increas-
ing. In a recent study [14], an abstract syntax tree (AST)-
based embedding model, SANN, showed effectiveness in cap-
turing information from student programming codes. In [51,
30], abstract syntax tree-based and control flow graph-based
embedding models were used to predict students’ final exam
grades from their programming assignment data. In another
recent study [5], CNN and LSTM networks, along with pro-
gramming code submission metadata, were used to predict
student performance on the final exam in an introductory
programming course.

However, previous studies proved effective in student per-
formance prediction tasks; we identify different challenges
associated with these studies. Static approaches fail to cap-
ture the dynamic behavior of students during their learning
process. Data-driven approaches followed in prior studies
are not generalizable in different programming courses since
they differ in the course outline, and interim exams can vary
from course to course. Moreover, some introductory pro-
gramming courses might not include any interim exam at all,
as the case with the dataset used in this study, where only
programming assignments are available. Furthermore, deep-
learning models are becoming popular with time; however, it
is challenging to achieve good performance with these mod-
els trained on such small classroom-sized datasets [29].

2.2 Explainable Artificial Intelligence (XAI)
XAI helps humans understand a black-box ML model. It
interprets a model’s outcomes and explains the reasons be-
hind decisions. XAI algorithms have been extensively used
in different areas of research as well as in medical, health
care, and clinical data analysis [33, 44, 19], industrial data
analysis [2, 39], smart city solutions [47, 12], etc.

Though XAI is becoming a popular approach to interpret-
ing and explaining ML solutions, its effectiveness is rela-
tively unexplored in CS Education and intelligent tutoring
systems. In [25], a deep learning-based knowledge tracing
model was developed. The model was interpreted using the
layer-wise relevance propagation method. A recent work [43]
incorporated explainable concepts into computational mod-
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els for student modeling tasks in computing education; while
the work has been exploratory, the performance needs to be
further improved for actual deployment. Mu et al. [32]
automatically informed the individualized intervention by
detecting wheel-spinning students, where students try and
repeatedly fail at an educational task based on the num-
ber of attempts. Shapley values were used to explain the
outcomes of the ML models used, including Linear Regres-
sion and XGBoost. In another study [6], university dropout
prediction was made using a fully connected deep neural
network. The features used in this study included univer-
sity program-related data, high school performance-related
data, matura exam (an exam after secondary school) results,
average exam grades, foreign language certificate data, etc.
SHAP was used to explain the model results and explain the
importance of the features. In [34], student demographic in-
formation and clickstream data were used to predict at-risk
students with an explainable model using Lime. The ex-
plainable model ensures that the personalized intervention
should not depend on the demographic data of the students.

In [35], SHAP was used in explaining success prediction from
student data such as midterm exam grade, procrastination
time, correctness, the total number of logical lines in code,
copy-paste information, etc. They used these features to
predict whether a student passes or fails a course. Although
they used programming information, the model made its
predictions primarily based on the grade of the midterm
exam, which was the most important feature. Courses with-
out a first-exam grade cannot be properly assisted using
their approach. Moreover, they set a hard threshold for pass-
ing and failing based on the mean grade of the course, which
is not a real-world scenario as different students may follow
different distributions [38]. Similarly, in [9], LIME was used
to explain ML models to predict student performance from
their course information, student data, and features such as
clickstream and activity information (quizzes, surveys, etc.).

To the best of our knowledge, no previous study has been
done on predicting student success in their final exam from
their programming assignment submission information using
explainable models to help instructors and students under-
stand why someone is struggling or doing better. Therefore,
this study will help in intervention with more transparency
and confidence in ML model outcomes.

3. DATASET
In this study, we use a publicly available dataset 1 collected
from the CodeWorkout platform. CodeWorkout 2 is an
online platform that helps students practice programming
in Java and allows instructors to design learning activities
in their programming courses [11]. CodeWorkout logs stu-
dent programming code submission information associated
with different assignments. These assignments test the stu-
dent’s knowledge of basic programming concepts, such as
data types, arrays, strings, loops, conditional statements,
methods, etc.

The dataset consists of two semesters: Spring 2019 and Fall
2019. The total number of students is 772. Every semester,

1https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
2https://codeworkout.cs.vt.edu

there are 50 programming assignments. Each assignment
submission can get a score in the range of (0, 1). The num-
ber of passing test cases determines the score, and a correct
submission gets a score of 1. A student can submit each as-
signment multiple times. The dataset consists of code sub-
missions for each assignment and other relevant information,
some of them described in Table 1.

Figure 1: Distribution of the final exam grades

The CodeWorkout dataset also includes students’ final exam
grades, scaled between 0 and 1. The final exam grade dis-
tribution is illustrated in Figure 1. It also shows the mean
final exam grade (0.64 with a standard deviation of 0.18)
with a red vertical line. In this study, we try to predict the
final exam grades of the students from their programming
assignments in a course.

4. METHODOLOGY
To predict the final exam grades of students based on their
programming submission data and explain the predictive
model’s predictions, we follow three steps: i) Feature en-
gineering and extracting data-driven features from the pro-
gramming submission data, ii) Developing and employing
regression models to predict the final exam grades, and iii)
Using SHAP to explain the model’s decisions. The overall
architecture of the model is illustrated in Figure 2.

4.1 Feature Engineering
We select several features associated with students’ pro-
gramming submissions, including total programming time
spent (TimeSpent), number of unique assignments attempted
(Valid), number of correct submissions (CorrectSub), num-
ber of incorrect submissions (IncorrectSub), number of un-
compilable submissions (CompileError), total scores in all
submissions (Scores), and total changes in codes (EditDis-
tance). These features are described in detail below. The
values of each feature are normalized to fit the range of 0-1,
and a statistical description of the features is provided in
Table 2.

• TimeSpent: It is calculated using the ServerTime of
each assignment submission. The difference between
the first submission for an assignment and the final
submission is calculated for each assignment. The total
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Table 1: Description of student programming submission-related information in the dataset

Information Description
SubjectID A unique ID for every student

ToolInstances Platform used to evaluate the code: Java 8, CodeWorkout
ServerTime Time stamp for each submission instance

Assignment ID/ Problem ID Unique IDs for all 50 assignments
EventType Flag to understand if a program is compilable or not

Score Score for each submission
CodeStateID ID for every code submission, maps with the code of that submission

CompileMessage Message from the compiler if there is any syntax error

Figure 2: Architecture of the explainable model

Table 2: Statistics of the selected features
Feature Mean (std)

TimeSpent 0.07 (0.09)
Valid 0.93 (0.11)

CorrectSub 0.41 (0.08)
IncorrectSub 0.15 (0.12)
CompileError 0.16 (0.11)

Scores 0.80 (0.13)
EditDistance 0.32 (0.16)

TimeSpent for a student is measured by adding these
time differences for all attempted assignments of that
student. This represents the amount of time a student
has spent on solving the assignments.

• Valid: It counts the number of unique assignments a
student attempted out of all 50 assignments. It could
be a correct submission or an incorrect one.

• CorrectSub: It is the number of correct compilable
submissions out of all the assignments. These submis-
sions pass all the test cases and obtain a score of 1 out
of 1.

• IncorrectSub: It is the count of incorrect submissions
submitted by a student. These are compilable codes
with scores less than 1 and fail some of the test cases.

• CompileError: It is the total number of uncompilable
codes a student submits. These codes usually contain

one or more syntax errors, and test cases cannot be
tested on them. These submissions do not have any
scores.

• Scores: Each assignment can have multiple incorrect
and correct submissions and, thus, multiple scores.
These scores are summed and normalized to have a
single score for each assignment. This feature is the
summation of the normalized scores of all assignments
for a student.

• EditDistance: It is the measure of how much a student
has changed the code in subsequent submissions for as-
signments. It is calculated using the Levenshtein algo-
rithm. Edit distances for all assignments are summed
to get an idea of a student’s code change throughout
the semester.

4.2 Predictor Model for Prediction
In this study, we develop a stacked ensemble regression model
[50] to combine the predictive capabilities of multiple ML
models. It uses a meta-learning approach to harness the
powers of different models and make a final prediction. This
way, the ensemble model can have better predictive power
than any single predictor model individually [48]. As there
are multiple predictor models, stacking uses another model
that learns when to use or trust among the ensemble models.

Stacked ensemble models are different from other ensemble
models, such as bagging or boosting models. Bagging is an
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ensemble model that combines the decision of many decision
trees. Unlike bagging, stacked models are typically different
in stacking (not all decision trees). In boosting, each ensem-
ble model tries to correct the prediction of the prior models.
Unlike boosting, stacking uses another ML model that learns
to combine the predictions of the contributing models. In
this study, bagging and boosting are used as baseline mod-
els.

Therefore, the architecture of a stacked model can be divided
into two model categories:

• Base models (Level 0): Models that are stacked and
fit on the dataset and whose predictions are combined
later.

• Meta model (Level 1): Model that learns how to com-
bine and trust the predictions of the base models.

This study uses KNN, SVM, and XGBoost [15] as the base
models and linear regression as a metamodel to combine the
predictions of the base models. While choosing the base
models, diverse ML models are employed that make dif-
ferent assumptions regarding the prediction task. On the
other hand, the meta-model is typically simpler to provide
a smooth interpretation of the predictions made by the base
models.

The meta-model is trained on the predictions made by the
base models on hold-out data. Hold-out data is a portion of
the dataset held out from the base models during training.
Afterward, these hold-out data are fed to the base models
to get predictions on them. These predictions from the base
models on the hold-out data and the expected outputs pro-
vide the input and output pairs to train the meta-model. To
train the stacked ensemble model properly, we use repeated
K-fold cross-validation with 10 folds and 10 repeats.

4.3 Baseline Models
No-skill: We select the mean final exam grade as our no-skill
baseline model. This naive model predicts the mean of all
the student’s final exam grades with no knowledge of how
to make the prediction.

ML models: We also use different models to compare the
performance of our stacked ensemble model. We choose the
individual baseline models to see the difference in perfor-
mance between our stacked ensemble model and the base-
line models individually. We also use bagging and boosting
to see the difference with other ensemble models. We tune
the parameters of the models individually using a repeated
10-fold cross-validation approach.

• Linear regression
Linear regression is a simple model which assumes a
linear relationship between the inputs and outputs.

• K-Nearest Neighbors
KNN stores all the available data points from the train-
ing data and predicts from k neighbors’ target values
based on a distance function. We select k = 20 and
use Manhattan distance to find the neighborhood for
the best result using repeated 10-fold cross-validation.

• Support Vector Machine
SVM can acknowledge the presence of non-linearity in
data when used in regression tasks. We set the kernel
to rbf and the regularization parameter C to 1 for the
best results.

• Extreme Gradient Boosting
XGBoost is an efficient gradient-boosting-based en-
semble algorithm. It outperforms other ensemble al-
gorithms with its high efficiency and faster nature due
to the parallelization of trees. We set the parameters
max depth = 6, n estimator = 20, and gamma = 1
for the best result.

• Bagging
Bagging is an ensemble model that combines the out-
put of many decision trees. We set n estimator = 10,
and max features = 1 for the best result.

• Boosting
We use a Gradient Boosting regressor to represent boost-
ing. In Boosting, each model tries to minimize the
error of the prior predictor models. We set loss to
squared error, learning rate= 0.1, and n estimators
= 100 for the best result.

4.4 Explainable Artificial Intelligence (XAI) Us-
ing SHAP

ML models are black boxes in nature. Many applications
of ML require explanations of the decisions made by the
models depending on the stakeholders. Explanations of the
decisions are vital parts of working with populations like
students and learners. Such interpretable and explainable
models can provide insights into the effectiveness of stu-
dents’ problem-solving strategies and enable instructors and
advanced learning technologies to provide students with ef-
fective formative feedback. These can also help in gaining
the trust of students and instructors by understanding their
reasonings behind such decisions.

SHapley Additive exPlanation (SHAP) [27] is an adaptive
algorithm based on the Game theory [41]. In this frame-
work, the variability of predictions is split into the features
used in the prediction model. Therefore, the contribution
and importance of each feature behind the predictive model
(global) and individual predictions (local) can be measured
in a model-agnostic way [18].

SHAP calculates Shapley values for each feature for each
instance. These values determine the presence of each co-
variate in the model predictions as a linear combination of
each predictor variable. To calculate the positive or nega-
tive effect of each feature on the predictions, the algorithm
examines the change in each prediction when a feature i ∈ F
is withheld, where F is the set of all features [27]. Thus, the
feature importance of a feature i for a model f is calculated
by the evaluation of the marginal contribution Φi ∈ R for
all the subsets S ⊆ F . According to [26], to satisfy local ac-
curacy, consistency, and missingness properties, Φi (Shapley
values) defined as:

Φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |! [fS∪{i}(xS∪{i})− fS(xS)]
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Where, Φi is the marginal contribution of feature i on the
model’s output fS∪{i}(xS∪{i}).

By the additive property, SHAP approximates each predic-
tion f(x) of the model with the help of f ′(y′) which is a
linear combination of all binary variables y′ ∈ {0, 1}N (N
is the maximum size for the simplified feature vectors) and
the marginal contributions of each feature Φi in such a way
that the sum of all the feature contributions should match
the output of f for a simplified input y′:

f(x) = f ′(y′) = Φ0 +

N∑

i=1

Φi · y′i

Where, Φ0 is the expected prediction without any prior in-
formation, in our case, the average final exam grades of stu-
dents. In a nutshell, Shapley values approximate a model’s
predictions locally for a given variable x (local accuracy).
It tries to ensure that the contribution of a variable is zero
when the variable is zero (missingness). If the contribution
of a variable is higher in the model’s prediction, then the
Shapley value for that variable should also be higher (con-
sistency).

5. RESULTS
In this section, we evaluate the performance of our proposed
stacked ensemble model in students’ final exam grade predic-
tion. Later, we interpret the black-box model by analyzing
the importance and impact direction of each of the features
using SHAP. We further analyze the influence of the most
important features on the final exam grades to categorize
students into different profiles based on their performances.

5.1 Evaluation
We compare our results with the base models, the meta-
model, and other ensemble models individually. Therefore,
we experiment with Linear regression, KNN, SVM, XG-
Boost, Bagging, and Boosting in the same task. We also
use a no-skill model, which predicts the mean final exam
grade. This acts as a naive baseline model without prior
knowledge of the features. All the models are evaluated us-
ing a 10-fold cross-validation approach with ten repeats to
get a stable result.

To compare the performances of these models, we measure
the root-mean-square error (RMSE) of the predicted final
exam grades with respect to the actual final exam grades.
Since RMSE follows the same range (0-1) as our final exam
grades, it can provide insights into how far the predicted
values are from the actual ones. Moreover, it penalizes large
errors. This makes it a suitable metric to evaluate the model
performances since models with a consistent and stable ac-
curacy level are more useful than models with more errors,
and RMSE gives relatively high weight to large errors [51].
We also use R2 along with RMSE as the evaluation metric.
The coefficient of determination (R2) shows how much of
the variation in the dependent variable is accounted for by
the independent variables in a regression model.

Table 3 depicts the performances of the regression mod-
els based on RMSE values and R2 scores. These values

Table 3: Performance comparison of different models

Model RMSE R2

no-skill 0.247 (0.020) -0.01 (0.018)
Linear 0.185 (0.004) 0.38 (0.08)
KNN 0.173 (0.004) 0.37 (0.10)
SVM 0.159 (0.003) 0.51 (0.10)

XGBoost 0.170 (0.005) 0.39 (0.09)
Bagging 0.166 (0.004) 0.44 (0.09)
Boosting 0.161 (0.003) 0.47 (0.08)

Stacked ensemble 0.151 (0.003) 0.55 (0.07)

are calculated by taking the average of the repeated cross-
validation results. The standard deviation of each model
is also calculated and shown in parentheses with the av-
erage RMSE and R2. We can see that all the regression
models outperform the naive baseline model with no skill.
Our stacked ensemble regression model outperforms all other
models with an RMSE of 0.151 and an R2 score of 0.55.
We further investigate the performance of our model sta-
tistically to see if the model’s performance is significantly
different from other models. We use the Wilcoxon-signed
rank test with a significance level of 0.05. The null hypoth-
esis is that the performance of our model is the same as
any other model. The null hypothesis is rejected for all the
baseline models (p-value<0.05). Additionally, we test our
model’s performance using half of the assignments (first 25
out of 50, ordered with assignment ID). The RMSE value is
0.18 (0.005), and the R2 score is 0.41 for our model, which
is also higher than other models while using only half of
the assignments of the course. These results prove that our
model shows statistically significant improvement over the
performances of other models.

5.2 Unfolding the Blackbox Model
To better understand the underlying mechanism behind the
stacked ensemble model’s predictions, we calculate the Shap-
ley values, values that determine the importance and impact
direction of each feature, using the SHAP algorithm. Using
SHAP, we can get the interpretation at an individual level
for a student as well as a global level for all students. It
enables us to understand the model predictions in a trans-
parent way.

5.2.1 Individual Level Explanation
At first, we look at an individual student’s final exam grade
prediction made by the model. Figure 3 shows a force plot
for an individual student whose actual final exam grade is
0.61. f(x) is the model’s prediction which is 0.59. The base
value is 0.64, which is the mean final exam grade. This is the
prediction of the no-skill model if there is no prior knowledge
about the features. The plot also shows the most impor-
tant feature names and their corresponding values for this
prediction. The red-colored features pushed the predicted
final grade higher, and the blue-colored features pushed the
grade lower. The longer the arrow is, the larger the impact
of that feature on the decision. Low EditDistance, Com-
pilerError, and high Valid helped the predicted grade to
be higher, whereas high Scores and TimeSpent pushed the
grade to be lower. We plot the relative importance of fea-
tures in Figure 4 using SHAP to understand the force plot
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Figure 3: Force plot for an individual student

Figure 4: Relative importance of features

more clearly and to comprehend the relative importance of
features. The X-axis represents the relative importance of
the features on the model’s predictions. We can see that
Scores is the most important feature, whereas CorrectSub
has the least importance.

5.2.2 Global Level Explanation
We plot the summary of all the features at a global level
for all students to understand the relationship between fea-
ture values and predicted values in Figure 5. In the sum-
mary plot, the features are ranked by importance. Each
point represents the Shapley value for each feature regard-
ing prediction for a single data point. Overlapping points
are jittered around the Y-axis to get an idea of the distribu-
tion of the Shapley values. Red represents a high value for
that feature, and blue represents a low value. The summary
plot shows that students with high CompileError, low Valid,
high TimeSpent, low EditDistance, and low CorrectSub have
negative Shapley values, which correspond to a higher prob-
ability of performing poorly in the final exam. Therefore,
students with a relatively high number of compiler errors,
low number of attempted assignments, high amount of time
spent on submitting the assignments, low changes or edits
in subsequent submissions, and low number of correct as-
signments have negative Shapley values, which correspond
to a lower final exam grade.

On the other hand, the feature impact of Scores and Incor-
rectSub on students’ final grades are demonstrated as coun-
terintuitive results based on the summary plot. We can see
that some students with lower scores tend to have higher
grades in the final exam, while some students with higher
scores do not do well in the exam. Similarly, some students
with a higher number of incorrect submissions do well in
the final exam, while some students with a lower number of
incorrect submissions achieve poor grades in the exam. We
hypothesize that this observation can be explained by look-
ing more closely at students’ programming behavior, includ-
ing their average edit distance in each submission. Other
prior works have used the edit distance to group students
based on their problem-solving behavior and identify effec-
tive problem-solving patterns based on each group’s perfor-
mance [4, 3]. Thus, we hypothesize that the interaction
between scores, incorrect submissions, and edit distance can
be deterministic of students’ learning. To investigate our hy-
pothesis, we discretized the values for scores and the number
of incorrect submissions features into low and high values us-
ing Gaussian Mixture Modeling (GMM) [38]. GMM can be
used for clustering where probabilistically, each data point
is assumed to be generated from a mixture of a finite num-
ber of Gaussian distributions where the parameters are un-
known. It uses Expectation-Maximization (EM) algorithm
to determine these parameters. Each Gaussian distribution
is specified by its mean and covariance.
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Figure 5: Summary plot showing feature importance with their impacts

We use Gaussian Mixture Modeling to divide each feature
distribution into two components: “component low” and
“component high”. Students belonging to “component low”
has a relatively lower value, and “component high” has rel-
atively higher values for that individual feature. Figure 6
shows the components of the feature Scores where “compo-
nent low” has a mean Scores value of 0.71 and “component
high” has a mean Scores value of 0.87. Similarly, figure 7
shows the components of the feature IncorrectSub, where
“component low” has a mean IncorrectSub value of 0.08, and
“component high” has a mean IncorrectSub value of 0.26.
From the components of each feature obtained from Gaus-
sian Mixture Modeling, we get the students of “component
low” for each feature whose probability of being assigned
to “component low” is higher than that of being assigned
to “component high”. Similarly, we get the students who
belong to “component high” for each feature. After investi-
gating the interactions between these two features, students’
final exam grades, and also taking the impact of edit distance
into account, we identified three main student profiles and
named them with the help of expert CS educators, based
on possible values for the number of incorrect submissions
and their average programming assignment scores [7, 24, 23].
These profiles are demonstrated in Table 4, along with each
profile’s average final grades.

5.3 Student Profiling
As discussed previously, we further analyze the explanations
of the model’s predictions to profile students based on their
learning outcomes and strategies.

5.3.1 Expert or Cheating Students
Students who have a high score and a low number of incor-
rect submissions on average have a mean final exam grade of
0.58. This grade is 0.06 lower than the overall mean grade

Figure 6: Components of feature: Scores

(0.64). We hypothesize that students who submit a low
number of incorrect submissions with a high score on av-
erage are either experts or cheaters cheating from expert
students and not learning enough, and thus, we expect to
see a noticeable difference between the average final grade
for these two sets of students.

To test this hypothesis, we divide these students into ex-
pert and cheating profiles based on their final exam grades
and check the mean grades of these two profiles to deter-
mine whether there is a significant difference between them.
The cheating group has a mean final exam grade of 0.48,
and the expert group has a mean final exam grade of 0.80.
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Table 4: Student profiles based on Scores and IncorrectSub values

Scores IncorrectSub Student Profile Final exam mean (std)
low high Learning 0.72 (0.14)
low low Struggling 0.60 (0.18)
high low Expert 0.80 (0.08)

Cheating 0.48 (0.10)
high high Outlier 0.68 (0.19)

Figure 7: Components of feature: IncorrectSub

Moreover, the grades of these two profiles are statistically
different with a p-value of less than 0.05. We further verify
our hypothesis using Gaussian Mixture Modeling and divid-
ing the final exam grade distribution of this profile into two
components [38] as illustrated in Figure 8. The component
with a high mean grade (0.79) represents the expert group,
and the component with a low mean grade (0.49) represents
the cheating group. This is a clear indication that there is
a significant difference in the competency of both groups.

5.3.2 Learning Students
The second profile of students we investigate are students
with a high number of incorrect submissions and a low score
on average. This group has a mean final exam grade of
0.72, which is 0.08 higher than the total average mean grade.
About 84% of these students have high edit distance on aver-
age. This suggests that students without a solid background
knowledge learn through trial and error by attempting dif-
ferent solutions multiple times.

5.3.3 Struggling Students
Students who have a low number of incorrect submissions
and lower scores on average are identified as struggling stu-
dents. This group has a mean final exam grade of 0.6, which
is 0.04 points lower than the mean grade of all students.
About 89% of these students have low edit distance on av-
erage. The mean EditDistance for this group is 0.2 which
is 0.12 points lower than the average edit distance for all
students. They also have 0.3 points mean for the number

Figure 8: Components of cheating and expert students

of correct submissions which is 0.11 points lower than the
average number of correct submissions.

5.3.4 Outlier
The last group of students is students who have a high num-
ber of incorrect submissions with a high score on average.
This group of students constitutes as low as 10% of the to-
tal dataset and, thus, is not investigated further and is not
included in any particular profiles.

These results suggest that while expert students can get the
desired outcome through a few high-quality attempts, stu-
dents with moderate levels of knowledge and expertise aim
for the desired results through multiple incorrect submis-
sions, attempting new solutions for each submission. On the
lower end of the spectrum, struggling students would not put
any effort into engaging with the activities as demonstrated
through a low number of submissions with a low score on av-
erage. These analytical results explain why features Scores
and IncorrectSub have an atypical effect on the model’s pre-
dictions.

On the whole, our stacked ensemble model can effectively
predict students’ final exam grades using their programming
assignment information. The results from incorporating the
SHAP model can shed light on students’ problem-solving
strategies and the connection between those strategies and
students’ learning outcomes. Utilizing an explainable model
to perform prediction of students’ performance can help in-
structors and advanced learning technologies make informed
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decisions about effective interventions based on students’
progress and problem-solving patterns in a timely manner.

6. DISCUSSION
Introductory programming classes are growing rapidly while
being one of the most challenging subjects for students.
Thus, it is important to build automated approaches that
enable instructors and educators to provide students with
timely pedagogical support. We need to design generaliz-
able and interpretable prediction models that can predict
students’ performance while analyzing their problem-solving
behavior. However, predicting student performance in an in-
troductory programming course, such as predicting the final
exam grades solely based on programming data is a chal-
lenging task, given that the nature of the final exam differs
from hands-on programming assignments. Prior research
has used conventional classroom data such as tests, exams,
and multiple choice grades to predict students’ final exam
grades. On the other hand, including programming features
have been shown to improve the prediction results in com-
puter science courses [35]. While the exam grades can cer-
tainly improve the results, it is not always accessible to the
CSEDM models due to limitations in data collection, such
as data privacy. Furthermore, different introductory pro-
gramming classes might have different outlines and grading
mechanisms, while almost all of them include programming
assignments. Thus, our model can be generalized to any
introductory programming course regardless of its outline
since it merely relies on programming assignment data.

Integrating our approach in a classroom can offer valuable
benefits to both students and instructors. First, the ex-
plainable stacked ensemble model developed in this study
can help identify struggling students by predicting their fi-
nal exam grades based on their programming assignment
data. By identifying struggling students, instructors can
offer targeted interventions and support to help them im-
prove their learning outcomes. Second, the explanations of
the model’s predictions using the SHAP algorithm can help
students and instructors understand the model’s decision-
making process. This understanding can help build trust
in the model’s predictions. Additionally, the study’s inter-
pretation of the SHAP results as profiles that group stu-
dents based on their problem-solving strategy patterns can
provide valuable insights into students’ problem-solving be-
havior and learning outcomes [13, 23]. This information
can help instructors develop personalized teaching strate-
gies that cater to each group’s unique needs, thus enabling
more effective interventions and support [8, 31, 42].

There are a few limitations in this work. First, our dataset
did not allow for early prediction of students’ performance
since students could have attempted the assignments in an
arbitrary order at any point in time. However, we trained
our model with a subset of assignments to test the gener-
alizability of the model in courses where fewer assignments
are available. Our model outperformed other baselines sig-
nificantly with fewer numbers of assignments. Additionally,
the dataset used in this study has potential plagiarism is-
sues. Plagiarism affects the performance of our model be-
cause programming submission information and problem-
solving pattern do not convey the actual information about
the cheating students’ learning. Moreover, the dataset lacks

sufficient contextual information related to the course and
the CodeWorkout implementation. In particular, there is
no information on dropped-out students and students who
missed the final exam. The final exam grades of these stu-
dents are stated as zero (less than 1% of the dataset), which
might affect the performance of a predictive model.

7. CONCLUSION
In this study, we extracted important data-driven features
from students’ programming submissions that can be repre-
sentative of students’ problem-solving behavior and utilized
them to predict students’ performance. Furthermore, we
developed an explainable stacked ensemble model that can
predict students’ final exam grades from their programming
assignment information. Our model could significantly out-
perform baseline models, including Linear regression, KNN,
SVM, XGBoost, Bagging, and Boosting. The predictions
made by our model were explained using the SHAP algo-
rithm that shows the importance and direction of impacts
for each feature with regard to the predictions. We have
provided explanations of the decisions made by the model
at two levels: explanations of the decision for a student at
an individual level and explanations of the overall predic-
tions at a global level. This explanation can help students
and instructors to understand the model’s predictions and
make it trustworthy. We used a combination of descrip-
tive statistical analysis and mixture models to interpret the
SHAP results as profiles that group students based on their
problem-solving strategy patterns. This enables us to gain
insights into students’ problem-solving behavior and connec-
tion to their learning outcomes.

In the future, we intend to utilize our model for early pre-
diction by training it on a dataset where students’ attempts
at assignments follow a specified order. This will also fa-
cilitate analyzing student profiles, programming-solving be-
haviors, and patterns at different stages of the course time.
Moreover, investigating students’ problem-solving strategies
for individual assignments with different difficulties might
help us to understand students’ struggles associated with
different concepts represented by each assignment. In this
study, student profiling was used by discretizing the stu-
dents into two components (low and high) based on each
feature value to analyze the SHAP values where feature im-
pact on the predictions was not straightforward and coun-
terintuitive. Nonetheless, if we consider more than two com-
ponents for each feature for a more complex student body,
more student profiles might emerge in the interpretation pro-
cess based on the feature interactions. We intend to explore
more complex situations and analyze explanations obtained
from SHAP with more granular student profiles in the fu-
ture. Furthermore, we intend to conduct in-depth studies
to detect plagiarism and cheating in students’ programming
codes. This includes strategies for similarity analysis and
anomaly detection. For instance, we can assess the simi-
larity between two codes through program embedding ap-
proaches where the structural information of each program
is captured through vectors. Moreover, we can analyze stu-
dents’ normalized submission rate distributions to identify
odd patterns for a particular assignment to gain insights
into the likelihood of students committing plagiarism over
the course of time.
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ABSTRACT
Predictive student models are increasingly used in learning
environments due to their ability to enhance educational
outcomes and support stakeholders in making informed de-
cisions. However, predictive models can be biased and pro-
duce unfair outcomes, leading to potential discrimination
against some students and possible harmful long-term im-
plications. This has prompted research on fairness metrics
meant to capture and quantify such biases. Nonetheless, so
far, existing fairness metrics used in education are predictive
performance-oriented, focusing on assessing biased outcomes
across groups of students, without considering the behaviors
of the models nor the severity of the biases in the outcomes.
Therefore, we propose a novel metric, the Model Absolute
Density Distance (MADD), to analyze models’ discrimina-
tory behaviors independently from their predictive perfor-
mance. We also provide a complementary visualization-
based analysis to enable fine-grained human assessment of
how the models discriminate between groups of students.
We evaluate our approach on the common task of predict-
ing student success in online courses, using several com-
mon predictive classification models on an open educational
dataset. We also compare our metric to the only predic-
tive performance-oriented fairness metric developed in edu-
cation, ABROCA. Results on this dataset show that: (1) fair
predictive performance does not guarantee fair models’ be-
haviors and thus fair outcomes, (2) there is no direct rela-
tionship between data bias and predictive performance bias
nor discriminatory behaviors bias, and (3) trained on the
same data, models exhibit different discriminatory behav-
iors, according to different sensitive features too. We thus
recommend using the MADD on models that show satisfying
predictive performance, to gain a finer-grained understand-
ing on how they behave and regarding who and to refine
models selection and their usage. Altogether, this work con-

tributes to advancing the research on fair student models
in education. Source code and data are in open access at
https://github.com/melinaverger/MADD.

Keywords
fairness metric, classification, student modeling, models’ be-
haviors, sensitive features

1. INTRODUCTION
Over the past decade, extensive research has focused on pre-
dictive student modeling for educational applications. The
systematic literature review of Hellas et al. [15] has iden-
tified no less than 357 relevant papers on the matter pub-
lished between 2010 and mid-2018. One of the most popu-
lar modeling technique in these works are machine learning
(ML) classifiers, as many important predictive tasks in edu-
cation can be framed as binary classification problems, e.g.
to predict dropout, course completion, university admission,
scholarship awarding. These classification models have thus
gained widespread adoption, and the multiple stakeholders
involved in education have recognized their potential to im-
prove student learning outcomes and experience [29, 16].

However, in recent years, there have been concerns about the
fairness of the models (also called algorithmic fairness [3])
used in education [3, 20, 11, 33]. This stems from a more
general trend of research in ML and Artificial Intelligence
(AI), where a large body of research has shown that classi-
fiers, and AI models in general, can produce biased and un-
fair outcomes, e.g. [27, 5, 4, 23, 10]. This has led to increased
public awareness about the potential harms of AI predic-
tive models and the enforcement of stricter regulations1. In
education too, recent studies have found that classification-
based student models can be biased against certain groups
of students, which could in turn significantly hinder their
learning experience and academic achievements [3, 20, 33,
14, 17, 25].

1e.g. General Data Protection Regulation (2016) at Eu-
ropean level, California Consumer Privacy Act (2018) at
the United-States level, Principles on Artificial Intelligence
(2019) from OECD (Organization for Economic Coopera-
tion and Development) at the international level, and more
specifically the upcoming European AI Act [32].

M. Verger, S. Lallé, F. Bouchet, and V. Luengo. Is your model
”madd”? a novel metric to evaluate algorithmic fairness for predictive
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To unveil, measure and mitigate algorithmic unfairness, re-
cent literature in AI has seen a proliferation of fairness met-
rics [35, 7]. Although many types of metrics exist (see Sec-
tion 2), some of them require extensive prior knowledge and
in practice the most common fairness metrics used in AI
are statistical [35]. Statistical metrics aim at quantifying
the differences in performance of a set of classification mod-
els across different groups of interest, with the assumption
that fair classifiers should achieve similar performance across
groups [7]. This is especially meaningful when some of the
groups are known to be vulnerable to unfair model predic-
tions. For instance, students with disability might be un-
fairly classified as at-risk of dropping out of an online course
because the features used to train the classifiers did not cap-
ture well the different way they engage with the learning ma-
terial [13] – when they can interact at all, since many K-12
material or educational technologies remain inaccessible [31,
6]. Hovewer, the pitfall of the existing statistical metrics is
that they are all predictive performance-oriented, meaning
that they solely consider the predictive performance of the
classification model across predefined groups, disregarding
that two classifiers with equal predictive performance can
exhibit very different, and possibly unfair, behaviors. In par-
ticular, a classifier could produce similar error rates across
two groups, but the actual errors made could be substan-
tially more harmful to one of the group than the other.

In this paper, we thus propose a new statistical metric,
the Model Absolute Density Distance (MADD), to analyze
a model’s discriminatory behaviors independently from its
predictive performance. We also propose a complementary
visualization-based analysis, which allows to inspect and
qualify the models’ discriminatory behaviors uncovered by
the MADD. Altogether, this makes it possible to not only
quantify, but also understand in a fine-grained way whether
and how a given classifier may behave differently between
the groups. As a case study, we apply our approach on
the common task of predicting student success to a course,
on open data for the sake of replication and on four com-
mon predictive classification models for the sake of gener-
alization. We also compare our metric to ABROCA (Abso-
lute Between-ROC Area), the only predictive performance-
oriented metric developed in education [14] to the best of
our knowledge. This case study shows that the MADD can
successfully capture fine-grained models’ discriminatory be-
haviors.

The remainder of this paper is organized as follows. Sec-
tion 2 reports on related work on fairness metrics and their
usage in education. Section 3 presents the MADD metric
and the visualization-based analysis we propose to inspect
and characterize models’ discriminatory behaviors. Section 4
describes the experimental setup with which we applied our
proposed approach in order to demonstrate its benefits. Sec-
tion 5 presents our results and our comparison with ABROCA.
In Section 6, we discuss more generally what our approach
allows to unveil, the strengths and limitations it currently
has as well as some practical guidelines, before concluding
in Section 7 with future work.

2. RELATED WORK
Several fairness metrics have been proposed in AI for clas-
sification models. These metrics mostly fall into three cate-
gories: counterfactual (or causality-based), similarity-based
(or individual), and statistical (or group) [35]. The first two
categories, counterfactual and similarity-based, are seldom
used in practice because they require extensive prior knowl-
edge. More precisely, counterfactual metrics require building
a directed acyclic causal graph with the nodes representing
the features of an applicant and the edges representing rela-
tionships between the features [35]. Generating such a causal
graph is typically not feasible without extensive studies to
formally identify these relations. Similarity-based metrics
require defining a priori a distance metric to measure how
“similar” two individuals are, as well as to know from which
value the models’ results are considered “dissimilar” enough
for these two individuals to be pointed out as unfairness. In
contrast, statistical metrics, the category into which MADD
falls, are easier to implement and more popular, as they
solely require to identify a priori the groups of persons who
might suffer from unfair classifications. As noted in the in-
troduction, these metrics have so far sought to quantify dif-
ferences in classification performance across the groups, and
thus can be considered predictive performance-oriented only.
However, a classifier that has similar error rates across two
groups might actually produce errors that are harmless to
a group but very harmful to the other, an aspect that is
not quantified by existing statistical metrics. In this paper,
we focus on the new MADD metric meant to assess unfair
behaviors of classifiers, independently from their predictive
performance. We recommend using it as a complement to
a predictive performance analysis, rather than using predic-
tive performance-oriented fairness metrics only, in order to
gain a more refined and comprehensive understanding of the
classifiers fairness.

In education, fairness studies are more recent and sparse
(see overview in [3, 20]), and only a handful of them have
focused on the fairness of classification models used in this
context [14, 17, 18, 30, 25]. In Gardner et al. [14], the
authors propose a new predictive performance-oriented fair-
ness metric based on the comparison of the Areas Under the
Curve (AUC) of a given predictive model for different groups
of students. They used their metric to assess gender-based
(male vs. female) differences in classification performance of
MOOC dropout models, showing that ABROCA can cap-
ture unfair classification performance related to the gender
imbalance in the data. ABROCA was also used in other
educational studies, to evaluate the fairness across different
sociodemographic groups of classifiers meant to predict col-
lege graduation [18], and categorize students’ educational
forum posts [30]. The other fairness studies in education
have used more common statistical metrics in AI, such as
group fairness, equalized odds, equal opportunity, true pos-
itive rate and false positive rate between groups, to pre-
dict course completion [26], at-risk students [17], and college
grades and success [19, 36, 25]. Similarly to ABROCA, these
metrics are predictive performance-oriented. In this paper,
we contribute to this line of fairness work in education by
investigating the possibility and value of a fairness metric
that accounts for the behaviors of the classifiers.

92



3. AN ALGORITHMIC FAIRNESS ANALY-
SIS APPROACH

3.1 Definition of the MADD metric
We introduce a novel metric, the Model Absolute Density
Distance (MADD), which is based on measuring algorith-
mic fairness via models’ behavior differences between two
groups, instead of via models’ predictive performance. It is
worth noting that this focus on the models’ behaviors en-
ables us to not only quantify algorithmic fairness, but also
gain a deeper understanding of how the models discrimi-
nate via graphical representations of the MADD (see next
subsection 3.2).

We present the MADD under the scope of this study where
we consider binary sensitive features and binary classifiers
that output probability estimates (or confidence scores) as-
sociated to their predictions.

Assume a modelM, trained on a dataset {X,S, Y }ni=1 where
S are the binary sensitive features, X all the other features
characterizing the students, Y ∈ {0, 1} the binary target
variable, and n the number of samples. {X,S}ni=1 repre-
sents all the features of the prediction task. More precisely,
S = (sai )ni=1 where a is the index of the considered sensi-
tive feature and sai ∈ {0, 1}. Indeed, if a student (xi, s

a
i )

belongs to any group named G0 of the sensitive feature a,
then sai = 0, and idem sai = 1 if (xi, s

a
i ) belongs to the

other group named G1 of the same sensitive feature a. Note
that a sample (xi, s

a
i ) describes a unique student in a group,

with the groups G0 and G1 being mutually exclusive (i.e. a
student can only belongs to one of these two groups). Also,
none of these groups is considered as a baseline or privileged
group here.

M aims at minimizing some loss function L(Y, Ŷ ) with its

predictions Ŷ to estimate or predict Y . M should assign to
each Ŷi a predicted probability (or a confidence score) that a

given sample (xi, s
a
i ) will be predicted as Ŷi = 1. This proba-

bility or score is noted p̂(xi, s
a
i ) = P(Y = 1|Xi = xi, S = sai ).

We introduce a parameter e that is the probability sampling
step of p̂ values between 0 and 1. In other words, p̂ values are
rounded to the nearest e (e.g. p̂(xi, s

a
i ) = 0.09 if e = 0.01

and the same p̂(xi, s
a
i ) = 0.1 if e = 0.1 for instance). M

predicts Ŷi = 1 if and only if p̂(xi, s
a
i ) ≥ t where t is a

probability threshold, and Ŷi = 0 otherwise.

We define two unidimensional vectors Da
G0

and Da
G1

as what
we call in short the density vectors of the respective groups
G0 and G1 of the sensitive feature a. They actually con-
tain all the density values associated to each p̂(xi, s

a
i ) value

(rounded to the nearest e) of group G0 or group G1. In
particular, Da

G0
= (daG0,k

)mk=0 where each daG0,k
is the den-

sity of p̂(xi, s
a
i ) = k × e value, that is to say the frequency

that the model M gives p̂(xi, s
a
i ) = k × e divided by the

sum of frequency of all p̂ values. m is equal to the total
number of distinct p̂ values and is related to e by the follow-
ing: m = 1/e + 1. The advantage of the introduction of e
could be seen here: having discretized the p̂ values enables
us to have the two density vectors Da

G0
and Da

G1
of the same

length so that they are comparable on the probability space
and independent from the model M’s behaviors.

We now define the MADD as follows:

MADD(Da
G0
, Da

G1
) =

m∑

k=0

|daG0,k − d
a
G1,k| (1)

The MADD satisfies the necessary properties of a metric:
reflexivity, non-negativity, commutativity, and triangle in-
equality [9] (see the proofs in Appendix A). Moreover:

∀a, 0 ≤ MADD(Da
G0
, Da

G1
) ≤ 2 (2)

The closer the MADD is to 0, the fairer the outcome of the
model is regarding the two groups. Indeed, if the model
produces the same probability outcomes for both groups,
then Da

G0
= Da

G1
and MADD(Da

G0
, Da

G0
) = 0. Conversely,

in the most unfair case, where the model produces totally
distinct probability outcomes for both groups, the MADD
is equal to 2. An example of such a situation is when
∃kG0 , d

a
G0,kG0

= 1 and ∀k ∈ [0,m], k ̸= kG0 , d
a
G0,k

= 0, and

∃kG1 ̸= kG0 , d
a
G1,kG1

= 1 and ∀k ∈ [0,m], k ̸= kG1 , d
a
G1,k

= 0.

In that case, Equation 1 becomes:

MADD(Da
G0
, Da

G1
) = |daG0,kG0

|+ |daG1,kG1
| = (1 + 1) = 2

(3)

3.2 Visualization-based analysis of models’ dis-
criminatory behaviors

We introduce a visualization-based analysis of the models’
discriminatory behaviors that complements our fairness anal-
ysis approach. This analysis is based on graphical interpre-
tations of the MADD. Let us plot in Figures 1a and 1b the
density histograms associated with each density vector Da

G0

and Da
G1

. These histograms represent the distributions of
the p̂ values for the group G0 and the group G1 of a sensitive
feature a. The number and consequently the width of the
intervals depend on the probability sampling step e.

However, these histograms are not easily interpretable be-
cause of the numerous variations of the discrete values. We
solve this issue by applying a smoothing by kernel density
estimation (KDE) with Gaussian kernels, as shown in Fig-
ure 1c. The smoothing parameter, also called bandwidth
parameter, is determined by the Scott’s rule, an automatic
bandwidth selection method2. This smoothing transforms
the discrete probability distribution (whose density values
cannot exceed 1 in the y-axis as they are related to discrete
random variables) into a continuous approximation of the
associated probability density function (PDF), which can in
turn take values greater than 1.

Therefore, a visual approximation of the MADD corresponds
to the red area in Figure 1d. Indeed, as the MADD uses the
absolute density distances point-by-point between the two
density vectors, the metric can be visually approximated
by the area in-between the two curves, considering that the
graph shows continuous density instead of the true discrete
values used in the MADD calculation. Conversely, the green
area, which is the intersection of the smoothed representa-
tions of the two density vectors, illustrates the area where
the model M produces the same predicted probabilities for
both groups up to a certain approximated density. We call
this area the fair zone.
2See documentation of scipy.stats.gaussian_kde.

93



(a) (b) (c) (d)

Figure 1: Visual representation of the MADD. Histograms of predicted probabilities for group G0 (a) and group G1 (b).
Smoothing of these histograms (c). Approximation of the MADD in the red zone (d) vs. the fair zone in green.

(a) Unequal treatment (b) Stereotypical judgement

Figure 2: Two models’ discriminatory behaviors. The dot-
ted lines are the respective means of the two density vectors.

Thanks to this graphical representation approximating the
MADD, we are able to distinguish two model’s discrimina-
tory behaviors: unequal treatment (Figure 2a), and stereo-
typical judgement (Figure 2b). Unequal treatment behavior
can be summarized as follows: “how much the model fa-
vor or penalize individuals based on them belonging to each
group?” As displayed in Figure 2a, we can identify which
group get lower or higher predicted probabilities on aver-
age, allowing us to understand which group the model tends
to favor (the highest mean, here the group G1) or to pe-
nalize (the lowest mean, here the group G0). It is worth
noticing that the means are not perfectly aligned with the
peaks of the distributions because they are calculated from
the density vectors, without the smoothing. The second dis-
criminatory behavior, stereotypical judgement, can be sum-
marized as follows: “how much the model makes repetitive
and invariant “judgement” about the individuals based on
them belonging to a group?” For instance in Figure 2b, the
model clearly tends to give to many persons in the group
G1 the same predicted probabilities. These analyses cannot
be performed with existing predictive performance-oriented
fairness metrics, as the model could have the same accuracy
for both groups regardless of its underlying effective predic-
tions, either in terms of distributions or in terms of density
differences.

4. EXPERIMENTAL SETTING
We apply our approach on the common task of predicting
student success to a course, and we present in this section
(1) the data, (2) the models, and (3) the setting parameters
we used in our experiments. This case study is designed to
further investigate our proposed approach, and to show how
one can use it.

4.1 Data
4.1.1 Dataset presentation

We used real-world anonymized data from the Open Uni-
versity Learning Analytics Dataset (OULAD) [22]. The
Open University is a distance learning university from the
United Kingdom, offering higher education courses which
can be taken as standalone courses or as part of a univer-
sity program with no previous qualifications required. The
dataset contains both student demographic data and inter-
action data with the university’s virtual learning environ-
ment (VLE). The students were enrolled in at least one of
the three courses in Social Sciences or one of the four Science,
Technology, Engineering and Mathematics (STEM) courses
between 2013 and 2014. The dataset contains 32,593 sam-
ples including 28,785 unique students.

The choice of this dataset was motivated by several reasons.
First, the OULAD is one of the most comprehensive and
benchmark datasets in the learning analytics domain to as-
sess the performance of students in a VLE [1]. In addition,
it is an open dataset that answers the call to the community
for the development of new approaches on open datasets
[15]. Then, it also answers another call from [15] for replica-
tion in multiple contexts such as several courses with diverse
populations, as provided in the OULAD. Moreover, as it is
commonly the case with distance learning universities, the
students have a large variety of profiles [8] (including on
average more women than men and a wide age range [2]),
and these information are available in the dataset, making
it particularly relevant for studying the impact of demo-
graphic features in terms of fairness. Finally, the data was
collected in compliance with The Open University require-
ments regarding ethics and privacy, including consent and
anonymization.

4.1.2 Data preprocessing
We used the features presented in Table 1. The sum_click

feature was the only one that was not immediately avail-
able in the original dataset and was computed from inner
joints and aggregation on the original data. Also, we re-
moved samples where the value of the poverty feature was
missing (4% of the data samples) and when the students
withdrew from the courses (24% of the data samples). This
left us with 19,964 samples of distinct students, whose values
were scaled between 0 and 1 for every feature via normal-
ization. We indeed did not apply standardization to keep
the original data distributions and analyze the models’ be-
haviors accordingly. The target variable (course outcome)
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Table 1: Features used from the OULAD dataset [22].

Name Feature type Description
gender binary the students’ gender
age ordinal the interval of the students’ age
disability binary indicates whether the students have declared a disability
highest_education ordinal the highest student education level on entry to the course

poverty3 ordinal
specifies the Index of Multiple Deprivation [22] band of the place
where the students lived during the course

num_of_prev_attempts numerical the number of times the students have attempted the course
studied_credits numerical the total number of credits for the course the students are currently studying
sum_click numerical the total number of times the students interacted with the material of the course

Figure 3: Mutual information (MI) scores.

was coded as “Pass” or “Fail” (1 or 0 respectively). Plus,
students who got a “Distinction” outcome were also coded
as 1 (“Pass”), as we target binary classification for this case
study.

In our study, we considered three sensitive features: gender,
poverty, and disability. Although other sensitive features
could have been relevant, our main focus here is in inves-
tigating our proposed method itself. Therefore, one may
choose different sensitive features according to their pur-
pose (for instance including age as well, as in [34]), and one
would be able to conduct the same fairness analysis process.
Due to our method dealing with binary features as sensitive
features, we transformed poverty into a binary feature by
setting a 50% threshold of deprivation index [22], coding as
0 those below the 50% threshold (i.e. less deprived) and as
1 those above (i.e. more deprived).

We did not apply any data balancing techniques nor unfair-
ness mitigation preprocessing, still to keep the original data
distributions. However, our approach does not prevent the
use of such preprocessing.

4.1.3 Data analyses and course selection
We explored the correlations and imbalances of the sensitive
features across the different courses in the dataset to identify
those which were relevant for analysing algorithmic fairness.
We thus computed the mutual information (MI) between
all the features and the three sensitive ones, whose respec-
tive results are distinguished by a different color as shown

3Named as imd_band in the original data.

in Figure 3. Mutual information is particularly relevant for
non-linear relationships between features. Figure 3 shows
that the course “BBB” followed by the course “FFF” are
the most correlated with the gender feature, with the over-
all highest MI scores. Therefore, the Social Sciences course
coded as “BBB” and the STEM course coded as “FFF”, two
different student populations, were good candidates for ex-
amining the impact of gender bias on the predictive mod-
els fairness. In addition, both courses presented very high
imbalances in terms of disability (respectively 91.2-8.8%
and 91.7-8.3% for 0-1 groups in courses “BBB” and “FFF”)
and gender (respectively 88.4-11.6% and 17.8-82.2% for 0-1
groups in courses “BBB” and “FFF”), and still some imbal-
ance for poverty (respectively 42.3-57.7% and 46.9-53.1%
for 0-1 groups in courses “BBB” and “FFF”). Based on these
preliminary unfairness expectations derived from the skews
in the data, it is interesting to analyze whether and how the
models will suffer from these biases in both courses. These
two courses are thus excellent testbeds for testing our ap-
proach.

4.2 Classification Models
To show that our fairness analysis approach can handle sev-
eral types of classification models, we chose models either
based on regression, distance, trees, or probabilities. More
precisely, we chose a logistic regression classifier (LR), a k-
nearest neighbors classifier (KN), a decision tree classifier
(DT), and a naive bayes classifier (NB).

We chose these particular models for the following reasons.
Firstly, they are widely used in education, and specially with
the OULAD [21, 1]. Models based on vectors (e.g. support
vector machines), also commonly used, were not selected
as they do not outcome probability estimates (or confidence
scores) on which to run our fairness analysis. Secondly, while
our approach can be generalized to other models with proba-
bility estimates (or confidence scores) such as random forest
or neural networks, we favored white boxes and explainabil-
ity over finding the best modeling with fine-tuning. Thirdly,
predicting students’ success with the data in the OULAD
is a rather low abstraction task due to the small amount
of features and variance in the data, for which using com-
plex predictive models would not lead to better performance
and could even overfit the data. Finally, the selected mod-
els are easy to implement for most use cases, which makes
them universally good candidates for predictive modeling in
general.
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To fit the models, we split the data into a train and a test
set using a 70-30% split ratio in a stratified way, meaning
that we kept the same proportion of students who passed
and failed in both the train and the test sets. The result-
ing accuracies of the models were above the baseline (70%)
and up to 93%, except for the NB (62%) which instead pre-
sented interesting behaviors with the MADD analyses and
was worth keeping it (see Section 5). It has to be noted that,
contrary to most ML studies, achieving the best predictive
performance was not our focus here, since the purpose of
our experiments is rather to analyze the fairness of diverse
models with the MADD metric. Then, we used the models’
outcomes on the test set to compute the MADD metric and
generate the visualizations.

4.3 Fairness Parameters
For our study, we set e to 0.01 (i.e. m = 101), and t, the
probability classification threshold, to 0.5. For e, 0.01 corre-
sponds to a variation of the probability of success or failure
of 1%, which we deem a sufficient level of probability sam-
pling precision, considering on the one hand that probability
variations below 1% are not significant enough in the prob-
lem, and on the other hand that higher values of e (up to 0.1)
did not alter the MADD results. Regarding t, the success
prediction is generally defined by having an average score
above 50% and thus we chose t with respect to the problem
rather than optimizing it for model performance. The odds
of positive or negative predictions are thus balanced and the
threshold is the same for each individual.

5. RESULTS
In the following, we show in subsection 5.1 how the MADD
and its visualization-based analysis can help unveil unex-
pected results based on (1) the respective importance of
each sensitive feature in algorithmic unfairness, (2) the mod-
els intrinsic unfairness, and (3) the nature of the unfairness
associated with the predictions made by the model. Then,
we show in subsection 5.2 how our results differ from and
complement what can be provided by ABROCA, a state-
of-the-art predictive performance-oriented fairness metric.
Both subsections 5.1 and 5.2 are concluded by a summary
of the obtained results.

5.1 Fairness Analysis with MADD
In the parts 5.1.1 and 5.1.2, we examine via Tables 2 and 3
the MADD results reported for the two courses. We high-
light in bold the best MADD per column, and with an aster-
isk (*) the best MADD per row. In this way, the MADD of
the fairest model for each sensitive feature is in bold, whereas
the MADD of the fairest sensitive feature for each classifier
is marked with a *. As examples, in Table 2 the DT is the
fairest model regarding the poverty feature (bold), and in
Table 3 the disability feature is the fairest for the KN (*).
For the part 5.1.3, we base our visual analyses and identi-
fication of discriminatory behaviors explained in subsection
3.2 on Figures 4 and 5.

5.1.1 Sensitive features analysis

Course “BBB” (Social Sciences). Table 2 reveals that
three models out of four (LR, KN, and DT) are the fairest for
the disability sensitive feature. Therefore, two interesting

observations can be made. First, it is contrary to what we
would expect since disability was the most imbalanced
(91.2-8.8% for 0-1 groups) sensitive feature in the training
data (see Section 4.1.3). Second, the gender feature was
particularly expected to be highly sensitive due to its high
correlation with the target in this course and its imbalance,
but it actually has the best MADD on average (1.02).

Course “FFF” (STEM). Similarly to the above results for
the course “BBB”, we can notice that the data skews are not
necessarily reflected in the MADDs. In the training data,
the disability sensitive feature was highly imbalanced, and
the poverty feature was quite balanced. Nonetheless, for
half of the models (see Table 3), both disability and pover-

ty are the two sensitive features with regard to which the
models are the fairest. On the other hand, in line with the
gender skew and correlation shown in Section 4.1.3, gender
has the worst MADD results in average, more than dis-

ability, although the difference is not substantial.

5.1.2 Model fairness analysis

Course “BBB” (Social Sciences). Now focusing on the
fairness of the models, DT appears in Table 2 to be the
fairest, with an average MADD of 0.73 across all the sensi-
tive features. DT is indeed the fairest for disability and
poverty and the second best for gender. On the contrary,
LR is the least fair, with the highest results for each senstive
feature and an average of 1.71, with a maximum value of 2.

Course “FFF” (STEM). NB and DT obtain the best
MADD averages across all three sensitive features (0.64 and
0.65 respectively). Therefore, there is no clear winner for
this course as they behave differently according to differ-
ent sensitive features: NB has better results for gender and
poverty but a higher MADD for disability, whereas DT is
more balanced across the three sensitive features. However,
we remind that NB performed below the accuracy baseline
and thus DT would overall be a better candidate.

Table 2: MADD results for the course “BBB”.

Model
Sensitive features

gender poverty disability Average

MADD

LR 1.72 1.85 1.57* 1.71
KN 1.13 1.12 0.93* 1.06
DT 0.69 0.85 0.65* 0.73
NB 0.52* 0.9 1.37 0.93

Average 1.02 1.18 1.13

Table 3: MADD results for the course “FFF”.

Model
Sensitive features

gender poverty disability Average

MADD

LR 1.18 1.06* 1.12 1.12
KN 1.06 0.93 0.78* 0.92
DT 0.76 0.65 0.55* 0.65
NB 0.56 0.47* 0.90 0.64

Average 0.89 0.78 0.84
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Figure 4: Models’ behaviors in course “BBB”. Note that for
these graphs e was set to 0.1 for better visualization of the
bars, but e was actually equal to 0.01 for computation, as
said in subsection 4.3.

5.1.3 Visualization-based analysis

Course “BBB” (Social Sciences). We examine in Fig-
ure 4 the models’ behaviors regarding the most sensitive
feature, namely poverty in this course, as it has the worst
MADD on average (1.18). We see in the subfigures, through
an offset of the distribution mean to the left for the group
0, that three models out of four (LR, KN, and DT) have
learned unequal treatment against those in better financial
conditions (group 0). Among them, KN and DT present the
highest stereotypical results reduced to only few probabil-
ity values, which illustrates well their inner workings. Con-
versely, NB produces the least discriminating results with
the closest means for the two groups. Its behavior is all
the more interesting since it shows that having poor predic-
tive performance is not necessarily interfering with behaving
fairly regarding two groups of the most sensitive feature. It
is precisely because it does not discriminate against any fea-
tures, whether they were sensitive or not, that it has poor
accuracy.

Course “FFF” (STEM). Likewise, we examine in Figure
5 the models’ behaviors for the most sensitive feature in this
course, gender, with the worst MADD average of 0.89. All
models but NB exhibit unequal treatment against group 0,
here the women. Similarly to the previous results, we can
again note the highly stereotypical behaviors of KN and DT,
and the relative fairness of the NB model.

5.1.4 Implications for the MADD
Following the double reading of the tables, feature-wise or
model-wise, as well as our visual analyses, we can make two

Figure 5: Models’ behaviors in course “FFF”. Note that for
these graphs e was set to 0.1 for better visualization of the
bars, but e was actually equal to 0.01 for computation, as
said in subsection 4.3.

important observations regarding the insights provided by
the MADD.

Firstly, there is no direct relationships between biases in the
data (imbalanced representations, high correlations) and the
discriminatory behaviors learned by the models. We even
observe opposite conclusions (specially for the course “BBB”
in part 5.1.1).

Secondly, trained on the same data, the models exhibit very
different discriminatory behaviors (see parts 5.1.2 and 5.1.3),
both regarding different sensitive features, and different sever-
ity and nature of their algorithmic unfairness. This was also
shown by our visual analysis, which allowed finer-grained
interpretations of the discriminatory behaviors.

5.2 Comparison with ABROCA
We now aim to compare the MADD with the ABROCA
predictive performance-oriented fairness metric [14]. The
ABROCA results (computed with the source code from [12])
are displayed in Tables 4 and 5, and an illustrated example
for the course “BBB” is given through the Figures 6 and 7.

5.2.1 Sensitive features analysis

Course “BBB” (Social Sciences). Let us first focus on
the poverty feature which has the worst MADD average
(1.18 from Table 2). In particular, in part 5.1.1, poverty

was the feature with which LR obtained the worst MADD
(1.85 from Table 2), which was also the worst MADD overall.
Indeed, in Figure 6 it can be seen that LR has the smallest
intersection area compared to the other models. However,
in Figure 7 and Table 4 we see that LR has one of the best
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ABROCA (0.03) with minimal area between the curves of
the respective groups. We found similar opposite results be-
tween MADD and ABROCA for gender. Thus, poverty

and gender could be seen as unfair sensitive features for a
model on the one hand (MADD) and as fair ones on the
other hand (ABROCA). Moreover, DT too has one of the
best ABROCA (0.03), while it provided the best MADD
value (0.85 from Table 2) regarding this feature. Therefore,
two models with the same ABROCA lead to opposite dis-
criminatory behaviors according to the MADD. In the end,
ABROCA and MADD do not highlight the same fairness
results, and can even lead them to show opposite results.

Course “FFF” (STEM). Now examining Table 5 for the
course “FFF”, ABROCA does not capture substantial dif-
ferences at the sensitive feature level (column-wise), with
an ABROCA average of 0.4 for all three features. Thus, the
MADD results can capture additional differences among the
models’ behaviors that are not reflected in the ABROCA
results. In addition, we again found that disability, the
most imbalanced sensitive feature, is actually the feature for
which DT is the fairest, regardless of whether we consider
the MADD in part 5.1.1 (Table 3) or the ABROCA (Ta-
ble 5). Therefore, ABROCA does not reflect the imbalance
bias in the data either, in contradiction with the findings
from [14].

5.2.2 Model fairness analysis

Course “BBB” (Social Sciences). In Table 4, LR and
NB appear to be the fairest models across all the sensitive
features (best common ABROCA average of 0.3). However,
with the MADD, NB indeed exhibited overall quite balanced
low values, but LR was always the least fair on average
(Tables 2 and 3). Thus, at the model level this time, the
trends in the MADD results are only partially reflected in
the ABROCA results.

Course “FFF” (STEM). Table 5 shows that ABROCA
results do not exhibit substantial variability to distinguish
differences in fairness between the models (row-wise this
time) in our experiment. In addition to similar ABROCA
averages, all models have very close ABROCA results spe-
cially regarding the gender and poverty features. There-
fore, the MADD allows to find complementary discrimina-
tory results as compared to using only ABROCA.

5.2.3 Summary of the comparison
Two main takeaways could be reported from our comparison
between the ABROCA and MADD metrics.

Firstly, fair predictive performance (i.e. similar numbers of
errors across groups, here captured by low ABROCA val-
ues) does not guarantee fair models’ behaviors (i.e. low
severity of discrimination across groups, here captured by
low MADD values). This demonstrates what we advocated
in the introduction (Section 1) regarding investigating the
models’ behaviors to gain a comprehensive understanding
of the models fairness. In particular, two models with the
same ABROCA could suffer from substantial, and even op-

Table 4: ABROCA results for course “BBB”.

Model
Sensitive features

gender poverty disability Average

ABROCA

LR 0.02 0.03 0.03 0.03
KN 0.08 0.06 0.06 0.07
DT 0.06 0.03 0.05 0.05
NB 0.04 0.02 0.04 0.03

Average 0.05 0.04 0.05

Table 5: ABROCA results for course “FFF”.

Model
Sensitive features

gender poverty disability Average

ABROCA

LR 0.04 0.03 0.03 0.03
KN 0.04 0.05 0.04 0.04
DT 0.05 0.04 0.01 0.03
NB 0.03 0.03 0.07 0.04

Average 0.04 0.04 0.04

posite algorithmic discriminatory behaviors, which can be
uncovered by the MADD (see parts 5.2.1 and 5.2.2). Using
the MADD together with a predictive performance-oriented
metric such as ABROCA can thus allow more informed se-
lection of fair models in education, and here in our experi-
ments, they provide strong evidence that DT is the fairest
model on both courses.

Secondly, in line with our previous findings that biases in
the data may not be related with models’ discriminatory
behaviors (see part 5.1.4), we also observed that the biases
in the data are independent from predictive performance
biases too. For instance, the highest imbalanced sensitive
feature could actually lead to both the best ABROCA and
the best MADD. Although this observation is aligned with
the findings in [11, 17], it is worth noting that it goes against
what the authors of ABROCA had observed [14] (see part
5.2.1).

6. DISCUSSION
In this section, we discuss (1) the overall implications of
the results of our fairness study, (2) the limitations and the
strengths of the proposed approach, (3) some potential ex-
perimental improvements, and (4) some guidelines to use
our fairness analysis approach with the MADD.

6.1 Fairness results
Our results lead to three main conclusions, as follows. First-
ly, we found no direct relationships between data bias and
predictive performance bias nor discriminatory behaviors
bias. It confirms previous findings that unfair biases are not
only captured in the data, but are inherent to the model
too [27, 28]. It further suggests that exclusively mitigating
unfairness in the data might not be sufficient, and that mit-
igating unfairness at the model level is key too. Secondly,
even trained on the same data, each model exhibits its own
discriminatory behavior (likely linked to its inner working)
and according to different sensitive features. It raises inter-
esting questions on how different models could be combined
in order to balance discriminatory behaviors with regards
to multiple sensitive features at the same time. Thirdly,
fair predictive performance does not guarantee by itself fair
models’ behaviors and thus fair outcomes. Additional intro-
spection of the model is therefore needed, and our approach
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Figure 6: MADD visualizations for the poverty sensitive feature across all the models for course “BBB”.

Figure 7: ABROCA slide plots for the poverty sensitive feature across all the models for course “BBB”.

appears as a possible solution.

6.2 Limitations and strengths
Although our approach was initially designed for analyz-
ing algorithmic fairness at an individual sensitive feature
level, our prospective work includes a generalization of the
MADD metric to capture the influence of multiple sensitive
features simultaneously. Moreover, the current MADD is
particularly suitable for binary sensitive features and binary
classifiers, and future work should also focus on extending
it to multi-class features and classifiers. As an example,
an extension for categorical sensitive features would enable
us to have a finer-grained analysis of discrimination across
more relevant subgroups. Despite these current limitations,
the strengths of our approach stand in (1) its ability to be
used with any tabular data, the most prevalent data repre-
sentation [24] from any domain, and without needing any
unfairness mitigation preprocessing; (2) being able to have
a richer understanding of models’ discriminatory behaviors
and their quantification with an easy-to-implement fairness
metric that is independent from predictive performance; and
(3) since the MADD is bounded, being comparable between
different datasets to measure the discriminatory influence of
a particular sensitive feature in different contexts and pop-
ulations.

6.3 Experimental improvements
In our experiments we purposely focused on the MADD re-
sults to highlight its contribution and interest to fairness
analysis, however for real-case applications one should ob-
viously pay attention to both predictive performance and
fairness performance in order to thoroughly select satisfying
models. As an example, the NB model used in our exper-
iments could be seen as fair regarding its MADD results,

but it had in fact poor accuracy particularly because it was
unable to predict well the success or the failure of students
regarding any features, which makes this model not usable
for real-case purposes but nonetheless interesting for our ex-
ploratory analysis. We thus recommend using the MADD
on models that show satisfying predictive performance, to
gain a finer-grained understanding on how they behave and
regarding who and to refine models selection and their us-
age. Moreover, one should also consider testing variations
of the probability sampling parameter e in their application
and context. Although the impact of its variation in the
range from 0.01 to 0.1 was low in our experiments, it might
not be always the case. Determining the optimal value for
this parameter is also a key part of our prospective work. Fi-
nally, we have demonstrated the validity and value of our ap-
proach on two courses of the OULAD dataset. Nonetheless,
in a broader context of investigating model unfairness, this
work should be replicated with other educational datasets
providing more students data and more diverse sensitive fea-
tures [3].

6.4 Guidelines
In order to facilitate replication studies and the use of our
approach (in addition to the availability of the data and
our source code), we provide in the following a 7-step guide
to help readers compute the MADD and plot the models’
behaviors as in Figures 4 and 5.

1. Choose binary classification models that can output
probability estimates or confidence scores.

2. Transform, when needed, every sensitive feature into
binary one.

3. Train the models, and in the testing phase separate
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their predicted probabilities or confidence scores ac-
cording to the groups of each sensitive feature.

4. Compute the MADD for each sensitive feature, and
compare the results between features and models.

5. Plot histograms of the predicted probability distribu-
tions of each group of the sensitive features, and their
smoothed estimations (e.g. with KDE).

6. Visually identify discriminatory behaviors among un-
equal treatment (i.e. distance between the two distri-
bution means) and stereotypical judgement (i.e. dif-
ferences of local amplitudes).

7. Depending on the fairness analysis goals:

• Identify which models are the fairest overall or
according to which sensitive features, using a row-
wise reading of the results table.

• Identify which features are the most sensitive over-
all or according to which models, using a column-
wise reading of the results table.

• Using the plots, identify which groups (i.e. which
distributions) are the most discriminated against
by the models (relatively to each sensitive fea-
ture).

7. CONCLUSION
In this paper, we developed an algorithmic fairness analy-
sis approach based on a novel metric, the Model Absolute
Density Distance (MADD). It measures models’ discrimi-
natory behaviors between groups, independently from their
predictive performance. Our results on the OULAD dataset
and comparison with ABROCA show that (1) fair predic-
tive performance does not guarantee fair models’ behaviors
and thus fair outcomes, (2) there is no direct relationships
between data bias and predictive performance bias nor dis-
criminatory behaviors’ bias, and (3) trained on the same
data, models exhibit different discriminatory behaviors and
according to different sensitive features.

This approach, for which we provide a set of guidelines in
subsection 6.4 and our source code and data in open access
at https://github.com/melinaverger/MADD, can be used
to help identify fair models, exhibit sensitive features, and
determine students who were the most discriminated against
and how (unequal treatment or stereotypical judgement) in
an education context. Being bounded, an advantage of this
metric is that it can be used across different contexts and
data to discover the features that more generally cause al-
gorithmic discrimination.

Future work will involve the generalization of the MADD
metric to multiple sensitive features, its extension to multi-
class sensitive features and classifiers, determining the opti-
mal probability sampling parameter, and we will investigate
how to use the MADD as an objective function to optimize
models accordingly (in addition to predictive performance
objectives).
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APPENDIX
A. PROOFS FOR MADD AS A METRIC
We remind the definition of the MADD:

MADD(Da
G0
, Da

G1
) =

m∑

k=0

|daG0,k − d
a
G1,k| (1)

The MADD satisfies the necessary properties of a metric [9]:

MADD(Da
G0
, Da

G0
) = 0 reflexivity (4)

MADD(Da
G0
, Da

G1
) ≥ 0 non-negativity (5)

MADD(Da
G0
, Da

G1
) = MADD(Da

G1
, Da

G0
)

commutativity
(6)

MADD(Da
G0
, Da

G2
) ≤ MADD(Da

G0
, Da

G1
)

+MADD(Da
G1
, Da

G2
) triangle inequality

(7)

Proof for reflexivity (Eq. 4)

MADD(Da
G0
, Da

G0
) =

m∑

k=0

|daG0,k − d
a
G0,k| = 0

Proof for non-negativity (Eq. 5)
Due to the positivity of each term in the sum thanks to the
absolute value operator, the sum of these positive terms is
always positive and MADD(Da

G0
, Da

G1
) ≥ 0.

Proof for commutativity (Eq. 6)
Let x and y be real numbers. By commutativity of the
absolute value operator, |x− y| = |y − x|. Thus, for any k,
|daG0,k

−daG1,k
| = |daG1,k

−daG0,k
| and then MADD(Da

G0
, Da

G1
) =

MADD(Da
G1
, Da

G0
).

101



Proof for triangle inequality (Eq. 7)
Let x and y be real numbers. By triangle inequality of the
absolute value operator, |x+ y| ≤ |x|+ |y|. Let x = daG0,k

−
daG1,k

and y = daG1,k
− daG2,k

. Then, for any k :

|x+ y| ≤ |x|+ |y|
⇔ |(daG0,k − d

a
G1,k) + (daG1,k − d

a
G2,k)| ≤ |daG0,k − d

a
G1,k|

+|daG1,k − d
a
G2,k|

⇔ |daG0,k − d
a
G2,k| ≤ |d

a
G0,k − d

a
G1,k|+ |d

a
G1,k − d

a
G2,k|

Then, by linearity of the sum :

m∑

k=0

|daG0,k − d
a
G2,k| ≤

m∑

k=0

|daG0,k − d
a
G1,k|+

m∑

k=0

|daG1,k − d
a
G2,k|

⇔ MADD(Da
G0
, Da

G2
) ≤ MADD(Da

G0
, Da

G1
)+

MADD(Da
G1
, Da

G2
)
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ABSTRACT
Automated Essay Scoring (AES) tools aim to improve the
efficiency and consistency of essay scoring by using machine
learning algorithms. In the existing research work on this
topic, most researchers agree that human-automated score
agreement remains the benchmark for assessing the accuracy
of machine-generated scores. To measure the performance
of AES models, the Quadratic Weighted Kappa (QWK) is
commonly used as the evaluation metric. However, we have
identified several limitations of using QWK as the sole met-
ric for evaluating AES model performance. These limita-
tions include its sensitivity to the rating scale, the potential
for the so-called “kappa paradox” to occur, the impact of
prevalence, the impact of the position of agreements in the
diagonal agreement matrix, and its limitation in handling
a large number of raters. Our findings suggest that relying
solely on QWK as the evaluation metric for AES perfor-
mance may not be sufficient. We further discuss insights
into additional metrics to comprehensively evaluate the per-
formance and accuracy of AES models.

Keywords
Quadratic Weighted Kappa, Performance Metric, Automated
Essay Scoring

1. INTRODUCTION
As the use of computer software tools for evaluating stu-
dent essays becomes increasingly popular, researchers have
turned to Automated Essay Scoring (AES) systems as a way
to expedite the process and reduce costs. These systems,
which are essentially machine learning models trained on
datasets containing essay answers and their corresponding
human-annotated scores, are designed to eliminate concerns
about rater consistency and increase the speed of evaluation.
To assess the performance of an AES system, the score pre-
dicted by an automated scorer is compared to the ground
truth or the score assigned by human annotators.

One common metric used to measure the accuracy of a ma-
chine learning model is the percent agreement between the
predicted score and the ground truth. However, this met-
ric has been criticized for its inability to account for chance
agreement, as pointed out by Jacob Cohen in 1960 [7]. In
response, Cohen developed the concept of Cohen’s kappa,
which takes into consideration the possibility that raters
may guess certain variables due to uncertainty. To further
address this issue, the variation of Cohen’s kappa known
as weighted kappa considers the severity of disagreement
between the predicted score and the ground truth. This
is particularly important in applications where the conse-
quences of misclassification may vary. Among the variations
of weighted kappa, the quadratically weighted kappa is the
most commonly used for summarizing interrater agreement
on an ordinal scale [12]. This trend is also evident in the
field of AES systems, where QWK is frequently employed
as a standard evaluation metric, as noted in numerous stud-
ies [25, 21, 26, 22, 5, 20, 1, 28, 19].

We present a comprehensive examination of the utility of
Quadratic Weighted Kappa (QWK) as an evaluation met-
ric for automated essay scoring (AES) systems. To the best
of our knowledge, this is the first work to specifically ad-
dress the limitations of QWK in the context of AES. We
acknowledge that some of the limitations we highlight in
this paper may also apply to other fields. However, our
paper specifically highlights the limitation of QWK in the
AES context and emphasizes its implications for practical
use, particularly with respect to the threshold for model ac-
ceptance, as discussed in [25]. Our work is motivated by
the fact that previous research in AES has predominantly
focused on maximizing QWK performance, and we aim to
draw attention to the potential pitfalls of solely relying on
QWK as a measure of model performance.

While kappa statistic has proven to be effective in many
cases, it has been found to have some paradoxes in certain
scenarios [24, 4, 18, 27]. In a study by Brenner and Klieb-
sch, the sensitivity of Quadratic Weighted Kappa (QWK)
to ratings (based on a given rating scale) was identified as
a notable characteristic of the metric [3]. This issue is of
particular relevance in our work as we delve into the im-
plications of this characteristic on the acceptance decision
of an Automated Essay Scoring (AES) model. Specifically,
we focus on the impact of score resolution methods in situ-
ations where two human raters are involved in the grading
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process. Standard methods for combining human scores in-
clude summing or averaging the scores. However, in the
ASAP (Automated Student Assessment Prize) competition
dataset, another score resolution method is employed for
some prompts, which involves selecting the higher of the two
scores. Our findings indicate that the treatment of human
scores, despite the scores remaining unchanged, can affect
the performance of the quadratic weighted kappa and ulti-
mately influence the decision-making process regarding the
acceptance or rejection of an essay scoring model. To ad-
dress this issue, we also experiment with different weights
on the kappa statistics in an effort to mitigate the impact of
the rating scale on the kappa statistics.

Furthermore, another paradox of kappa statistics is the im-
pact of prevalence on kappa for 2x2 agreement table that
has been investigated in prior literature, as demonstrated
by Byrt et al. [4]. According to them, the value of kappa
is affected by the relative probability of the classes, known
as the Prevalence Index (PI). When the PI is high, kappa
tends to decrease, potentially leading to an underestima-
tion of the degree of agreement between raters. However, in
the context of essay examinations, binary grading or scoring
systems with only two levels are relatively uncommon. In-
stead, grading processes typically incorporate multiple levels
or categories of assessment. While the prevalence of agree-
ment matrices with a size of 2x2 has been previously studied,
there is still a lack of a comprehensive formula for calculat-
ing the prevalence of matrices with a size of 3x3 or greater.
In this paper, we aim to address this gap in the literature
by proposing a formula for measuring the proportions of
classes in raters’ agreement for agreement matrices with a
size greater than 2x2.

Subsequently, our study found that the relationship between
prevalence and kappa, as previously outlined by Byrt et al.
[4], does not consistently hold true when applied to agree-
ment matrices larger than 2x2. Specifically, when the preva-
lence index (PI) is high, the value of kappa can either de-
crease or increase depending on the position of the number
in the diagonal of the matrix, which indicates the agreement
between the two raters. It highlights the need for caution
when interpreting kappa values in the context of larger ma-
trices, such as those used to assess essay scores, as these val-
ues may not accurately reflect the true level of agreement.
Our study contributes to the existing literature on the re-
lationship between prevalence and kappa by providing new
insights into the limitations of using kappa as a measure of
inter-rater agreement in the context of matrices larger than
2x2.

Finally, it is crucial to consider the limitations of kappa
statistics in situations involving multiple raters. Previous re-
search has consistently emphasized the importance of involv-
ing two or more raters to increase the reliability of scores,
particularly in high-stakes testing programs that include
writing essays as a measured task [9]. However, it is cru-
cial to note that kappa statistics are incapable of assessing
inter-rater agreement in such situations.

The structure of the paper is as follows. In Section 2, we
provide an overview of the concept of Cohen’s kappa and its
various weighted forms, including QWK, and examine the

interpretation of their values. In Section 3, we examine the
quantitative performance acceptance criteria for AES mod-
els as outlined by Williamson et al. [25]. In Section 4, we
describe the experimental setup, including the dataset, the
training algorithms, and the textual features of essays used
to create essay scoring models. In Section 5, we assess the
performance of QWK as an evaluation metric in the context
of AES in multiple scenarios. The experiment results are dis-
cussed in section 6, including all notable findings. Finally,
the paper is concluded in the last section.

2. KAPPA AND WEIGHTED KAPPA
Cohen’s kappa and Weighted kappa are widely used mea-
sures of inter-rater agreement that account for chance agree-
ment and have been applied in various research fields. In this
section, we discuss the concept, formula, and interpretations
of these two measures.

2.1 Cohen’s Kappa
Cohen’s kappa, also known as unweighted kappa, is a widely
utilized statistical measure used to evaluate the agreement
between two independent raters in their assessment of a par-
ticular set of items. This measure was first introduced by
Jacob Cohen in 1960 [7] and has since become a widely ac-
cepted method for assessing the reliability of rating scales
and classification models.

One of the key features of Cohen’s kappa is that it adjusts
for chance agreement, meaning that it takes into account the
possibility of two raters agreeing simply by chance rather
than as a result of their independent assessments. This is
particularly useful in situations where the raters may not
have a high level of expertise or may be biased in their eval-
uations. By normalizing the agreement between the two
raters at the baseline of random chance, Cohen’s kappa al-
lows for a more objective and reliable assessment of their
agreement.

Overall, the use of Cohen’s kappa allows for a more accu-
rate assessment of the agreement between two independent
raters and the performance of classification models. It al-
lows for the reliable evaluation of the reliability of rating
scales and the effectiveness of classification algorithms, pro-
viding valuable insights into the accuracy and reliability of
the assessments being made.

Cohen’s kappa is calculated by taking into account both the
observed agreement between raters and the expected level of
agreement that would be observed by chance alone. By com-
paring these two values, Cohen’s kappa allows researchers to
determine the degree to which the raters’ evaluations are re-
liable and consistent rather than merely the result of random
chance.

Cohen’s kappa (unweighted) is formalized as follows:

κ =
Po − Pe
1− Pe

(1)

In order to assess the reliability of the ratings given by the
two raters, we calculated the percentage of actually observed
agreement, denoted as Po, and the expected agreement, de-
noted as Pe. Po was calculated by dividing the number of
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ratings that were assigned the same category by both raters
by the total number of ratings. This allowed us to deter-
mine the percentage of ratings that the two raters agreed
upon. Pe, on the other hand, was calculated based on the
distribution of ratings across the categories. Specifically, it
represented the probability that the two raters would agree
on a rating by chance alone. This value was obtained by
taking into account the frequency of each rating within the
set of ratings given by both raters.

When the value of κ is 0, it signifies that the agreement
between two raters is no greater than what would be ex-
pected by chance alone. This indicates a lack of consistency
in the ratings provided by the two raters. On the other
hand, a κ value of 1 indicates that the raters are in com-
plete agreement, demonstrating a high level of consistency
in their ratings. It is worth noting that in rare cases, the
value of κ may be negative, indicating that the agreement
between the two raters is actually lower than what would be
expected by chance. Table 1 provides a guide for interpret-
ing kappa values ranging from 0 to 1, as described in the
work of Landis and Koch [16]. It is important to note that
it is not possible to establish a single, universally accepted
value for the statistic known as kappa. Instead, the appro-
priateness of any particular value of kappa depends on the
level of accuracy demonstrated by the observers in question,
as well as the number of codes being used to categorize the
data.

Table 1: Interpretation of Kappa

Kappa Interpretation

< 0 Less than chance agreement

0.01 - 0.20 Slight agreement

0.21 - 0.40 Fair agreement

0.41 - 0.60 Moderate agreement

0.61 - 0.80 Substantial agreement

0.81 - 1.00 Almost perfect agreement

As an unweighted measure, Cohen’s kappa is particularly
useful for evaluating the agreement between raters when
there is no inherent hierarchy or relative importance among
the categories being evaluated.

2.2 Weighted Kappa
The weighted kappa statistic is a measure of inter-rater reli-
ability that takes into account the strength of the agreement
between raters in addition to the presence of the agreement
itself. In contrast, the unweighted kappa statistic simply
counts the number of agreements without considering the
magnitude of the difference between the ratings. The use
of weighted kappa is particularly appropriate in situations
where the categories being rated are not equally likely or
important.

To compute weighted kappa, once the observed agreement
(Po) and expected agreement(Pe) have been calculated, they
are multiplied by a weights matrix. The weights would be
a decreasing function of the distance |i − j|, such that dis-
agreements corresponding to adjacent categories would be

assigned higher weights than those corresponding to cate-
gories that are further apart [23].

There are many different ways to weigh the kappa statistic,
depending on the specific situation and the type of data
being analyzed. Some common weighting schemes include
linear weight and quadratic weight. Given n as the number
of rating categories, the formula of the linear weight for an
agreement table with size n× n is as follows:

wij = 1− |i− j|
n− 1

, (2)

And, for the quadratic weight is as follows:

wij = 1−
( i− j
n− 1

)2
, (3)

with wij ∈ [0, 1] and wii = 1 for i, j ∈ {1, 2, ..., n}.

Linear weighting schemes assign weights to the ratings or
scores based on the difference between the ratings, with
larger differences receiving lower weights. Quadratic weight-
ing schemes, on the other hand, assign weights based on the
square of the difference between the ratings, with even larger
differences receiving even lower weights.

3. ACCEPTANCE OF AES MODEL
According to Williamson et al. in [25], there is an accep-
tance criterion that is used to evaluate the performance of
automated scoring in relation to human scores when auto-
mated scoring is intended to be utilized in conjunction with
human scoring. The measurement of agreement between
human scores and automated scores has been a longstand-
ing method for determining the effectiveness of automated
scoring systems. This evaluation process involves comparing
the automated scores to the human scores in order to deter-
mine if they satisfy a predefined threshold. In particular,
the quadratic weighted kappa (QWK) between automated
and human scoring must be at least .70 (rounded normally)
in order to be considered acceptable.

It is important to note that the performance of automated
scoring systems is highly dependent on the quality of hu-
man scoring. Therefore, it is crucial that the interrater
agreement among human raters is reliable before utilizing
automated scoring in conjunction with human scoring. This
ensures that the automated scores will be accurate and re-
liable, which is essential for the effective use of automated
scoring in a variety of settings.

4. EXPERIMENT SETTINGS
4.1 Dataset
In order to conduct our experiment, we utilized the Auto-
mated Student Assessment Prize (ASAP) dataset1, which
is hosted on the Kaggle platform. This dataset has been
widely recognized as a valuable resource for evaluating the
performance of automated essay scoring (AES) systems [17],
and has thus become the standard for research in this field.
The ASAP dataset comprises a collection of essays that have
already been scored by human graders and includes eight
different prompts with a range of possible scores for each.
1https://www.kaggle.com/c/asap-aes
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4.2 Model Training
In order to assess the performance of our regression models,
we employed a 5-fold cross-validation strategy, using 80% of
the data for training and 20% for testing. Three different
algorithms were utilized in our analysis: Gradient Boosting,
Random Forest, and Ridge Regression. In this study, the
essay features were obtained using the same methodology
as described in [10]. Each essay was transformed into a
780-dimensional feature vector comprising two categories:
12 interpretable features and a 768-dimensional Sentence-
BERT vector representation.

We trained separate models for each prompt within the
dataset. To optimize the performance of each model, we
utilized different hyper-parameter configurations for each in-
dividual model. In accordance with the established standard
for evaluating automated essay scoring (AES) systems, we
utilized the Quadratic Weighted Kappa (QWK) score as our
evaluation metric [8, 25]. This measure allows us to compare
the system-predicted scores with human-annotated scores,
thereby providing a quantifiable indication of the level of
agreement between the two.

5. QWK EVALUATION IN AES CONTEXT
In this section, we delved into various factors that can affect
the value of Quadratic Weighted Kappa (QWK) and its im-
plications for use in the context of Automated Essay Scoring
(AES). These factors include the impact of the rating scale,
the kappa paradox, the proportion of classes in rater agree-
ment, changes in agreement position, and the number of
raters involved.

5.1 The Effect of Rating Scale to QWK
In this section, we delve into the topic of the sensitivity of
Quadratic Weighted Kappa (QWK) to rating scales. This
particular characteristic of weighted kappa has been previ-
ously discussed by Brenner and Kliebsch in their seminal
work [3]. We aim to further elaborate on the implications of
this sensitivity in the context of evaluating the performance
of an Automatic Essay Scoring (AES) model. The sensi-
tivity of QWK to rating scales can be clearly demonstrated
through the simple case presented in Table 2. By compar-
ing the two examples within the table, we can observe that
even a slight modification in the rating scale can result in
notable changes in the QWK score. The first example pre-
sented in the table yields a QWK score of 0.50, which can
be considered as indicating a moderate level of agreement.
In contrast, the second example has a QWK score of 0.78,
indicating a substantial level of agreement between the rat-
ings. Importantly, both examples have the same number of
agreements and disagreements. This illustrates the signif-
icant impact that the rating scale can have on the QWK
score, highlighting the importance of carefully considering
the rating scale when utilizing this measure of agreement.

We provide experimental results that show how an AES
model performance changes when trained with a different
score resolution from two human raters as the final score
(label). The ASAP dataset score resolution table (Table 3)
outlines the scoring method for each prompt. For Prompt 1
and Prompt 7, the score is determined by adding the scores
from two raters together. For Prompt 2 and Prompt 8, the
score is determined by combining the scores from an essay

Table 2: A simple example of rating scale’s effect on QWK

Prediction QWK Interpretation

Rater 1 [1, 2, 3]
0.50 Moderate agreement

Rater 2 [2, 1, 3]

Rater 1 [1, 2, 4]
0.78 Substantial agreement

Rater 2 [2, 1, 4]

rubric. For Prompts 3-6, the score is determined by taking
the higher score of the two raters.

Table 3: Prompts in ASAP dataset

ASAP Dataset Score Resolution

Prompt 1 Sum of two raters

Prompt 2 Combination of essay rubric scores

Prompt 3 Higher of two raters

Prompt 4 Higher of two raters

Prompt 5 Higher of two raters

Prompt 6 Higher of two raters

Prompt 7 Sum of two raters

Prompt 8 Combination of essay rubric scores

The purpose of this experiment was to investigate the ef-
fect of score resolution on QWK scores using three different
machine learning models: gradient boosting, random forest,
and ridge regression. The QWK scores were calculated for
six different prompts, labeled Prompt 1 through Prompt 7.
We exclude prompt 2 and prompt 8 since they already have
specific scoring methods which involve the combination of
essay rubrics.

To further explore the impact of rating scale on QWK scores,
we implemented three different score resolution methods for
the six prompts used in our study. The first method in-
volved summing the scores given by both raters. The sec-
ond method involved selecting the higher score between the
two raters. The third method involved calculating the mean
of the scores given by both raters. According to a sur-
vey of state testing programs conducted by Johnson et al.
[13], it was determined that an operational score is typi-
cally formed by summing or averaging the scores of raters,
when such scores meet the agency’s definition of agreement,
which is generally predicated on the requirement that scores
be at least adjacent. Additionally, the methodology of using
the higher score of both raters was employed in the ASAP
dataset in four prompts.

Based on the results Table 4, it appears that the sum of
the QWK scores is consistently higher than the mean scores
and the higher score of the two raters for all prompts and
all three models. Our results demonstrated that the use of
different score resolution methods had a significant impact
on QWK scores. Additionally, it appears that the gradi-
ent boosting model consistently performs the best for all
prompts. The random forest model performs slightly worse,
while the ridge regression model performs the worst.
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Table 4: The effect of score resolution on QWK using different algorithms

Dataset
Gradient Boosting Random Forest Ridge Regression

higher mean sum higher mean sum higher mean sum

Prompt 1 0.720 0.7143 0.7840 0.6986 0.6989 0.7776 0.6672 0.662 0.7395

Prompt 3 0.6825 0.6750 0.7016 0.6641 0.6631 0.691 0.6557 0.6569 0.6928

Prompt 4 0.7649 0.7742 0.8079 0.7303 0.7323 0.7740 0.7803 0.7804 0.8124

Prompt 5 0.8077 0.8108 0.8639 0.7926 0.7889 0.8526 0.7958 0.7971 0.8568

Prompt 6 0.7964 0.7931 0.8548 0.7637 0.7619 0.8239 0.7822 0.7923 0.on47

Prompt 7 0.7350 0.7685 0.7780 0.6836 0.7121 0.7254 0.7366 0.7722 0.7785

Table 5: The effect of score resolution on QWK using different weight of kappa

Dataset
QWK LWK Cohen’s kappa

higher mean sum higher mean sum higher mean sum

Prompt 1 0.720 0.714 0.784 0.600 0.609 0.599 0.502 0.525 0.347

Prompt 3 0.682 0.675 0.702 0.596 0.589 0.543 0.519 0.515 0.324

Prompt 4 0.765 0.774 0.808 0.637 0.651 0.619 0.51 0.527 0.318

Prompt 5 0.808 0.811 0.864 0.686 0.694 0.680 0.559 0.574 0.353

Prompt 6 0.796 0.793 0.855 0.666 0.655 0.656 0.535 0.515 0.321

Prompt 7 0.735 0.768 0.778 0.520 0.545 0.548 0.175 0.179 0.089

In this study, we present an argument that the primary is-
sue in this scenario is that the scores of the two human
raters are basically unchanged. The difference is how the
scores are treated to obtain the final score. The different
results of QWK by using the higher, the mean, and the
sum value of both scores results in inconsistencies in the
decision-making process of the essay scoring model accep-
tance. These findings indicate that in order to maximize
the quadratic weighted kappa value, one can always select
the approach of summing the scores of both raters as it leads
to a larger scale of scores.

Researchers and practitioners should be mindful of the po-
tential impact of rating scale choices on the resulting QWK
scores and take appropriate measures to mitigate this sensi-
tivity. One strategy that can be employed is to decrease the
weight assigned to the kappa formula. To evaluate the effec-
tiveness of this strategy, we conducted a further experiment
using the same dataset discussed in Table 4. The purpose
of this experiment was to compare the results of the kappa
values obtained from different weights, specifically quadratic
weighted kappa, linear weighted kappa, and Cohen’s kappa
(unweighted). In order to ensure a fair comparison, we uti-
lized the Gradient Boosting algorithm for all calculations
as the previous result has shown it to perform better than
Random Forest and Ridge Regression, as shown in Table 4.

The results of our experiment are presented in Table 5.
We have examined the impact of the rating scale on the
quadratic weighted kappa (QWK) and found that as the
scale of the scores increases, the QWK value also increases.
In contrast, our results for Cohen’s kappa, an unweighted
measure of inter-rater agreement, revealed an opposite trend.

The last column of Table 5 illustrates that the kappa val-
ues for the sum of the scores are, in fact, lower than those
for the higher or mean scores from human raters. This in-
dicates that as the scale of the rating increases, the kappa
values decrease.

The Linear Weighted Kappa (LWK) method has been demon-
strated to yield the most balanced results when dealing with
rating scales. In situations where the scores assigned by
human raters remain consistent, the manner in which the
scores are treated is inconsequential, as the results obtained
from the higher score, the mean, and the sum of the scores
are quite similar. LWK has been found to effectively miti-
gate the impact of rating scales in comparison to quadrati-
cally weighted and unweighted kappa.

The immediate consequence of selecting different weights for
kappa is the need to define a new threshold for the accep-
tance rate of an automated essay scoring model. This is due
to the fact that the threshold of 0.7, which is commonly uti-
lized in such models, was specifically defined for the use of
quadratic weighted kappa. In particular, different weights of
the kappa coefficient reflect different emphases on different
types of agreement or disagreement; therefore, it is crucial
to adjust the threshold accordingly so that the evaluation
aligns with the intended focus of the scoring system. Failure
to properly define and adjust the threshold for acceptable
performance can result in misinterpretation or overestima-
tion of the system’s performance. Thus, it is essential for
stakeholders and decision-makers to clearly define the ac-
ceptable performance criteria prior to the implementation
of an automated essay scoring system.
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5.2 Kappa Paradox
The kappa paradox invalidates the common assumption that
the value of kappa increases as the level of agreement in data
increases. This paradox occurs when a classifier exhibits a
high level of percent agreement but a low kappa score, which
can be counterintuitive and potentially misleading.

The paradox arises due to an imbalanced agreement between
two raters. For example, consider the case of binary classifi-
cation, in which both raters mostly agree on only one class.
In such a scenario, the percent agreement may be high, but
the kappa score may be low due to the relatively high ex-
pected agreement.

To illustrate this phenomenon, consider the following exam-
ple: suppose we have two predictions from rater A and rater
B, represented by arrays A and B, respectively. Both ar-
rays have a size of 1000, and the scores for each rater are as
follows:

A = [5, 7, 7, 9, 8, 9, 9, 9, 9, 9, 9, 9, ...., 9]

B = [8, 6, 9, 6, 8, 9, 9, 9, 9, 9, 9, 9, ...., 9]

Here, the percent agreement between the two raters is 99.8%.
However, the QWK is only 0.488, which is below the stan-
dard acceptance criteria of 0.7 proposed by Williamson et
al. [25].

This result can be attributed to the fact that kappa is a
chance-adjusted measure of agreement, which accounts for
the expected agreement due to chance. In other words,
kappa shows how much better a model performs compared
to random predictions. In the example provided, the prob-
ability of agreement by chance is relatively high, leading to
a low kappa score despite the high percent agreement.

To sum up, the kappa paradox highlights the importance of
considering both percent agreement and kappa in evaluating
the performance of a classification model. While percent
agreement may be a simple and intuitive measure, it can be
misleading when there is an imbalanced agreement between
raters. On the other hand, kappa considers the expected
agreement due to chance and provides a more nuanced view
of the model’s performance.

5.3 Proportion of Categories in Agreement
One notable limitation of QWK is that its score is heavily
influenced by the proportion of agreement between raters
for different classes or scores. [4] described that the value of
kappa is affected by the relative probability of the classes in
a 2x2 agreement table, known as the Prevalence Index (PI).
Suppose there are two people who are tasked with categoriz-
ing a group of N individuals into one of two categories, such
as ”Yes” or ”No”. The result can be presented in a 2-by-2
table as shown in Figure 1.

From Figure 1, the estimate of the probability of ”Yes” for
the whole population would be the mean of f1/N and g1/N.
Similarly, the most accurate estimate of the probability of
”No” can be obtained by finding the mean of f2/N and g2/N.
The Prevalence Index (PI) is calculated by subtracting the
probability of ”Yes” from the probability of ”No” and divid-
ing the result by N. Therefore, it is estimated by (a - d)/N.

Figure 1: Agreement table of size 2x2

The value of PI can range from - 1 to + 1, and is equal to 0
when the probabilities of ”Yes” and ”No” are equal.

Figure 2: Prevalence and kappa correlation on 2x2 matrix

In Figure 2, two cases are presented in which there are 180
agreements and 20 disagreements between raters. In the
first case, the calculated percent agreement (PI) is 0.0, and
the kappa value is 0.8, while in the second case, the PI is
0.8, and the kappa value is 0.44. It is important to note that
the difference between the kappa values in these two cases
is due to the prevalence effect. As the value of PI increases,
the expected probability (Pe) also increases, which in turn
results in a decrease in the value of kappa. This relationship
highlights the need to consider the prevalence of the ratings
in the analysis of interrater reliability.

In essay examinations, the use of binary grades or scoring
systems with only two levels is highly uncommon. Rather,
the grading process typically involves multiple levels or cat-
egories of assessment. This presents a unique challenge in
evaluating the agreement between human raters and auto-
mated essay scoring models, as the agreement matrix be-
tween the two will typically have a size greater than 3x3.

We propose a formula for measuring the prevalence of agree-
ment matrix with size 3x3 or larger, as follows:

prev =
1

n

1

c(c− 1)/2

c−1∑

i=0

c∑

j=i+1

| Uii − Ujj | (4)

where c is the number of classes, n is the number of items,
and Uii is the diagonal element of the agreement matrix.
This formula is designed to provide a quantifiable measure
of the average difference of all unique pairs of the categories
in the raters’ agreement. By dividing the sum of the absolute
differences between the diagonal elements of the agreement
matrix by the total number of items and the number of
unique pairs of classes, we can obtain a normalized measure
of the proportions of classes in the agreement.
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Figure 3: Agreement tables with size of 4x4 from ASAP dataset Prompt 4. The first table was the original agreement table
between the score predictions of Gradient Boosting and the score labels from human raters. In the next tables, the diagonal

values were manipulated to increase the prevalence to examine its impact on QWK.

Figure 4: The prevalence’s effect on QWK with respect to
the acceptance threshold in AES (0.7)

In order to further demonstrate the extent of this issue, we
present an example from prompt 4 in the ASAP dataset.
The scores within this dataset range from 0 to 3. In order
to effectively visualize the performance of the AES model,
we have included the confusion matrices that compare the
model’s score predictions with the human scores, which serve
as the ground truth.

In order to explore the relationship between the prevalence
of agreements between raters and the Quadratic Weighted
Kappa (QWK) score, we conducted an experiment involving
seven different proportions of agreements and visualized the
results in Figure 3. The first agreement table in the figure
shows the prediction performance of our trained regression
model, with a QWK score of 0.765. Using our formula, the
value of the prevalence is 0.119. We can observe in this ta-
ble that the proportion of agreement for different scores is

somewhat evenly distributed, with most of the agreement
between rater 1 and rater 2 occurring in score 1. The accu-
racy or percent agreement for this model is 0.66.

An intriguing outcome of the QWK behavior is evidenced in
the last table (no. 7) in Figure 3. It demonstrates the predic-
tion performance with an accuracy of 0.66, which is the same
as that of the first table (no. 1). However, the QWK score
for this model has significantly decreased to 0.599, falling be-
low the acceptable score of 0.70 for an AES model. Despite
the decrease in the QWK score, the prevalence of agreement
between the two raters in this table was found to be 0.294,
indicating a higher imbalance in the agreement scores be-
tween the two raters. This scenario was created through the
manipulation of the confusion matrix, in which both raters
made more frequent equal predictions on score 1. This ma-
nipulation allowed for the examination of the impact of such
an imbalance on the overall QWK score.

Figure 4 illustrates that as the prevalence of the agreement
table increases, the QWK value decreases. Initially, the
QWK value is 0.765, above the acceptance threshold, but
as the prevalence increases, the QWK value drops to 0.599,
below the accepted score threshold. This results in the ac-
ceptance decision for the AES model changing from accepted
to rejected, even though all models have the same number
of raters’ agreements. These findings suggest that the pro-
portion of agreements plays a significant role in determining
the reliability of an assessment model.

The main objective of this section is to demonstrate that
a scenario exists in which the value of kappa decreases as
prevalence increases that leading to a decision-making chal-
lenge within the context of AES. It is worth noting, however,
that this pattern of prevalence-kappa correlation is not al-
ways the case. In fact, it is possible for the kappa value
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Figure 5: The effect of changing the position of agreements on QWK. Both examples presented are from the last two
agreement tables in Figure 3.

to increase even as prevalence increases, particularly in the
context of agreement matrices with dimensions greater than
2x2. This phenomenon has not been previously addressed
in the literature and will be explored in greater detail in the
following section.

5.4 Position Change in Agreement
In our study, we examined the validity of the pattern pro-
posed by Byrt et al. (1993) in relation to agreement matrices
larger than 3x3. Our findings indicate that this pattern is
not consistently applicable in these cases. To further demon-
strate this, we analyzed two specific examples, depicted in
Figure 5. Both examples presented are from the last two
agreement tables in Figure 3 (tables no 6 and 7) to show an
opposite relationship between prevalence and kappa, con-
trasting the relationship discussed in the previous section.
In both cases, we maintained the same number of agree-
ments on the diagonal of the matrix, thus preserving the
overall prevalence. However, as shown in Figure 5, we ob-
served significant changes in the Quadratic Weighted Kappa
(QWK) value when altering the arrangement of these agree-
ments within the matrix. Specifically, in the upper image
of Figure 5, the QWK increased from 0.665 to 0.853 after
swapping the positions of the numbers 900 and 35 in the cor-
ner of the matrix. Similarly, in the bottom image, the QWK
increased from 0.599 to 0.855 after swapping the positions of
the numbers 1000 and 5 on the diagonal. These findings sug-
gest that the position of agreements within the matrix can
significantly impact the QWK value and, therefore, must be
considered when evaluating the agreement between raters.

The observed results can be attributed to the significant dif-
ference in the expected probability (Pe) of the two matrices

being compared. As demonstrated in Figure 5(a), the ma-
trix on the left exhibits a Pe value of 0.874, while the matrix
on the right exhibits a Pe value of 0.714. It is well estab-
lished that a decrease in Pe values leads to an increase in
the quadratic weighted kappa (QWK) value. Similarly, the
comparison presented in Figure 5(b) shows that the Pe value
of the matrix on the left is 0.895, while the Pe value of the
matrix on the right is 0.710. All of the cases have the same
observed probability (Po) of 0.958. These findings suggest
that the Pe values of the two matrices play a critical role in
determining the QWK value.

The QWK behavior in this scenario presents a challenge
for decision-makers when determining whether to accept or
reject an AES model. As previously discussed, the QWK
scores for the agreement tables prior to the exchange of po-
sitions between two numbers are significantly lower than the
minimum requirement for acceptance according to the AES
model. This issue is further compounded by the fact that
the kappa values for these tables shift from indicating a mod-
erate agreement to an almost-perfect agreement. This is a
significant change in interpretation despite the fact that the
number of correct predictions (percent agreement) and the
difference in the proportion of agreement between classes
(prevalence) remain unchanged. This highlights the poten-
tially problematic nature of relying solely on QWK scores
for decision-making in regard to AES models.

5.5 The Number of Raters
In high-stakes testing programs that include writing essays
among the various tasks that are measured, it is standard
procedure to have multiple raters read and evaluate each
of the essays, as outlined in the research of Cohen [9]. The
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most reliable assessment will occur when all of the responses
are scored independently by different raters[2]. The greater
the number of independent responses and the more the num-
ber of independent ratings of each response, the higher the
reliability of the assessment will be. According to Coffman
[6], the development of common examinations for English
exams, rated by multiple teachers, is essential for ensuring
reliability. The study suggests that utilizing two ratings,
even if done quickly to allow for a larger number of ratings
overall, is preferable to relying on a single rating. To further
improve the reliability of rater decisions in the scoring of es-
says, student responses are generally scored by two or more
raters, as highlighted in the research of Johnson [14]. This
approach allows for a more thorough and accurate evaluation
of the essays, as it takes into account multiple perspectives
and ensures that any potential biases or inconsistencies are
identified and addressed.

It has been noted in prior studies that there may be sce-
narios where more than two raters are utilized for exams
grading. As exemplified in Breland’s study [2], the criterion
variable employed was the sum of scores obtained from four
distinct essay tasks, each independently scored by four sepa-
rate raters. Additionally, Johnson et al. [14] suggested that
implementing three raters can also be beneficial, assuming
that there is no evidence of rater drift. And it appears rea-
sonable that the reliability of operational scores would be
significantly improved by averaging the three scores from
the two initial raters and the one expert.

However, one of the main limitations of using kappa statis-
tics to assess interrater agreement is that it is only suit-
able for analyzing the agreement between not more than two
raters. And since weighted kappa only adds weight to the
observed agreement and the expected agreement matrices to
the original formula of Cohen’s kappa, it is also dealing with
the same problem.

If we need to assess interrater agreement among a larger
group of raters, we will need to use other alternatives such
as Fleiss kappa [11] or Krippendorf’s alpha [15]. These alter-
natives are specifically designed to accommodate interrater
agreement metrics for more than two raters and can provide
more reliable and accurate results in these situations.

Fleiss’ kappa, introduced by Joseph L. Fleiss in 1971 [11],
is considered an improvement over Cohen’s kappa in situ-
ations where there are more than two raters or annotators
involved in the assessment process. It is also noteworthy
that while Cohen’s kappa presumes that the same pair of
raters evaluate a fixed set of items, Fleiss’ kappa accommo-
dates for variations in the composition of raters, as a fixed
number of raters (e.g., three) may be assigned to varying
items. Meanwhile, Krippendorff’s alpha is a generalization
of several known reliability indices that enables researchers
to judge a variety of data with the same reliability standard.
This coefficient can be applied to any number of observers,
not just two, and any number of categories, scale values, or
measures. Additionally, it can be used with any metric or
level of measurement, including nominal, ordinal, interval,
ratio, and more. Krippendorff’s alpha is also suitable for
handling incomplete or missing data and can be used with
large and small sample sizes without requiring a minimum

sample size. Overall, Krippendorff’s alpha is a versatile and
useful tool for assessing the reliability of different types of
data.

Nevertheless, if we want to continue using kappa statistics
for this specific scenario, an alternative method is to employ
the calculation of pairwise averages. This approach involves
determining the kappa value between rater 1 and rater 2,
subsequently computing the kappa value between rater 2 and
rater 3, and finally, determining the kappa value between
rater 1 and rater 3. The overall inter-rater agreement is then
derived by taking the mean of the three kappa agreement
results. This methodology allows for a more comprehensive
understanding of the agreement among raters, as it takes
into account multiple pairwise comparisons. It is important
to choose the appropriate metric based on the specific needs
and requirements of the study in order to obtain accurate
and reliable results.

6. DISCUSSION
In the preceding section, a series of experiments were con-
ducted to thoroughly examine the behavior of Quadratic
Weighted Kappa (QWK) across a range of different scenar-
ios. Our findings demonstrate that QWK is particularly
sensitive to the rating scale, with its value varying signifi-
cantly in response to changes in the range of scores. The
main problem is that the scores given by the two raters may
be consistent, but the method used to calculate the final
score can lead to inconsistencies in the acceptance of the es-
say scoring model. We discussed a strategy for mitigating
the impact of the rating scale by changing the weights in the
kappa formula. The Linear Weighted Kappa (LWK) method
was found to be the most balanced method for dealing with
rating scales, and it is important for decision-makers to es-
tablish a new threshold for acceptable performance criteria.

Additionally, we observed that when used in conjunction
with acceptance rates of essay scoring models, the paradox
of kappa can produce undesirable effects. Scoring models
that perform well in terms of percent agreement or accuracy
scores may not be as satisfactory when evaluated by kappa,
owing to the model’s inability to outperform random guess-
ing, as the kappa statistic takes into account the possibility
of agreement occurring by chance.

Furthermore, it is also crucial to consider the impact of the
prevalence of an agreement matrix. Our initial experimen-
tation yielded results that align with previous findings, as
reported by Byrt et al. (1993), which suggest that as the
Prevalence Index (PI) increases, the Pe value also increases,
resulting in a decrease in the kappa value. This finding
has significant implications for the decision-making process
when evaluating the acceptance of an AES model. We de-
veloped a score prediction model for predicting scores for an
essay scoring dataset (prompt 4 ASAP dataset). Despite the
model’s satisfactory performance in terms of the number of
correct predictions, it was ultimately rejected due to a de-
crease in the Quadratic Weighted Kappa (QWK) value that
fell below the acceptance threshold. This decline in QWK
was observed as the proportion of the difference in agree-
ment between classes increased, highlighting the importance
of considering the prevalence of an agreement matrix in the
evaluation of AES models.
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In our study, we discovered that the correlation between
prevalence and kappa for agreement tables with dimensions
greater than 2x2 deviates from the pattern previously out-
lined in Byrt et al.’s study (1993). Specifically, we found
that there is no definitive relationship between prevalence
and kappa, as the behavior of kappa is highly dependent on
the distribution of majority agreements within the matrix.
Specifically, if the majority agreements are concentrated in
the middle of the diagonal, the value of kappa will decrease,
whereas if the majority agreements are located on the edges
of the diagonal, the value of kappa will increase. This find-
ing highlights the unpredictability of kappa’s behavior when
prevalence is held constant, and it highlights the need for
caution when evaluating an AES model. Educational insti-
tutions considering the implementation of an AES system
for essay score prediction should take this unpredictability
into account when assessing the model’s performance and
determining whether to accept or reject its use.

Lastly, we must acknowledge that the use of kappa statistics
is limited by the number of raters it can handle. Kappa is
only suitable for assessing inter-rater agreements between
up to two raters. In scenarios involving more than two
raters, alternative metrics such as Krippendorf’s alpha or
Fleiss kappa must be employed. An alternative method for
using kappa statistics in this specific scenario is to calculate
pairwise averages by determining the kappa value between
each pair of raters and taking the mean of the results for
a more comprehensive understanding of agreement among
raters. It is important to choose the appropriate metric
based on the specific needs and requirements of the study in
order to obtain accurate and reliable results.

The recommendation to use multiple evaluation metrics is
indeed a common practice in ML. However, in the specific
context of AES, we believe there is a lack of consensus on
which metrics to use. Our paper provides guidance and spe-
cific recommendations for researchers and practitioners on
which metrics and strategies are appropriate to mitigate dif-
ferent limitations of QWK in AES contexts.

7. CONCLUSION
This study examined the use of quadratic weighted kappa
(QWK) as the primary evaluation metric for automated es-
say scoring (AES) systems. Through various experiments,
we identified several limitations of QWK for its use in the
context of AES, including its sensitivity to the rating scale,
the occurrence of the kappa paradox, the impact of the num-
ber of agreements, and its limitation in handling a large
number of raters. These characteristics of QWK can affect
the acceptability of an AES system.

In summary, relying solely on QWK as the evaluation met-
ric for AES performance may not be sufficient. It is impor-
tant to consider multiple evaluation metrics when assessing
the effectiveness of a model or approach. This is because
different metrics can provide different insights into the per-
formance of the model. Relying solely on one evaluation
metric may not provide a complete or accurate picture of
the model’s performance. Additionally, using multiple eval-
uation metrics can increase the robustness and comprehen-
siveness of the evaluation, ultimately leading to more confi-
dent conclusions.

8. REFERENCES
[1] D. Boulanger and V. Kumar. Deep learning in

automated essay scoring. In International Conference
on Intelligent Tutoring Systems, pages 294–299.
Springer, 2018.

[2] H. M. Breland. The direct assessment of writing skill:
A measurement review. college board report no. 83-6.
1983.

[3] H. Brenner and U. Kliebsch. Dependence of weighted
kappa coefficients on the number of categories.
Epidemiology, pages 199–202, 1996.

[4] T. Byrt, J. Bishop, and J. B. Carlin. Bias, prevalence
and kappa. Journal of clinical epidemiology,
46(5):423–429, 1993.

[5] H. Chen and B. He. Automated essay scoring by
maximizing human-machine agreement. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1741–1752, 2013.

[6] W. E. Coffman. On the reliability of ratings of essay
examinations in english. Research in the Teaching of
English, 5(1):24–36, 1971.

[7] J. Cohen. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement,
20(1):37–46, 1960.

[8] J. Cohen. Weighted kappa: nominal scale agreement
provision for scaled disagreement or partial credit.
Psychological bulletin, 70(4):213, 1968.

[9] Y. Cohen. Estimating the intra-rater reliability of
essay raters. In Frontiers in Education, volume 2,
page 49. Frontiers Media SA, 2017.

[10] A. Doewes and M. Pechenizkiy. On the limitations of
human-computer agreement in automated essay
scoring. International Educational Data Mining
Society, 2021.

[11] J. L. Fleiss. Measuring nominal scale agreement among
many raters. Psychological bulletin, 76(5):378, 1971.

[12] P. Graham and R. Jackson. The analysis of ordinal
agreement data: beyond weighted kappa. Journal of
clinical epidemiology, 46(9):1055–1062, 1993.

[13] R. Johnson, J. Penny, and C. Johnson. A conceptual
framework for score resolution in the rating of
performance assessments: The union of validity and
reliability. In annual meeting of the American
Educational Research Association, New Orleans, LA,
2000.

[14] R. L. Johnson, J. Penny, and B. Gordon. Score
resolution and the interrater reliability of holistic
scores in rating essays. Written Communication,
18(2):229–249, 2001.

[15] K. Krippendorff. Computing krippendorff’s
alpha-reliability. 2011.

[16] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. biometrics,
pages 159–174, 1977.

[17] J. Liu, Y. Xu, and Y. Zhu. Automated essay scoring
based on two-stage learning. arXiv preprint
arXiv:1901.07744, 2019.

[18] R. Morris, P. MacNeela, A. Scott, P. Treacy, A. Hyde,
J. O’Brien, D. Lehwaldt, A. Byrne, and J. Drennan.
Ambiguities and conflicting results: the limitations of
the kappa statistic in establishing the interrater

112



reliability of the irish nursing minimum data set for
mental health: a discussion paper. International
journal of nursing studies, 45(4):645–647, 2008.

[19] A. Sharma, A. Kabra, and R. Kapoor. Feature
enhanced capsule networks for robust automatic essay
scoring. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 365–380. Springer, 2021.

[20] J. Shin and M. J. Gierl. More efficient processes for
creating automated essay scoring frameworks: A
demonstration of two algorithms. Language Testing,
38(2):247–272, 2021.

[21] K. Taghipour and H. T. Ng. A neural approach to
automated essay scoring. In Proceedings of the 2016
conference on empirical methods in natural language
processing, pages 1882–1891, 2016.

[22] Y. Wang, Z. Wei, Y. Zhou, and X.-J. Huang.
Automatic essay scoring incorporating rating schema
via reinforcement learning. In Proceedings of the 2018
conference on empirical methods in natural language
processing, pages 791–797, 2018.

[23] M. J. Warrens. Weighted kappa is higher than cohen’s
kappa for tridiagonal agreement tables. Statistical

Methodology, 8(2):268–272, 2011.

[24] M. J. Warrens. Some paradoxical results for the
quadratically weighted kappa. Psychometrika,
77(2):315–323, 2012.

[25] D. M. Williamson, X. Xi, and F. J. Breyer. A
framework for evaluation and use of automated
scoring. Educational Measurement: Issues and
Practice, 31(1):2–13, 2012.

[26] R. Yang, J. Cao, Z. Wen, Y. Wu, and X. He.
Enhancing automated essay scoring performance via
fine-tuning pre-trained language models with
combination of regression and ranking. In Findings of
the Association for Computational Linguistics:
EMNLP 2020, pages 1560–1569, 2020.

[27] S. Zec, N. Soriani, R. Comoretto, and I. Baldi.
Suppl-1, m5: high agreement and high prevalence: the
paradox of cohen’s kappa. The open nursing journal,
11:211, 2017.

[28] T. Zesch, M. Wojatzki, and D. Scholten-Akoun.
Task-independent features for automated essay
grading. In Proceedings of the tenth workshop on
innovative use of NLP for building educational
applications, pages 224–232, 2015.

113



How to Open Science: Debugging Reproducibility within
the Educational Data Mining Conference

Aaron Haim
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

01609, USA
ahaim@wpi.edu

Robert Gyurcsan
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

01609, USA
rfgyurcsan@wpi.edu

Chris Baxter
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

01609, USA
wcbaxter@wpi.edu

Stacy T. Shaw
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

01609, USA
sshaw@wpi.edu

Neil T. Heffernan
Worcester Polytechnic Institute

100 Institute Road
Worcester, Massachusetts

01609, USA
nth@wpi.edu

ABSTRACT
Despite increased efforts to assess the adoption rates of open
science and robustness of reproducibility in sub-disciplines
of education technology, there is a lack of understanding
of why some research is not reproducible. Prior work has
taken the first step toward assessing reproducibility of re-
search, but has assumed certain constraints which hinder
its discovery. Thus, the purpose of this study was to repli-
cate previous work on papers within the proceedings of the
International Conference on Educational Data Mining to ac-
curately report on which papers are reproducible and why.
Specifically, we examined 208 papers, attempted to repro-
duce them, documented reasons for reproducibility failures,
and asked authors to provide additional information needed
to reproduce their study. Our results showed that out of 12
papers that were potentially reproducible, only one success-
fully reproduced all analyses, and another two reproduced
most of the analyses. The most common failure for repro-
ducibility was failure to mention libraries needed, followed
by non-seeded randomness.

All openly accessible work can be found in an Open Science
Foundation project1.

Keywords
Open Science, Peer Survey, Reproducibility

1. INTRODUCTION
1https://doi.org/10.17605/osf.io/unhyp

The adoption of open science and robustness of reproducibil-
ity within fields of research has incrementally gained trac-
tion over the last decade [32, 34]. This adoption trend has
led to increased clarity in methodologies, easier execution of
analyses, greater understanding of the underlying work, etc.
However, in numerous sub-disciplines of education technol-
ogy, there tends to be a lack of understanding as to why
an author’s research is not replicable, or even reproducible.
For example, within the sub-discipline of ‘Educational Data
Mining’, which has provided large-scale data for analyzing
student learning and improve outcomes [3, 29], there are
numerous analyses that, while typically falling within the
reported confidence intervals, do not produce the exact re-
sults reported in the published, peer reviewed paper.

Previous works related to open science and robustness of
reproducibility were conducted on the International Con-
ference on Learning Analytics and Knowledge (LAK) [9,
18] and the International Conference on Artificial Intelli-
gence in Education (AIED) [10]. Within the LAK work,
5% of papers were found to adopt some of the chosen prac-
tices needed for reproducibility; however, none were success-
ful within a 15-minute timeframe. Within the AIED work,
7% of papers were reported to be ‘potentially’ reproducible
through source analysis with some given assumptions; how-
ever, once again none were successful. The AIED work also
collected responses from authors in association to their pa-
per, in which 58% of authors reported that they could release
a dataset or source needed for reproducibility; however, it
did not improve the end result. These prior works only per-
form a basic overview of the potential reproducibility due
to the given time limit, regardless of any extensions. In ad-
dition, the authors made certain assumptions that made a
paper not reproducible to improve the efficiency of the re-
viewing process: non-defined libraries, non-seeded random-
ness, etc.

The goal of this work is to provide a deeper dive into the re-
producibility of papers within the field of Educational Data
Mining. Specifically, this work will replicate the results of
previous work across papers published within the last two

A. Haim, R. Gyurcsan, C. Baxter, S. T. Shaw, and N. T. Heffernan.
How to open science: Debugging reproducibility within the educa-
tional data mining conference. In M. Feng, T. Käser, and P. Talukdar,
editors, Proceedings of the 16th International Conference on Edu-
cational Data Mining, pages 114–124, Bengaluru, India, July 2023.
International Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115651
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years of the proceedings of the International Conference on
Educational Data Mining (EDM). Trained reviewers exam-
ined each paper for open science practices and reproducibil-
ity (henceforth referred to as our peer review). We further
reached out to authors in an effort to obtain more informa-
tion about the paper to improve reproducibility.

Each paper was given a hard limit, with minor exceptions, of
6 hours to attempt to reproduce the paper, including com-
munication with the authors. The process needed to at-
tempt reproduction was recorded in a document, along with
a breakdown of how much time was needed to do so. If
results were obtained that did not reflect those within the
paper, then an additional review of the source was conducted
to determine the disconnect.

Specifically, this work aimed to accomplish the following
tasks:

1. Document and analyze which papers within the pro-
ceedings of the International Conference on Educa-
tional Data Mining (EDM) adopt the open science
practices and associated subcategories defined by this
work.

2. Communicate with the authors of the papers using a
survey to measure the understanding and adoption of
open science practices and receive additional informa-
tion to properly reproduce or replicate the paper, if
needed.

3. Attempt to reproduce the paper within a 6-hour time-
frame, document any additional methodologies not re-
ported within the paper or its resources, and deter-
mine, if necessary, why the exact results reported in
the paper could not be obtained.

2. BACKGROUND
2.1 Open Science
Open science is an ‘umbrella’ term used to describe when the
methodologies, datasets, analysis, and results of any piece of
research are accessible to all [15, 34]. In addition, there are
subcategories of ‘open science’ corresponding to individual
topics created before and after the initial adoption in the
early 2010s [32]. Within the first half of the decade, there
were numerous issues when conducting peer reviews of other
researchers’ work including, but not limited to, ambiguity in
methodology, incorrect usage of materials, etc. Then in the
mid-2010s, large-scale studies in psychology [6] and other
fields [2] were unable to be reproduced or replicated. As
such, open science practices were more commonly adopted to
provide greater transparency and longer-lasting robustness
in a standardized format such that researchers can adapt
and apply their work.

Our personal investment in documenting the adoption and
robustness of research in our discipline and its subfields
stemmed from our own shortcomings. Specifically, our lab
ran into an issue one day where we could not reproduce
our prior research. There was a lack of information on how
to run the analysis code, minimal information on the pro-
vided dataset, and hard-to-diagnose issues when attempting
to reproduce the results. The issues were eventually solved

with communication from the original author who had since
left our lab, but it motivated us to do a better job at mak-
ing our work more clear and more reproducible. Admitting
first our own lack of adoption and ability to reproduce our
work, our goals of the current work were to investigate the
current adoption of open science, survey authors for their
reasons for or against adoption, and attempt to reproduce
their work and properly diagnose any issues that arise.

2.2 Data Mining
Data Mining is a term used to describe the extraction of
previously unknown or potentially useful information from
some piece of data [5, 27]. Originally known as ‘Knowl-
edge Discovery in Databases’ (KDD), it has since expanded
to apply the collected information in numerous fields and
contexts. Within education, ‘Educational Data Mining’ has
helped collect data on how students learn and teachers pro-
vide information at numerous levels (e.g. classroom, school,
district) to better improve a student’s understanding and
outcomes [3, 29]. There were a few workshops in educational
data mining since 2005, but in 2008, the International Con-
ference on Educational Data Mining (EDM) was created [1]
and took the role of hosting research which collected and
analyzed large-scale data in educational settings. The col-
lection and analysis associated with data mining practices
tend to correspond with those related to open science and
is typically a common topic due to developing proper and
secure policies [35]. As such, papers submitted to the EDM
conference will be used as the dataset for this work.

3. METHODOLOGY
3.1 Open Science Peer Review
To complete RQ1, we adopted the methodology from the
previous works [9, 10]. We evaluated every full paper, short
paper, and poster paper from the previous two EDM pro-
ceedings: the 15th International Conference on Educational
Data Mining2 and the 14th International Conference on Ed-
ucational Data Mining3. Reproducibility of older years was
likely to be more difficult as papers become older as software
might no longer exist or is outdated or the dataset or source
required had been taken down for some reason. Thus, only
the last two years were considered. Both proceedings are
divided into subsections ‘Full Papers’ (synonymous with re-
search articles in previous works), ‘Short Papers’, or ‘Poster
Papers’ (synonymous with posters in previous works). The
papers within the proceedings of the 15th International Con-
ference on Educational Data Mining were identified by their
digital object identifier (DOI)4. The papers within the pro-
ceedings of the 14th International Conference on Educational
Data Mining were identified by their page number within the
proceedings5. As the identifiers for each proceeding were dif-
ferent but functionally equivalent, they were referred to as
unique identifiers (UID). Each review captured a UID, the

2https://zenodo.org/communities/edm-2022/
3https://educationaldatamining.org/EDM2021/EDM2021Proceedings.pdf
4There was no DOI associated with the proceedings itself,
so the citation is a footnote with a link to the community
group on Zenodo.
5The proceedings of the 14th International Conference on
Educational Data Mining had no DOI. As such, the page
number in the proceedings were used. A separate link was
provided to the virtual page for each paper as well.
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proceedings the paper was a part of, and the subsection the
paper was listed under. Each review for a paper was given
a maximum time limit of 15 minutes because of logistical
constraints (e.g. non-specified or degraded links, nested re-
sources within citations, etc.). In addition, an explanations
document was created which justified why a specific choice
was made in the review. If a choice was self-explanatory, the
justification was omitted (e.g., no preregistration was linked
in the paper, no README was located in the source). Any
links within the paper that no longer reference the origi-
nal resource were marked as degraded and reported in the
explanations document.

Open Methodology is a term that says the details of the col-
lection, methods, and evaluation of a research project are
accessible and usable by all [15]. Compared to a paper, the
methodologies typically represent every possible step and re-
source needed for another researcher to reproduce or repli-
cate the research themselves. All papers submitted to the
15th International Conference on Educational Data Mining
are licensed under the Creative Commons Attribution 4.0
International License6, or CC-BY-4.0 for short, and are con-
sidered ‘Open Access’. The papers within the proceedings of
14th International Conference on Educational Data Mining
are unlicensed; however, EDM treats them as ‘Open Access’
regardless, so they are considered as such for this work.

Open Data is a term that says the dataset(s) associated with
the research project is accessible and can be used by all [17,
19]. These datasets are typically specified with a license or
are part of the public domain. A dataset is marked as being
open if the paper contains a link, or a link to another paper
with a link, to the dataset. If the paper mentions explicitly
that the dataset can be requested from the authors, then
it will be marked as ‘on request’. If the paper does not
use a dataset, such as for theoretical or development topics,
then the field is marked as non-applicable. The licensing on
the dataset was not considered as researchers are unlikely
to be as familiar with them and are normally ambiguous or
too complex to properly understand [13, 28]. A separate
field is provided for the documentation of the data which is
marked if there exists a location where the dataset’s fields
are mapped to its associated description. A partial marking
for the documentation can be met if there is at least one
field documented at some location.

Open Materials is a term that captures whether technologies
– including open source software [25, 11], freeware, or non-
restrictive services – can be used by all. A paper has open
materials if the paper contains a link, or a link to another
paper with a link, to all the materials and source the authors
used. A partial marking was assigned if there is at least one
material mentioned. If there are no materials used, such as
for argumentative or theoretical papers, then the field was
marked as non-applicable. The documentation for the ma-
terials and source, which provides understanding on how to
use them [7], also had a field, along with a partial equivalent
if the materials or source was not fully documented. If the
source was available, then two more fields were considered:
the README which contained information on the source
and potentially some setup instructions [14] and a license

6https://creativecommons.org/licenses/by/4.0/

field which said that the source can be used openly [25, 31,
8].

A preregistration describes the processes conducted for the
paper before the research takes place to prevent hypothe-
sizing after results are known and p-hacking observations
[22, 21, 33]. Preregistrations can range in complexity, from
documenting a priori sample sizes, to exclusion criteria, to
full analysis plans. While they are often believed to solely be
used for null hypothesis testing, preregistrations can be, and
are used in a wide-range of research methodologies including
qualitative methods and secondary data analysis. A prereg-
istration can be altered by creating a new preregistration to
preserve the initial methodologies. A paper has a preregis-
tration if there is a link within the paper to some location
hosting the preregistration (e.g., Open Science Framework7,
AsPredicted8). If a preregistration is unnecessary, then the
field is marked as non-applicable.

In contrast to previous works, the peer review was handled
by two trained undergraduate research assistants, referred
to as ‘Reviewers’ in the explanations document. Under-
graduates are typically pressed upon to conduct and publish
research prior to graduation for better advancement within
their career [16, 30, 26]. As such, it stands to reason that pa-
pers should be geared towards the understanding of under-
graduates assuming the requisite knowledge. Due to under-
graduate interpretation, it was expected to see a higher level
of adoption as previous works tended to be highly specific
and nuanced when evaluating whether a given subcategory
was adopted.

To mitigate any misconceptions or inaccuracies between the
reviewers, each reviewer was randomly assigned ten papers
that another reviewer reviewed and provided their own re-
view. Both reviews are provided within the explanations
document in an arbitrary order.

As a final precaution, the lead on the research project, re-
ferred to as the ‘Meta-Reviewer’, was responsible for resolv-
ing any disputes or disagreements within the provided re-
views. If two reviewers disagreed on a particular section,
the meta-reviewer had the final say as to what was reported.
Additionally, if either reviewer asked for verification on a
particular review, the meta-reviewer provided the requested
feedback and correct markings. Finally, the meta-reviewer
lightly reviewed the results of the reviewers for any major
inaccuracies in understanding or logic and corrected them
as necessary.

3.2 Author Survey
To complete RQ2, Authors were allowed to provide input to
the peer review performed using a survey. For each paper
submitted to the two EDM conferences, an email was sent
out to the first author9. To avoid issues involving the email
server (e.g. email marked as spam, denied due to too many
receipts), authors with multiple papers published in the pro-
ceedings were sent a single email containing the papers they

7https://osf.io/registries
8https://aspredicted.org/
9The first author was assumed to be the corresponding au-
thor as EDM does not provide any formal way of marking
so.
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should complete the survey for10. As an added measure to
improve the number of survey responses, a separate, mass
email was sent prior to the survey to notify authors about
the survey and what email it would be sent from. The sur-
vey responses were publicly released and linked by their UI
as stated in our International Review Board (IRB) study.
Additionally, the author information provided was removed
from the released dataset. The survey itself was sent on
November 29th, 2022 and currently continues to collect re-
sponses. This work reports on responses collected up to
January 3rd, 2023.

The survey asked for the name and email of the author and
the UI of the associated paper. The content of the survey
was separated into six subsections: data, materials, prereg-
istration, preprint, reproducibility and replicability, and re-
source degradation.

3.2.1 Data
The data section was used to collect information on the
dataset and documentation used within the paper. The au-
thor first reported whether the dataset is publicly available,
is private but can be shared on request, or if the dataset
cannot be shared at all. In the case where a dataset was
not used or does not correspond with one of the above cat-
egories, an additional ‘other’ option was available with an
appropriate text box. If the dataset was not publicly ac-
cessible, the author was asked to provide their reasoning as
to why. If the dataset could be shared either publicly or
on request, the author was asked to provide the location of
the dataset along with its associated license. If a link was
provided but the dataset could not be released publicly, the
link would be scrubbed from the publicly released dataset.
This would provide a relatively secure way to share data
that may contain sensitive information. All questions were
shown for full transparency.

3.2.2 Materials
The materials section was responsible for collecting infor-
mation on the materials, source, and documentation used
within the paper. The questions in this section are the
same as those within the data section except replaced with
material-related keywords.

3.2.3 Preregistration
The preregistration section was responsible for collecting in-
formation on an available preregistration, if applicable, for
the paper. The author was asked to report on whether there
is a public, private, or no preregistration made for the pa-
per. If a preregistration was not applicable (e.g. theoretical
paper, argumentative paper) or did not fit into one of the
available categories, an additional ‘other’ option was avail-
able with an appropriate text box. For available preregistra-
tions, whether public or private, the author was requested to
provide the associated link. If no preregistration was made,
the author was asked to provide their reasoning as to why.

10This email survey was conducted in parallel with two sep-
arate research projects for other conferences to mitigate the
issues mentioned above. The other research projects will be
reported at a later time.

3.2.4 Preprint
The preprint section documented information on an avail-
able preprint, a paper that usually proceeds formal peer re-
view and publication in a conference or journal [4, 12], for
the paper. The author was asked to report on whether a
preprint was available for the paper. If a preprint was not
applicable or did not fit into one of the available categories,
an additional ‘other’ option was available with an appro-
priate text box. If a preprint was present, the author was
requested to provide the associated link. If no preprint was
created, the author was asked to provide their reasoning as
to why.

3.2.5 Reproducibility and Replicability
The reproducibility and replicability section documented in-
formation needed to properly reproduce or potentially repli-
cate the associated paper. Towards replication, the author
was asked to provide any additional methodologies that were
not reported in the original paper. Towards reproduction,
the author was asked to provide any necessary setup instruc-
tions needed to properly connect the dataset to the source
and run the associated analysis. This included, but was not
limited to, file locations, software versions, setup scripts, etc.
If any of the above information was not provided within the
paper or its citations, the author was asked to provide their
reasoning as to why.

3.2.6 Resource Degradation
The resource degradation section documented information
on resources reported within the papers that no longer exist
at the specified location. The authors were asked to review
their resources for any that no longer exist or point to an
incorrect location and provide alternatives if possible. If the
resources were degraded, the author was asked to explain
what happened to the original resource.

3.3 Reproducibility
An experiment or study is reproducible when the exact re-
sults reported in the paper can be produced from a static
input (e.g. dataset, configuration file) and deterministic
methodology (e.g. source code, software)[20, 24, 23]. While
reproducibility is the simplest form of reviewing the results
of a paper, in practice, there are differing levels of what
defines a complete reproduction. For this work to com-
plete RQ3, we assume that a paper is reproducible when
the dataset and analysis used in the original paper returns
the exact same results and figures as those reported. If either
the dataset or analysis method is not present, found within
the 15-minute timeframe in the paper or its resources, or
provided within the author’s survey response, then the pa-
per will be marked as non-reproducible. If the paper does
not use a dataset or analysis method or does not run an
experiment or study in general, then reproducibility will be
marked as non-applicable.

Although we allocated 15 minutes for each paper to find its
dataset or analysis, if we were able to track these down, each
paper was given a hard limit of 6 hours to reproduce the re-
sults reported in the paper. If any action exceeded the 6 hour
limit, then the action was stopped and only the exported re-
sults were considered with any reasonable educated guesses
on the rest of the runtime. The 6 hour limit was only ex-
tended if the reproduction could be assumed to be completed
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within an additional hour. To provide a better and more
accurate understanding of the amount of time taken, the
collected metric was broken down into three time periods:
setup, execution, and debugging. A timing site11 was used
to manually track how long each section took along with
the total time. If any breaks were taken by the reviewer,
the timers and all actions were stopped and recorded in the
explanations document until the reviewer resumed working.

The setup time tracked the time taken for all tasks prior
to the first execution of the analysis. This includes down-
loading the dataset and source, setting up the necessary en-
vironment, and following information provided within the
README, if available. Information that can be assumed
from the source was not provided during the setup phase
to better simulate cases where a researcher would run the
source assuming they had all the necessary libraries installed
from previous runs. This time was likely to vary between re-
viewers depending on factors such as connection speed and
should be taken with a grain of salt. The execution time
tracked the time taken during the execution of the program.
This began when the program was ran (e.g. command, but-
ton) and stopped when the program finished executing or
crashed. This time was the total time on execution any
might included multiple runs. Any specific information was
recorded in the explanations document. The debugging time
tracked the time taken between executions when the analy-
sis crashed. Any diagnoses made which corrected the issue
was reported in the explanations document. A perfectly re-
producible analysis should have minimal to no debugging
time.

All reproducibility tests were run on a single big data ma-
chine used within the author’s lab. The machine was chosen
for two reasons. First, as a big data machine, it can run
numerous calculations relatively quickly depending on the
efficiency of the analysis. Second, it runs a Unix-based op-
erating system with a Bash shell which most scripts provided
by researchers are typically for. For benchmarking purposes,
the specifications of the machine are listed in Appendix B.

3.3.1 Python
If the environment needed to reproduce the source used
Python12, then the following steps were taken:

1. If a specific version of Python was specified, download
and select the version of Python.

2. Create a empty virtual environment using ‘venv’13 and
activate it.

3. Follow any setup steps specified by the analysis.

4. If the analysis is in a Python (.py) file:

(a) Run the file using the ‘python’ command.

5. If the analysis is in a Python Notebook (.ipynb):

11https://stopwatch.online-timers.com/multiple-
stopwatches

12https://www.python.org/
13This is the recommended way for Python 3; however, there
are other methods to do so.

Figure 1: A representation of the review on the full papers,
short papers, and poster papers published within the pro-
ceedings of the 15th and 14th EDM conferences.

(a) Install ‘ipykernel’ and ‘notebook’ using the ‘pip’
command.14

(b) Open the notebook and specify the kernel used as
the one within the virtual environment.

(c) Run the notebook.

3.3.2 R
If the environment needed to reproduce the source used R15,
then the following steps were taken:

1. If a specific version of R was specified, download and
select the version of R.

2. Create a new project using RStudio16 or another IDE
that can use ‘packrat’1718.

3. Follow any setup steps specified by the analysis.

4. Run the R script.

4. RESULTS
4.1 Peer Review
As shown in Figure 1, across the 99 papers published in the
15th proceedings and the 109 published in the 14th proceed-
ings, there were 49 full papers (research articles), 72 short
papers, and 87 poster papers.

As shown in Figure 2, 32, or 15%, of papers used a dataset
that was already or made openly available. 5% mentioned
that the dataset could be requested. Out of those 15% with
openly available data, 69% had full documentation on the
dataset while the other 31% had partial documentation.

14If the path is improperly configured, the command may
need to be prefixed with ‘python -m’.

15https://cran.r-project.org/
16https://posit.co/products/open-source/rstudio/
17https://cran.r-project.org/package=packrat
18‘packrat’ is the most commonly used option for managing
R dependencies. It is not the only method.
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Figure 2: A representation of the review on the adoption of
open data within papers published in the proceedings of the
15th and 14th EDM conferences.

Figure 3: A representation of the review on the adoption of
open materials within papers published in the proceedings of
the 15th and 14th EDM conferences.

As shown in Figure 3, 31, or 15%, of papers used materials
and made the source openly available. 20% used at least on
openly available materials. Out of those 15% with openly
available materials, 45% had full documentation while 55%
had partial documentation. Additionally, 94% of the open
materials had a README while 44% had a permissive li-
cense provided with the source.

As shown in Table 1, only three, or 1%, of the papers had a
preregistration linked to it. One of the papers was a short
paper while the remaining two were poster papers. One pa-
per was determined to be non-applicable for having a pre-
registration as it was a concept discussion.

Finally, as shown in Table 2, nine, or 4%, of the papers pro-
vided dataset links that were no longer located in its original
location. Two were full papers, five were short papers, and
the remaining two were poster papers. Six, or 3%, provided
material links that were no longer available. One was a full
paper, four were short papers, and the remaining one was a
poster paper.

4.2 Author Survey
Out of the 208 surveys sent, only 13, or 6% of the articles,
provided a complete response within the one month period.
Fourteen, or 7% of the surveys, did not reach their destina-
tion in a timely fashion: two received auto response emails
about a delay in reading the email, two were denied by the
mail server, and ten emails were no longer available or lo-
catable on the mail server.

Out of thirteen responses, three papers reported that their
datasets were publicly available, five papers reported that
their dataset could be requested, and five papers reported
that they cannot share their datasets. Out of the eight pub-
lic and on request responses, five did not mention in the pa-
per that they could share or request the dataset. Out of the
ten on request and cannot share responses, six mentioned
they do not have the rights or necessary license to release
the dataset, three mentioned that the dataset contains sen-
sitive information due to an IRB or some other committee,
and one mentioned they simply did not have enough time to
go through the process of reviewing and potentially publicly
releasing a dataset.

For materials, nine reported that they could make their ma-
terials and source public, Three reported that they could
share their materials and source on request, and one men-
tioned that they cannot release their materials and source.
Out of the twelve public and on request responses, eight did
not mention in the paper that they could share or request
the materials or source. Out of the four on request and can-
not share responses, three mentioned that the source con-
tains references to sensitive information from the associated
dataset while one mentioned they simply did not have the
time nor motivation to go through the process of reviewing
and potentially publicly releasing their materials and source.

Towards reproducibility, only one mentioned additional in-
formation was necessary to reproduce their work while two
mentioned that the information on the source should be
enough to do so. The provided resources did not have an
effect on the reproducibility of the papers within Section 4.3.
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Table 1: A representation of the review on the adoption of preregistrations within papers published in the proceedings of the
15th and 14th EDM conferences split by paper type.

Total Yes (%) No (%) N\A (%)

Full Paper 49 0 (0%) 49 (100%) 0 (0%)
Short Paper 72 1 (1%) 71 (99%) 0 (0%)

Poster 87 2 (2%) 84 (97%) 1 (1%)

Table 2: A representation of the review on the degradation of resources within papers published in the proceedings of the 15th
and 14th EDM conferences split by paper type.

Data Materials Methodology Preregistration

Full Paper 2 1 0 0
Short Paper 5 4 0 0

Poster 2 1 0 0

One survey response mentioned that they did create a pre-
registration and provided a link to it while twelve did not.
Out of the twelve who did not create a preregistration, four
believed that one was not necessary during the beginning of
the research project, one did not remember the option ex-
isted, and six did not know what a preregistration was. One
provided no response.

Five survey responses reported that they did create a preprint
while eight did not. Out of the five that created a preprint,
only four links were provided. Out of the eight that did not
create a preprint, two believed that one was not necessary,
two did not remember the option existed, two did not know
what a preprint was, and one did not believe it was fair to
the review process to create a preprint. One provided no
response.

No survey responses reported anything about their resources
no longer existing at the specified location.

4.3 Reproducibility
Only twelve, or 6% of papers, were able to attempt repro-
duction. Two papers were unable to be timed due to logis-
tical reasons during setup. One paper requested a Python
dependency which was no longer obtainable in an official
capacity. The other paper required arguments to run the
Python script which were not defaulted. There was no indi-
cation as to what the value of those arguments might be, so
there was an infinite number of potential combinations. As
such, the paper was deemed to be non-reproducible.

Five papers passed the 6-hour hard limit. One paper was ex-
cused because of the additional overflow, but it did not allow
all the results to be completed. Two papers were still run-
ning during the execution time when the 6-hour limit passed;
however, only one produced intermediate results that could
be compared. One paper crashed 30 minutes before the
limit and provided intermediate results. The remaining pa-
per was being debugged as there were a number of errors
and version incompatibilities between the Python libraries
preventing execution which was specific configured.

Only nine of the ten tested papers required some amount of
debugging. The remaining paper, while needing no debug-
ging, produced numerous results that did not line up with

Figure 4: A representation of the test results obtained while
reproducing papers published in the proceedings of the 15th
and 14th EDM conferences.

those reported. Out of the nine papers which required de-
bugging, all nine were missing some unreported dependency
that needed to be downloaded. Two papers failed as their
source code did not create the necessary directories to read
or write files to.

As shown in Figure 4, out of the ten tested papers, only
six produced results that could be potentially linked to the
paper or its resources. Three papers provided results but
not in a comparable form to the paper. The remaining paper
passed the 6-hour time limit due to version incompatibilities.
Only one paper, a poster paper, exactly provided the results
expressed within the paper; however, some of the results
had to be pulled from an intermediate variable that was not
printed. The remaining five provided some of the results
reported in the paper; however, only two papers could safely
mitigate the inaccuracies due to the confidence interval.

Further source analysis revealed the five papers which did
not exactly provide the results mentioned in the paper was
due to non-seeded randomness: the seed, or initial value,
which in most cases makes the numbers generated by the
algorithm fixed instead of random is not set to a determin-
istic value. Some papers do partially set the seed for some
generators but not all.

5. LIMITATIONS AND FUTURE WORK
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A number of limitations within previous works replicated
for RQ1 and RQ2 are still applicable to this paper due to
human intervention and limited resources [9, 10]. For the
peer review, this includes the subjectiveness of the author’s
review on the proceedings papers and mitigation through
an explanations document. For the author survey, this in-
cludes the nonexistent fallback strategy, confusion of email
and survey instructions, and the limited responses. As such,
any conclusions made would only accurately reflect a subset
of the educational data mining community.

As the peer reviews were conducted by undergraduate re-
search assistants, there are likely some misconceptions be-
tween the instructions given, the understanding of the pa-
pers, and the explanations for their choices. To better stan-
dardize and mitigate these concerns, the undergraduates
were each given a standardized set of explanations which
could be used during review. In addition, examples were
given to better understand the relationship between the re-
view topic and its corresponding phrases within the papers
and associated resources. As an added precaution, the un-
dergraduates could ask a graduate student to perform a
meta-review or review other undergraduates’ reviews in ei-
ther agreement or disagreement.

We did not conform to a single framework to measure the
reproducibility of a paper. This was because research, along
with its resources, are not uniform in implementation. The
papers we attempted to reproduce in this study used a wide
variety of services, data, and materials stored across numer-
ous locations: GitHub, personal websites, the Open Science
Framework, direct downloads, etc. In addition, each paper
had differing levels of documentation, licensing, interoper-
ability, and replicability. We mitigated this by using broad
categories and definitions with delineated cutoffs when defin-
ing our methodology. However, future work might want to
review how well the papers meet existing frameworks, such
as FAIR19.

When testing for reproducibility, the total time spent had a
hard limit, with one exception, of 6 hours. 2 of the available
papers were halted due to this limit; however, only one did
not produce intermediate results that could be compared to
a paper. It would be useful to properly test the execution
for the entire time provided a large number of machines were
available.

Additionally, the timing was performed manually instead
of through timers associated with the application. There
could be slight overestimations in the amount of time taken
to reproduce. On the other hand, software timers are ill-
suited for such a task as they are typically not multilingual
and may not be available for all software.

Future work should include another round of reproducibility
tests on different machines. Each test would provide a valid
benchmark on the execution length of the code and serve as
a robust measure to validate the reproducibility in numerous
circumstances. In addition, results that were inaccurate due
to randomness could be averaged to provide a more accurate
estimate of the results compared to those reported. Authors

19https://www.go-fair.org/fair-principles/

could be recruited to run reproducibility tests either volun-
tarily or through giveaways; however, it would require the
authors to have a greater understanding of computer science
rather than those needed to provide their analyses.

Another direction for future work could view the impact of
conferences which promote open science and reproducibility
measures to compare them to those without them. In ad-
dition to previous work on author responses and this work
on reproducibility, a comparison could be made between the
promoting and non-promoting conferences to see whether
the adoption of such practices have improved the robust-
ness of research within the discipline.

Finally, the timer categories could be more specified and less
generalized. Each timer only represents the length of each
section rather than individual sections for how long a specific
task took. For the setup and debug categories, these spe-
cific sections would not be as useful since different reviewers
might take different lengths of time to setup or determine an
issue. For the execution category, while it would be useful to
know how much time was needed to reproduce the results,
it would be better suited as a benchmark from the original
author who had already ran the methodology successfully
and without issue.

6. CONCLUSION
Approximately 35% of papers met a partial definition of the
chosen open science practices with 5% able to attempt repro-
ducibility with the combined peer review and author survey
responses. With the additional time compared to previous
works, one paper provided the exact results reported in the
paper, while two papers mostly provided the reported re-
sults. In addition, while all of the papers needed to download
unreported libraries to properly execute the source, the non-
exact results collected could all be attribute to non-seeded
randomness.

In-depth reproducibility tests and source analysis greatly in-
creases the robustness of an author’s paper. The two main
issues within the paper might not seem relevant to most au-
thors, but they are likely to have some lasting impact in the
future. Library compatibility may not seem useful in a year
or two, but after half a decade or so, trying to run the same
analysis might prove to be impossible as it did with two
of the papers in this work. As for non-seeded randomness,
most researcher would agree that as long as the obtained
value is within the confidence interval, then it should con-
sidered replicable. However, a lack of stability across papers
might lead to one reproduction compared to another repro-
duction, which is not guaranteed to be within each other’s
confidence interval. As such, deterministic results provide
greater robustness and stability such that it can stand the
test of time.

Most of the issues can be simplified down to a few ad-
ditional actions necessary to provide deterministic results.
Taking Python analyses as an example, the libraries could
be exported with the source by running the ‘pip freeze’ com-
mand. Any source of randomness within Python or popular
libraries can also be seeded such as ‘random.seed’ or, for
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numpy20, ‘numpy.random.seed’. Other languages or sources
are not much different. In the cases where libraries are no
longer present, the container itself can be wrapped and pro-
vided using services like containerd21. By providing these
simple, quick actions, the robustness of research, and open
science in general, could be greatly improved.
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APPENDIX
A. STANDARD PHRASES
This was a list of standard phrases used within the expla-
nations document which was used to provide information or
justifications on a given paper. The text might have been
changed or further elaborated when used:

• The raw dataset and materials do not seem to be pro-
vided anywhere.

– This was used when there is no information or links
provided on the dataset or materials within the pa-
per or its sub-resources. This might have also been
used if it took longer than 15 minutes to located
the associated resource(s).

• The raw dataset does not seem to be provided any-
where.

– This was used when there is no information or links
provided on the dataset within the paper or its sub-
resources. This might have also been used if it took

longer than 15 minutes to located the associated
resource(s).

• The data documentation is likewise nonexistent.

– This was used when there was no information within
the paper on any documentation of the columns of
the dataset. This was typically used in conjunction
with papers that did not provide the dataset.

• Some data documentation is represent through <loca-
tion>, and as such it will be marked as partial.

– This was used when a column within the dataset
was found to be marked in a paper or its sub-
resources. The ‘location’ was replaced with the
section or link the description was located.

• Open Materials include <materials>.

– This was used whenever a paper contained materi-
als that were not mentioned in the source or that
the source was not provided for in the paper. The
‘materials’ was replaced with a list of the materials
and links to their locations, if possible.

• The full analysis is not provided, so the materials fields
will be marked as partial.

– This was used when the source was unavailable
when materials were present, or when the source
did not seem to provide the ability to replicate all
results provided within the paper.

• The paper seems to be argumentative in nature to cre-
ate a new theoretical idea to use in the field. As such,
all of the fields will be marked as non-applicable.

– This was used when a paper talked about or elab-
orated on a concept rather than conduct an exper-
iment or study. It marked all the available open
science topics as non-applicable.

B. COMPUTER SPECIFICATIONS
B.1 Hardware Components
• AMD Ryzen Threadripper 2950X22

• NVIDIA GeForce RTX 309023

• Corsair VENGEANCE LPX 128GB (4 x 32GB) DDR4
DRAM 2133MHz C18 Memory Kit

• WD Blue SN550 NVMe SSD (WDC WDS200T2B0C-
00PXH0)24

B.2 Software Components
Some of the software components are considered the default
if no specific version was specified in Section 3.3.

• Ubuntu 20.04.5 LTS25

• Linux Kernel 5.15.0-53-generic

• GNU bash 5.0.17(1)-release (x86 64-pc-linux-gnu)

22https://www.amd.com/en/product/7926
23https://www.nvidia.com/en-us/geforce/graphics-
cards/30-series/rtx-3090-3090ti/

24https://documents.westerndigital.com/content/dam/doc-
library/en us/assets/public/western-
digital/product/internal-drives/wd-blue-nvme-
ssd/product-brief-wd-blue-sn550-nvme-ssd.pdf

25https://releases.ubuntu.com/focal/
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• Python 3.8.1026

• R version 4.2.2 Patched (2022-11-10 r83330)27

26https://www.python.org/downloads/release/python-
3810/

27https://cran.r-project.org/bin/linux/ubuntu/
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ABSTRACT
Demographic features are commonly used in Educational
Data Mining (EDM) research to predict at-risk students.
Yet, the practice of using demographic features has to be
considered extremely problematic due to the data’s sensi-
tive nature, but also because (historic and representation)
biases likely exist in the training data, which leads to strong
fairness concerns. At the same time and despite the fre-
quent use, the value of demographic features for prediction
accuracy remains unclear. In this paper, we systematically
investigate the importance of demographic features for at-
risk prediction using several publicly available datasets from
different countries. We find strong evidence that includ-
ing demographic features does not lead to better-performing
models as long as some study-related features exist, such
as performance or activity data. Additionally, we show
that models, nonetheless, place importance on these features
when they are included in the data – although this is not
necessary for accuracy. These findings, together with our
discussion, strongly suggest that at-risk prediction should
not include demographic features. Our code is available at:
https://anonymous.4open.science/r/edm-F7D1.

Keywords
at-risk prediction, demographic features, fairness, bias, cat-
egorical features

1. INTRODUCTION
The use of demographic features for training models to pre-
dict at-risk students, e.g., students in danger of dropping
out or failing a course or study program, is very common [2,
21]. Demographic features “refer to particular characteris-
tics of a population [. . . ], such as age, race, gender, ethnicity,

∗Both authors contributed equally to the paper

religion, income, education, [. . . ]” [25]. These features are
typically categorical and sometimes also of high cardinality.
Other features usually used in the context of at-risk pre-
diction are previous performance features (e.g., previous re-
sults, current GPA, ...) as well as study engagement/activity
data (e.g., log data, count of raised hands) [31]. Alturki et
al. [2] evaluated the features most used across EDM stud-
ies predicting student success from 2007-2018. Among the
ten most used features are six demographic features (gen-
der, age, income, nationality, marital status, employment
status) – the most common of which is gender. In a way,
it is not surprising that these features are so regularly used.
Most educational institutions require the students to enter
demographic information about themselves, and this data is
typically more accessible to researchers than, e.g., log data.
However, demographic features also make datasets very prob-
lematic regarding receiving access and sharing the data [9].
Demographic data is sensitive data and can be used to iden-
tify people in the dataset. In order to be able to share the
data, at least some type of pseudonymization has to be em-
ployed, e.g., k-anonymity [29]. This is often extremely dif-
ficult to achieve and weakens the usefulness of the features,
e.g., through binning.
Apart from the problems with data access, demographic fea-
tures are also problematic in some settings where we could
employ the models. Suppose we, e.g., use a model to admit
people to a course based on their prediction. In that case,
it is very problematic if demographic variables impact the
prediction as it could easily reproduce biases [13]. Due to
these fairness concerns, the use of demographic features is
heavily discussed in the literature on fairness in AI [17].
Hence, using demographic features in predictive models leads
to a lot of problems. Still, if demographic features are rel-
evant for EDM predictions, it might be tempting for re-
searchers and practitioners to include them. Yet, their value
for the prediction is unclear. Few papers explicitly evaluated
feature importance, and even fewer considered the effect of
demographic features in general. Those that have arrived
at very different conclusions. While some stress the impor-
tance of demographic features [4, 7, 12], others state that
they are not important [31, 32, 19], and others yet are on
middle ground [15, 30, 35, 6]. So far, comparatively few
papers compared the accuracy metrics of models with and
without demographic information [31, 1, 14]. Furthermore,
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the nature of the relationship (linear, nonlinear) between
demographic features and study success has not been evalu-
ated enough. Suppose we find that demographic features are
not important for model performance. In that case, it pays
to leave them out – mostly for fairness and privacy reasons
but also because wisely selecting features pays off regarding
the amount of data instances we need to train our models,
as more features require more instances [34]. In detail, the
contributions of this paper are:

• We provide a theoretical discussion on the type of
features typically used for at-risk prediction (Section
2.1), fairness concerns when using demographic fea-
tures to predict academic achievement (Section 2.2),
and causal mechanisms that could exist between de-
mographic characteristics and academic achievement
(Section 2.3).

• We summarize and discuss the findings of existing stud-
ies on the importance of demographic data in Section
3.

• We evaluate the importance of demographic features
for predicting academic success using four EDM datasets
in Section 6 and show that demographic characteris-
tics are related to the target, but when study-related
information is available, using them does not increase
the predictive performance

• We find that models nonetheless place importance on
demographic features when they are included such that
practitioners cannot rely on technical solutions but
have to carefully think about whether demographic
features should be included at all in Section 7.

2. THEORETICAL CONSIDERATIONS
2.1 Types of Features
As already mentioned in the introduction, we can have dif-
ferent types of features in the datasets. In accordance with
Tomasevic et al. [31] we argue that there are three major
types of EDM features: demographic features, performance
features, and activity/engagement features.
Demographic Features. Demographic features are tradition-
ally considered to be features that refer to characteristics
of a population. Typically used demographic features are
gender, age, ethnicity, nationality, or features indicating so-
cioeconomic status, such as e.g. parental occupations or
household income. Furthermore, we define all features as
demographic features that strongly point toward certain de-
mographic characteristics. For example, we consider the
school a student went to or parental financial support as
demographic information.
Performance Features. Any study-related performance mea-
sures, e.g., grades, information on passes or fails, or percent-
ages on assignments, are considered performance features.
In other words, any information that hints on how well a
student did in the past belongs to this type.
Activity Features. Activity features are features that are
study-related and show how active a student is. Typical
features of this type are participation during class, hours
spent on online-learning platforms, participation in online
forums, etc.

Most features in EDM datasets belong to one of these cat-
egories with the implicit assumption that they all matter
regarding at-risk prediction. Other features not belonging
to either of these categories would, e.g., be the study pro-
gram or the semester a student is in or in which the course
takes place. As our focus is on investigating whether us-
ing demographic features is advantageous when we also have
some study-related features, we do not differentiate between
activity and performance data. For the remainder of the pa-
per, we define study-related features as all features related
to a student’s study activity and previous performance.

2.2 Fairness Considerations
Before we start investigating the potential usefulness of de-
mographic features in detail, we want to briefly highlight
why fairness concerns are so prevalent when it comes to de-
mographic features and why it is so important to investigate
their potential impact.
Most datasets used in EDM research consist of historical
data. Historical data may already include biases [17]. If
e.g., a teacher unconsciously or consciously favors students
of a certain gender or ethnicity, students belonging to this
demographic category will have better grades. A machine
learning model will learn this pattern and, as a result, is
more likely to predict that students who belong to different
genders or ethnicities are at risk. If e.g., the prediction is
used to admit students to a course or a degree, then it is very
obvious that unfairness results from bias. Another probable
problem in EDM research arises when some populations are
underrepresented in the training data [17]. If, e.g., only one
person in the data has children, and this person happens
to perform badly, a machine learning model might simply
learn that having children is a good predictor of bad per-
formance. If we then predict how well another student with
children will do, the model will likely predict them to be at
risk. Again, the fairness concerns are obvious. This problem
of underrepresentation may particularly occur when demo-
graphic features are categorical and of high cardinality, as
fewer samples are available per categorical value. In this
case, it is likely that some groups are poorly represented,
and therefore, overfitting occurs, which can lead to bias.
One often-used strategy to circumvent these fairness issues is
to completely remove obvious demographic features (such as
ethnicity and gender) from the training data. Nonetheless, it
is sometimes possible to still infer demographic information
from other features that do not appear to be demographic
features directly [17]. For example, if the school name is
included in the training data, this might reveal the gender
of a person (”ABC School for Girls”). The best strategy to
avoid unfairness is, therefore, to try to exclude any features
that point towards demographic characteristics and are not
directly study-related when at-risk prediction models are de-
ployed.

2.3 Causal Mechanisms including Demographic
Features

Although it has hardly been done in EDM, it is important
to consider how demographic features might causally impact
study success theoretically. Understanding these mecha-
nisms will help us to reason when demographic features may
matter for the prediction but also again highlights why us-
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Figure 1: A graph to display the causal relationship between
demographic aspects and the target.

ing demographic features for at-risk prediction is not ideal.
Demographic features never directly impact study success
but only through causal mechanisms. Drawing on social sci-
ence literature, we classify those mechanisms into two types:
capital-based and discrimination-based.

2.3.1 Capital-Based Mechanisms
Capital is typically divided into economic, social, and cul-
tural capital [11]. Economic capital would, e.g., be money.
If a student has little monetary means (low socioeconomic
background), they might be forced to work a lot and live far
away from campus. Working much and having to commute
both means the student has less time to study, leading to
less activity and poorer results. Social capital would, e.g.,
be to know whom to turn to if a student struggles or to
have a social support network. Students from a low socioe-
conomic background or a foreign country might not have
access to this knowledge and those connections. Similarly,
people with such demographics might not know certain cul-
tural rules (cultural capital) in academia which might also
lead to disadvantages [23]. Capital-based mechanisms are
diverse and probably exist in different settings, such as on-
line and offline.

2.3.2 Discrimination-Based Mechanisms
Demographic features may also impact study success through
discrimination, e.g., an instructor might consciously or un-
consciously discriminate against students with certain char-
acteristics. This could either directly impact a student’s
academic achievement or indirectly as the student perceives
the discrimination and reacts by spending less time and ef-
fort on the course [20]. The effect of discrimination-based
mechanisms should vary from setting to setting. For exam-
ple, discrimination could be less likely in online settings as
teachers do not receive visual cues regarding students’ de-
mographic characteristics.

2.3.3 Mediation Effects
Overall, capital-based mechanisms probably exist univer-
sally. However, once someone is in higher education, de-
mographic characteristics will have already impacted previ-
ous performance (in school and then in previous university
courses). This might mean that as long as we have infor-
mation on previous performances, demographic data has no
additional effect. Demographic characteristics might also
impact a student’s activity. Not having time naturally leads
to less study engagement. Furthermore, e.g., people from a
lower socioeconomic background might also be hesitant to
participate in class. So, again, having activity information
may – at least partly – make demographic data redundant.

To a degree, these considerations might also be true for
discrimination-based mechanisms; here, however, the effect
of demographic characteristics should vary between courses
and also between different settings, e.g., between different
universities and online and offline learning. Returning to
our discussion on fairness, it is also obvious that ML models
in action should not predict based on previous discrimina-
tion against certain populations.
In summary, demographic features are causally related to
study success and may, therefore, be important for predic-
tions. However, their impact is likely already captured by
previous performance and, potentially, to a degree, previ-
ous activity data, such that the performance gain in us-
ing them for predictions is small too not existent. In other
words, other study-related features mediate the effect of de-
mographic characteristics. This mechanism can also be seen
in Figure 1.

3. EXISTING EVIDENCE
As already mentioned, existing research is divided on whether
demographic features are important for predictions or not.
In this section, we will look at contributions highlighting the
importance, lack thereof, or some middle ground between
these stands.

3.1 Demographic Features Are Important
Batool et al. [4] used the widely used Open University
Learning Analytics Dataset (OULAD) and two similarly
structured datasets and used only the demographic features
in the datasets to predict who will fail the courses. They
report high F1-scores using Random Forests but do not
compare against baselines to validate the meaningfulness
of their results. Daud et al. [7] predict whether a stu-
dent will finish their degree based on socio-demographic fea-
tures using a dataset from several universities in Pakistan.
They considered many features not typically available and
potentially extremely problematic such as e.g., family ex-
penditures. Daud et al. report high F1-scores, with their
best method generally being the Support Vector Machine
followed by Naive Bayes, but do not compare this against
predictions using previous performance data. Hoffait et al.
[12] predict which students are at-risk at the time of regis-
tration for their degree using a dataset from Belgium. Due
to their setting, they only have some previous performance
data from school and no activity information, but most of
their data is demographic. Yet, they achieve relatively high
F1-scores. Their Random Forest model slightly outperforms
other models, such as Logistic regression or a Neural Net-
work.

3.2 Demographic Features Are Not Important
Tomasevic et al. [31] also used the OULAD to predict per-
formance and compared several Machine Learning models
with different sets (demographic, performance, activity) of
features against each other in a very thorough study. Usu-
ally, the prediction accuracy did not vary much when using
or not using demographic features as long as the other sets
of study-related features were used, leading them to con-
clude that these features were not important, although using
demographic features usually slightly improved the model.
At least for this dataset, this is very strong evidence that
demographic features do not significantly add to the pre-
diction accuracy. It should be noted that they apparently
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did not use all demographic features available. Their best-
performing model was the Neural Network. Al-Zawqari and
Vandersteen [1] use a subset of the OULAD dataset to distin-
guish between high-performing and failing students. They
compared F1-scores using and not using demographic data
along with activity data and found that using demographic
data did not improve results much. It should be noted that
it is unclear how they selected and handled their data. Ran-
dom Forests and Neural Networks performed almost equally
well. Jha et al. [14] used the same dataset to predict fail-
ure using a variety of methods and different feature subsets.
In accordance with the other papers, they found that ac-
tivity data was the most predictive feature set. When they
used activity data, it did not matter what other features
were included regarding the model’s performance. Trsten-
jak and Donko [32] used data from the Information System
of Higher Education Institutions databases, predicted suc-
cess using Support Vector Machines and Naive Bayes, and
ranked feature importance using several metrics such as in-
formation gain and gain ratio. They showed that most (but
not all) demographic features had very little impact and ex-
perimented with leaving some (the least important ones) of
them out, which even led to slightly increased accuracy. Sup-
port Vector Machines outperformed Naive Bayes. Miguéis
et al. [19] predicted the overall study success of students of
a technical university and then looked at the Gini-index of
features. They found that performance data was more im-
portant than demographic data, with AdaBoost being their
most accurate model.

3.3 Demographic Features Are Somewhat Im-
portant

Khasanah et al. [15] predicted overall study success with
data from Indonesia using Decision Trees and Bayesian Net-
works, with Bayesian Networks being more accurate. They
used Information Gain to evaluate demographic feature im-
portance and found that some were important, but others
were not. It should be noted that the data they had avail-
able on previous performance and activity was rather lim-
ited. Sweeney et al. [30] looked at the feature importance of
one large dataset as they tried to predict study success using
a Factorization Machine for the courses a student enrolled
in the next term. They found that demographic data were
more important in the beginning when little past perfor-
mance data was available than later on. They had relatively
few demographic features in their dataset, however. Zhao et
al. [35] use admissions data to predict who will perform well
in a specific Master’s program based on admission data. Due
to the nature of their setting – that they try to learn who
should be admitted to the program – their performance data
is restricted to data on high school and Bachelor results, and
they have no activity data. Though they make no difference
between demographic and non-demographic features, their
most important predictors show that some demographic fea-
tures (gender, nationality) tend to be important while oth-
ers are not. Random Forest or ensemble methods tend to be
the best-performing models. Cortez and Silva [6] predicted
grades of Portuguese middle school students in math and
Portuguese. They found that the relative importance of pre-
vious performance scores was higher, but socio-demographic
features still mattered. They provide a detailed list of their
preprocessing, typically including binning or ordinal recod-
ing. Random Forests tended to perform best.

3.4 Overall Evidence
Overall, for the case of OULAD, despite Batool et al.’s re-
sults [4], the evidence appears to be pretty clear that accu-
racy does not increase when using demographic data along
with performance or activity data [31, 14]. In general, stud-
ies that included study-related features typically found de-
mographic features to be less important. However, in other
settings where fewer performance data is available, results
suggest that demographic data does play a role. Those that
explicitly investigated feature importance typically reported
that it is somewhat important. Furthermore, note that only
very few studies explicitly reported on feature engineering
of demographic characteristics. Yet, feature engineering is
often non-trivial for demographic data as it often consists of
(high-cardinality) categorical data.

4. RESEARCH OBJECTIVE AND QUESTIONS
Both our review of existing evidence and our theoretical con-
siderations lead us to the hypothesis that using demographic
features will not increase model performance as long as we
have study-related features from previous performance or
activity but that they will have predictive power if we do
not have study-related features.

To test our hypothesis, we formulate the following main re-
search questions:

• RQ1: Are demographic characteristics useful in ex-
plaining at least some of the differences in student
performance; in other words, are models using only
demographic features better than guessing?

• RQ2: Are demographic characteristics still useful if
study-related information is available; in other words,
do models trained on study-related and demographic
features perform better than models trained only on
study-related features?

• RQ3: Which features should ultimately be used in
EDM predictions; in other words, models trained on
which feature subsets outperform models trained on
other subsets?

• RQ4: If RQ2 is answered with no, do models trained
on the whole data learn that demographic information
is irrelevant; in other words, do models trained on the
whole data place close to zero importance on the de-
mographic features?

Furthermore, we are interested in the following research
questions:

• RQ5: How complex is the relationship between predic-
tive features and student performance; in other words,
how large are the differences in performance between
linear and nonlinear models?

• RQ6: How relevant is the treatment of categorical fea-
tures; in other words, do different encoding methods
affect performance?
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5. EXPERIMENTAL DESIGN
In this section, we describe our experimental setup to eval-
uate the formulated research questions. We proceed by first
describing the used datasets and model classes used for pre-
diction. Afterward, the hyperparameter tuning procedure,
methods to treat categorical data, and the evaluation setup
are described.

5.1 Datasets
We use four publicly available EDM datasets. Two datasets
are from online learning systems and two from in-class ed-
ucation, of which one is from secondary education in high
schools and one from tertiary university education. In this
subsection, we briefly describe the used datasets and the
corresponding preprocessing. Furthermore, we describe the
assignment of features to the feature types (demographic,
performance-related, activity-related, and others) discussed
in Subsection 2.1. We will use the resulting feature sub-
sets in Section 6 to train models for answering the research
questions. An overview of the datasets can be seen in Table
1.

5.1.1 Dataset of Academic Performance Evolution
for Engineering Students

The dataset of academic performance evolution for engi-
neering students [8] consists of the academic, social, and
economic information of 12, 411 Columbian engineering stu-
dents. Student performance was assessed at two points in
time: in the final year of high school and in the final year of
pursuing a professional career in Engineering. We refer to
this dataset as Engineering. The first assessment evaluates
five generic academic competencies: mathematics, critical
reading, citizen competencies, biology, and English. The sec-
ond assessment evaluates critical reading, quantitative rea-
soning, citizen competencies, written communication, En-
glish, and the formulation of engineering projects. As the
target for predictions, we use the global score of the sec-
ond performance assessment and treat the task as a regres-
sion task. The five dimensions of the first assessment are
used as performance information. There is no information
about student activity in the dataset. Demographic fea-
tures include gender, parental education and occupation, ge-
ographic information, school information, and whether dif-
ferent items, such as a car or computer, were available in the
family. Other available information is the university and the
academic program a student attends. The identifier features,
as well as all dimensions and variants of the performance
assessment besides the global score, are excluded. Further
dataset-specific preprocessing is not necessary. Thirteen cat-
egorical features are in the dataset, of which two are of very
high cardinality. There are students from 3,735 schools and
134 universities.

5.1.2 Dataset of Portuguese Secondary School Stu-
dent Performance

The dataset [6] consists of students from secondary edu-
cation in two Portuguese schools and can be used to pre-
dict student achievement in math and Portuguese language
courses. We refer to this dataset as PortSecStud The target
is the final course grade, which is measured on a discrete
scale between 0 and 20. Some authors categorize the grade
into pass and fail for binary classification or into five levels

for classification. However, we consider it a regression prob-
lem, as it better represents the nature of the problem. As
performance information, the first and second-period grade
is available, as well as the number of past class failures.
Activity information consists of the weekly study time, ab-
sences, and whether the student participated in extracurric-
ular activities. The demographic information includes gen-
der, age, and address, as well as school and family-related
information. Furthermore, we considered travel time from
home to school, educational support from family, extra paid
classes within the course subject, and having internet ac-
cess as demographic features since they are highly influ-
enced by socioeconomic factors. Other features are lifestyle-
related ones such as alcohol consumption, health status, or
whether the student is engaged in a romantic relationship.
The datasets for the math and Portuguese courses are com-
bined and a feature indicating the course is added. Further
dataset-specific preprocessing is not necessary.

5.1.3 xAPI-Edu-Data
The Students’ Academic Performance Dataset (xAPI-Edu-
Data) [3] consists of 480 students, where most are from
Kuwait (179) and Jordan (172). The target is students’
performance in %, which is only available in groups: 0-69,
70-89, and 90-100. Hence, we treat the task as a multi-class
classification problem. There is no information about previ-
ous student performance in the dataset. Student activity is
measured according to four behavioral aspects during inter-
actions with the e-learning system: participation in discus-
sion groups, visiting resources, raising a hand in class, and
viewing announcements. In addition, absence days are avail-
able. Demographical features are nationality, gender, place
of birth, and the parent responsible for the student. Other
information includes the academic background (e.g., course,
semester, grade level), and the parents’ participation (an-
swering a survey, school satisfaction). No dataset-specific
preprocessing is required. The categorical features with the
most expressions are nationality, with 14 possible national-
ities, and field of study, with 12 possible subjects.

5.1.4 OULAD
The OULAD dataset is a large dataset with diverse oppor-
tunities for educational data mining [16]. It is a relational
database of five tables with information on students, assess-
ments, courses, registrations, online learning materials, and
students’ interactions with those. We focus on the same
prediction task with the same dataset, features, and prepro-
cessing as Jha et al. (2019) [14]. For predictions, we consider
all students who did not drop out before the course ended
to predict whether they failed or passed. As information
about the previous performance, we use the average scores
achieved in previous assignments. Jha et al. (2019) [14] con-
ducted analyses on different data subsets as well; however,
they counted the so-far achieved credits and the number of
previous attempts as demographic features. This does not
match our definition of demographic features. Hence we
define those features as performance-related. Student activ-
ity is obtained as two types of interaction with 20 different
content types resulting in 40 features. The types of inter-
action are the sum of the clicks and the number of visits
for each type of content. Examples of content types are
homepage, subpage, quiz, wiki, and other platform-related
types. As demographic features, we use gender, region,
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Table 1: Description of the used datasets.

Engineering [8] PortSecStud [6] xAPI-Edu [3] OULAD [16]
No. of samples 12411 1044 480 22437
No. of features 33 34 17 51
Performance features 5 3 0 4
Demographic features 25 17 4 6
Activity features 0 6 5 40
Other features 2 7 7 0
Categorical features 13 4 7 4
Total cardinality 3980 17 59 31
% NA 0.0 0 0.0 0.48
Target y ∈ [1..166] [1..19] [1..3] {1,2}

imd band, age band, and disability. There are no other fea-
tures in the dataset. The performance and activity features
are extracted from the database as described by Jha et al.
(2019) [14]. Similarly, the id student, code module, mod-
ule presentation, and exam score features were excluded as
well as all students who had withdrawn before the course
ended. Some mean assessment scores and imd band cate-
gories are missing. As the information on how missing values
are treated is not given in [14], we impute the mean value
for the mean assessment scores and define a new category
for missing imd band values.

5.2 Models
We include two model classes, namely generalized linear
models (GLMs) and XGBoost, in our evaluation. For re-
gression tasks, we use Lasso regression for the regulariza-
tion of the models to prevent overfitting. For classification
tasks, we use logistic regression with the L2-penalty. In the
case of multi-class classification, multinomial loss is used.
GLMs have the benefit of being highly interpretable and,
thus, are ideally suited for (educational) data mining. How-
ever, they make the strong assumption that the relationship
of the target to the features is linear. In contrast, XGBoost
is a highly flexible model capable of learning more complex
relationships. For the OULAD dataset, XGBoost has been
shown to outperform competitive approaches by Jha et al.
(2019) [14]. Furthermore, for tabular datasets, XGBoost has
shown superior performance compared to other methods like
neural networks far beyond the field of educational data min-
ing [26, 10]. Thus, it can be considered the state-of-the-art
model for maximizing performance on a variety of datasets
such that we do not include further models. By comparing
the predictive performance of GLMs and XGBoost, we are
able to answer research question RQ5. In addition, baseline
models for each dataset are included, which predict the tar-
get mean of the training data for regression tasks and the
mode for classification tasks. By comparing models trained
solely on demographic data to these baselines, we are able
to answer research question RQ1.

5.3 Hyperparameter Optimization
We implement a hyperparameter optimization (HPO) pipeline
with 5-fold cross-validation (5CV) for XGB and GLMs. For
parameter tuning, we use Bayesian optimization implemented
in the hyperopt library [5]. To select the best parameters,
the training data is split into five folds again. In each
HPO step, a model with the current hyperparameters is
trained on each fold. The objective function of each step

is the average performance on the held-out datasets of each
fold. Our modeling pipeline is depicted in Figure 2. Perfor-
mance is measured as the mean squared error (MSE) for
regression tasks and log-loss for classification tasks. For
the GLMs, we only tune the regularization strength param-
eter α. The search space for Lasso regression is defined
as α ∈ [10−10, 0.5]. The search space for Logistic regres-
sion is defined as α ∈ [10−10, 1.0]. We run 50 iterations of
Bayesian optimization for each model. For hyperparame-
ter optimization of XGBoost, we implement an algorithm to
iteratively tune different subsets of XGBoost hyperparam-
eters using Bayesian optimization in four steps. (1) Tune
the number of estimators ∈ [50..500] and the learning rate
∈ [0.001, 0.5]. (2) Tune the maximum tree depth ∈ [1..18]
and minimum child weight ∈ [0..10]. (3) Tune both the
number of columns and samples used in each tree ∈ [0.5, 1].
(4) Tune the regularization parameters α ∈ [0..10], λ ∈ [1, 4]
and γ ∈ [10−8, 9]. In each step, 50 iterations of Bayesian
optimization are performed. To speed up the computations
and terminate the training for optimization iterations with
poor parameter choices more quickly, we use early stopping
on the validation data if there is no improvement after ten
training iterations. Overfitting on the validation data is mit-
igated through the 5CV procedure as a configuration needs
to perform well on all five validation sets.

5.4 Methods for Categorical Data Treatment
All of the used datasets include categorical data. As the
treatment of categorical data can affect predictive perfor-
mance in data mining tasks [22], we want to evaluate whether
our models are affected by different encoding methods. Hence,
to answer research question RQ6, we evaluate if and how
much different encodings of categorical features impact the
prediction. Each categorical feature with three or more
unique values is considered. Ordinal features are treated as
categorical as well. One-Hot-Encoding (OHE) is included
as it is the most frequently used method to handle categor-
ical data. Categories in the test data which did not appear
in the train data are ignored such that the encoding vector
consists solely of 0s. As sometimes categorical features can
be of high cardinality, OHE can suffer from overparameter-
ization and unnecessary sparsity, leading to increased train-
ing times and memory requirements. Therefore, we include
ordinal encoding as it can be a simple and more compact
encoding and is frequently used for XGBoost. However, for
linear models, ordinal encoding is not appropriate as there
is no natural order between the categories. Unknown val-
ues are encoded in a new category. A generally applicable
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Table 2: Description of the allocations of features to subsets.

Demographic Features Study-Related Features Other Features
Engineering [8] gender, parental, geographic,

and school information, item
availability in family

first assessment on five dimen-
sions (MAT, CR, CC, BIO,
ENG)

university, academic program

PortSecStud [6] gender, age, address, family and
school related information, paid
classes, internet access

first and second period grade,
past failures, absences, study
time, extracurricular activities

lifestyle related features, e.g. al-
cohol consumption, romantic re-
lationships, amount of free time

xAPI-Edu [3] gender, nationality, place of
birth, parent responsible

interaction with the e-learning
system, absences

general academic information
(e.g. semester), parental partic-
ipation

OULAD [16] Gender, region, imd band,
age band, disability, high-
est education

num of prev attempts,
avg cma, avg tma, stud-
ied credits, sum of clicks and
count of visits for each of the
20 VLE activity types

-

method is target encoding and its variants [18]. In target
encoding for regression, each categorical value is encoded as
the target mean of the training samples belonging to this
value. For classification, the posterior probability of the
target given the categorical value is used. As this approach
is sensitive to overfitting, the encoding is further blended
with the global mean value for regression and the prior tar-
get probability for classification. In the case of multi-class
classification, we use a one vs. rest approach to obtain an
encoding for each class. For unknown categories in the test
data, the global mean or prior probability is used. In ad-
dition, the Catboost encoder is included as it was specially
designed for improving categorical data handling in gradient
boosting [24]. The method is similar to target encoding but
considers the frequency counts of expressions of a categor-
ical feature in a more principled way. For high-cardinality
features, regularized target encoding was shown to be the
superior method for a variety of datasets in a large bench-
mark study [22]. Therefore, we also include 5CV-GLMM,
the best-performing method from that study, in our eval-
uation. The method first fits a simple generalized linear
mixed model (GLMM) for each categorical feature and uses
the estimated random effects coefficients of the model as en-
codings. To prevent overfitting, this procedure is combined
with 5-fold cross-validation (5CV). The train data is sepa-
rated into five parts, and five GLMMs are fitted to 80% of
the data, and the estimated random effects of the model are
used as encodings for the remaining data. The test data
is encoded using a model trained on the whole train data.
We implement 5CV-GLMM encoding using the gpboost li-
brary [27, 28] as it provides a very efficient implementation
of GLMMs.

5.5 Predictive Performance Evaluation
For regression tasks, the target is normalized to zero mean
and unit variance for training the models, and the predic-
tions are denormalized afterward to interpret the perfor-
mance on the original scale. All continuous features were
normalized to zero mean and unit variance as well to be
able to interpret GLM coefficients as feature importance.
For each configuration, we use 5-fold cross-validation (5CV)
for evaluation. As an evaluation metric, we use root mean
squared error (RMSE) for regression (lower is better) and
F1-score with macro averaging for classification (higher is

Preprocess Dataset 

(e.g. OULAD)

Choose Feature Subset

(e.g. Demographic)

Fold 1 …

HPO

Train

Train Model
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Model
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Report Mean

…

Fold 5
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Figure 2: Data pipeline for model development and evalua-
tion.

better).

5.6 Methods for Determining the Impact of
Demographic Features in Models

As we investigate the importance of demographic data in
EDM predictions, performance is not the only relevant met-
ric. It is equally important to analyze the extent to which
the models use demographic data. Hence, to answer our re-
search question RQ4, we analyze the feature importance of
trained models with a focus on demographic data. We ana-
lyze the learned coefficients of the linear models as well as the
feature importance of the XGBoost models. As we normal-
ized the data, the coefficients of linear models can directly
be interpreted as feature importance scores. For the linear
models, we first normalize the absolute coefficient values to
sum to one. Afterward, we sum the normalized coefficients
for the demographic features to obtain an assessment of the
extent to which the models use demographic data for pre-
dictions. For XGBoost the feature importances reflect how
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often certain features are used and how useful they are for
the prediction in a single decision tree. Precisely, the im-
portance of a single tree is calculated as the amount that
each split improves the performance measure, weighted by
the number of samples the node is responsible for. After-
ward, the feature importances are averaged across all of the
decision trees and normalized to sum to one. In addition, we
analyze the extent to which the utilization of demographic
data affects the actual predictions on linear models; this is
considered important information in the fairness literature
[17]. Given a dataset with n samples and d features in a ma-
trix X ∈ Rn×d and a target y ∈ Rn, we apply the following
procedure:

1. Train a linear model to predict the target

2. Obtain predictions as ŷ = σ(Xβ), where β is the coef-
ficient vector of the linear model and σ is the inverse
link function depending on the target, e.g., linear for
continuous and sigmoid for binary targets

3. Remove the k demographic features from X and the
respective coefficients β and obtain predictions ỹ =
σ(X:,d−kβd−k)

4. Compute score for the impact of demographic features
as

(a) 1
n

∑n
i ŷi − ỹi for regression

(b) 1
n

∑n
i {1 if ŷi ̸= ỹi, 0 otherwise } for classification

For regression, this corresponds to evaluating the mean abso-
lute difference of predictions with and without demographic
features. For classification, this corresponds to evaluating
the percentage of samples for which not using the demo-
graphic features changes the class assignment.

6. RESULTS
In this section, we report and discuss our results to evaluate
the stated research questions. We start with analyzing the
effect of the categorical data treatment method. Afterward,
we proceed with a comparison of models trained on different
data subsets with a focus on demographic data. Finally, we
evaluate the feature importance of the final models to assess
whether demographic data is used.

6.1 Impact of Categorical Data Treatment Method
Table 3 shows the results for the different datasets and cate-
gorical data treatment methods. In general, it appears that
the treatment method does not matter. According to a t-
test over the folds, for three datasets, ignoring the cate-
gorical features works just as well as using the categorical
data, regardless of the encoding method. For the Engineer-
ing dataset, the target scale is rather large, such that per-
formance differences on the digits after the decimal point do
not matter. Hence, for this dataset, too, we can consider
the encoding method irrelevant. As most of the categori-
cal features are demographic features, this indicates a low
importance of demographic characteristics. Finally, our con-
clusion to RQ6 is that the treatment of categorical features
does not affect performance. Hence, we use 5CV-GLMM en-
coding for GLMs and ordinal encoding for XGBoost in the
following experiments.

6.2 Performance Comparison of Different Fea-
ture Subsets

Table 4 shows the results for different data subsets as defined
in section 5.1.

6.2.1 Predictive Capability of Demographic Features
For OULAD, no difference can be seen between the base-
line and using solely demographic features for prediction.
Hence, predicting that every student passes the course works
equally well as training a model solely using demographic
features. For the PortSecStud dataset, the improvement
over the baseline is small, such that the usefulness of the
demographic features can be considered small also for this
dataset. For the Engineering dataset, there is a considerable
improvement over the baseline, and for the xAPI-Edu-Data,
the improvement over the baseline is the largest. Hence, for
these two datasets, it can be said that there is an impact of
the demographic features on the performance. Considering
RQ1, we conclude that demographic characteristics can be
used to explain differences in student achievement. How-
ever, this does not hold in every setting and for every type
of demographic characteristic.

6.2.2 Mediation Capability of Study-Related Features
For all datasets, using only study-related features achieves
far better performance than using only demographic fea-
tures. Using only study-related features achieves approx-
imately the same performance as additionally considering
demographic features in almost every setting. Only for XG-
Boost on the xAPI-Edu-Data, there is a noteworthy mean
difference; however, given the large standard deviations, it
cannot be said that it is meaningful in practice. These re-
sults confirm the hypothesis that study-related information
mediates the effect of demographic characteristics on student
achievement. As soon as meaningful information about the
student’s activity and/or previous performance is available,
the demographic features are not required anymore for ac-
curate predictions. Hence, considering RQ2, demographic
characteristics are generally not useful anymore if study-
related information is available.

6.2.3 Feature Subsets Achieving the Best Performance
It can be seen that for all datasets, using the whole data is
always among the best subsets, as can be expected. Fur-
thermore, according to the t-test for the OULAD dataset,
using only study-related information performs equally well
as using the whole available information for both GLMs
and XGB. The same holds for XGB on the PortSecStud
dataset and GLMs on the xAPI-Edu-Data. Given the range
of the target values of the Engineering and the PortSecStud
datasets, the performance differences are not meaningful in
practice, despite the significant differences in the t-test. We
conclude that using only study-related features suffices as
well for this dataset. For XGBoost on the xAPI-Edu-Data,
using all features performs significantly better than solely
using study-related features. However, this is rather due
to the other features included in the dataset than due to
the demographic features, as the performance increase in
using demographic data in addition to study-related data
is insignificant. Hence, also for this dataset, it would be
suitable not to use demographic features without significant
loss of performance. In summary, models using all except
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Table 3: Means and standard deviations of 5CV Performance results on different data subsets. Mean squared error is reported
for Engineering and PortSecStud and F1-score for xAPI-Edu and OULAD. Results per row for methods that are not significantly
different from the best method in a paired t-test (alpha=0.05) are highlighted in bold.

Dataset Baseline Ignore OHE Target Ordinal Catboost 5CV-GLMM
Engineering GLM 23.11 (0.26) 14.36 (0.26) 14.11 (0.29) 14.55 (0.23) 14.36 (0.25) 14.22 (0.29) 14.13 (0.29)

XGB 23.11 (0.26) 14.28 (0.25) 14.11 (0.26) 14.38 (0.23) 14.15 (0.25) 14.17 (0.28) 14.04 (0.28)
PortSecStud GLM 3.86 (0.17) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1) 1.55 (0.1)

XGB 3.86 (0.17) 1.51 (0.12) 1.51 (0.08) 1.46 (0.06) 1.52 (0.06) 1.57 (0.08) 1.5 (0.06)
xAPI-Edu GLM 0.2 (0.02) 0.75 (0.06) 0.76 (0.03) 0.75 (0.06) 0.73 (0.05) 0.73 (0.09) 0.75 (0.06)

XGB 0.2 (0.02) 0.76 (0.05) 0.78 (0.04) 0.78 (0.06) 0.78 (0.08) 0.72 (0.07) 0.76 (0.02)
OULAD GLM 0.81 (0.0) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01)

XGB 0.81 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0)

Table 4: Means and standard deviations of 5CV Performance results on different data subsets. Mean squared error is reported for
Engineering and PortSecStud and F1-score for xAPI-Edu and OULAD. Results per column for methods that are not significantly
different from the best method in a paired t-test (alpha=0.05) are highlighted in bold.

Dataset Baseline Demo only Study only Demo + Study All
Engineering GLM 23.11 (0.26) 20.53 (0.3) 14.47 (0.22) 14.35 (0.25) 14.14 (0.29)

XGB 23.11 (0.26) 20.43 (0.34) 14.39 (0.2) 14.28 (0.23) 14.05 (0.29)
PortSecStud GLM 3.86 (0.17) 3.76 (0.11) 1.57 (0.1) 1.58 (0.1) 1.56 (0.1)

XGB 3.86 (0.17) 3.83 (0.15) 1.49 (0.09) 1.54 (0.14) 1.54 (0.05)
xAPI-Edu GLM 0.2 (0.02) 0.39 (0.04) 0.74 (0.03) 0.74 (0.05) 0.74 (0.06)

XGB 0.2 (0.02) 0.54 (0.03) 0.74 (0.03) 0.75 (0.05) 0.78 (0.05)
OULAD GLM 0.81 (0.0) 0.81 (0.0) 0.87 (0.01) 0.87 (0.01) 0.87 (0.01)

XGB 0.81 (0.0) 0.81 (0.0) 0.91 (0.0) 0.91 (0.0) 0.91 (0.0)

the demographic features do not perform significantly worse
than models additionally considering demographic features.
Given the sensitive nature of demographic features, we con-
clude RQ3 with the recommendation to use only study-
related and other than demographic features for predicting
student success. If sufficient study-related information is not
available but predictive performance matters, demographic
features may still be helpful.

6.2.4 Comparison between GLMs and XGBoost
For the regression datasets, the difference between GLMs
and XGBoost is small for all models, such that we would
prefer GLMs as the simpler solution. For the xAPI-Edu-
Data [3], XGBoost is superior for models trained on the
whole data on average. However, this has to be viewed with
care as the standard deviation between folds is large. Fur-
thermore, GLMs perform equally well as XGBoost when us-
ing only the study-related data. Hence, using GLMs solely
on performance and activity data could be an alternative
for this dataset. For the OULAD dataset, there is a clear
performance benefit in using nonlinear methods. As the
dataset is large, the results are more robust, with a small
standard deviation between folds. Hence, we can say that
for this dataset, using XGBoost solely on activity and per-
formance data would be the preferred solution. Considering
RQ5, there is evidence that for some educational data mining
datasets, using linear models for at-risk prediction suffices.
However, when larger datasets with thousands of students
are available, nonlinear methods can perform better. These
datasets can especially be collected in online settings sim-
ilar to the OULAD datasets. However, for small in-class
datasets, linear models should be the first choice.

6.3 Feature Importance of Demographic Data
The previous subsections have provided clear evidence that
demographic features are not necessary for at-risk predic-
tions when sufficient information about students’ study ac-
tivities or previous performance is available. However, our
theoretical considerations indicate that demographic features
might correlate with other study-related features. Thus, it
is possible that models use these demographic features when
they are included in the training data. To further inspect
whether the tuned models learn that demographic features
are not necessary for high predictive performance, we ana-
lyze the learned coefficients of the linear models as well as
the feature importances of the XGBoost models as described
in Subsection 5.6. Surprisingly, Table 5 shows that despite
the fact that an equally good model could have been learned
for all models without demographic features, those are still
used for all models and datasets. Even for the PortSecStud
dataset and the OULAD dataset, where we previously found
that demographic features do not help at all compared to the
naive baseline, the features are still used. For the XGBoost
model trained on study-related and demographic data of the
PortSecStud dataset, the demographic information even ac-
counts for 26% of the feature importance despite not being
necessary to achieve the performance. Furthermore, Table 6
shows that in every case, the utilization of demographic data
directly affects the predictions of the models. For regression,
the effect is not large considering the scales of the targets.
Nevertheless, it might lead to biases for some students. For
classification, the impact of demographic features on actual
predictions is large. In general, if practitioners would be to
use these models and look for an explanation for predictions,
demographic features would be included, although this is not
necessary.
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Table 5: Means and standard deviations of relative feature importances of demographic data compared to the rest of the data
in the model on different data subsets over all folds.

Dataset Demo only Demo + Study All
Engineering GLM 1.0 (0.0) 0.25 (0.03) 0.23 (0.02)

XGB 1.0 (0.0) 0.23 (0.06) 0.19 (0.09)
PortSecStud GLM 1.0 (0.0) 0.08 (0.04) 0.03 (0.02)

XGB 1.0 (0.0) 0.26 (0.04) 0.16 (0.04)
xAPI-Edu GLM 1.0 (0.0) 0.32 (0.14) 0.23 (0.1)

XGB 1.0 (0.0) 0.26 (0.03) 0.21 (0.02)
OULAD GLM 1.0 (0.0) 0.13 (0.0) 0.13 (0.0)

XGB 1.0 (0.0) 0.08 (0.0) 0.08 (0.01)

Table 6: Means and standard deviations of the effect of de-
mographic features on the predictions over all folds. For
regression datasets, the mean absolute difference between
predictions with and without demographic data is reported.
For classification datasets, the percentage of predictions that
change when excluding the demographic features from the
model is reported.

Dataset Effect of demographics
Engineering 0.97 (0.07)
PortSecStud 0.28 (0.06)
xAPI-Edu 0.11 (0.05)
OULAD 0.33 (0.01)

One might think that the unnecessary use of demographic
features is related to our extensive hyperparameter opti-
mization, which chose a hyperparameter configuration that
considered all features, although it is not significantly better
than another model with fewer features could be. However,
we found that using the default configurations for sklearn
linear models and XGBoost, either reproduces the same pat-
terns or is not applicable due to bad performance. Hence,
some kind of parameter selection or tuning is necessary.
Generally, the models could be prevented from using all
features by adjusting the regularization parameters accord-
ingly. However, automatic parameter tuning does not guar-
antee finding this solution, as different parameterizations
might achieve equal performance. In any case, our answer
to RQ4 is that just throwing in all features leads to models
which use information from demographic features, although
this is not necessary. That, combined with the previous re-
sults of this section, leads us to the general recommendation
to consider completely leaving demographic features out for
at-risk predictions whenever sufficient activity and/or pre-
vious performance information is available.

7. DISCUSSION
Our evaluation shows that using demographic features does
not lead to better model performance as long as we include
study-related features. Considering the fairness and privacy
concerns, it is, thus, strongly advisable for both researchers
and practitioners not to use these features for at-risk pre-
diction.

7.1 The Importance of Demographic Features
Of course, this does not mean that we should never explore
the impact of demographic features on academic achieve-
ment or that demographic features are not important. On

the contrary, it is very important to investigate how demo-
graphic characteristics impact academic achievement so that
we can intercept mechanisms that would lead to disadvan-
tages of certain populations [21]. For example: If we notice
that people from a lower socioeconomic background tend to
a) live further away from campus and b) have to work a
lot and that both of these influence the time they have for
studying, which in turn influences their academic achieve-
ment, then we can come up with solutions for this on several
levels. For example, the study management and academic
staff might be able to come up with an adjusted study pro-
gram and timetable. The university might provide cheap
student housing close to the university; the state might pro-
vide funding for disadvantaged students.
Hence, we certainly do not want to discourage research on
causal mechanisms of demographic characteristics on aca-
demic achievement. Rather, we want to highlight the im-
portance of thinking about demographic features. Looking
at the fairness literature, two aspects need to be highlighted.
First, it might still be helpful to have demographic features
available. This allows us to estimate a model’s Demographic
Parity Ratio or other common metrics in evaluating the fair-
ness of a model’s prediction [17]. Second, our theoretical
model in 1 indicates that there might be proxy features that
transport information about demographic features even if
we do not include demographic features. It could, there-
fore, also be argued that demographic biases in these proxy
features should be mitigated to receive a truly fair model
[17]. Then, we would also need the demographic features to
perform a form of bias mitigation.

7.2 Drawbacks of Feature Selection and Fea-
ture Attribution Methods

Most common feature selection or feature attribution tech-
niques rely on the correlation between features and the tar-
get in one way or another. As we have discussed at length by
now, demographic features are, in general, correlated with
the target. This means that employing feature selection
methods that rely on correlation will most likely lead to the
inclusion of at least some of these features. Likewise, mod-
els are likely to place importance on demographic features as
there are several equally good parameterizations leading to
feature attribution methods recognizing these features as im-
portant. It also explains why some scholars who used such
techniques (e.g., Information Gain or relative feature im-
portance) reported that demographic features were at least
partially important [15, 6, 35]. However, our analysis shows
that it is not enough to simply employ such techniques to as-
sess the usefulness of demographic features. While they are
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not necessary to achieve the best-performing model, they
are still correlated with the target. Therefore, we recom-
mend that researchers consciously think about whether and
why they should include demographic features instead of
using automatic (correlation-based) techniques for feature
selection. Furthermore, in addition to feature attribution
techniques, researchers should evaluate whether similar per-
formance can be reached without certain features.

7.3 Implications for Practitioners
This is also one of the major implications of our paper
for practitioners. Educational Data Mining researchers and
practitioners should distinguish between models trained for
deployment, where the goal is to achieve maximum perfor-
mance, and models trained for gaining insights about the
factors driving academic success. Depending on the appli-
cation, the feature subset, especially whether to include de-
mographic information, should be determined. Practition-
ers, when deploying models, should be very careful when
it comes to including demographic features. They can, as
discussed, not rely on technical solutions but should in-
stead think critically about including these features. There
may exist cases for which including demographic features is
meaningful, but practitioners should be absolutely certain
that including these features does not introduce biases pro-
ducing unfairness. [33] state that sensitive features should be
included for fairness reasons if the prediction accuracy itself
is equal. However, Table 6 shows that using demographic
features changed the prediction for some students; this is an
indication that the models using demographic features are,
indeed, unfair [17]. Therefore, leaving them in would proba-
bly not result in an equally fair model. Again, whether and
how to use demographic features has to be carefully evalu-
ated.
The other major recommendation for practitioners result-
ing from our paper concerns the kind of data useful for at-
risk prediction. Our analysis clearly shows that past perfor-
mance is extremely important, while demographic character-
istics alone have little predictive power. In particular, fea-
tures that mirror the requirements necessary to perform well
in the target are highly relevant for the prediction. There-
fore, practitioners should ideally use standardized tests that
capture the kind of abilities relevant to the target. This
would provide the best features for at-risk prediction.

7.4 Limitations of Our Study and Future Work
Despite our solid results, it is important to note certain limi-
tations. We only used four datasets and two types of models
to test our hypotheses. As these datasets are diverse (on-
line, offline, different countries, different levels of education)
as are the model types (linear, non-linear), we believe that
our main findings are still very reliable. Nonetheless, future
work should investigate whether the findings hold when us-
ing other datasets and models.
Additionally, we did not investigate whether the models’ fea-
ture importance may change when using different encoding
methods. This may be the case when the encoding methods
learn that demographic features are not necessary for the
prediction. However, given the correlation between demo-
graphic features and the target, it is unlikely that different
encodings lead to models not contributing importance to
demographic features at all. Still, this should also be inves-
tigated in the future.

Because it is not the major focus of our study, we have
not investigated the relationship between the importance of
activity- and performance-related features. Future research
could investigate what is more important and how the two
feature subsets relate to each other.

8. CONCLUSION
Our analyses show strong evidence that demographic fea-
tures do not increase a model’s performance on at-risk pre-
diction as long as study-related information is available.
Nonetheless, both our theoretic considerations, as well as
our empirical evaluations indicate that demographic features
correlate both with study-related features and the target.
Thus, they are used by the models for the prediction, al-
though this would not be necessary, leading to biases and,
as a result, unfairness. Because of these fairness concerns, we
advise leaving out demographic features and features point-
ing towards demographic characteristics. This should also
make it possible to share more data between researchers,
as it reduces privacy concerns. Nonetheless, our paper also
shows that investigating the causal mechanisms of how de-
mographic features impact academic achievement is worth-
while and should be encouraged. Deployments of at-risk
prediction models should not include demographic features,
though.
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[19] V. L. Miguéis, A. Freitas, P. J. Garcia, and A. Silva.
Early segmentation of students according to their
academic performance: A predictive modelling
approach. Decision Support Systems, 115:36–51, 2018.

[20] E. W. Neblett Jr, C. L. Philip, C. D. Cogburn, and
R. M. Sellers. African american adolescents’
discrimination experiences and academic achievement:
Racial socialization as a cultural compensatory and
protective factor. Journal of Black psychology,
32(2):199–218, 2006.

[21] L. Paquette, J. Ocumpaugh, Z. Li, A. Andres, and
R. Baker. Who’s learning? using demographics in edm
research. Journal of Educational Data Mining,
12(3):1–30, 2020.

[22] F. Pargent, F. Pfisterer, J. Thomas, and B. Bischl.
Regularized target encoding outperforms traditional
methods in supervised machine learning with high
cardinality features. Computational Statistics, pages
1–22, 2022.

[23] R. Pishghadam and R. Zabihi. Parental education and
social and cultural capital in academic achievement.

International Journal of English Linguistics, 1(2):50,
2011.

[24] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V.
Dorogush, and A. Gulin. Catboost: unbiased boosting
with categorical features. Advances in neural
information processing systems, 31, 2018.

[25] N. J. Salkind. Encyclopedia of research design,
volume 1. sage, 2010.

[26] R. Shwartz-Ziv and A. Armon. Tabular data: Deep
learning is not all you need. Information Fusion,
81:84–90, 2022.

[27] F. Sigrist. Latent gaussian model boosting. arXiv
preprint arXiv:2105.08966, 2021.

[28] F. Sigrist. Gaussian process boosting. Journal of
Machine Learning Research, 23(232):1–46, 2022.

[29] L. Sweeney. k-anonymity: A model for protecting
privacy. International journal of uncertainty, fuzziness
and knowledge-based systems, 10(05):557–570, 2002.

[30] M. Sweeney, J. Lester, H. Rangwala, A. Johri, et al.
Next-term student performance prediction: A
recommender systems approach. Journal of
Educational Data Mining, 8(1):22–51, 2016.

[31] N. Tomasevic, N. Gvozdenovic, and S. Vranes. An
overview and comparison of supervised data mining
techniques for student exam performance prediction.
Computers & education, 143:103676, 2020.

[32] B. Trstenjak and D. Donko. Determining the impact
of demographic features in predicting student success
in croatia. In 2014 37th International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages
1222–1227. IEEE, 2014.

[33] R. Yu, H. Lee, and R. F. Kizilcec. Should college
dropout prediction models include protected
attributes? In Proceedings of the eighth ACM
conference on learning@ Scale, pages 91–100, 2021.

[34] M. Zaffar, M. A. Hashmani, K. Savita, and S. S. H.
Rizvi. A study of feature selection algorithms for
predicting students academic performance.
International Journal of Advanced Computer Science
and Applications, 9(5), 2018.

[35] Y. Zhao, Q. Xu, M. Chen, and G. Weiss. Predicting
student performance in a master’s program in data
science using admissions data. In Educational Data
Mining, 2020.

136



Scalable and Equitable Math Problem Solving Strategy
Prediction in Big Educational Data

Anup Shakya
University of Memphis

ashakya@memphis.edu

Vasile Rus
University of Memphis

vrus@memphis.edu

Deepak Venugopal
University of Memphis

dvngopal@memphis.edu

ABSTRACT
Understanding a student’s problem-solving strategy can have
a significant impact on effective math learning using Intel-
ligent Tutoring Systems (ITSs) and Adaptive Instructional
Systems (AISs). For instance, the ITS/AIS can better per-
sonalize itself to correct specific misconceptions that are in-
dicated by incorrect strategies, specific problems can be de-
signed to improve strategies and frustration can be mini-
mized by adapting to a student’s natural way of thinking
rather than trying to fit a standard strategy for all. While
it may be possible for human experts to identify strategies
manually in classroom settings with sufficient student in-
teraction, it is not possible to scale this up to big data.
Therefore, we leverage advances in Machine Learning and
AI methods to perform scalable strategy prediction that is
also fair to students at all skill levels. Specifically, we develop
an embedding called MVec where we learn a representation
based on the mastery of students. We then cluster these
embeddings with a non-parametric clustering method where
we progressively learn clusters such that we group together
instances that have approximately symmetrical strategies.
The strategy prediction model is trained on instances sam-
pled from these clusters. This ensures that we train the
model over diverse strategies and also that strategies from a
particular group do not bias the DNN model, thus allowing it
to optimize its parameters over all groups. Using real world
large-scale student interaction datasets from MATHia, we
implement our approach using transformers and Node2Vec
for learning the mastery embeddings and LSTMs for pre-
dicting strategies. We show that our approach can scale up
to achieve high accuracy by training on a small sample of
a large dataset and also has predictive equality, i.e., it can
predict strategies equally well for learners at diverse skill
levels.

Keywords
Intelligent Tutoring Systems, Strategy Prediction, Equity,
Representation Learning, Skill Mastery, Non-parametric Clus-
tering, Fairness, Transformers, LSTM, Symmetry

1. INTRODUCTION
The recent pandemic has spurred a remarkable growth in vir-
tual learning and with it, the necessity to develop learning
technologies that are effective even in the absence of face-to-
face instruction. To this end, Intelligent Tutoring Systems
(ITSs) [25] and more broadly Adaptive Instructional systems
(AISs) will play a key role in education since they can scale
up personalized instruction to large and diverse student pop-
ulations. However, to adapt to a student, an AIS should be
able to understand the student’s thinking process which can
be challenging. For instance, if we consider math learning,
students can solve the same problem using several different
approaches or strategies. Understanding these strategies can
help an ITS/AIS adapt more effectively [22]. For example,
the type of strategy can reveal the expertise/knowledge of
a student in a topic, incorrect strategies that indicate mis-
conceptions can be corrected by the ITS, the student can be
trained to change strategy based on the problem context,
and students may be less frustrated if the ITS guides them
towards strategies that are more naturally aligned to their
thinking.

In math problem solving, a strategy is a sequence of ac-
tions/steps that the student performs to solve a problem. An
example of 3 different strategies is shown in Fig. 1. Human
tutors can recognize different strategies followed by students
and utilize these in one-on-one instruction. For instance, if
a student is a visual learner, then they can teach the stu-
dent to solve problems through visual aids, or if the student
prefers an analytical approach to solve the same problem,
then they can modify their teaching accordingly. However,
adapting this approach for ITSs is challenging, particularly
since identifying problem-solving strategies through compu-
tational methods is a complex problem. Specifically, there
may be several strategies that are similar/symmetric with-
out being completely identical. An example is illustrated in
Fig. 1 to show similar and dissimilar strategies. As shown
here, 2 of the 3 strategies are not exactly identical but im-
plement the same idea and are thus symmetrical. The third
strategy is quite different and asymmetrical to the first two
strategies. Further, there may be several strategies that may
not be conventional approaches to problem-solving but are
indicative of unique ways in which students think about
problems. Thus, if we identify a new strategy based on
matching them with a set of previously known strategies,
this approach may not be very effective when we want to
scale up to big educational data. While there have been
several approaches to detect strategies including using model
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tracing [4] or sequence mining [34] methods, newer advances
in deep neural networks (DNNs) can learn much more com-
plex representations from large-scale data. Thus, leveraging
such DNNs, we predict novel strategies more effectively.

Our goal in this paper is to develop a scalable and equitable
model to predict strategies in math learning. Specifically,
though DNN models are highly effective, they may tend to
produce biased results. For instance, since most DNNs have
a loss function that optimizes the overall loss, depending on
the data distribution used during training, their results may
be unfair to some sub-groups in the data. In our context,
we want to avoid the model being unfairly biased where it
can only identify strategies for certain student sub-groups.
Specifically, we want to avoid disparate mistreatment [35]
where the model accuracy is significantly different for dif-
ferent types of learners. In particular, learners may have
disparity in their mastery or skill level which will influence
their choice of strategy for a problem. For example, in Fig. 1,
the third strategy shown in the figure is more sophisticated
than the other two and the student who applies this strat-
egy is likely to have greater mastery in the topic. Therefore,
we want to ensure that our model can predict strategies
equally well for learners at all skill levels. To do this, we use
a sampling approach, where instead of training the DNN
over the full dataset (which may contain biases), we mod-
ify the underlying data distribution. Specifically, we sam-
ple the data such that sub-groups in the data are equally
well-represented. Thus, when the DNN is trained over these
samples instead of the full dataset, the DNN is forced to op-
timize its loss over all sub-groups. In general, sampling is a
well-known approach used to scale up complex DNNs while
training the model from large datasets [6]. Further, it has
been shown that in some cases using too much data can lead
to poor generalization [17]. In our case, a naive sampling ap-
proach where we sample students uniformly at random and
train over strategies used by the sampled students will cer-
tainly be biased towards the skill level of the majority group
and does not account for inequalities in skill levels. There-
fore, here, we develop an iterative non-parametric cluster-
ing method where we cluster the data into groups where
each group corresponds to strategies corresponding to simi-
lar skills levels. Further, since strategies themselves are hard
to compare exactly, we develop an approach where we use
approximate symmetries to group strategies. We then train
a DNN to predict a strategy by sampling from these diverse
groups.

We implement our approach using the DP-Means Hierarchi-
cal Dirichlet Process framework [9] to jointly cluster students
and problems. Specifically, we project students (and prob-
lems) into an embedding space that we term MVec (Mastery
Vectorization). To do this, we represent relationships be-
tween symbolic objects (students, problems, and concepts
used in strategy) as a graphical structure. We then learn
dense vectors using an embedding approach called Node2Vec
[5] that assigns similar embeddings to nodes that have sim-
ilar neighborhoods. We add mastery over concepts used in
the strategy as weights in the graph estimated from a trans-
former model with attentions [31]. Thus, students with mas-
tery over similar concepts in their strategies are assigned
similar embeddings. We optimize the clusters incrementally
where in each step, we adaptively change a penalty param-

eter based on the symmetries encoded by the clusters in
the previous step. To quantify approximate symmetries, we
develop a strategy alignment procedure with positional en-
codings [28]. Once the clusters converge, we sample training
instances from the clusters and train a Long Short Term
Memory (LSTM) model that predicts strategies.

We evaluate our approach on two datasets from MATHia,
a commercial AIS widely used for math learning in schools.
The data is available through the PSLC datashop [30]. The
datasets are both large datasets that consist of millions of
data instances (an instance is a student-problem pair and
has multiple interactions in the dataset). Our results con-
firm that using our approach, we can sample a substantially
smaller set of instances from the big dataset which we can
use to train the strategy prediction model efficiently and
achieve high accuracy in strategy prediction for students at
diverse levels of mastery.

2. BACKGROUND
2.1 Related Work
Ritter et al. [22] provide a comprehensive survey on different
approaches used to identify student strategies. Well-known
approaches include the use of model tracing-based meth-
ods [4] to identify strategies. In such cases, strategies may
be pre-specified and the tutor can recognize correct and in-
correct strategies. Model-tracing-based methods have also
been adapted to recognize new strategies [21]. Sequence
learning approaches have been used in Open-Ended Learn-
ing Environments such as Betty’s brain [11]. In [34], se-
quence pattern mining was applied to a MOOCs platform
to analyze activity sequences of learners. For conversational
tutors, natural language conversation interactions between
tutors and students were mapped into a taxonomy of higher-
level pedagogical concepts (e.g. scaffolding) by education
experts [15]. These concepts can also be seen as a form of
strategy and models have been developed to predict these
concepts from conversational tutors [13, 26, 32]. Shakya et
al. [27] developed an approach using importance sampling
to sample data instances to scale up training of a strat-
egy prediction model based on student interaction data from
Mathia. Specifically, they formulated a Neuro-Symbolic AI
model [33] where symbolic formulas were used in conjunc-
tion with a DNN to train the model. However, unlike our
approach [27] has two fundamental limitations in identify-
ing strategies. Particularly, their work does not use mastery
to diversify the training samples which is important for eq-
uitable training. Further, it does not learn approximately
symmetrical groups in a non-parametric manner. Thus,
it cannot effectively group together symmetrical strategies
which is necessary if we want to train the DNN from strate-
gies that represent all such groups.

Mastery-based learning was proposed in the classic work
by Bloom [1] to reduce achievement gaps between diverse
students. The famous Bloom 2-sigma rule illustrates the
benefits of such mastery-based learning. Ritter et al. [23]
more recently provides a detailed insight into how mastery
learning works in large-scale environments through their ex-
periments on the MATHia platform. Knowledge tracing [4]
is a well-known approach for inferring the knowledge state
of students over KCs which indicates the degree of mastery
over the KCs. More recently, deep knowledge tracing [20]
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Figure 1: Illustrating symmetries in strategies where similar colors indicate similar steps. Strategies 1 and 2 are similar in
that they use the elimination method but are not identical. Strategy 3 uses the matrix method which indicates a higher level
of sophistication in student mastery.

performed knowledge tracing using deep learning models.
There is also a significant momentum in tackling the Knowl-
edge Tracing problem in terms of graphs with the advent of
GNNs [12, 16]. In [29], node-level and graph-level GCNs
have been used to learn exercise-to-exercise and concept-to-
concept relational sub-graphs adding to the semantic value
of the representations. The natural phenomenon of learn-
ing, forgetting and dynamic changes to a student’s mastery
of knowledge concepts is formulated using gating-controlled
mechanisms in [36]. Learning the pre-requisite structure of
various associated skills has proven to be insightful to un-
derstand the problem-solving patterns [3, 19]. In [18], an
attention-based model was proposed to predict correct an-
swers but this was not used to predict strategies which is
the focus of our work.

Our approach to using symmetries to make deep learning
more scalable is inspired by the Geometric Deep Learning
(GDL) [2] framework. Specifically, GDL is a formal frame-
work used to understand the effectiveness of DNNs from the
perspective of symmetries. Here, we ground GDL in the
context of improving the effectiveness of DNNs in strategy
prediction from big, diverse data. More generally, being se-
lective about training instances has been shown to improve
scalability and generalization [17]. Deep importance sam-
pling [6] has the same underlying principle as our approach
in that they propose to sample data to scale up training.
However, unlike our approach they do not use symmetries
as a basis for efficiently and equitably training the model.
More recently, there has been work on improving fairness
in DNNs by adaptively selecting batches during training to
improve fairness measures such as minimizing gender dis-
parity [24]. In principle, our approach also tries to achieve
a similar goal in the context of educational data which is
more challenging given that both mastery and strategies are
complex variables.

2.2 Overview of Embedding Models
We use the well-known embedding model Node2Vec [5] to
learn our mastery-based embedding MVec. Node2Vec is an
embedding model for graphs and learns embeddings/dense
vectors for nodes in the graph base on local neighborhoods.
It is well-known to be a highly scalable approach for learn-
ing embeddings from large graphs. Node2Vec assigns similar
vector representations for nodes with similar neighborhoods.
Internally, it uses a skip-gram model called Word2Vec [14]
to learn these representations. Word2Vec, which was orig-
inally developed for word embeddings, is used to predict
neighboring nodes (also called context) from a given node.
An autoencoder architecture is used in Word2Vec and the
hidden layer learns the embedding. When neighborhoods
are similar for two nodes, since their contexts are similar,

the embedding learned for the two nodes will also be simi-
lar. Thus, Word2Vec projects the nodes into a continuous
embedding space where similar/symmetrical nodes lie close
to each other in the space.

2.3 DP-Means
DP-Means [10] is a non-parametric clustering algorithm that
does not require us to specify of the number of clusters.
The DP-Means Hard Gaussian Processes (HDP) clustering
learns a 2-step hierarchy where local clusters for multiple
datasets are learned at the lower level and these clusters are
associated with global clusters at the higher level. Let xij
denote the i-th instance of dataset j. The specific objective
function of HDP is as follows.

g∑

p=1

∑

xij∈ℓp
||xij − µp||22 + λℓk + λgg (1)

where ℓp is the p-th global cluster, k is the total number of
local clusters, µp is the center of the p-th global cluster, g
is the total number of global clusters, λℓ is a local penalty
that controls the formation of local clusters and λg is a global
penalty that controls the formation of global clusters.

We can minimize the objective in Eq. (1) HDP clustering as
follows. For each xij , we compute the distance to the current
global cluster means. If the minimal distance exceeds λℓ +
λg, we create a new local cluster for xij and a new global
cluster ℓg associating it with the newly created local cluster.
If the minimal distance is smaller than the sum of penalties,
then we find the closest global cluster for xij , say ℓg′ . We
then add xij to a local cluster that is already a part of
ℓg′ . If no such local clusters exist, we create a new one
for xij and associate it with ℓg′ . We then process the local
clusters as follows. Let c denote a local cluster. We compute
the global cluster whose mean is at a minimal distance, d′

from c. Let the sum of distances of the points in the local
cluster c to its cluster center be m. If d′ is greater than the
sum of the global cluster penalty and m, we create a new
global cluster and assign c to this new global cluster. This
algorithm converges to a locally optimal solution for Eq. (1)
as shown in [10].

2.4 Positional Encodings
Positional encodings [31] are used to encode positional in-
formation in a sequence using a continuous vector space.
Specifically, using sine and cosine functions that alternate
with frequencies, we can represent positions in a sequence
as follows. Let the position of the t-th item in the sequence
be encoded by the d dimensional vector p⃗t. The k-th dimen-
sion in p⃗t is computed as follows. If k is even, the value is
equal to the sinusoidal function sin(ωk.t) and if k is odd,
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the value is equal to the cosine function cos(ωk.t), where ωk
= 1/100002k/d. The frequencies of the sine and cosine func-
tions increase as k increases. Positional encodings are widely
used to augment the latent representation learned by a deep
network with positional information for sequence learning.

3. PROPOSED APPROACH
Since strategy is a generic term, we define it more precisely.
Specifically, we consider strategies in the context of struc-
tured interaction between students and tutors. In this case,
a student interacts with a tutor and solves a problem by
sequentially solving the steps that lead to the final solution.
Thus, we can think of a strategy as a sequence of actions the
student takes among possible sequences in an action-space.
Operationally, each step in the sequence is associated with
a specific knowledge component (KC) [8] which is defined by
domain experts and corresponds to the concept/knowledge
required to solve that step. Thus, in our discussion, a strat-
egy corresponds to a sequence of KCs. Further, note that a
step can be associated with multiple KCs in which case, we
can just unroll the step to ensure that each step has a single
KC. While it is possible to adapt our approach to perform
structure prediction where instead of a single KC, a step
can be mapped to a more complex structure (e.g. a graph),
we leave this for future work and focus on the case where a
single KC is mapped to a step in the strategy.

In this paper, the task that we want to solve is the follow-
ing. Given a student s and a problem p, we predict the
sequence of KCs that s will use to solve p. In particular, we
assume that we have a large dataset D where we refer to an
instance in the dataset as a pair (s, p) ∈ D. We want to sam-
ple instances from D to train a model that takes as input
(s, p) ∈ D and predicts strategies, i.e., variable-length se-
quences of KCs. We also assume that D contains correctness
associated with each step in the strategies. Specifically, for
an input (s, p), for each step that s takes to solve p, we know
if s was successful in solving that step correctly. We use
this information to determine the mastery of a student and
based on this, we develop an embedding (vector represen-
tation) for students and problems. We then jointly cluster
the embeddings using a non-parametric approach such that
instances where the strategies are approximately symmetric
are clustered together. Finally, we train an LSTM model
to predict strategies by sampling the clusters. In the sub-
sequent subsections, we first describe our embedding called
MVec. Next, we apply DP-Means HDP clustering [10] to
the embeddings while also incorporating approximate sym-
metries in strategies.

3.1 MVec Embeddings
To learn the MVec embedding, we use an approach that is
similar to Node2Vec [5]. Specifically, we construct a rela-
tional graph G = (V,E) as follows. Each student, problem,
and KC in the training data is represented as a node V ∈ V.
For every student S who uses KC K as a step to solve prob-
lem P , there exist 2 edges E,E′ ∈ E, where E connects
the node representing the student to the node represent-
ing the KC and E′ connects the node representing the KC
to the node representing the problem. An example graph
over 3 students, problems, and KCs is shown in Fig. 2. We
now sample paths in the graph and learn embeddings for

Figure 2: Illustrating a graph network of three students,
problems, and KCs. The figure on the right shows some of
the sampled random walks/paths.

these paths using word embedding models (Word2Vec) [14].
Specifically, the objective function is as follows.

max
f

∑

u∈V

logP (NQ(u)|f(u)) (2)

where f : u → Rd is the vector representation for nodes
u ∈ V, NQ(u) denotes the neighbors of u sampled from a
distribution Q. Similar to Node2Vec, we assume that there
is a factorized model that gives us a conditional likelihood
that is identical to the likelihood function used in Word2Vec.

P (ni|f(u)) =
exp(f(ni) · f(u))∑
v∈V exp(f(v) · f(u))

(3)

where ni is a neighbor of u. The conditional likelihood is
optimized by predicting neighbors of u using u as input in an
autoencoder neural network. The hidden layer learns similar
embeddings for nodes with symmetrical neighborhoods. To
do this, we generate walks on G as shown for the example
in Fig. 2, and in each walk, given a node, we predict neigh-
boring nodes similar to predicting neighboring words in sen-
tences. To generate these walks, a simple sampling strategy
Q is to randomly sample a neighbor for a node. However,
in our case, it turns out that each neighbor may have dif-
ferent importance when it comes to determining symmetry.
Specifically, if a student has achieved mastery in applying
a KC to a problem, then the corresponding edges should
be given greater importance when determining symmetry
between nodes in G. To do this, we train a Sequence-to-
Sequence attention model [31] from which we estimate the
sampling probabilities for edges in G.

The intuitive idea in quantifying mastery is illustrated in
Fig. 3 which shows the opportunities given to 3 students
to apply KCs in different problems. For each sequence of
KCs, we predict if the student got the step correct or wrong
on the first attempt (abbreviated as CFA for Correct First
Attempt) when given an opportunity to apply the KC. The
CFA values are performance indicators for the student, i.e., if
they have mastered a KC, then they are likely to get the step
correct in every opportunity they get to apply that KC. We
train a model to predict the CFA values (CFA = 1 indicates
a correct application of the KC) given the KCs used in a
problem. The predicted values from the model are shown
for each KC. The bar graphs show mastery over the KCs.
As seen here, the first student is inconsistent in applying

140



Figure 3: An example to illustrate the use of attention for mastery estimation. The bar charts show for each KC, the attention
on a KC across steps that the student solves successfully (CFA=1) normalized by total attention for that KC. Larger values
indicate that the model believes the student understands the KC as the attention on it is large when CFA=1 and vice versa.

the skill, find the slope using points (labeled as E) since the
predictions for this oscillate between 0 and 1 whenever the
student tries to apply this KC. On the other hand, student 2
consistently applies the same skill correctly and therefore the
attention value is higher. We train the attention model from
opportunities based on curriculum structure. Specifically,
the curriculum consists of multiple units and each unit is
further subdivided into sections. For each student S, from
every unit that the student has completed say U , we select a
problem P from each section that the student has worked on
in U and train the model to predict the CFA values for each
KC used in P . We use the standard architecture described
in [31] for this model. Specifically, the input consists of the
KC sequence, and the encoder maps this sequence to a latent
representation and the decoder decodes the CFA values one
at a time. The attention is given by

Attention(γ, κ, η) = softmax

(
γκT√
dk

)
η (4)

where γ, κ, and η are the standard query, key, and value
matrices respectively as defined in [31], and dk is the dimen-
sionality of the embedding that represents the latent repre-
sentations. We use the encoder-decoder attention, i.e., the
query is the decoder representation and the key is the en-
coder representation. The attention weights are an estimate
of the alignment between encoded latent representations of
mastery with the decoded representation of correctly apply-
ing a skill at each step in the problem. The projection of
mastery over a KC K based on the attention vectors is es-
timated by the following equation.

α(S, P,K) =

∑
i

∑
v∈π(ai) v∑

i

∑
v∈π(ai) v +

∑
i

∑
v′∈π̄(ai) v

′ (5)

where π(·) extracts only those values in the input vector
where the corresponding output for that step is predicted
as 1, i.e., the model predicted that the student could solve
the step correctly. π̄(·) is the complement of π(·), i.e., it
extracts attention values corresponding to steps that were
predicted as mistakes made by the student and i sums up

all the instances where K is used.

We now sample paths from G using the factored distribu-
tion, i.e., Q(S) ∗ Q(K|S) ∗ Q(P |K,S), where Q(S) is the
probability of sampling a student node, Q(K|S) is the prob-
ability of sampling a KC K given student S and Q(P |K,S)
is the probability of sampling problem P given K,S. We
assume that Q(S) is a uniform distribution over students.
The conditional distributions are as follows.

Q(K|S) = 1/n
∑

p

α(S, P,K) (6)

Q(P |K,S) = α(S, P,K) (7)

where n is the number of opportunities given to student S to
apply KC K. The algorithm to generate MVec embeddings
is shown in Algorithm 1. As shown here, we sample a path in
the graph as follows. We first sample student S uniformly
at random, then we sample a KC K from Q(K|S) and a
problem from Q(P |K,S). We then predict each node in
the path using the neighboring nodes through a standard
Word2Vec model. The resulting embeddings are learned in
the hidden layer of the Word2Vec model. Note that for
scalability, we do not construct/store the full graph G at any
point. Instead, we only sample paths in an online manner
as shown in Algorithm 1.

3.2 Non-Parametric Clustering
We cluster the student and problem MVec embeddings jointly
through a non-parametric approach based on symmetries
defined as follows. For the dataset denoted by D, let S, P
denote the set of students and problems respectively in D.

Definition 1. A strategy-invariant partitioning w.r.t D
is a partitioning {Si}k1i=1 and {Pj}k2j=1 such that ∀i, j, if

S, S′ ∈ Si, P, P
′ ∈ Pj, S, S

′ follow equivalent strategies
for P, P ′ respectively.

where k1 and k2 are the number of partitions/clusters for
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Algorithm 1 Generate MVec embeddings

Input: Relation Graph: G = (V,E) with student, problem
and KCs as nodes, Embedding dimension: d, pre-trained
attention-model A

Output: Embeddings for each node v ∈ Rd
Initialize: set of walks, W = empty

1. for all t = 1 to T do
2. Sample a path < S,K,P > in G from Q(S)∗Q(K|S)∗

Q(P |K,S) using Eq. (6) and (7).
3. W = W ∪ < S,K,P >
4. end for
5. ve = word2vec(W, d)
6. return ve

Figure 4: HDP Clustering showing the local clusters (stu-
dent clusters and problem clusters) and the global clusters
that combine the student, problem clusters.

students and problems respectively. The benefit of strategy-
invariant partitioning is that we can scale up without sacri-
ficing accuracy by training a prediction model only on sam-
ples drawn from the partitions instead of the full training
data. Therefore, our task is to learn such partitioning ap-
proximately (since constraining the partitions to have exact
equivalence of strategies is a hard problem). Since it is hard
to know apriori how many partitions are needed, we for-
mulate this as a non-parametric clustering problem and use
DP-Means [10] to learn the clusters.

To formalize our approach, we begin with some notation.
Let S = {xi1}Ni=1 denote the set of students and P = {xj2}Mj=1

denote the set of problems. We refer to the student and
problem clusters as the local clusters. A global cluster com-
bines student and problem clusters as illustrated in Fig. 4.
We run the standard DP-Means HDP clustering algorithm
to optimize Eq. (1) and learn global clusters that combine
local clusters over S and P. Note that large values of the
global penalty λg result in a coarse clustering with few clus-
ters and small values of the penalty result in fine-grained
clusters. We adaptively change λg where we progressively
lower the penalty yielding a coarse-to-fine refinement of the
clusters. Specifically, suppose ℓ1 . . . ℓg are the current global
clusters, we compute a score S(ℓ1 . . . ℓg) based on the sym-
metry of strategies within each cluster and as long as the
score progressively improves across iterations, we reduce λg
to obtain finer-grained clusters.

3.3 Refining Clusters using Symmetry
Note that each global cluster implicitly represents a set of
strategies, i.e., a student-problem pair (s, p) within the clus-
ter corresponds to a strategy followed by s for problem p.

Algorithm 2 Coarse-to-Fine Refinement

Input: Student/Problem set: {xij}, Constant Penalty pa-
rameter: λℓ, iteration limit T

Output: Global strategy clustering {ℓ1, . . . , ℓg}
Initialize : Global cluster penalty λg = y (where y is a
large number), t = 0, cluster coherence coht−1 = 0.

1. repeat
2. t = t+ 1
3. Cluster with penalties λℓ, λg
4. Compute cluster coherence score, coht = S(ℓ1, . . . ℓg)
5. Reduce: λg = λg − ϵ
6. until coht > coht−1 or t > T

We want to quantify symmetry between strategies within a
cluster. A naive approach to compare two strategies is to
compute the mean of the MVec embeddings for the KCs used
in each strategy and then compute the distance between the
means. However, this assumes that all permutations of a
strategy are equivalent to each other which is problematic.
On the other hand, suppose we compare the KC embedding
at a step in one strategy with the KC embedding at the same
step in the other strategy, then we assume the strategies are
equivalent only if they are perfectly aligned with each other
which is also an over-simplification.

To match strategies approximately, we represent a strategy
using a combination of embeddings and positional encod-
ings [31], and approximately align two strategies to esti-
mate the symmetry between them. A KC K in the strategy
is represented by its positional embedding K⃗ = K⃗e + K⃗p

where K⃗e is the MVec embedding for K and K⃗p is the posi-
tional encoding for K in the strategy. To compute symme-
try between strategies, we compute an alignment between
their positional embeddings. Alignment is a fundamental
problem in domains such as Bioinformatics where a classi-
cal approach that is often used is the Smith and Waterman
algorithm (SW) [28]. The idea is to perform local search to
compute the best possible alignment between two sequences.
SW requires a similarity function which in our case is the
similarity between two KCs and we set this to be s(K,K′)

= K⃗⊤K⃗′, i.e., the cosine similarity between the positional
embeddings of K and K′. Further, SW also requires a gap
penalty which refers to the cost of leaving a gap in the align-
ment. In our case, we set the gap penalty to 0 since we want
symmetry between strategies to be invariant to gaps. That
is, if two strategies are symmetric, adding extra steps in the
strategies is acceptable. SW iteratively computes a scoring
matrix based on local alignments. The worst-case complex-
ity to compute the scoring matrix that gives us scores for
the best alignment is equal to O(m ∗ n) where m and n are
lengths of the strategies.

Note that in our case, we are interested in quantifying sym-
metry between strategies based on the alignment. Specifi-
cally, let K and K′ be two strategies of lengths n and m re-
spectively. SW gives us an alignment between K and K′ de-
noted by L(K,K′). The alignment consists of the pairs KCs
from K and K′ respectively that have been matched/aligned
or a gap, i.e., a KC from K could not be aligned with any KC
from K′. We compute the symmetry score between K and
K′ as r(K,K′) = 1

max(n,m)

∑
(K,K′)∈L(K,K′) (K⃗⊤K⃗′), where
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(K,K′) ∈ L(K,K′) are aligned KCs and K⃗⊤K⃗′ is their co-
sine similarity. We see that 0 ≤ r(K,K′) ≤ 1. Based on
this, we estimate symmetry in the clustering as follows.

S(ℓ1, . . . , ℓg) =
1

g

g∑

p=1

Zp
∑

K,K′∈T (ℓp)

r(K,K′) (8)

T (ℓp) is a set of all strategies in ℓp and Zp = 2
|T (ℓp)|(|T (ℓp)|−1)

is the normalization term. Thus, a larger value of S(ℓ1, . . . , ℓg)
implies that the clustering corresponding to ℓ1, . . . , ℓg has a
greater degree of symmetry in strategies. Using this score,
we refine the clustering by adapting the global penalty. Specif-
ically, we reduce the global penalty λg by a constant ϵ as
long as the symmetry score decreases across iterations or
for a fixed number of iterations. Algorithm 2 summarizes
the coarse-to-fine refinement.

3.4 Training the Model
We use an LSTM architecture similar to [27] to predict
strategies. Specifically, the model is a one-to-many LSTM
that takes student, problem vectors as input and generates a
sequence of KCs as output. To train this model, we sample
instances from the converged global clusters, and for each
sampled student-problem pair (s, p), the LSTM input is the
concatenation of MVec embeddings of s and p. The output
corresponds to the sequence of KCs in the strategy used by
s for p, each of which is encoded as a one-hot vector. To
handle variable-length strategies, a special stop symbol is
used to denote the end of a sequence. The entire model is
trained using the standard categorical cross-entropy loss.

4. EXPERIMENTS
Our goal is to answer the following questions through our
evaluation. i) what is the accuracy of our approach in pre-
dicting strategies? ii) how does our approach scale-up? iii)
what is the influence of mastery in predicting strategies ac-
curately? and iv) is there a disparity in the accuracy of
prediction for different skill-based sub-groups in the data?

4.1 Dataset
The data we use in this work is large-scale real-world ed-
ucation data recorded with real students using MATHia.
MATHia is an online math learning program for middle
school students that is popularly used across several schools.
We used two datasets provided by MATHia for evaluating
our proposed approach, Bridge-to-Algebra 2008-09 (BA08)
and Carnegie Learning MATHia 2019-20 (CL19). Both of
these datasets contain recorded interactions between the stu-
dent and the computer tutor while the student attempts to
solve a problem on the platform. Each recorded interaction
consists of the log of the student’s action toward solving
the problem, for example, the knowledge component used,
if hints were needed and if the step was completed correctly.
BA08 is an older dataset that consists about 20 million in-
teractions for about 6000 students and 52k unique algebra
problems. This dataset contains about 1.6 million data in-
stances. It is important to note that we consider a data
instance as a student-problem pair, so one data instance
consolidates all the interactions/steps for one student on a
specific problem. CL19 is a more recent and larger dataset
containing about 47 million interactions for 5000 students
and about 32k unique math problems. It has about 1.9

Table 1: Main parameters for the models.

Transformer-based model LSTM-based strategy model

Dimension → 512 Latent Dimension → 200
Number of layers → 6 Epochs → 60
Number of heads → 8 Batch Size → 30

Dimensions of key, value and query → 64 Adam Optimizer with Learning rate 0.01
Max Sequence Length → 150 Dropout → 0.1

Dropout → 0.1
Weight Sharing → False

million data instances. Both datasets are publicly available
through the PSLC datashop [30].

4.2 Experimental Setup
To train the attention model, we used the transformer im-
plementation in [31]. For the strategy prediction, we used
a one-to-many LSTM [27] where the input is the student
and problem embedding, and the output is the sequence of
KCs. The parameters for the two models are shown in Ta-
ble 1. We used the standard parameters for the transformer
model and retained the same parameters as in [27] for the
LSTM model for an unbiased comparison. For generating
MVec embeddings, we used Gensim [14] with an embed-
ding dimension set to 300 (which is typically used). We
initialize the local cluster penalty λℓ = 7 and global cluster
penalty λg = 9 for Coarse-to-Fine refinement and reduce
the global penalty by ϵ = 1 (we discovered these to be the
best-performing hyper-parameters in experimentation). We
perform our experiments on a machine with 64 GB RAM, an
Nvidia Quadro 5000 GPU with 16 GB memory, and a CPU
with 8 cores. The code for our implementation is available
here 1.

4.3 Comparison to Baselines
We compared our approach with the following methods.
The first one is a specialized approach proposed in Shakya
et. al. [27] (CS) for the same datasets where an LSTM
is trained using importance sampling. However, this sam-
pling does not incorporate mastery or approximate symme-
tries to find diverse training instances. We also applied a
more general importance sampling approach that is said to
be applicable for any DNN model training proposed in [7]
(IS) using their publicly available implementation. However,
IS failed to output any results for datasets of our size and
therefore we do not show it in our result graphs. This in-
dicates that general-purpose methods do not scale up for
our datasets. We also developed a stratified sampler (GS
for group sampling) where the distribution is only propor-
tional to the number of problems solved by a student, i.e.,
we sample more instances from students that have data as-
sociated with them. The last baseline is a naive Random
Sampler (RS) used as a validation check where we sample
students and problems uniformly at random. We refer to
our approach as Attention Sampling (AS). In our evalua-
tion, for each approach, we enforce a limit on the number of
training instances and measure test accuracy based on the
model trained with this limit. This is similar to a measure
of the effective model complexity [17] which is the number
of training samples to achieve close to zero error. We re-
port the average accuracy of predicted KCs based on three
training runs.

1https://github.com/anupshakya07/attn-scaling
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Figure 5: Illustrating Scalability vs Accuracy. (a), (b) show test accuracy for strategy prediction for varying training datasize
limits. (c), (d) show accuracy (strategy prediction) for different training time limits.

4.4 Results and Discussion
4.4.1 Accuracy

The strategy prediction accuracy results for BA08 and CL19

are shown in Fig. 5 (a) and (b). As shown in Fig. 5 (a),
for BA08, in our approach (AS), it takes less than 1% of
the entire data (of BA08 containing 1.6 million instances) to
obtain test accuracy that is greater than 80%. CS is the next
best performer but is consistently below AS for all training
sizes. GS performs significantly worse which illustrates that
symmetries are more complex and a simple grouping based
on problems/students is insufficient. The poor performance
of RS validates that the problem of choosing the correct
samples is a challenging one. As seen in Fig. 5 (b), for
a considerably larger dataset CL19, we can observe similar
performance as in BA08. AS remains the best performer and
here CS is less stable since we see a performance drop as
we increase the limit on training samples. This suggests
that CS may not be able to capture all symmetries and thus
may produce a more biased training sample set. The results
for GS and RS are similar to those observed in BA08. As
mentioned before, IS failed to produce any results.

4.4.2 Scalability
Fig. 5 (c) and (d) show the training time required to obtain a
specific accuracy for BA08 and CL19 respectively. Even with
the extra processing that is needed to compute the mastery-
based embeddings and the non-parametric clustering, AS re-
quires the shortest training time to achieve an accuracy that
is higher than the other approaches. This illustrates the sig-
nificance of leveraging symmetries in the data to train the

Table 2: Ablation study with NS (No symmetries used), SS
(Symmetries without using mastery) and MS (Adding the
mastery model to better identify symmetries). Results are
shown for 2 datasets with different sample sizes. Accuracy
results in %.

Expts.
BA08 CL19

40k 100k 150k 40k 80k 100k
NS 60.05 71.14 74.58 74.81 75.4 75.8
SS 80.98 82.3 82.65 81.6 83.2 83.8

SS + MS 86.02 86.21 86.53 84.74 85.8 85.9

model. As mentioned before, the full data is infeasible to
train and when attempting to use the full data, the model
did not converge for both datasets even after several days of
training time using our experimental setup. As seen in our
results, for CL19, the training time is larger since it takes
longer to compute the groups using non-parametric cluster-
ing due to the much larger size of the dataset. However,
considering that CL19 is significantly larger than BA08, we
see that AS could still scale up to this dataset quite eas-
ily while IS which is a state-of-the-art sampling method for
DNN training failed to train the model.

4.4.3 Ablation Study
Table 2 shows the results of our ablation study. We add
each component to our overall approach and observe the
test accuracy as we vary the sample size in the training
data. Specifically, the first case (NS) uses no symmetries,
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Figure 6: T-SNE visualization of strategy clusters for CL19. The color-coded plots show the 2D representation of the different
strategy clusters for (a) Embeddings that do not use mastery (b) MVec embeddings. The strategy representations are extracted
from the final hidden layer of the LSTM model and converted to 2D representation using T-SNE. (c) shows accuracy for
different groups of students (based on their performance) for CL19. The x-axis denotes different ranges of %s, where a range
a− b denotes that students in this group got > a and < b steps correct in their first attempt. The y-axis shows accuracy over
the groups. (d) shows the performance of the model on different groups based on the average variance of the strategies in the
sections for CL19. Variance is computed using edit distance as the metric of similarity between strategies.

Figure 7: An example from the dataset CL19 illustrating coarse-to-fine refinement of clusters. Strategies are shown by paths
connecting KCs. C1 and C2 are the coarse clusters which get refined into strategy invariant clusters C1′, C2′, C3′ and C4′.
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Table 3: Different strategies used by the students for different problems in the same section for CL19 dataset. The model is
able to predict accurately as student adapt their strategies.

Student Problem Name Predicted Strategy Actual Strategy

linear inequalities
numberline 5

represent open point on numberline-1 represent open point on numberline-1
represent ray on numberline-1 represent ray on numberline-1
represent inequality in symbolic problem-1 represent inequality in symbolic problem-1
identify when finished with numberline-1 identify when finished with numberline-1
identify invisible non-inflection point is in solutionset-1 identify invisible non-inflection point is in solutionset-1
identify invisible non-inflection point is not in solutionset-1 identify invisible non-inflection point is not in solutionset-1
identify visible non-inflection point is not in solutionset-1 identify visible non-inflection point is not in solutionset-1

linear inequalities
numberline 9

write simple inequality in verbal problem-1 write simple inequality in verbal problem-1
represent closedpoint on numberline-1 represent closedpoint on numberline-1
represent ray on numberline-1 represent ray on numberline-1
identify when finished with numberline-1 identify when finished with numberline-1
identify visible non-inflection point is not in solution set-1 identify visible non-inflection point is not in solution set-1
identify invisible non-inflection point is not in solution set-1 identify invisible non-inflection point is not in solution set-1
identify inflection point in solution set-1 identify inflection point in solution set-1

identify invisible non-inflection point is not in solution set-1

S1

identify inflection point in solution set-1

ratio proportion
prop1 4

enter part in proportion with variable-1 enter part in proportion with variable-1
enter given total in proportion-1 enter given total in proportion-1
enter numerator of given rate in proportion-1 enter denominator of given rate in proportion-1
enter denominator of given rate in proportion-1 enter numerator of given rate in proportion-1

enter proportion label in numerator-1 enter proportion label in numerator-1
enter proportion label in denominator-1 enter proportion label in denominator-1
calculate part in proportion with fractions-1 calculate part in proportion with fractions-1
enter numerator of form of 1-1 enter denominator of form of 1-1
enter denominator of form of 1-1 enter numerator of form of 1-1

enter calculated value of rate-1 enter calculated value of rate-1

ratio proportion
prop1 5

enter proportion label in numerator-1 enter proportion label in numerator-1
enter proportion label in denominator-1 enter proportion label in denominator-1
enter given total in proportion-1 enter given total in proportion-1
enter numerator of given unit rate in proportion-1 enter numerator of given unit rate in proportion-1
enter denominator of given unit rate in proportion-1 enter denominator of given unit rate in proportion-1
calculate part in proportion with fractions-1 calculate part in proportion with fractions-1

S2

enter calculated value of rate-1 enter calculated value of rate-1

i.e., the clustering is performed randomly. Next, we cluster
based on embeddings without using the mastery, i.e., when
we generate the embeddings for MVec, we do not use the
attention model and simply use triplets (S, P,K), where S
is a student, P is a problem and K is a KC used by S for P
as input to Word2Vec and generate embeddings. Thus, we
use symmetries in strategy without utilizing mastery when
we generate the clusters. We show this as Strategy Symme-
try (SS) in the table. Finally, we add mastery to generate
embeddings denoted by SS + MS and as shown, this im-
proves the generalization performance for all sample-sizes
thus, illustrating that utilizing mastery to learn embeddings
plays a significant role in improving accuracy in predicting
strategies.

4.4.4 Visualizing Clusters
We used T-SNE to visualize the clusters of strategies. For
this, we pick 100 student-problem pairs sampled from 10
clusters. We then perform strategy prediction for these and
visualize the hidden-layer representation of the LSTM in
the T-SNE plot. We compare this for MVec embeddings as
well as embeddings that are learned without using mastery.
As shown in Fig. 6 (a) and (b), when we use MVec, the
LSTM hidden-layer representation of strategies has better
separation. This indicates that we learn better grouping of
strategies using MVec embeddings.

4.4.5 Fairness
We evaluate if our approach results in disparate mistreat-
ment. Specifically, this means that the model should not
have significantly different accuracy for different sensitive

sub-groups in the data. In our case, the sensitive sub-groups
correspond to students at different skill levels. That is, we
want to predict the strategies equally well for all students.
To do this, we conducted an experiment where we divide
the test data into 6 performance groups. The performance
groups are based on the % of problem steps the students
solve correctly on their first attempt. The performance
groups include students who scored in the following ranges
≤ 30%, 30− 50%, 50− 70%, 70− 90%, ≥ 90%. To measure
disparate mistreatment, we compare the average accuracy of
strategies predicted for each of these groups. For a student
S in performance group G, we predict the strategies for all
problems attempted by S in the test set and measure the
average accuracy µS . We then compute the accuracy over a
performance group as 1/|G|∑S∈G µS . Fig. 6(c) shows our
results for the variants, NS, SS and SS+MS (identical to
those used in the ablation study) for CL19 (we show results
on this since this is the larger and more recent dataset).
As seen from our results, SS+MS yields the best accuracy
over each performance group. Further, the accuracy over
the poorest and the best performers is comparable to each
other and not significantly different. Thus, there is no dis-
parate mistreatment of any performance group shown by our
approach.

Next, we want to verify if there is disparate mistreatment
when we consider sub-groups that have rare strategies. To
measure this, we divided the problem sections in the test set
into groups based on the variance among strategies for prob-
lems in those sections. Specifically, to perform worst-case
analysis, we used the edit distance to measure the variance
of strategies within problems in a section. That is, if a pair
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of problems vary in two out of 10 steps, the edit distance is
0.2. We computed the variance in edit distances over all the
problems in a section. We then obtained the sub-groups at
5 different thresholds of variance. Thus, groups that have
large variance include more rare strategies, while groups that
have smaller variance have fewer rare strategies. For all the
problems in each of these sub-groups, we computed the av-
erage accuracy in strategy prediction. Fig.6(d) shows our
accuracy results over all the sub-groups. As seen here, we
have no disparate mistreatment for any of the sub-groups.
Thus, we show that even in cases where rare strategies are
used by students, our approach predicts strategies with an
accuracy that is very similar to cases where common strate-
gies are used.

4.4.6 Example Cases
Table 3 illustrates examples corresponding to two different
students where we predict strategies for two problems taken
from the same section in each case. Note that the students
make modifications to their strategy to suit the problem
context as seen in the examples, though the overall strategies
are similar since the problems are from the same section.
The model is able to successfully adapt and predict these
strategy changes quite accurately. In the case of student
S1, for the second problem, the model predicted most of the
steps except that the student had some redundant steps at
the end which were not predicted by the model. In the case
of S2, for problem 1, the predicted strategy interchanged the
order of a couple of steps that clearly does not significantly
alter the underlying strategy.

We illustrate some examples of coarse-to-fine refinement in
Fig. 7. Specifically, we show examples from two types of
problems, Fractions and Ratio, Proportions. The clusters
indicate the students, problems, and strategies followed by
students. In cluster C1, even though there are two different
strategies, they are symmetric to each other and therefore,
in a subsequent iteration of refinement, C1′ is the same as
C1. On the other hand, C2 consists of 4 strategies, 2 of
these are expert-level strategies and the other two are sim-
pler but differing strategies. Upon refinement of C2, we get
C2′ which intuitively represents the expert students and
C3′, C4′ which represents students using simpler yet differ-
ent strategies. Thus, the coarse-to-fine refinement results in
invariant strategies within each cluster.

5. CONCLUSION
We presented a scalable and equitable framework for pre-
dicting math problem-solving strategies used by students.
Since students with differing skill levels use significantly
different strategies, to predict these, we need to train a
model over diverse training instances. Identifying such in-
stances is a challenging problem in big data. Particularly,
identifying strategies which are approximately symmetrical
to each other is a hard task. Here, we developed a clus-
tering approach to discover diverse groups where instances
within each group have approximately symmetrical strate-
gies. Specifically, we learned an embedding MVec using a
combination of Node2Vec where we learned representations
for relationships in the data encoded as a graph and a trans-
former model that predicts mastery. Specifically, similar
attentions in the transformer model over steps in the strat-
egy indicated similar mastery in solving a problem, which

we used to learn the Node2Vec representation. We then
clustered the MVec embeddings with a non-parametric al-
gorithm called DP-Means by iteratively refining the clusters
based on the level of symmetry encoded within the clus-
ters. By sampling from clusters, we were able to train an
LSTM model to predict strategies using small but highly
informative instances that were representative of strategies
in the full data. Further, by sampling from clusters, we
ensured that the LSTM model did not optimize its param-
eters for any specific group, but instead generalized over all
groups in the data, thus making the model capable of iden-
tifying strategies from diverse groups. Experiments on two
large-scale datasets demonstrated our accuracy in predicting
strategies with a small fraction of the dataset and further,
our predictions were fair across students at different levels
of skill.

As part of future work, we hope to extend this model to
non-structured interactions (e.g. conversations). Further,
we also plan to explore more complex mappings of strate-
gies where each step can be represented by a structure (e.g.
graph, table, etc.) and developing structured prediction
models from such mappings. We also propose to utilize this
approach in instructional design where we can select prob-
lems to solve based on a student’s predicted strategy and
also to develop interventions in ITSs based on misconcep-
tions identified in predicted strategies.
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ABSTRACT
Vocabulary proficiency diagnosis plays an important role in
the field of language learning, which aims to identify the
level of vocabulary knowledge of a learner through his or
her learning process periodically, and can be used to provide
personalized materials and feedback in language-learning ap-
plications. Traditional approaches are widely applied for
modeling knowledge in science or mathematics, where skills
or knowledge concepts are well-defined and easy to associate
with each item. However, only a handful of works focus on
defining knowledge concepts and skills using linguistic char-
acteristics for language knowledge proficiency diagnosis. In
addressing this, we propose a framework for vocabulary pro-
ficiency diagnosis based on neural networks. Specifically, we
propose a series of methods based on our framework that
uses different linguistic features to define skills and knowl-
edge concepts in the context of the language learning task.
Experimental results on a real-world second-language learn-
ing dataset demonstrate the effectiveness and interpretabil-
ity of our framework. We also provide empirical evidence
with ablation testing to prove that our knowledge concept
and skill definitions are reasonable and critical to the per-
formance of our model.

Keywords
Deep learning, Cognitive diagnosis, Vocabulary proficiency,
Linguistic skill

1. INTRODUCTION
Vocabulary proficiency diagnosis is one of the key funda-
mental technologies supporting language education and has
lately gained increased popularity in online language learn-
ing. It is crucial to identify the learners’ latent proficiency

Figure 1: An example of cognitive diagnosis.

level on different knowledge concepts (e.g., words) to higher
accuracy in providing personalized materials and adaptive
feedback in language-learning applications [1]. In practice,
with the diagnostic results, systems can provide further sup-
port, such as learning planning, learning material recom-
mendation, and computerized adaptive testing accordingly.
Most importantly, it can help second-language learners to
place themselves in the correct learning space or level after
a long gap without using the application, during which they
might have forgotten a lot or, conversely, have advanced in
the target language without the use of the application [25].

Many cognitive diagnosis methods have been proposed for
knowledge proficiency diagnosis of learners. Figure 1 shows a
simple example of a cognitive diagnosis system, which con-
sists of learners, question items, knowledge concepts, and
learner responses (scores). Specifically, a learner interacts
with a set of questions and leaves their responses. Moreover,
human experts usually label each question item with several
knowledge concepts. Then, the goal is to infer their actual
knowledge proficiency based on the interactions. Therefore,
a cognitive diagnosis system can be abstracted as a learner-
question-concept interaction modeling problem, and most
previous works focus on learner-question interaction mod-
els or learner-concept interaction models [11]. For example,
traditional methods like Item Response Theory (IRT) [9],
Multidimensional IRT (MIRT) [24], and Matrix Factoriza-
tion (MF) [23] try to model the learner-question interaction
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and provide learner latent traits (e.g., ability level) and the
question features (e.g., difficulty level). In addition, MIRT
and MF cannot provide explainable traits and IRT only pro-
vides an overall latent trait for learners, while each question
usually assesses different knowledge concepts or skills. Other
works such as Deterministic Inputs, Noisy-And gate (DINA)
[6] try to build the learner-concept interaction instead of
learner-question interaction. Unlike learner-question inter-
action models, learner-concept interaction models could in-
fer the learner’s traits in detail for each knowledge concept
contained in the question item, despite leaving information
of questions underexploited by simply replacing them with
their corresponding concepts. Although great successes have
been made, there are some limitations of traditional meth-
ods, which decay their effectiveness. Also, these approaches
are widely applied for modeling knowledge in science or
mathematics and ignore characteristics of language learn-
ing, which make it a significant research challenge to infer
the mastery level of learners’ vocabulary proficiency.

A critical drawback of traditional methods is that they can
only exploit the response results and ignore the actual con-
tents and formats of the items and cannot effectively utilize
the rich information hidden within question texts and under-
lying formats [18]. Most traditional methods were proposed
for scale-based tests, where a group of examinees is tested
using the same small set of questions, and each examinee
is supposed to respond to every question. As a result, the
response data is complete and usually not large. While for
learning applications nowadays, the data might be collected
via different scenes, such as offline examinations and online
self-regulated learning, and the distribution of response data
can be of high volume but very sparse due to the large to-
tal number of items and limited questions attempted by the
learners [33]. Therefore, neglecting contents and formats
leaves traditional methods no possibility to utilize the rela-
tionships of different items, hence they are unable to gener-
alize item parameters to unseen items [25]. Previous studies
have already shown that the information of questions is sig-
nificantly related to item parameters, for instance, the dif-
ficulty level. For language vocabulary questions, character
length and corpus frequency prove to be essential factors for
predicting vocabulary difficulty [5], while the average word
and sentence lengths have been used as key features to pre-
dict text difficulty [2, 25]. Also, studies have indicated that
different question formats impact the difficulty level and ex-
planatory power in predicting receptive skills [16]. For the
same vocabulary, different question formats are often used
collectively to assess different skills, such as reading, writing,
listening, and speaking skills, and many assessments have a
mixture of item types. Consequently, it is important to con-
sider the format information of the items and their influence
on different traits when building a vocabulary proficiency di-
agnosis model.

Another important challenge is to define and use linguistic
skills for vocabulary proficiency diagnosis. Although many
approaches are widely applied for proficiency diagnosis, they
have not frequently been applied to data generated in lan-
guage learning settings. Instead, they have been primar-
ily applied to science, engineering, and mathematics learn-
ing contexts, where skills or knowledge concepts are well-
defined and easy to associate with each item. Most works

use manually labeled Q-matrix to represent the knowledge
relevancies of each question. For example, a math question:
6× 9 + 3 = () examines the mastery of two knowledge con-
cepts: Addition and Multiplication. Thus, the Q-matrix for
this question could be labeled as (1, 1, 0, ..., 0), where the first
two positions show this question test Addition and Multipli-
cation concepts, and other positions are labeled with zero,
indicating other knowledge concepts are not included. How-
ever, proficiency diagnosis in the realm of language learning
is different from other domains since linguistic skills are hard
to define and need to be well-designed [21, 38].

To address these challenges, which have not been well ex-
plored in the research community, in this paper, we propose
a framework for vocabulary proficiency diagnosis, which could
capture the learner-question interactions more accurately
using neural networks. In addition, we use linguistic fea-
tures of words such as morphological and semantic features
to define knowledge concepts and skills related to vocabulary
and grammar knowledge that is shared between words. Ex-
tensive experimental results on a real-world second-language
learning dataset demonstrate the effectiveness and interpre-
tational power of our proposed framework. We also provide
empirical evidence with ablation testing to prove that our
knowledge concept and skill definitions are reasonable and
critical to the performance of our model. The results show
that using linguistic features to refine knowledge concepts
and skills improves performance over the basic word-level
model. We also explore the relationship of the question for-
mat, and in turn, its effect on the vocabulary proficiency
diagnosis.

2. RELATED WORK
2.1 Cognitive Diagnosis
Cognitive diagnosis is a fundamental and important task,
and many classical cognitive diagnosis models have been de-
veloped in educational psychology, such as IRT, MIRT, and
DINA. IRT [9] is a widely used method and has been applied
in educational testing environments since the 1950s [9]. It
applies the logistic-like item response function and provides
interpretable parameters. In its simplest form, IRT could be
written as:

P (Xij = 1) = σ(θi − βj),

where P is the probability of the learner i answering the item
j correctly, σ is a logistic-like function, θ and β are unidi-
mensional and continuous latent traits, indicating learner
ability and item difficulty, respectively. Besides the basic
IRT, other IRT models extend the basic one by factoring in
other parameters, such as the item discrimination or guess-
ing parameter.

IRT has proven to be a robust model. However, a single abil-
ity dimension is sometimes insufficient to capture the rele-
vant variation in human responses. By extending the trait
features into multidimensions, Reckase et al. [24] proposed
MIRT, which tries to meet multidimensional data demands
by including an individual’s multidimensional latent abili-
ties for each skill. MIRT goes a step further compared to
IRT, however, as the process of estimating the parameters
for MIRT is the same as IRT, these two models share the
same shortcomings [4]. Also, latent trait vectors provided by
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IRT and MIRT is not explainable enough to guide learners’
self-assessment [34].

By characterizing learner features (e.g., ability) and item
features (e.g., difficulty), IRT builds learner-question inter-
action and provides an overall latent trait for learners. How-
ever, real-world questions usually assess different knowledge
concepts or skills, and an overall trait result is insufficient
[20]. To provide detailed results on each knowledge concept
or skill, other works try to directly build learner-concept in-
teraction. For example, DINA [6] model the learner-concept
interaction by mapping questions to corresponding concepts/
skills directly with Q-matrix, which indicates whether the
knowledge concept is required to solve the question. Differ-
ent from IRT, θ and β are multi-dimensional and binary in
DINA, where β came directly from Q-matrix. Another two
parameters, guessing g and slipping s, are also taken into
consideration. The DINA formula is written as:

P (Xij = 1) = gj
1−ηij (1− sj)ηij , ηij =

K∏

k=1

θik
βjk ,

where the latent response variable ηij indicates whether the
learner has mastered all the required knowledge to solve
the question. And the probability of the learner i correctly
answering item j is modeled as the compound probability
that the learner has mastered all the skills required by the
question without slip, and the learner does not master all
the required skills but makes a successful guess. Although
DINA has made great progress and shows its advantage com-
pared to IRT in specific scenarios, it ignores the features of
questions and simply replaces them with the corresponding
knowledge concepts/skills, thus leaving useful information
from questions underexploited.

2.2 Matrix Factorization
Besides the traditional models, the other line of studies has
demonstrated the effectiveness of MF for predicting learner
performance by factorizing the score matrix, which was orig-
inally widely used in the field of recommendation systems
[3]. Studies have shown that predicting learner performance
can be treated as a rating prediction problem since learner,
question, and response can correspond to user, item, and
rating in recommendation systems, respectively.

Toscher et al. [30] applied several recommendation tech-
niques in the educational context, such as Collaborative Fil-
tering (CF) and MF, and compared them with traditional re-
gression methods for predicting learner performance. Along
this line, ThaiNghe et al. [28] proposed multi-relational fac-
torization models to exploit multiple data relationships to
improve the prediction results in intelligent tutoring sys-
tems. In addition, Desmarais [8] used Non-negative Matrix
Factorization (NMF) to map question items to skills, and
the resulting factorization allows a straightforward interpre-
tation in terms of a Q-matrix. Similarly, Sun et al. [27]
proposed a method that uses Boolean Matrix Factorization
(BMF) to map items into latent skills based on learners’ re-
sponses. Wang et al. [36] proposed a Variational Inference
Factor Analysis framework (VarFA) and utilized variational
inference to estimate learners’ mastery level of each knowl-
edge concept.

Despite their effectiveness in predicting learner performance,
the latent trait vectors in MF are not interpretable for cogni-
tive diagnosis, i.e., there is no clear correspondence between
elements in trait vectors and specific knowledge concepts.
Also, these works have considered only learners and ques-
tion items, and ignored other information that may also be
useful.

2.3 Deep-learning based models
With the recent surge in interest in deep learning, many
works have begun to use deep learning to address some of
the shortcomings of traditional cognitive diagnosis models
[13, 19, 29].

Traditional methods are often based on simple linear func-
tions, such as the logistic-like function in IRT or the inner
product in matrix factorization, which may not be sufficient.
To improve precision and interpretability, some previous
works focus on interaction function design and use neural
networks to learn more complex non-linear functions. For
example, Wang et al. [33] propose a Neural Cognitive Diag-
nosis (NCD) framework for Intelligent Education Systems,
which leverages neural networks to automatically learn the
interaction function.

Some researchers focus on incorporating the content repre-
sentation from question texts into the model by neural net-
works, which is difficult with traditional methods. Cheng
and Liu [4] proposed a general Deep Item Response The-
ory (DIRT) framework that uses deep learning to estimate
item discrimination and difficulty parameters by extracting
information from item texts. Wang et al. [34] applied neural
networks to extract two typical types of information in the
question text: knowledge concepts and extra text-related
factors. Their results indicated that using such content in-
formation benefited the model and significantly improved its
performance.

Other deep-learning models try to incorporate dependency
relations among knowledge concepts for enhancing diagno-
sis performance. For example, Wang et al. [35] proposed
a model based on neural networks and aggregate knowl-
edge relationships by converting all knowledge concepts into
a graph structure. Ma et al. [22] proposed the Prereq-
uisite Attention model for Knowledge Proficiency (PAKP)
to explore the prerequisite relation among knowledge con-
cepts and use it for inferring knowledge proficiency. Recent
work proposed the Relation map driven Cognitive Diagnosis
(RCD) [11] model by comprehensively modeling the learner-
question interactions and question-concept relations. Their
model achieved better performance compared to traditional
works that consider only learner-question interactions (e.g.,
IRT) or only question-concept interactions (e.g., DINA).

Although deep learning models have been widely explored
nowadays, they have been primarily applied to learning con-
texts such as math, algebra, or science, where skills or knowl-
edge concepts are well-defined and easily associated with
each item. Therefore, these methods cannot be directly used
in the language learning area, and linguistic skills need to be
well-defined and well-designed for language proficiency diag-
nosis. In addition, except for the work by wang et al. [34],
other aforementioned works failed to consider question for-
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Figure 2: Overview of the proposed framework.

mats, which are important for language-learning questions
and may have a significant influence on the question diffi-
culty level and learner’s performance.

3. PROPOSED METHOD
We first give the definition of our problem in Section 3.1.
Then we present our proposed framework in Section 3.2.

3.1 Problem Formulation
Like every test, there are two basic elements: user and item,
where a user represents a learner, and an item represents
a question. We use L to denote a set of learners, Q to
denote a set of questions and s to denote the learner-question
interaction score. Learner question records are represented
by R = {(l, q, s)| l ∈ L, q ∈ Q, s ∈ {0, 1}}, which means
learner l responded to question q and received the score s.
Each score s is in {0, 1} where 1 indicates the question is
correctly answered while 0 stands in the opposite.

Given enough question-records data R of learners, our goal
is to build a model to mine learners’ proficiency through the
task of performance prediction.

3.2 Framework
Generally, for a cognitive diagnostic system, there are three
parts that need to be considered: learner, question item,
and interaction function. As shown in Figure 2, we propose
a cognitive diagnostic framework with deep learning, which
aims to obtain the learner parameter (proficiency) and item
parameters (discrimination and difficulty). Specifically, for
each response log, we use one-hot vectors of the correspond-
ing learner and question as input and obtain the diagnostic
parameters of the learner and question. Then the model
learns the interaction function among the learner and item
parameters and outputs the probability of correctly answer-
ing the question. After training, we get the learner’s profi-
ciency vectors as diagnostic results.

3.2.1 Item Parameters

The item’s characteristics are calculated in the item network
to represent the traits of a specific item. Two parameters
extended from the Two-Parameter Logistic IRT model [32]
are used in our model, i.e., discrimination and difficulty.
The discrimination a ∈ (0, 1) indicates the ability of an item
to differentiate among learners whose knowledge mastery is
high from those with low knowledge mastery, and difficulty
b ∈ (0, 1)1×K indicates the difficulty of each knowledge con-
cept examined by the question, where K is the number of
knowledge concepts.

As we mentioned before, two elements influence the item’s
characteristics for a vocabulary question: the target word
and the specific item format. Then the item is represented
by integrating the one-hot word embedding vector w and
one-hot item format embedding f .

i = w ⊕ f , (1)

where ⊕ is the concatenation operation. After obtaining
item representation using the word embedding and item for-
mat, we input it into two different networks to estimate the
question discrimination a and knowledge difficulty b. Specif-
ically:

a = σ(Fa(i)), (2)

b = σ(Fb(i)) (3)

Where Fa and Fb are discrimination and difficulty networks,
respectively, and σ is the sigmoid function.

3.2.2 Learner Parameter
In the learner network, the proposed method characterizes
the traits of learners, which is closely related to the profi-
ciency of various knowledge concepts or skills tested in the
question and would affect the learner’s performance. Specif-
ically, each learner is represented with a proficiency vec-
tor θ = (θ1, θ2, . . . , θn), where θi ∈ [0, 1] represents the
degree of proficiency of a learner on a specific knowledge
concept or skill i and the goal of our cognitive diagnosis
model is to mine learners’ proficiency through the task of
performance prediction. The proficiency vector is obtained
by multiplying the learner’s one-hot representation vector l
with a trainable matrix A. That is:

θ = l×A. (4)

3.2.3 Prediction of Learner Response

Interaction layer. The proposed method predicts a learner’s
response performance to a question as a probability. We in-
put the representations of the learner parameter and ques-
tion parameters (i.e., item discrimination and knowledge dif-
ficulty, respectively) into an interaction function to predict
the learner’s probability of answering the specific question
correctly.

The interaction function simulates how learner parameters
interact with question parameters to get the response re-
sults, for example, a simple logistic-like function is used as
the interaction function in IRT. Based on previous works
[22, 33, 34, 35], we use a neural network to learn a more
complex non-linear interaction function to boost the model.
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Specifically, the input of the interaction function can be for-
mulated as:

x = a (θ − b) � kc (5)

where kc is the knowledge concept or skill vector that in-
dicates the relationship between the question and knowl-
edge concepts or skills, which is usually pre-labeled by ex-
perts and obtained directly from Q-matrix. We discuss how
we define the knowledge concepts or skills in Section 3.3.
The operator � is the element-wise product and x indicates
the learner’s performance on each concept pertaining to the
question. We then use a three-layer feed-forward neural net-
work Fi to learn the non-linear activation function and out-
put the probability p that the learner answers the question
correctly. It can be formulated as:

p = σ(Fi(x)). (6)

Following previous works [33, 34, 35], we restrict each weight
of Fi to be positive during the process of training to ensure
the monotonicity assumption, which assumes that the prob-
ability of learners answering the exercise correctly increases
monotonically with the degree of mastery on each knowledge
concept pertaining to the question.

Guess and Slip Adjustment. We noticed that many ques-
tion items in the dataset are multiple-choice items, which
makes it highly possible for the learners to guess the correct
answer even if they don’t master the knowledge concept,
or slip even though they know the answer. To obtain bet-
ter results, we add a guessing parameter g ∈ [0, 1] and a
slipping parameter s ∈ [0, 1] to adjust the performance re-
sults, where g indicates the probability that a learner did
not master the knowledge concepts but guessed the correct
answer and s indicates the probability that a learner masters
the knowledge concepts but did not answer correctly. The
guessing and slipping parameters can be formulated as:

g = σ(Fg(i ⊕ l)), (7)

s = σ(Fs(i ⊕ l)), (8)

where Fg is the guessing and Fs is the slipping networks,
respectively. To compute the final probability that a learner
answers the question correctly, we apply adjustments of the
guessing parameter and slipping parameter on the probabil-
ity estimation, which can be expressed as:

y = g + (s− g)× p. (9)

3.2.4 Model Learning
We use the binary cross-entropy loss function for the pro-
posed method. The learner’s score is recorded as 1 when
she/he answers the item correctly and 0 otherwise. For
learner i and question j, let yij be the actual score for learner
i on question j, and ŷij be the predicted score. Thus, the
loss for learner i on question j is defined as:

L = yij logŷij + (1 − yij )log(1 − ŷij ). (10)

Using Adam optimization [15], all parameters are learned si-
multaneously by directly minimizing the objective function.
After training, the value of θ is what we get as the diagnostic
result, which denotes the learner’s knowledge proficiency.

Table 1: An example subwords Q-matrix.

Knowledge Concept
Words active actual actor act -tive -tual -ual -tor -or · · ·
active 1 0 0 1 1 0 0 0 0 · · ·
actual 0 1 0 1 0 1 1 0 0 · · ·
actor 0 0 1 1 0 0 0 1 1 · · ·

...
...

...
...

...
...

...
...

...
...

...

3.3 Defining Knowledge Concepts and Skills
The knowledge concept or skill vector indicates the relation-
ship between question items and knowledge concepts/skills,
which is fundamentally essential as we need to diagnose the
degree of proficiency of a learner corresponding to a specific
knowledge concept/skill. As for each question, the knowl-
edge concept/skill vector c = (c1, c2, c3, . . . ck), ci ∈ {0, 1}
represents if a specific knowledge concept/skill is required
to solve the question, in which ci = 1 indicates that the
knowledge concept/skill is included in the question and con-
versely ci = 0 is not.

Usually, skills or knowledge concepts are pre-labeled by ex-
perts, and the vector c can be directly obtained from the
pre-given Q-matrix. However, the knowledge concept/skill
is difficult to define for language learning compared to other
learning contexts such as science, engineering, and mathe-
matics. Conventional models treat all question items nested
under a particular word equivalent, but even for the same
word, the ability of learners to comprehend a specific word
can be divided into different levels. Some researchers define
‘word knowledge’ as different components including spelling,
word parts, meaning, grammatical functions, the associa-
tions a word has with other words, and collocation to de-
scribe the totality of the learner’s knowledge of a specific
word in a language [20]. Thus, different items may refer to
the same word if the word is used differently in multiple con-
texts (e.g., used as different parts of speech), or if different
components of the word are tested. It is important to con-
sider these when building vocabulary proficiency diagnosis
models.

In the following subsections, we introduce several methods
for defining knowledge concepts/skills in vocabulary profi-
ciency diagnosis using different linguistic features and pro-
vide more detailed results on diagnosing associated knowl-
edge concepts/skills.

3.3.1 Words as Knowledge Concepts
The simplest way to label knowledge concepts in an item
is to simply use the unique words as knowledge concepts.
There could be many knowledge concepts (e.g., many unique
words) in a language-learning system, but only one knowl-
edge concept (i.e., a word tested in the question) is related
to a question item.

3.3.2 Sub-words as Knowledge Concepts
Another way to label multiple knowledge concepts in an item
is to identify sub-words that comprise a word and treat each
of these sub-words as an additional knowledge concept. Sub-
words can be viewed as morphological features of an origi-
nal word, which may indicate the relationships of different
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Table 2: Summary of question formats and required
skill(s).

Format Skill Q-matrix Vector
F1 Recognition [1, 0, 0, 0]
F2 Recognition [1, 0, 0, 0]
F3 Recognition, Listening [1, 1, 0, 0]
F4 Recognition, Spelling [1, 0, 1, 0]
F5 Reading [0, 0, 0, 1]

words and reinforce the knowledge related to gender agree-
ment, prefixes, suffixes, compound words, etc. Inspired by
the work of Zylich and Lan [38], we apply a sub-word tok-
enizer to automatically identify sub-words contained in each
word. As shown in Table 1, we formulate a Q-matrix to ap-
ply the sub-word knowledge concepts for each word. For
example, the word ‘active’ could have additional knowledge
concepts such as ‘act’ and ‘-tive’.

Figure 3: Examples of different question formats

3.3.3 Semantically Similar Words as Knowledge Con-
cepts

Recent works indicated that cross-effects commonly exist
in language learning [21, 38]. That is, during the exercise
process of a learner, when an exercise of a particular knowl-
edge concept is given, she/he also applies the relevant knowl-
edge concepts to solve it. Specifically, in language learning,
it seems that knowledge pertaining to semantically-similar
words related to the word being tested are helpful in answer-
ing the question.

Following previous work [38], we used word embeddings to
obtain semantic similarities of words. First, we embedded
each word into a 300-dimensional vector using pre-trained
fastText word embeddings [12] and calculated the cosine
similarity scores between each pair of words to get a matrix
of values that indicates the similarities of each word. Using
this similarity matrix, all the similar words in the dataset
that have cosine similarity larger than a threshold α with the
current word can be counted as addition knowledge concepts
required to solve the question. The threshold α is used to
control the degree of semantic similarity, for example, only
highly semantically similar words can be used as knowledge
concepts in the Q-matrix if α is large, and if α = 1, this
model reduces back to the basic word-level model that only
uses the current word as the knowledge concept. Other-
wise, if α = 0, which means that all other words that have
non-negative similarity with the current word are treated as
knowledge concepts.

3.3.4 High-order Skills

Figure 4: Distribution of question formats and re-
sponse pie chart.

We formulated several methods for defining knowledge con-
cepts in language proficiency diagnosis using different lin-
guistic features such as additional morphological and seman-
tic concepts. However, the ability used to solve vocabulary
questions can depend on several high-order skills but not on
whether the learner knows the word or not. Following previ-
ous works [14, 20, 37], we also consider defining skills instead
of knowledge concepts in language proficiency diagnosis.

Here we propose two different methods to label skills in lan-
guage proficiency. The most basic way we can choose to
label a skill is by the question format. As shown in Figure
3, there are five different question formats in our dataset
(more detailed information on the data can be found in Sec-
tion 4.1). And if a learner is good at correctly answering a
particular type of question, we can assume that she/he has
a high skill in this question format. However, there will only
be a single skill associated with each item and is not explain-
able enough if we use the question format as skills. To have
a better interpretation, as summarized in Table 2, for each
question format (see Figure 3), we defined some high-order
language skills (i.e., Recognition, Listening, Spelling, Read-
ing) required to tackle a specific question format based on
some of the evidence from the literature [14, 16, 20, 26].

4. EVALUATION
4.1 Dataset
Our real-world dataset came from one of Japan’s most pop-
ular English-language learning applications, and most of the
users are Japanese students. The dataset includes 9,969,991
learner-item interactions from 2,014 users. There are 1,900
English words in the dataset, and each word has five dif-
ferent question formats collectively assessing different skills,
resulting in 9500 items. The different question formats are
shown in Figure 3, and some basic statistics of the dataset
and response distributions are shown in Figure 4.

4.2 Experimental Settings
4.2.1 Evaluation Metrics

The performance of a cognitive diagnosis model is hard to
evaluate as we can’t obtain the true knowledge proficiency
of learners directly. Usually, the models are evaluated by
predicting learner performance in most cognitive diagnosis
works. Following previous works, we evaluated by compar-
ing the predicted responses with the ground truth, i.e., the
actual response by the learners.

To set up the experiment, the data were randomly split into
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80%/20% for training and test purposes, respectively. We
filtered out the learners who had answered less than 50 ques-
tions so that every learner could be diagnosed with enough
data. Like previous works [4, 34, 35], we use Prediction
Accuracy (ACC), Area Under Curve (AUC), Mean Abso-
lute Error (MAE), and Root Mean Square Error (RMSE)
as metrics. The larger the values of ACC and AUC, and the
smaller the values of MAE and RMSE, the better the results
are.

4.2.2 Comparison
We name our model as Vocabulary Proficiency Diagnosis
Model (VPDM) and compared our models using different
knowledge concept and skill definitions with several existing
models given below.

• DINA [6]: DINA is a cognitive diagnosis method that
models learner concept proficiency by a binary vector.

• IRT [9]: IRT is a classical baseline method that models
learners’ and questions’ parameters using the item response
function.

• MIRT [24]: Extending from IRT, MIRT can model the
multidimensional latent abilities of a learner.

• PMF [10]: Probabilistic matrix factorization (PMF) is a
factorization method that can map learners and questions
into the same latent factor space.

• NMF [17]: Non-negative matrix factorization (NMF) is
also a factorization method, but it is non-negative, which
can work as a topic model.

• NCD [33]: NCD is a recently proposed method that uses
neural networks to learn more complex non-linear learner-
question interaction functions.

Among these baselines, IRT, MIRT, and DINA are widely
used methods in educational psychology. PMF and NMF are
two matrix factorization methods from the recommendation
system and data mining fields. NCD is a recently proposed
model based on deep learning.

4.2.3 Parameter Settings
We implemented our model and other baselines in PyTorch.
The model was trained with a batch size of 256. We used
Adam optimizer with a learning rate of 0.001. The dropout
rate is set to 0.2, and early stopping is applied to reduce
overfitting.

5. RESULTS
5.1 Performance Prediction
The overall results on all four metrics are shown in Table
3 for all baseline methods and our models predicting learn-
ers’ performance. VPDM-Word, VPDM-Subword, VPDM-
Semantic, VPDM-FormatSkill, and VPDM-LangSkill are our
models using words, subwords, semantically similar words,
question formats, and language skills as knowledge concepts
/skills, respectively. We observe that our models perform
better than all other models, indicating the effectiveness of
our framework. Among other baseline models, we noticed

Table 3: Performance comparison.

Model ACC ↑ AUC ↑ MAE ↓ RMSE ↓
DINA 0.756 0.704 0.348 0.446
IRT 0.770 0.721 0.317 0.400
MIRT 0.768 0.728 0.311 0.399
NMF 0.768 0.722 0.355 0.405
PMF 0.771 0.731 0.328 0.398
NCD 0.772 0.734 0.316 0.397
VPDM-Word 0.773 0.736 0.309 0.396
VPDM-Subword 0.772 0.736 0.310 0.396
VPDM-Semantic 0.773 0.736 0.308 0.396
VPDM-FormatSkill 0.773 0.742 0.309 0.395
VPDM-LangSkill 0.773 0.742 0.308 0.395

that the performance of NCD is comparable to our mod-
els and better than educational psychology methods (i.e.,
DINA, IRT, and MIRT) and matrix factorization methods
(i.e., NMF and PMF), which demonstrates that leveraging
deep learning could model the learner-question interactions
more accurately than other conventional models.

In comparing our models, the performance of the VPDM-
Word, VPDM-Subword, and VPDM-Semantic models are
comparable, while VPDM-LangSkill and VPDM-FormatSkill
models obtain better performance than other models, indi-
cating that more broadly defined skills/knowledge concepts
of an item are better. We will introduce our investigations
to gain a deeper understanding of the difference among our
models in the following subsections.

5.2 Impact of Different Formats
Many assessments have a mixture of item types (same as
our dataset) since results based on a single format only re-
flect the knowledge unique to the specific format and might
be misleading. To illustrate the performance of our models
on different item formats, we separated the mixed-format
dataset into different parts that only include different spe-
cific item formats, so we could conduct experiments to eval-
uate questions with a specific format. The results are shown
in Figure 5 and the number of responses completed per
learner is shown in Figure 6. Note that we did not test
VPDM-LangSkill and VPDM-FormatSkill models here as
they are intended for the mixed-format dataset.

Overall, the results indicate that our model consistently out-
performs all other models. Furthermore, we observe that the
prediction performance is affected by the question format,
which highlights the fact that different question formats as-
sess different traits.

5.3 Ablation Study
To investigate how the guessing and slipping adjustment
layer affects model performance, we conducted some abla-
tion experiments to compare the results. Table 4 shows the
comparison results of the experiments on our mixed-format
dataset and different single-format datasets. We observed
that the performance improves when using the guessing pa-
rameter, and the model with guessing and slipping parame-
ters obtained the best performance. It is reasonable as many
items are multiple-choice in our dataset. In addition, we
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Figure 5: Comparison among different question formats.

Figure 6: Distribution of the number of responses per learner.

Figure 7: Comparative performance of semantically
similar words as knowledge concepts via cosine sim-
ilarity.

noticed that adding the slip and guessing parameters sub-
stantially improves some models’ performance. This might
imply that the Q-matrix is not specified appropriately in
those models, though no formal rules exist to test this as-
sumption [7].

In the comparison of the models that remove the guessing
and slipping adjustment layer, the performance of the ba-
sic VPDM-Word model is the worst. As we expected, the
knowledge assessed by a word item is not just simply related

to the tested target word in the question. Moreover, the re-
sults confirm that the item’s format carries meaning and is
related to different traits, even though the questions with
different formats are all designed for the same word.

As for subword and semantic models which use additional
morphological or semantical knowledge concepts along with
the tested target word, we observed improvements compared
to the basic word-level model. One possible explanation
is that the use of additional morphological or semantical
knowledge concepts results in more items that share skills
with each other, enabling the model to capture more interac-
tions between learners and different words and reinforce the
knowledge related to gender agreement, prefixes, suffixes,
compound words, etc. [38]. For example, a closer inspec-
tion of the items revealed that even learners who are famil-
iar with the word ‘break’ but do not know ‘breakthrough’
still have a good chance of answering some ‘breakthrough’
related items correctly. Figure 7 shows that varying the
threshold parameter α in the VPDM-Semantic model does
not influence the performance drastically. However, when we
remove the guess and slip adjustment layer, we found that
the performance of the model increases with the decreases
of α, and the model performs best when α = 0, which means
that all other words that have non-negative similarity with
the current word are treated as knowledge concepts. This
result is in agreement with previous works, that an item de-
signed to measure one trait may also require some level of
other traits [37], and the proficiency of similar knowledge
concepts can affect each other [11]. Specifically for language
learning settings, it is important to focus not only on the
interactions with the same word but also on interactions
with other semantically similar words when predicting the
degree of mastery of the target word [21]. We also noticed
an intriguing finding for format 4, where VPDM-Subword
and VPDM-Semantic outperformed the VPDM-Word model
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Table 4: Results of the ablation study.

Model Adjustment
All F1 F2 F3 F4 F5

AUC ↑ AUC ↑ AUC ↑ AUC ↑ AUC ↑ AUC ↑

VPDM-Word
- 0.655 0.668 0.669 0.685 0.628 0.715

Guess 0.735 0.711 0.705 0.731 0.736 0.730
Guess & Slip 0.736 0.713 0.706 0.732 0.736 0.731

VPDM-Subword
- 0.661 0.683 0.679 0.703 0.698 0.716

Guess 0.734 0.711 0.703 0.729 0.731 0.729
Guess & Slip 0.736 0.715 0.708 0.732 0.737 0.730

VPDM-Semantic
- 0.705 0.674 0.672 0.699 0.699 0.711

Guess 0.734 0.713 0.706 0.730 0.732 0.731
Guess & Slip 0.736 0.715 0.707 0.732 0.745 0.732

VPDM-FormatSkill
- 0.733

Guess 0.740 - - - - -
Guess & Slip 0.742

VPDM-LangSkill
- 0.735

Guess 0.741 - - - - -
Guess & Slip 0.742

significantly after the guess and slip adjustment layer was
removed. This finding is particularly noteworthy because
format 4 requires learners to type the word, and the re-
sults are more likely to be influenced by related morpho-
logical and semantic knowledge concepts such as prefixes,
suffixes, and compound words. This result highlights the
critical role of the item’s format and how it influences the
required knowledge in the question. Understanding this re-
lationship between item format and knowledge requirements
could potentially inform the design of more effective and ef-
ficient language learning assessments and improve learners’
overall performance.

Finally, VPDM-LangSkill and VPDM-FormatSkill models
obtain better performance than other models, indicating
that more broadly defined skills and knowledge of an item
are better in this task. For VPDM-FormatSkill model, one
prevalent hypothesis is that items with different formats
measure different traits or dimensions, and factors could be
hypothesized to form on the basis of item format [31]. That
is, the item’s format might also be important and related
to different traits or dimensions as suggested by previous
works [7]. For VPDM-LangSkill model, the results show that
learners’ knowledge acquisition is influenced by high-order
features (language abilities in this case). It greatly reduces
the complexity of the model in cases where it is reasonable to
view the examination as measuring several general abilities
in addition to the specific knowledge states.

5.4 Interpretation of the Diagnosis
We visualize the diagnostic reports and evaluate the inter-
pretation of the VPDM-LangSkill model as it is the most
practical one with good performance. This visualization
helps learners recognize their knowledge state intuitively
and assists test developers to design question items effec-
tively. As shown in Figure 8, we randomly sampled a learner
and depict the proficiency diagnosed by IRT and VPDM-
LangSkill. Each point on the radar diagram represents the
mastery level of a certain trait. The red and blue lines de-

Figure 8: Visualization of a sample diagnostic re-
port.

note the proficiency diagnosed by IRT and VPDM-LangSkill
(scaled to (0, 1)), respectively. From the results, we can
see that IRT only provides an overall unidimensional latent
trait, the proficiency for all concepts is identical, therefore, it
is not explainable enough to guide learners’ self-assessment.
As for the VPDM-LangSkill model, it is able to provide bet-
ter interpretable insight for multidimensional traits (i.e., in
our case, recognition, listening, spelling, and reading).

6. CONCLUSION
In this work, we proposed a framework for vocabulary pro-
ficiency diagnosis, which could capture the learner-question
interactions more accurately using neural networks. In ad-
dition, we proposed a series of methods based on our frame-
work, that uses different linguistic features to define skills
and knowledge concepts in the context of a language learn-
ing task. Experimental results of cognitive diagnosis on real-
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world second-language learning dataset showed that the pro-
posed approach outperforms existing approaches with higher
accuracy and increased interpretability. We also provided
empirical evidence with ablation testing to prove that our
knowledge concept and skill definitions are reasonable and
critical to the performance of our model.

There are some limitations in this work. Firstly, the learner
base of the dataset is limited to learners of the same language
background and thus might decrease the generalize of this
work. We plan to test other datasets in future work. In ad-
dition, we only consider the target word that is tested in the
question, however, some questions are multiple-choice, and
some questions test contextual usage as the learner needs to
fill in a sentence with the correct target word. Therefore,
additional features such as context information and distrac-
tors in the question should also be considered as they also
influence the learner’s performance. We expect that this
work will provide useful implications for language-learning
applications that focus on vocabulary learning, and we will
test more question formats and include additional linguistic
skills to expand the capabilities of our model in future work.
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ABSTRACT 
In MOOCs for programming, Automated Testing and Feedback 

(ATF) systems are frequently integrated, providing learners with 

immediate feedback on code assignments. The analysis of the large 

amounts of trace data collected by these systems may provide 

insights into learners' patterns of utilizing the automated feedback, 

which is crucial for the design of effective tools and maximizing 

their potential to promote learning. However, data-driven research 

on the impact of ATF on learning is scarce, especially in the context 

of MOOCs. In the current study, we combine a theoretical 

framework of feedback with educational data mining methods to 

investigate the effect of feedback characteristics on learning 

behavior in a MOOC. Sequence pattern analysis is implemented to 

explore and visualize the actions taken by learners in response to 

feedback which composed of cognitive, meta-cognitive, and 

motivational elements. We applied our research approach in an 

empirical design which consists of five cohorts (total over 2200 

learners) utilizing different versions of ATF. The findings suggest 

that learners tend to adopt learning strategies in response to 

feedback and exhibit a preference for utilizing example solutions, 

while still coping with the challenge of solving the assignments 

independently. The impact of feedback function, content and 

structure is discussed in light of a detailed view of the differences 

as well as common trends in learning paths. Allowing for fine-

grained insights, we found our research approach contributes to a 

more comprehensive understanding of the effect of automated 

feedback characteristics in MOOCs for programming. 

Keywords 
Automated feedback, MOOCs for programming, educational data 

mining, sequence pattern analysis 

1. INTRODUCTION 
Automated Testing and Feedback (ATF) systems, integrated in pro-

gramming courses, provide learners with immediate feedback on 

code assignments and allows for unlimited resubmissions. Re-

search suggests that incorporating an ATF system into a 

programming course is perceived by learners as beneficial for their 

learning and motivation [2, 16]. Yet, research on the system’s effect 

on overall course outcomes has yielded inconclusive results  and 

studies identified the main impact of the system in task-level (i.e. 

throughout solving code assignments) [1, 5, 20]. This may be a re-

sult of the complex nature of the feedback's effect, which is 

multifaceted and contingent upon various factors, including the 

feedback design [32]. In Massive Open Online Courses (MOOCs) 

for programming, characterized by large numbers of learners and 

self-directed learning, there is potential for ATF systems to assist 

learners and compensate for the lack of available instructor support. 

To design the automated feedback in MOOCs to maximize its ef-

fectiveness, it is necessary to understand how learners utilize the 

feedback and how feedback features affect learning. However, 

there is a lack of empirical studies on the impact of automated feed-

back characteristics on learning [20, 50], particularly in the context 

of MOOCs.  

The asynchronous and self-paced nature of MOOCs poses chal-

lenges for instructors seeking to monitor and evaluate learners' 

utilization of the ATF system.  In particular, it is difficult to deter-

mine the effectiveness of the feedback elements. Analyzing the 

large amounts of trace data collected by ATF systems may provide 

insights into learners' patterns of utilizing the feedback. However, 

data-driven research on the impact of automated feedback features 

on learning in MOOCs is scarce.  

Addressing these gaps, the aim of the current study is to explore the 

effects of automated feedback characteristics on learning behavior 

in a MOOC for programming. To do so, we compare the behavior 

patterns of learners utilizing different versions of an ATF system, 

composed of cognitive, meta-cognitive, and motivational elements, 

within a MOOC. A data-driven approach is employed, consists of 

sequence pattern mining and statistical analysis. Notable, the as-

sessment of our research approach is another goal of this study. 

Sequence pattern mining (SPM) is a prevalent method within the 

domain of educational data mining for uncovering patterns in the 

sequential interactions of learners with educational systems [3]. By 

identifying patterns in the order and timing of learners' actions, 

SPM can provide valuable insights into learning strategies and be-

havior, which can be used to adapt and improve educational 

environments [4]. Unlike other methods, such as process mining, 

sequence mining is particularly well-suited for high-resolution 

analysis of learning behavior "at the local level", such as solving 

assignments [8]. Previous studies applied SPM to analyze learners’ 

interaction with different course materials, examine learning be-

haviors during different periods of learning or identify different 

sequence patterns between predefined groups in different research 

conditions (e.g. [12, 39]). The process of solving a code assignment 

involves sequential actions taken by the learner over the time period 

allocated for the task. Characterized by order and timing, these se-

quences of actions reflect the pattern of interaction between the 

learner and the ATF system. Given our goal to compare behavior 

patterns in response to different versions of the ATF, the SPM 

method may be a suitable and applicable approach. 
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2. RELATED WORK 

2.1 Research framework for feedback effec-

tiveness 
The framework proposed by Narciss suggests that feedback can be 

characterized by three key factors, namely its function, content and 

presentation, all of which impact its effectiveness [32]. The func-

tion of feedback corresponds to the facet(s) of competencies it 

seeks to enhance, and can be classified as cognitive, meta-cognitive 

and motivational [33]. Cognitive feedback is aimed at promoting 

high-quality learning outcomes and the acquisition of the 

knowledge and cognitive operations necessary for accomplishing 

learning tasks (e.g. [31]). Metacognitive feedback directs the stu-

dent's awareness of and ability to choose appropriate learning 

strategies [32], while motivational feedback may encourage stu-

dents in maintaining their effort and persistence [33]. 

Feedback content is the information provided to the learner, which 

addresses the selected function. The content varies in terms of level 

of detail, as classified by [32]: basic feedback which only provides 

knowledge of result (KR), and sometimes knowledge of the correct 

response (KCR), or elaborate feedback (EF) providing additional 

information. [21] specified subtypes of elaborated feedback   to 

classify the content of feedback on programming assignments, 

which can be identified in ATF systems. Among these, the relevant 

types for the current study include knowledge about mistakes 

(KM), such as test-failure errors and compiler errors; knowledge 

about metacognition (KMC), which relates to metacognitive feed-

back; and knowledge about how to proceed (KH), such as hints or 

examples. In the current study, we refer to the included components 

(e.g. text, hints or examples) as feedback structure. The content and 

structure both convey feedback function(s). 

The presentation of feedback pertains to the way in which the con-

tent is presented or communicated to the learner, e.g. the timing, 

number of attempts, adaptability, or modality [32]. In ATF systems 

the feedback is commonly immediate, while the allowed number of 

attempts and the level of adaptivity, as well as the visuality of the 

provided feedback, may vary according to the system's characteris-

tics and pedagogical approach [21, 35].  

2.2 The impact of Feedback features 
In the study in hand the focus is on the impact of the function and 

content of feedback, with no consideration of the presentation fac-

tor. Therefore, we consider feedback’s features as the function, 

content, and structure. 

In a comprehensive literature review, [21] revealed that most sys-

tems provide cognitive feedback, typically in the form of 

information about errors and, occasionally, guidance on how to 

progress. In studies comparing the effectiveness of different types 

of feedback, [19, 20] suggest that  correct/incorrect feedback (KR) 

is relatively less effective compared to KCR and EF. Their findings 

revealed that students who were provided with higher levels of 

feedback (KCR, EF) outperformed those who received only KR 

feedback across three complex programming assignments. Further-

more, the provision of KR feedback caused learners to make more 

attempts per assignment. 

The impact of providing hints and/or example solutions, in various 

forms, has been examined in several studies. [19, 50] have found 

that providing students with fixed content hints as a help option has 

no significant impact on problem-solving performance. On the 

other hand, [28, 29] suggested that adaptive next-step on-demand 

hints have a positive effect on students' performance and learning. 

Yet, providing adaptive hints could be either computationally ex-

pensive or require great attention from human instructors and it 
should be considered whether it is cost-effective [20]. Example so-

lutions, provided to learners in the form of hints during various 

stages of the problem-solving process, were indicated as more ef-

fective than other forms of feedback by  [1, 34, 50]. The question 

of how learners react when they are given a choice between several 

help options has not yet been sufficiently investigated [18]. 

Metacognitive feedback was found only in few ATF tools [21], 

with inconclusive effects. [46] have shown positive results in the 

effect of metacognitive feedback on the strategy of collaborative 

learning. In contrast, [13] investigated the effect of explainable 

feedback on changes in learning strategies but no significant effect 

was found. A study in different knowledge domain found that im-

mediate metacognitive feedback can help students acquire better 

help-seeking skills within an intelligent tutoring system for geom-

etry. Moreover, the improved help-seeking skills transferred to 

learning new domain-level content [41]. Despite the limited re-

search on the effect of metacognitive feedback in ATF, developing 

learning strategies is crucial for  MOOC learners [44] thus we find 

it worth exploring this approach further. 

Motivational feedback is also less common and in certain systems 

it combined with other forms of feedback [7]. Studies have demon-

strated an effective use of motivational feedback, provide students 

with immediate positive feedback on completed objectives [45] or 

supportive motivational messages triggered by log data analysis 

[37]. [31] suggest a positive impact of motivational automated 

feedback on student engagement and performance in another 

knowledge domain. 

In many cases, the feedback provided by ATF systems is not uni-

dimensional and consists of more than one function, as well as a 

combination of several types of information [22]. Therefore, to in-

vestigate the impact of specific features, a comparative study is 

necessary, in which multiple versions distinctly differentiated in 

their features, are implemented simultaneously under consistent 

conditions pertaining to both the learning environment and the 

learners. With this approach and based on the proposed framework, 

we examined the impact of automated feedback features on learn-

ers' behavior patterns throughout solving code assignments. Of 

particular interest were the effects of detailed knowledge about mis-

takes (KM), hints, and example solutions (KH), as well as the 

provision of metacognitive and motivational functions which were 

less investigated. 

2.3 Sequential pattern analysis of learning be-

havior 
A variety of studies have been conducted to analyze the educational 

behaviors of students using sequence mining methods [43]. The ob-

jectives and applications of these studies vary widely, as well as the 

analytic approaches. For example, [24] conducted an analysis of 

MOOC log data of learners who completed final assessments, with 

the aim of comparing the behavioral patterns of learners with vary-

ing levels of achievement. The study employed SPM to extract 

frequencies of predefined sequences, representing engagement and 

time management behaviors. Subsequently, statistical analysis was 

performed to uncover distinctions among the groups. [23] utilized 

sequence mining techniques to identify differentially frequent pat-

terns between distinct groups of students, without predefining 

patterns of learning. By utilizing performance data, segments of 

productive and unproductive learning behaviors were identified 

and compared. [4] analyzed data of MOOC for learning program-

ming principles, to investigate study patterns exhibited by learners 
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during assessment periods and the evolution of these patterns over 

time. Sequence mining methods were applied in two approaches, 

with predefined patterns and in an unsupervised manner, to capture 

study patterns from learners’ interaction sequences.  

For more comprehensive examination, recent studies use sequence 

pattern analysis in conjunction with other EDM methods (e.g. pro-

cess mining) to identify and investigate learning tactics and 

strategies [3, 11, 25, 40] or to construct prediction models for learn-

ers’ behavior such as dropout or course completion [8]. In order to  

gain insights of the way learners utilize ATF system, [30] analyzed 

records of submitted code assignments and clustered programs with 

similar functionality. SPM was then applied to trace student pro-

gress throughout an exercise. However, the effect of feedback 

characteristics on learners’ behavior was not explored. 

3. RESEARCH QUESTIONS 
The present study aims to address the research gaps concerning the 

effect of automated feedback features in the context of MOOC for 

programming. With a data-driven approach, we employ sequence 

pattern analysis to explore and compare learners' response to vari-

ous forms of feedback, which differ in terms of feedback features: 

function, content and structure. In this regard, the following re-

search questions were posited:  

RQ1: How do feedback features affect learners' behavior patterns 

throughout solving code assignments in a MOOC for program-

ming? In particular, 

RQ2: What is the impact of feedback features on the usage of the 

various help forms? 

RQ3: What are the characteristics of utilizing hints and example 

solutions, and to what extent do they contribute to advancing the 

correct solution?  

In an implementation perspective, our research approach may pro-

vide instructors with fine-grained insights of the utilization of ATF 

tools in MOOCs for programming, in order to maximize their con-

tribution to learning. Therefore, the assessment of this approach is 

another goal of this study. 

4. METHODOLOGY 
To explore the connections between feedback features and learners’ 

response we integrated an ATF system into a MOOC for program-

ming and developed five different versions of the feedback 

provided by the system. 

4.1 The ATF system 
The integrated system is INGInious – an open-source software, 

supporting several programming languages and suitable for online 

courses (for more details see [10]). Applying static checks and run-

ning pre-defined tests for each assignment, the system provides 

immediate feedback, consists of a grade and a textual message. Er-

ror types detected are syntax errors, incorrect implementation of 

instructions, exception errors (prevent the code from being exe-

cuted) and test-failed errors, where the results do not match the 

expected ones. For each type of error in each assignment, the feed-

back can be customized in advance to include an appropriate text 

and additional objects such as hints or example solution. In the cur-

rent study, we used this configurability to explore learners’ 

behavior in response to different feedback versions.  

4.2 Feedback Versions 
Based on the framework suggested by Narciss [32], five versions 

of the ATF system were designed, each with a different feedback 

function, content and structure. We tailored the feedback for the 

various error types to reflect the differences between the versions: 

(1) The Base version (V-Base) provides the compiler message 

as-is for syntax errors. For exception and test-failed errors, the 

feedback includes a description of what should have been ex-

ecuted or output. An optional help form, which appears as 

“More details” (referred to as HMD from here on), is availa-

ble. It consists of the exact breakdown of the actual vs. 

expected outcome (Figure 1). Although this version can be 

classified as cognitive feedback [32], we consider it “cogni-

tive-light”, compared to the other versions. 

(2) The Enriched Cognitive version (V-EC) provides more 

elaborate text for each error type, offering cognitive 

knowledge. In addition to the HMD, a hint is also available 

upon request (i.e. clicking on a link). The hints are predefined 

and formulated based on common errors for each assignment 

(similar to [19]). They  guide towards the correct solution but 

are not adaptive. In case of in case of multiple requests, the 

same text is presented for the same assignment each time. 

 

 

Figure 1. An example of the interface of the ATF system (V-

Base version): the submitted code (top), the corresponding 

feedback message (middle), and the "More details" (HMD) op-

tion (bottom). 

(3) Meta-cognitive version (V-MC) – knowledge of learning 

strategies, as defined by [41], is added to the text messages of 

V-EC. To enhance help-seeking strategies, learners are 

162



encouraged to use the provided help forms and, in some cases, 

review the relevant content in the learning units. Additionally, 

after submitting a correct solution, an example solution is 

made available as a further learning strategy. 

(4) Motivational version (V-Motiv) – feedback messages in V-

EC are enhanced with positive and motivational language. 

Similar to [31], the text includes encouraging statements for 

partially correct solutions and overall motivating phrases. 

(5) Example solution version (V-ES) - provides an option to 

view an example solution immediately following the initial at-

tempt on an assignment, in addition to HMD and hints (Figure 

2). Unlike other studies that recommend solutions for the next 

step or a similar assignment (e.g. [36, 47]), V-ES offers a com-

plete solution for the current assignment. 

Table 1 summarizes the functions and structures of the various ver-

sions and provides an example of the text presented. 

 

Table 1. Function and structure of the five feedback versions 

 

Figure 2. Enriched cognitive feedback with HMD, hint and ex-

ample solution options, V-ES version. 

4.3 Research Field and data set 
Our research field is a MOOC for learning the Python programming 

language, which is offered on an Edx-based platform. The course 

covers a range of topics organized into nine units, from the very 

basics of Python to the use of data structures, file manipulation, and 

functions. The course contains 29 video lectures, 39 exercises, and 

53 code assignments, which are of varying levels of difficulty. It 

follows a self-paced learning mode, with all course materials avail-

able at once and no set deadlines. It is offered free of charge, 

although a certificate can be earned for a small fee. Learners inter-

ested must, in addition to paying the fee, complete 70% of the 

closed exercises and submit a concluding project. 

The INGInious ATF system with the five feedback versions was 

incorporated into the course schedule between January to July 

2022. It was incorporated as an external tool and configured to al-

low for unlimited submissions, aligning with MOOC learning 

concepts [35]. The cohort-mechanism embedded in the Edx plat-

form was utilized to randomly assign learners enrolled in the course 

to one of five groups, each of which had access to a different feed-

back version. The allocation was carried out during registration and 

was fixed for the duration of the course, thus precluding any trans-

fer between groups and ensuring that each learner was exposed 

exclusively to a single version of feedback. 

The usage of the ATF system was voluntary. Of 16,602 enrollees, 

2206 learners (13.3%) chose to register and use the system. De-

mographics provided by 75% of these learners, with 28% female, 

71.5% male, and 0.5% “other”. The age range varied from less than 

11 years old to over 75 years old, with 11.17% under the age of 18, 

the majority (69.41%) between the ages of 18 to 34, and 19.42% 

above 34 years old. 58.7% had no prior knowledge in program-

ming, 29.3% had knowledge in other programming languages, and 

12% had prior knowledge in Python. A chi-squared test confirmed 

equal variance of gender, age and prior knowledge among the five 

experimental groups of the ATF users.  

Data resources consist of ATF log files, including 165,282 submis-

sion records and 57,556 records of clicks on help forms offered in 

the various feedback versions (“help-clicks”). In this study, we an-

alyzed a subset of the data, which only includes the actions of the 

learners when solving the four assignments in Unit 4 (11,519 sub-

mission and 8,769 help-clicks records). The research was 

conducted under the rules of ethics, while protecting privacy and 

maintaining the security of information, and in accordance with the 

approval of the university ethics committee. 

Version 

and  

function 

Optional 

help 

forms   

Examples of feedback text  

message (for test-failed errors) 

and hints 

V-Base 

 

Cognitive 

“light” 

HMD The program run was terminated 

but the expected output (…) wasn’t 

printed or was printed but not in 

the correct place. 

V-EC 

 

Cognitive 

 

 

HMD, 

hints 

In addition to the text of V-Base: 

The tested case is.. 

The reason for the error may be.. 

or..  

Did you check…?  

Are the prints ordered correctly? 

An example of a hint: 

The input includes two types. Use 

if, else or elif to separate the input 

into two types (e.g. float/int or  

upper/lower case) and then run the 

appropriate conversion function. 

V-MC 

 

Cognitive 

+ Meta-

Cognitive 

HMD, 

 hints,  

example  

solution  

(Only after 

a correct 

 solution) 

In addition to the text of V-EC: 

Use “More details” to check the 

received output. 

 

Hints are the same as for V-EC. 

V-Motiv 

 

Cognitive 

+  

Motiva-

tional 

HMD, 

hints 

In addition to the text of V-EC, if 

some case tests run correctly:  

The program has shown to be  

successful in some test cases, 

 indicating that you are headed in 

the right direction. 

Great job, you're making progress! 

Keep working on making the  

solution compatible with all input 

types and resubmit. 

 

Hints are the same as for V-EC 

V-ES 

 

Cognitive 

HMD, 

hints,  

example 

solution 

Text messages and hints are the 

same as for V-EC 
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4.4 Analytic approach to detect patterns of 

learning behavior 
To explore learning behavior in fine-grained manner we utilized 

SPM, analyzing patterns of actions taken by learners throughout 

solving code assignments. Based on variables gathered from the se-

quence analysis, statistical tests were conducted to compare 

between the five experimental groups. 

The method we applied to identify sequence patterns is similar to 

those described in previous studies [11, 43] (Figure 3). First, raw 

data of submission and help-click records for each learner were ex-

tracted and merged, based on assignment id and time stamps (1). 

Using a list of action codes, composed to represent learner actions 

(detailed below), we generated the action-event log (2). The explor-

atory sequence analysis implemented in the TraMineR package of 

R [15] was then utilized (3) to produce sequences of actions for 

each assignment and learner, as well as compute transition proba-

bility matrices and uncover characteristics of learning paths. 

Finally, we visualized and compared behavior patterns, using the 

five experimental groups as designated clusters (4). 

4.4.1  Response Actions and definitions 
Upon receiving feedback, a learner may resubmit a revised solu-

tion, use help, or waive the assignment without making any further 

submissions. To identify the differences between consecutive sub-

missions, the “resubmitting” action is represented by several 

specific actions, based on error-types detected by the ATF system 

(section 4.1). The response-action list used for sequence analysis is 

described in Table 2. 

4.4.2 Sequence processing 
The action-event log, produced by converting the raw submission 

data, was transformed into sequences of actions for each assign-

ment and each learner attempted. Sequences of length 1 (one 

submission to the assignment) were removed, having no evidence 

of feedback effect. The same applied to sequences including only 

repeated SUC actions.  

Repeated identical actions of opening a hint or an example solution 

(HACL or HES) have been replaced with a single action, since the  

 

 

hints and example solution are fixed (for each assignment). To ob-

tain a more representative dataset, very long sequences (higher than 

the 95th quantile) were removed. The response time for resubmis-

sion, defined as the period of time between consecutive 

submissions, was calculated for each pair of submissions. Response 

time longer than IDLE TIME (determined as 10 minutes) were re-

placed with IDLE TIME value. 

Table 2. Response-action codes and definitions 

Action 

type 

Action 

code 
Description 

Submitting 

Actions 

 

SUC A correct solution. 

EUC Code with syntax error. 

EIN Code with instructions mismatch 

EEX 
Code with exception for all test cases 

(can’t be executed). 

ETS 
Code that fails in some/all cases (the 

results differ from the expected ones)  

ETS-

EX 

Code with a mix of exceptions and 

test-failed errors 

Help usage  

actions 

(help-

clicks) 

HMD Clicking on “More details”. 

HACL Clicking on “hint” 

HES 
Clicking to open the example solu-

tion. 

“Fake” 
actions 

Fsub, 

Lsub 

First and last actions in sequence, 

added for visualization 

 

4.4.3 Sequence analysis 
A typical sequence consists of code-submission actions and help-

usage actions (Figure 4). To explore the behavior patterns of learn-

ers, we analyzed the produced sequences from two perspectives: 

(1) The frequency of a specific action or a group of actions within 

the entire actions performed by a group of learners (e.g. the fre-

quency of help-clicks in sequences 6-7 is 0.42) and (2) The 

percentage of learners who performed a specific action or sub-

Figure 3. Analytic approach to uncover learning patterns and compare the response to feedback among experimental groups.  
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sequence of actions out of a group of learners (e.g. 29% of learners 

performed the EEX action (two out of seven)). This measure is the 

support of a pattern of actions. 

 

Figure 4. Example of sequences produced, representing the ac-

tions taken by learners when solving an assignment (each 

sequence represents the actions of a single learner). 

5. RESULTS 
In order to assess the effect of the feedback characteristics and eval-

uate the usability of our approach, we applied it to analyze the data 

of learners' interactions with the ATF system while completing four 

assignments in unit 4 of the course. These assignments are rela-

tively homogeneous in terms of difficulty level and distribution of 

common error types, with a sufficient number of learners in each 

group who submitted more than once (a total of 567 learners and 

over 20,000 submission and help-click records). Data was analyzed 

for each assignment separately and for all four assignments to-

gether. We used non-parametric Kruskal-Wallis and Dunn tests to 

compare the relevant variables between groups, as the assumptions 

for one-way ANOVA were not met [6]. The reported p-values ad-

justed with the Bonferroni method. 

5.1 RQ1: The Effect of Feedback Features 

on Learning Patterns 
The analysis of learners' sequence of actions revealed significant 

differences in patterns between some of the experimental groups, 

as well as similarities among others. The average number of actions 

performed by learners (in all four assignments), represented by 

mean sequence length, was higher for groups V-MC and V-EC and 

lower for V-ES and V-BASE (Table 3).  

Table 3. Sequence characteristics: length, time between actions  

and total duration (minutes). Higher values in red, lower values 

in blue. 

 

The time intervals between actions, which may indicate the time 

spent processing feedback and revising the solution, were found to 

be longer, on average, for learners in V-EC and V-Motiv groups 

and shorter for learners in V-ES group. Additionally, the mean du-

ration from first to last action in the sequence, representing time 

spent on the assignment, was highest among V-EC learners and 

lowest among V-ES learners. The distribution of the actions related 

to submitting assignments was consistent among all groups, as in-

dicated by similar frequencies of EUC, EEX, ETS and ETS-EX 

detected in submissions. The percentage of learners who reached 

the correct solution, measured by the frequency of SUC action, was 

similar as well, and close to 100%. Thus, no difference was found 

regarding the score on assignments. 

5.2 RQ2: The Impact of Feedback Features 

on the Usage of the Help Forms 
Differences were observed between the groups in terms of help-

usage actions. The variety of help forms offered to each group af-

fected the overall use of help, as shown in Figure 5. With 0.34 of 

help-usage actions out of all actions, learners in the V-ES group 

used help more frequently compared to learners in the other groups 

(ꭙ2(4) = 24.78, p<.001). V-Base showed the lowest usage of help, 

with 0.25 (only HMD in this case). Learners in V-EC and V-Motiv 

groups showed similar behavior in this manner, with 0.28 of help-

use actions.  

 

Figure 5. Frequency of help-usage actions performed by learn-

ers in each group 

V-MC group utilized HES in 0.07 of actions but only after submit-

ting a correct solution. Thus, their pattern of help-usage while 

attempting seems to be at medium level as well (0.29). Neverthe-

less, if we exclude these HES actions, the proportion of HMD 

actions during the solving process (before a correct solution is sub-

mitted) becomes 0.25, and the overall help usage of the V-MC 

group rises to 0.31. Although these adjusted values have not been 

found to be statistically significant, they suggest that learners in V-

MC group tended to utilize the available help options (before sub-

mitting a correct solution) more frequently compared to V-EC and 

V-Motiv learners. 

Upon further analysis, additional differences were found regarding 

the use of HMD, which is available in all versions in response to 

incorrect submissions. The likelihood of learners for this pattern of 

help seeking following EEX action reflects in the percentage of se-

quences containing the subsequence EEX-HMD at least once 

(Figure 6). The highest percent was found for V-MC group with 

76% and the lowest for V-ES, with 43% (chi-squared independ-

ence, ꭙ2(4) = 14.664, p<.01). The Pearson standardized residuals 

Version  

(learners in 

group) 

Sequence 

Length 

Mean (SD) 

Time between 

actions,  

Mean (SD) 

Time on 

Assign.,  

Mean (SD) 

V-Base (95) 10 (6.65) 1 1.33 (0.91) 14.18 (13.5) 

V-EC (112) 12.6 (7.92) 2 1.40 (0.74) 3 18.37 (14.74) 

V-MC (116) 12.8 (8.45) 2 1.31 (0.75) 17.45 (14.75) 4 

V-Motiv 
(121) 

11.2 (8.81) 2 1.44 (0.82) 3 17.08 (14.84) 4 

V-ES (123) 9.51 (6.65) 1 1.23 (0.79) 12.4 (11.30) 

Kruskal- 

Wallis 

ꭙ2(4) = 299.03 

p<.001 

ꭙ2(4) = 141.34 

p<.001 

ꭙ2(4) = 337.62 

p<.001 
1 no significant diff. between V-Base and V-ES 
2 no significant diff. between V-EC, V-MC and V-Motiv 
3 no significant diff. between V-EC and V-Motiv 
4 no significant diff. between V-EC and V-Motiv 
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obtained (for using the HMD) are 2.39 for V-MC and -3.38 for V-

ES. That is, learners provided with the metacognitive version re-

sponded to the explicit suggestion to use HMD after an exception 

error, as a learning strategy. 

 

Figure 6. HMD usage after EEX (HMD-EEX proportional fre-

quency) 

Notably, the V-Base group showed close value of 69%, which is 

expected as HMD is the only help form provided in this version. A 

similar finding was obtained for the ETS-HMD sequence. The 

learners in the V-ES group were less likely to use HMD compared 

to the other groups while V-EC and V-Motiv groups exhibited com-

parable behavior. 

5.3 RQ3: Patterns of Utilizing the Example 

Solutions and Hints 
Calculating the probability matrix for transitions between states of 

each group allowed for detailed tracking of the use of help forms. 

The example solution, as an aid to reach a correct solution, was 

offered only to learners in the V-ES group and was available right 

after the first submission attempt for an assignment. Approximately 

75% of learners in this group utilized this form of help. Analysis of 

their action sequences revealed that the probability of transitioning 

to HES from one of the error states (EEX, ETS, ESTEX or EUC) 

was only about 0.34. This suggests that learners often first at-

tempted to utilize other available forms of help, such as HMD or 

HACL, before turning to the example solution for assistance (Fig-

ure 7). After utilizing the example, the probability of resubmitting 

an incorrect code, signifying a transition from HES to one of the 

error states, was 0.31 (Figure 8). This outcome implies that in about 

one third of cases learners did not copy-paste the solution but tried 

to solve themselves. The likelihood of learners resubmitting a cor-

rect solution (i.e., transitioning from HES to SUC) was calculated 

to be 0.34, whereas the probability of seeking additional help (tran-

sitioning to HMD or HACL) was found to be 0.13. Only 0.22 of the 

cases resulted in learners choosing to waive and not resubmit. 

Taken together, these findings suggest that the availability of the 

example solution did not discourage learners in V-ES from trying 

to solve the assignment independently.  

For V-EC learners, the example solution was offered as a mean of 

further learning, only becoming available after they submitted a 

correct solution. Therefore, it should not be considered as an aid to 

facilitate assignment completion. Approximately 58% of the learn-

ers in V-EC group chose to open the provided example. 

 

Figure 7. Transition probabilities for V-ES group. On edges: 

probability of transition to an action state (in particular, before 

opening HES). Probabilities less than 0.05 were omitted. Rates 

for HES are encircled and colored with the color of the “origin” 

state. 

 

Figure 8. Transition probabilities for V-ES group. On edges: 

probability of transition from an action state (i.e. after opening 

HES). Probabilities less than 0.05 were omitted. Rates for HES 

are encircled and colored with the color of the “target” state. 

The hint was provided to all groups of learners except V-Base. A 

quit low probability of 0.08 – 0.11 (with average of 0.09) was found 

for transitioning from EEX, ETS or ETSEX error-states to HACL, 

compared to 0.45-0.54 from any error-state to HMD (Figure 9).  

Furthermore, the probability the probability of transitioning to an-

other form of help, either HMD or HES, after HACL, was found to 

be 0.39 on average. In contrast, the probability to submit a correct 

solution in the subsequent attempt following HACL was only 0.14, 

compared to 0.29 and 0.24 after HES and HMD, respectively. 

These findings indicate that the hint was less frequently requested 

and had a smaller impact on progress towards solving the assign-

ments. 
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Figure 9. Transition probabilities to and from HACL, indicat-

ing low demand and low contribution. 

6. DISCUSSION 
In this empirical study, we implemented sequence pattern analysis 

to investigate the effects of automated feedback characteristics on 

the behavior patterns of learners, throughout solving code assign-

ments within a MOOC for programming. For this purpose, five 

versions of ATF system were constructed, based on an initial ver-

sion and distinctly differentiated by feedback function, message 

formulation, and help forms provided. Our analytic approach in-

volved composing an “alphabet” of actions taken by learners, 

building learning paths and applying sequential pattern mining. 

Statistical tests were conducted to compare experimental groups.  

Exploring learning paths revealed that integrating additional help 

resources to the feedback, in the form of hints and example solu-

tion, led to learners being more engaged in solving assignments by 

utilizing these helps. However, most learners in all the experi-

mental groups persisted in submission attempts until arriving at the 

correct solution, leading to a “ceiling effect” on the achieved scores 

(which happens when a large percentage of observations score near 

the maximum grade on an assignment [28]). Here, the MOOC 

learning environment, characterized by unlimited attempts and the 

absence of knowledge evaluations, precludes an assessment of the 

impact of feedback structure on the level of knowledge acquisition.  

The analysis did not reveal any significant impact of the motiva-

tional feedback, as the behavior of the learners in V-Motiv group 

was not distinct from that of learners provided with the enriched 

cognitive feedback (V-EC). As proposed by [27], motivational 

feedback may potentially have additional effects, such as on atti-

tude and interest, but we did not collect data on these factors in the 

our study. Thus, among the findings of the current research, we 

would like to highlight learning behavior patterns exhibited by the 

group provided with metacognitive version (V-MC) and the group 

provided with the example solution version (V-ES), as the impact 

of  these versions of feedback worth further investigation. 

The metacognitive feedback is functioned to support learning 

through knowledge of learning strategies. In our design, the meta-

cognitive version incorporates the strategies of help seeking and 

further learning through an example solution. Results suggest that 

to some extent, learners adopted both of these strategies. The en-

couragement to seek for more details about the error (HMD option) 

seems to affect V-MC learners towards utilizing it more often, com-

pared to the other groups provided with the same help forms (i.e. 

V-EC and V-Motiv). It is worth noting that the instructions for us-

ing the ATF system, which were read by all learners prior to 

starting, include a general statement about the benefits of HMD. 

Thus, it is suggested the observed impact was made by the feed-

back, given during problem solving. Our findings support previous 

study, which identified a similar impact of metacognitive feedback 

on help-seeking behaviors, even with a long-term effect [41]. The 

importance of effective help-seeking in MOOCs and its association 

with better performance [26] highlight the potential positive contri-

bution of metacognitive feedback to the learning process.  

In addition, over half of the learners in the V-MC group utilized the 

example solution after submitting a correct code. This strategy has 

the potential to be an effective way of learning, as previously es-

tablished by research [17]. [36] observed a similar engagement of 

students in an online course with solutions to code assignments they 

had already completed. Nevertheless, the motivation behind this 

behavior was based on prompts provided by the instructors. The 

ability to motivate learners in MOOCs to engage in “extra-learn-

ing“ strategy through automated feedback, without requiring 

instructor involvement or summative assessment, is promising. 

The learners in the group provided with example-solution version 

(V-ES) exhibited the most distinctive learning behavior. As ex-

pected, a majority of the learners in this group utilized the provided 

example solution, thereby reducing the time spent on assignments. 

Although they have made use of the other forms of help, it was to 

a lesser extent in comparison to the other groups. This finding is 

consistent with previous research, which has determined that a so-

lution example is perceived by students as valuable, even more so 

than alternative forms of feedback [38].  

However, the use of the provided example did not result in "help 

abuse" and did not discourage learners from attempting to inde-

pendently tackle code writing. The learning path of most learners 

indicates efforts to solve the assignments (by utilizing other forms 

of help) before resorting to opening the solution. This behavior pat-

tern is desirable, as research suggests that novice learners may 

benefit from actively engaging in solution attempts before they can 

make sense of given example [42]. Additionally, after utilizing the 

example, many learners did not demonstrate a pattern of copy-paste 

the solution, but continued to attempt the assignment, although 

fewer submissions were necessary to arrive at the correct solution. 

Nevertheless, providing the entire solution for a given assignment 

as a feedback form is an understudied area, in contrast to step-by-

step examples (e.g., [49], [47]). Further research is necessary to ex-

amine its effectiveness and to better understand learners’ 

perception of this type of feedback within the MOOC context. 

The sequence analysis methods we applied facilitated a thorough 

examination of learners' utilization of the various help forms. The 

results indicate that the HMD was the predominant form of help, 

even when other forms of help such as hints or example solution 

were available. This finding suggests that KCR feedback, which 

includes only information about correctness and expected results, 

was not satisfying. Instead, learners sought for supplementary in-

formation. Previous studies support this finding by reporting of 

higher satisfaction exhibited by learners when provided with more 

detailed feedback for code errors [14]. On the other hand, [20] did 

not detect different attitudes of learners towards elaborated feed-

back, despite its demonstrated impact in improving performance. 

Additionally, unlike the study conducted by [48], our results  do not 

provide any evidence of a connections between the use of elabo-

rated feedback and increased engagement, as measured by the 

amount of time spent on completing assignments. 

In line with the study of [20], hints were found as less prevalent 

form of help, as well as less effective, in comparison to HMD and 

example solution. One possible explanation is that the feedback 
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consists of HMD is adaptive and tailored to the specific error de-

tected, while hints in the implemented ATF are fixed and do not 

vary according to the submitted code. As a result, the feedback 

comprises HMD is geared towards rectifying identified errors, for 

the purpose of debugging, while the hints direct more to inquiring 

knowledge of concepts and found to be less useful by learners. 

Studies of learning environments with data-driven hints have 

showed different results, suggesting the use of hints shorten the 

time learners spent on task while achieving the same performance 

[38]. However, systems that include this type of support are more 

complex and creating the hints may be time-consuming for instruc-

tors [21]. Further study of the impact of hints’ adaptivity on the 

extent of usage and effectiveness within MOOCs for programming 

is required to justify the investment of effort. 

Our research approach allowed us to explore the learning behavior 

of students at a high resolution, identify patterns that were not ob-

served with other tools, and compare between the experimental 

groups. However, we faced some challenges in utilizing this 

method. One of them was the significant computational time re-

quired to run multiple functions, such as searching for the most 

frequent sequences in each group, due to the relatively large num-

ber of learners and actions per sequence. 

7. LIMITATIONS  
Some limitations of this study need to be considered. First, data 

were collected in an authentic learning environment with low con-

trol on research setting and no indications of learners’ behavior 

outside the course environment. In particular, other interpreters or 

automated feedback tools may be utilized to solve code assign-

ments. The random assignment of learners to research groups may 

ensure equal tendency towards the use of such external tools, how-

ever, it has not been empirically validated. 

Another limitation of this study is the narrow scope of the data anal-

ysis, which is restricted to four assignments that possess specific 

characteristics in terms of difficulty level and learning context. 

Feedback effects may vary with assignment features [32], there-

fore, generalizing the results of this study to diverse types of 

assignments should be approached with caution. Similarly, it would 

be beneficial to consider the features of the ATF system, such as 

the user interface and the manner in which various forms of help 

are presented (e.g. location on the screen or colors), as these factors 

may also have an impact on learners' interaction with feedback.  

The method of SPM applied in this study had several shortcomings. 

Our approach involves predefining sequences of activities that rep-

resent behavioral patterns, and then analyzing their frequencies for 

each group. However, this method may not capture all significant 

differentiating patterns. An alternative approach, such as automati-

cally capturing learning patterns from learners’ interaction 

sequences, could potentially yield more informative findings that 

are relevant to the research questions. Additionally, the SPM 

method does not support the identification of start-to-end paths and 

thus the comparison between the experimental groups in terms of 

the entire process of solving the assignments was not allowed. A 

possible way to address the gap is to combine our method with pro-

cess mining techniques, specifically Local Process Mining, 

suggested by [9], which may prove to be more compatible in the 

context of a single or group of assignments. 

8. CONCLUSIONS AND FUTURE RE-

SEARCH 
The comparison of feedback versions in this empirical study adds 

to the research literature knowledge about the impact of different 

feedback characteristics, specifically in the context of MOOCs for 

programming. Significant results for our opinion, relevant to learn-

ing in MOOCs are (1) the possibility to influence learning strategies 

through targeted feedback function and (2) the indication for the 

deliberate use of example solutions by learners without negatively 

affecting their motivation to practice writing code themselves. 

These findings have implications for instructors in MOOCs, as they 

can use these insights to adjust the feedback provided in ATF sys-

tems to enhance support for MOOC learners. For example, to 

effectively encourage the use of additional help-seeking strategies 

such as consulting a discussion forum, or to provide additional ex-

amples of isomorphic assignments.  

The data-driven approach can mitigate the gap of remote teaching 

and facilitate a process of on-going revising the automated feed-

back, by assessing the impact of changes and add-ons. Furthermore, 

instructors may detect problems within the assignments, by identi-

fying, for example, patterns of repeated errors or high rates of 

waiving, and take steps to address these issues.  

In conclusion, this study was focused on investigating the impact 

of feedback on learners' performance within the context of code as-

signments. A potential avenue for future research is to expand on 

this analysis and gain a more comprehensive understanding of the 

relationship between feedback characteristics and learning behav-

ior. Such research may incorporate a combination of sequence and 

process mining methods to examine the entirety of the learners' en-

gagement within the MOOC, including their interactions with 

course content (e.g., videos and comprehension exercises), through 

a compatible framework as previously proposed by [16].  

With the increasing demand for programming skills in today's job 

market, MOOCs for programming have become an important tool 

for individuals looking to advance their careers or gain new ones,  

providing equal opportunities for programming education to a di-

verse audience. In addition, MOOCs are a valuable pedagogical 

supplement for instructors who seek to enhance their curriculum or 

provide supplementary resources for their students. We posit that 

this study, along with additional data-driven research in this do-

main, has the potential to foster the development of efficient ATF 

systems that promote learning in programming MOOCs, and con-

sequently, enhance the success rate of a larger number of learners 

in these courses. 
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ABSTRACT
In this paper, we present an extended evaluation of a course
recommender system designed to support students who strug-
gle in the first semesters of their studies and are at risk of
dropping out. The system, which was developed in earlier
work using a student-centered design and which is based on
the explainable k -nearest neighbor algorithm, recommends
a set of courses that have been passed by the majority of the
student’s nearest neighbors who have completed their stud-
ies. The present evaluation is based on the data of students
from three different study programs. One result is that the
recommendations do lower the dropout risk. We also dis-
covered that while the recommended courses differed from
those taken by students who dropped out, they matched
quite well with courses taken by students who completed
the degree program. Although the course recommender sys-
tem targets primarily students at risk, students doing well
could use it. Furthermore, we found that the number of
recommended courses for struggling students is less than
the number of courses they actually enrolled in. This sug-
gests that the recommendations given indicate a different
and hopefully feasible path through the study program for
students at risk of dropping out.

Keywords
Course recommender system, nearest neighbors, explainabil-
ity, user-centered design, dropout prediction

1. INTRODUCTION
In the last decades, universities worldwide have changed
a lot. They offer a wider range of degree programs and
courses and welcome more students from diverse cultural
backgrounds. Further, teaching and learning at school dif-
fers from teaching and learning at university. Some students

∗Berliner Hochschule für Technik
†Deutsches Forschungszentrum für Künstliche Intelligenz

cope well and keep the same academic performance level at
university as at school. Others struggle, perform worse, and
might become at risk of dropping out.

The preliminary exploration of our data has shown, that
most of the students drop out during the first three semesters
of their studies. Therefore, the course recommendations pro-
posed in this work focus on supporting struggling students
after their 1st and 2nd semesters. The final goal in develop-
ing such a system is to integrate it into novel facilities that
universities may set up to support their diverse students
better.

At the beginning of each semester in Germany, students
must decide which courses to enroll in. When entering uni-
versity directly after high school for their 1st semester, most
of them decide to enroll in exactly the courses planned in the
study handbook. The decision becomes more difficult when
they fail courses in their 1st semester and should choose the
courses to enroll in their 2nd semester: should they repeat
right away the courses they failed? Which courses planned
in the 2nd semester in the study handbook should they take?
Should they reduce the number of courses they enroll in to
have a better chance of passing them all? Should they take
more courses to compensate for the courses they failed? The
study handbook does not help answer these questions.

Previous research has shown that most students rely on
friends and acquaintances as one source of information when
deciding which courses to enroll in [19]. Further, students
wish to have explanations if courses are recommended to
them. The present recommender system supports students
in choosing which courses to take before the semester begins
and is based on the explainable algorithm k -nearest neigh-
bors (KNN). It recommends to students the set of courses
that the majority of their nearest neighbors, who success-
fully graduated, have passed.

Nearest neighbors are students who, at the same stage in
their studies, have failed or passed almost the same courses
with the same or very similar grades. The system does not
recommend top n courses as other systems do, e.g. [10, 12,
14, 15]. Rather, it recommends an optimal set of courses,
and we assume that a student should be able to pass all the
courses of that set. Because the recommendations are driven
by past records of students who graduated, we also pose
the hypothesis that students following the recommendations
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should have a lower risk of dropping out. Using historical
data, we evaluated the recommendations given after the 1st
and 2nd semester. Although the recommendations are de-
signed to support struggling students, every student should
have access to them. The recommendations should show a
different, more academically successful way of studying for
struggling students and therefore differ from the courses that
they pass or enroll in.

More precisely, this paper addresses the following research
questions:

1. Do the recommendations lower the risk of dropping out?

2. How large is the intersection between the set of courses
recommended and the set of courses a student has passed?

3. a) How many courses are recommended and b) does this
number differ from the number of courses passed and en-
rolled in by students?

This work builds on our previous work [20] by using a larger
dataset with three different study programs instead of one to
answer research questions 1 and 2, and by adding research
question 3 to further investigate the provided recommenda-
tions. For all three questions, it is relevant whether there is
a difference between students with difficulties and students
with good performance as well as between study programs
and semesters.

The paper is organized as follows. The next section describes
related works. In the third section, we present our data,
and in the fourth section our methodology. The results and
their discussion are presented in section 5. In section 6, we
describe a preliminary evaluation with students. The last
section concludes the paper and presents future works. To
make this paper self-contained, sections 3 and 4 repeat some
descriptions and explanations already presented [20].

2. RELATED WORK

Dropout Prediction. Since our work aims to support stu-
dents at risk of dropping out, it is necessary for us to be
able to assess students’ risk. Researchers have used vari-
ous data sources, representations, and algorithms to address
the task of predicting dropout. Academic performance data
quite often form the basis; adding demographic data does
not inherently lead to better results [2] but has been done
for example in [1, 2, 9]. The data can be used as is as fea-
tures or aggregated into new features. In terms of the algo-
rithms used for dropout prediction, they range from simple,
interpretable models such as decision trees, logistic regres-
sion, and KNN [1, 2, 9, 21] to black-box approaches like
AdaBoost, random forests, and neural networks [1, 2, 11]
— there is no algorithm that performs best in all contexts.
Because the current study examines the impact of course
recommendations on predicted risk, we only use courses and
their grades as features when performing dropout prediction
in section 4.2.

Course Recommendations. Various approaches to course re-
commendation have been explored in recent years. Urdaneta-
Ponte et al. provided an overview of 98 studies published
between 2015 and 2020 and related to recommender systems
in education [18]. They answered the questions, among oth-

ers, about what items were recommended and for whom the
recommendations were intended. Course recommendations
were found to be the second most common research focus,
with 33 studies after learning resources, and 25 of these pa-
pers targeted students. Ma et al. first conducted a sur-
vey to identify the factors that influence course choice [10].
Based on this, they developed a hybrid recommender system
that integrates the aspects of interest, grades, and time into
the recommendations. The approach was evaluated with a
dataset containing the results of 2,366 students from 5 years
and from 12 departments. They obtained the best results in
terms of recall when all aspects are included but with differ-
ent weights. Morsy and Karypis analyzed their approaches
to recommend courses in terms of their impact on students’
grades [12]. Based on a dataset that includes 23 majors
with at least 500 graduated students from 16 years, they
aim to improve grades in the following semester without
recommending easy courses only. Elbadrawy and Karypis
investigated how various student and course groupings af-
fect grade prediction and course recommendation [6]. The
objective was to make the most accurate projections possi-
ble. Around 60,000 students and 565 majors were included
in the dataset. The list of courses from which recommen-
dations were derived was pre-filtered by major and student
level. This limitation is comparable to our scenario, in which
students choose courses depending on their study program.
None of these works has the aim of supporting struggling
students when enrolling in courses.

Our contribution. The idea of building a recommender sys-
tem to support struggling students in their course enroll-
ment, based on the paths of fellow students with the po-
tential of providing explanations came out of the insights
gained from a semi-structured group conversation with 25
students [19]. We propose a novel, thorough approach to
evaluate such a recommender system that includes the fol-
lowing characteristics:

– Studies have shown that course recommendations can
have an impact on students’ performance. However, stu-
dents at-risk were not in focus. We employ a two-step
dropout risk prediction to determine whether the recom-
mendations reduce dropout risk.

– We recommend a set of courses, not top n courses; there-
fore we evaluate not only that the passed courses contain
the recommended courses — similar to other evaluations
[6, 10, 12] — but also that the recommended courses con-
tain the courses students have passed using F1 score.

– We evaluate whether the number of courses is adequate.

3. DATA
Data from three six-semester bachelor programs at a medium-
sized German university were used to develop and evaluate
the course recommender system: Architecture (AR), Com-
puter Science and Media (CM), and Print and Media Tech-
nology (PT). These three programs differ not only in their
topic but also in the number of students enrolled. The initial
dataset included 3,475 students who began their studies be-
tween the winter semester of 2012 and the summer semester
of 2019. We only used data about academic performance:
students’ course results from the first three semesters ac-
counted for 45,959 records of information about course en-
rollments and exam results over the mentioned period. The
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Table 1: Number of students by program P (AR, CM, PT),
train and test data set (Type), and student status (D, G).
The proportion of dropouts in the test dataset is used as risk
indicator (Risk).

P Type D G Sum Risk

AR
Train 91 371 462 0.197

Test 43 73 116 0.371

CM
Train 154 267 421 0.366

Test 67 39 106 0.632

PT
Train 37 171 208 0.178

Test 21 32 53 0.396

AR + CM + PT 413 953 1,366 0.302

grading scale is [1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 3.7,
4.0, 5.0], with 1.0 being the best, 4.0 being the worst (just
passed), and 5.0 means fail. Students may enroll in courses
without taking the exam. In this case, they do not receive
a grade, but the enrollment is recorded. To graduate, stu-
dents must pass all mandatory courses as well as a program-
specific number of elective courses. The study handbook
includes a suggested course schedule for the six semesters,
which students may or may not follow. At any time in their
studies, students are allowed to choose courses from all of-
fered courses.

Outliers. We removed three types of students: A) outliers
in terms of the number of passed courses based on the in-
terquartile range. Indeed, students can receive credit for
courses completed in previous study programs; in our data,
these credits are not distinguishable from credits earned by
enrolling in and passing a course but they may result in a
large number of courses passed, far more than anticipated
in the study handbook. We remove these outliers because
they might impact negatively dropout prediction [13]. B)
students who were still studying at the time of data collec-
tion since they can not be used to predict the risk of dropping
out. C) students without at least one record (passed, failed,
or enrolled but have not taken the exam) in each of the first
three semesters.

Datasets. The final dataset included 1,366 students who
either graduated (”graduates”, status G) or dropped out
(”dropouts”, status D). For the programs AR and CM, we
had similarly sized data sets with 578 and 527 students, but
only 261 students for the PT program because it has fewer
students, see programs AR, CM, and PT, rows train and
test column Sum in Table 1. For dropout risk prediction,
described later in section 4.2, the data sets were sorted by
the start of the study and split into 80% training data, row
train in Table 1, and 20% test data, row test in Table 1, so
that prediction evaluation was done based on students who
started their studies last. We call the proportion of dropouts
in each data set ”dropout risk”, see column Risk in Table 1.
For example, the dropout risk of the train set of the pro-
gram Architecture AR is 0.20= 91/462. Table 2 provides an

Table 2: Academic performance overview by program and
semester (PS), and student status (D, G): mean number of
courses enrolled in (MeanE), mean number of courses passed
(MeanP), difference (Diff) between MeanE and MeanP, and
mean grade (MeanGr).

MeanE MeanP Diff MeanGr

PS D G D G D G D G

AR1 4.9 5.0 3.2 4.7 1.7 0.3 2.8 2.1

AR2 5.5 5.8 3.0 5.1 2.5 0.8 3.0 2.3

AR3 5.1 5.9 1.9 5.4 3.2 0.5 3.2 2.2

CM1 4.9 5.1 2.9 4.8 2.0 0.3 3.0 2.1

CM2 5.2 5.8 2.1 5.0 3.1 0.8 3.0 2.3

CM3 4.7 5.8 1.3 5.0 3.5 0.9 3.2 2.1

PT1 5.8 6.0 4.3 5.8 1.5 0.3 2.5 2.0

PT2 5.7 5.5 2.5 4.9 3.2 0.6 2.9 1.9

PT3 6.1 6.4 2.3 5.5 3.8 0.9 3.1 2.0

overview of the number of courses students enroll and pass
on average, the difference between the number of courses
enrolled and passed, and the average grade based on courses
passed and failed, by program, semester, and student sta-
tus. For example, students in program AR who dropped out
in the first semester enrolled in 4.9 courses but passed 3.2
courses on average, and got an average grade of 2.8, whereas
students who graduated enrolled in 5.0 courses and passed
4.7 courses on average, and got an average grade of 2.1. One
notices that students with status D pass fewer courses per
semester and receive lower grades.

Missing values. For the algorithms used for the recommenda-
tions and dropout predictions, we had to deal with missing
values. If students enrolled in a course but did not take the
exam, a 6.0 was imputed; if they were not enrolled at all,
a 7.0 was imputed. This means that not enrolling (7.0) is
penalized more than enrolling but not taking the exam (6.0).

Data representation. Each student is represented by a vector
of grades. It is possible for a student to, for example, enroll
in a course in the 1st semester and not take the exam, then
enroll and fail the exam in the next semester and enroll again
and pass the exam in the following semester. In this case,
a student has three different records for the same course in
three different semesters. In our opinion, not only the final
grade with which a course was passed is relevant, so we in-
clude the entire history of a student’s academic performance
in the vector. Table 3 shows the vector representation of six
students for their three first semesters of study. Note that
the courses where all students have the value 7.0 are omit-
ted. Students 0, 3, and 5 enrolled in the course M03 without
taking the exam in semester 1 (value 6.0), students 0 and 3
did the same in semester 2 but did not enroll in semester 3
(value 7.0), while student 5 did the opposite; students 1, 2,
and 4 passed M03 in semester 1.
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Table 3: Example of a course recommendation for one student with five neighbors for the 3rd semester. The columns show the
semesters (1, 2, 3) and the courses the students were enrolled in, e.g. M01, M02. Row 0 represents the student who receives a
recommendation, and rows 1 to 5 represent the student’s five nearest neighbors. The recommended courses are highlighted in
blue. The cells show their grades; 6.0 and 7.0, colored in gray, are imputed for missing values. The actual grades of student 0
in semester 3 are given for comparison and highlighted in italic.

S 1 2 3

M01 M02 M03 M04 M05 M03 M08 M09 M10 M11 M12 M13 M03 M10 M11 M14 M15 M16 M17 M18 M19

0 1.3 2.7 6.0 2.3 2.0 6.0 1.3 2.3 7.0 2.7 2.7 2.7 7.0 2.3 7.0 3.0 3.0 2.3 2.7 2.0 7.0

1 1.7 2.7 2.0 2.7 2.3 7.0 2.0 2.7 6.0 4.0 2.3 2.3 7.0 7.0 7.0 1.3 1.3 1.7 3.0 1.7 4.0

2 2.0 1.7 2.3 2.3 1.7 7.0 1.3 2.3 7.0 3.0 2.3 5.0 7.0 7.0 7.0 2.0 2.0 7.0 2.0 2.7 1.3

3 2.3 2.0 6.0 2.7 2.0 6.0 1.3 1.7 6.0 6.0 2.0 2.0 7.0 7.0 6.0 2.7 1.7 1.7 3.0 2.0 2.7

4 2.3 2.3 3.0 2.3 1.0 7.0 2.7 2.0 6.0 1.3 2.3 2.3 7.0 7.0 7.0 1.7 1.7 2.0 1.0 1.3 3.7

5 1.3 3.0 6.0 2.3 3.0 7.0 1.7 6.0 6.0 2.3 2.7 2.3 6.0 7.0 7.0 3.0 5.0 2.7 6.0 5.0 7.0

4. METHODOLOGY
In this section, we present first the course recommender sys-
tem. Then we explain the two-step dropout prediction and
how we optimized the models. Finally, we describe the eval-
uation of the prediction models for RQ1 and the course rec-
ommendations for RQ2 and RQ3. In our case, since many
students drop out after the first or second semester, we con-
sider the recommendations and dropout predictions for the
second and third semesters. For each research question, we
look at subgroups by program, semester, and student status.

4.1 Course Recommendations
The course recommender system is based on a KNN classi-
fier: given a student represented by a vector of grades at the
end of semester t, the majority votes of his/her neighbors
classify a course as “passed” and accordingly recommended
for the following semester t + 1. KNN has the advantage
that the neighbors can be calculated only once and on their
basis, the classification can be made for all courses. Since
we considered all courses passed by any student in semester
t + 1, we got two sets: ”recommended” and ”not recom-
mended”. Given the possibility to recommend a course that
the student being observed has already passed, we removed
this course from the recommendation if necessary. We rec-
ommended courses for all 1,366 students to have the largest
possible database to evaluate the recommendations.

Parameters. To avoid a tie in majority voting, we used only
uneven k and tested our approach with k from 1 to 25. Ad-
ditionally, we selected the Euclidean Distance as distance
metric for calculating the distances between the students.

Risk reducing approach and baseline. To ensure that courses
are recommended that reduce dropout risk, we included in
our approach only neighbors who graduated from the pro-
gram. As a baseline for comparison, we used also all neigh-
bors, which means including neighbors who dropped out,
to generate course recommendations. We expected that the
recommendations differ depending on the neighbor type and
that the recommendations based on graduated students, but
not necessarily the recommendations generated with all stu-
dents, reduce the risk of dropping out. In the following, we
distinguish the two neighbor types with AN (all neighbors)
and GN (neighbors who graduated).

Example. Table 3 shows the data used to calculate the neigh-
bors and to recommend courses to student 0 for the 3rd se-
mester. The actual grades — or imputed values 6.0 and 7.0 if
grades were missed — for relevant courses (M01 to M19) are
shown for each semester. Semesters 1 and 2 are the previous
semester on which the distance calculation is based. Semes-
ter 3 covers the course recommendations. A course is passed
if the grade lies between 1.0 and 4.0. M10 was not recom-
mended to student 0 in this example but student 0 passed
it in semester 3, M19 was recommended because four of five
neighbors passed it but student 0 did not enroll in it.

4.2 Dropout Risk Prediction
A dropout prediction was performed using the following two
steps: 1) A model was trained to predict the two classes:
dropout (D) or graduate (G) based on actual enrollment
and exam information; 2) The model from step 1 was used
again to predict dropout or graduation after the calculated
recommendations replaced the actual enrollment and exam
information. We call ”dropout risk” the proportion of stu-
dents in the test set who are predicted to drop out in this
prediction task. To determine whether or not the recom-
mended courses help to lower the dropout risk, we compare
the predicted dropout risk from step 1 (P1) with the pre-
dicted dropout risk from step 2 (P2). The goal is for P2 to
be less than P1.

4.2.1 Step 1
Feature set. As investigated by Manrique et al. [11], there
are several ways to select a feature set for dropout predic-
tion and no way works better than the others in all contexts.
Because we want to measure the impact of our recommen-
dations on dropout prediction, we use the courses taken by
students as features; the values of the features are the grades.

Model training. To detect a change in the dropout risk, the
models should be as accurate as possible which we aimed to
achieve through two approaches: A) train different types of
algorithms, and B) use different approaches for optimization.
For all cases, the datasets were sorted by students’ study
start and then split into 80% training data and 20% test
data, so that risk prediction is done for students who started
their studies last. As can be seen in Table 1, the proportion
of dropouts is higher in the test set than in the training
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set because it usually takes six semesters to know whether
a student will graduate whereas many students drop out
of their studies much earlier. We trained models for each
program (AR, CM, PT) and semesters t = 2 and t = 3 with
actual grades and used the best models to evaluate a change
in dropout risk in step 2).

Algorithms. We trained the following algorithms in Python
using scikit-learn: decision tree (DT), lasso (L, penalty=l1,
solver=liblinear), logistic regression (LR, penalty=none, sol-
ver=lbfgs), k -nearest neighbors (KNN), random forest (RF),
support vector machine with different kernels (SV: rbf, LSV:
linear, PSV: poly).

Optimization. Using our experience in [20], we simply use
the scikit-learn default hyperparameter settings, except the
settings to obtain a certain algorithm as mentioned above, in
combination with the following list of algorithm-independent
parameters. i) Feature selection by cut-off (CO): we removed
courses with too few grades and tried 1 and 5 as a minimum
number of grades to retain a course; a value that is too high
may result in the removal of recommended courses and thus
would not be included in the dropout prediction. ii) Train-
ing data balancing (BAL): we used two common techniques:
Synthetic Minority Oversampling Technique (SMOTE) [4]
and RandomOverSampler (ROS). Both implementations are
from imbalanced-learn, a Python library. iii) Decision thresh-
old moving (DTM): Usually, a classifier decides for the pos-
itive class at a probability greater or equal to 0.5, but in
case of imbalanced data, it may be helpful to adjust this
threshold, so we checked additionally to 0.5 values between
0.3 and 0.6 in 0.05 steps. Lower and higher values did not
lead to better results.

Evaluating the model performance. To emphasize that both
correct dropouts and correct graduates are important for
dropout risk prediction, we evaluated the models based on
the test data using the Balanced Accuracy metric (BACC),
defined as the mean of the recall for class 1 (dropout), also
known as true positive rate, and recall for class 0 (gradu-
ate), also known as true negative rate: BACC = (TP/P +
TN/N)/2.

4.2.2 Step 2
In the second step, we used the best model by BACC from
step 1 for each program and the semesters t = 2 and t = 3
to predict dropout. The dropout prediction for t = 2 used
the actual grades of the 1st semester and the recommen-
dations for the 2nd semester, and the prediction for t = 3
used the actual grades of the 1st and 2nd semesters and the
recommendations for the 3rd semester. For the recommen-
dations, we assumed that the student can pass the recom-
mended courses. For student 0 in Table 3, courses from M14
to M19 are recommended and we assume that s/he will pass
all these courses in semester 3. If we had an actual grade in
the records for that student and a recommended course, we
used it. If not, we predicted a grade by imputing the average
of two medians: the median of all the grades that we know
about from the student and the median of the historical
grades for that course. This imputation rests on the strong
assumption that underpins our recommendations: the ma-
jority vote of the k nearest neighbors yields a set of courses
that a student can pass. We evaluated this grade prediction

Table 4: Structure of the confusion matrix for recommen-
dation evaluation for one student.

Predicted

positive

Predicted

negative
Totals

Actual

positive

Passed and

recommended

True positive TP

Passed but not

recommended

False negative FN

Passed

P

Actual

negative

Not passed but

recommended

False positive FP

Not passed and

not recommended

True negative TN

Not

passed

Totals Recommended Not recommended
All

courses

using the known actual grades and obtained a Root Mean
Square Error (RMSE) of 0.634, which is comparable with
RMSE scores from 0.63 to 0.73 to other studies in that field
[6, 16]. Consider again student 0 in Table 3. In addition to
the courses from semesters 1 and 2, M10 and M14 to M18
from the third semester were used for prediction in step 1,
and M14 to M19 from the third semester were used in step 2
with a predicted grade for M19.

4.3 Evaluation
4.3.1 RQ1 Evaluation

To answer the question ”Do the recommendations lower the
risk of dropping out?”in section 5.1, we compare the dropout
risk, i.e. the proportion of students who are predicted to
drop out, based on the predictions from step 2 (P2) with
those from step 1 (P1). We also distinguish the neighbor
types for step 2: P2AN corresponds to the step 2 dropout
prediction using the courses recommendations based on all
neighbors (baseline) while P2GN uses the recommendations
based on graduate neighbors.

4.3.2 RQ2 Evaluation
Since the course recommendations are for each course a bi-
nary classification problem, we employ a confusion matrix
for each student (Table 4) to answer the question ”How
large is the intersection between the set of courses recom-
mended and the set of courses a student has passed?” in
section 5.2. We evaluate the recommendation for semester
t + 1 for each student as follows: a course recommended
and actually passed is a true positive (TP), a course rec-
ommended and actually not passed is a false positive (FP),
a course not recommended but passed is a false negative
(FN), and a course not recommended and not passed is a
true negative (TN).

To evaluate a set of recommended courses, it’s important
to measure both recall (whether passed courses include rec-
ommended courses) and precision (whether recommended
courses include passed courses). We chose the F1 score to
evaluate courses’ intersections since the F1 score ignores TN ,
which is in our context always a high value and thus does
not serve our needs. The score ranges from 0 to 1 with 1
indicating perfect classification (recall=1 and precision=1)
and 0 indicating perfect misclassification (recall=0 or preci-
sion=0). The calculation is as follows: F1 = 2 ·TP/(2 ·TP +
FP + FN).
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Further, we provide the recall which is in our case TP/P
and equivalent to recall@ns, the percentage of recommended
courses based on the number of courses taken by student s
to enable comparison with similar work [10, 17]. Recall@n
would fix the number of recommended courses at n [6, 14]
and is not applicable in our case since we do not rank the rec-
ommendations and may also recommend less than n courses.
Looking at the recommendations for student 0 in Table 3,
the courses M14 to M18 are TP, M10 is FN, M19 is FP,
and all the other 29 — here not shown — courses are TN.
F1 = 2 ·5/(2 ·5 +1 +1) = 0.83̄. Recall = 5/6 = 0.83̄. We ag-
gregate the results as mean F1 for both neighbor types and
mean recall for neighbor type GN of all students grouped by
student status, type of neighbors, program, and semester to
compare the scores of the subgroups.

4.3.3 RQ3 Evaluation
To answer the question ”a) How many courses are recom-
mended and b) does this number differ from the number of
courses passed and enrolled in by students?” in section 5.3,
we look first at the number of courses recommended for
semester t + 1. Using a horizontal barplot, we visualize
the distribution of students by the number of recommended
courses. To analyze why some students get no or only a few
recommendations, we describe the relationship between the
number of recommended courses and the distance of stu-
dents to their neighbors. Using a scatterplot, we visualize
the mean distance of a student to its neighbors in relation to
the number of recommended courses. Second, we calculate
the median difference between the number of courses recom-
mended and courses passed, and the median difference be-
tween the number of courses recommended and courses en-
rolled. This may yield a difference in the number of courses
students pass or enroll in than recommended by the system,
depending on the subgroup.

5. RESULTS AND DISCUSSION
In this section, we first present the dropout prediction mod-
els and the changes in dropout risk based on the two-step
prediction (RQ1). This includes identifying an appropriate
value for k, the number of neighbors, that we use for the
in-depth analysis of the course recommendations regarding
the intersection (RQ2), and the number of courses (RQ3).

5.1 Dropout Risk
5.1.1 Dropout Prediction Models
Step 1 prediction. We selected the models — trained with
actual exam and enrollment data — with the highest BACC
for each program and semester (Table 5). They differ regard-
ing their algorithm-independent parameters. We obtain P1

as the step 1 dropout risk, i.e., the proportion of students
from the test set predicted to drop out, that we compare
later with the step 2 dropout risk P2.

Example CM2. The support vector classifier (column C)
achieved the best BACC when removing all courses that do
not have at least one grade (column CO) resulting in 36
courses or features (column F); the decision threshold (col-
umn DTM) is 0.3, which means that students are predicted
to drop out already at a 30% probability; the training set
was not balanced (column BAL). Compared to the actual

Table 5: Best step 1 dropout prediction models for programs
and semester (PS) regarding balanced accuracy (BACC) in-
cluding their corresponding recall (REC), the classifier used
(C), the number of used features (F), optimized parameters
(CO, DTM, BAL), and the proportion of students of the test
set who are predicted to drop out (P1).

PS C F CO DTM BAL P1 BACC REC

AR2 RF 38 0 0.35 SMOTE 0.353 0.866 0.814

AR3 RF 32 4 0.45 ROS 0.336 0.935 0.884

CM2 SV 36 1 0.30 None 0.557 0.920 0.866

CM3 RF 74 0 0.45 SMOTE 0.566 0.927 0.881

PT2 LSV 16 3 0.30 SMOTE 0.358 0.913 0.857

PT3 LSV 47 3 0.30 SMOTE 0.396 0.882 0.857

risk in the test data (0.632, Table 1 row CM > test), the
predicted risk is lower (0.557).

The best models have been obtained when the training data
is balanced except for program CM and semester 2. The
predicted dropout risk P1 is lower in all cases than the actual
dropout risk, see column Risk for the test set in 1, as we have
observed for CM2, except for PT3 where it is equal. This
means that our models tend to be optimistic and predict as
graduate some students who dropped out.

5.1.2 Changes in Dropout Risk
Using the best models shown in Table 5, we performed the
step 2 prediction using the recommendations.

Selecting an appropriate value for k. The set of recommended
courses is critical for the step 2 prediction and depends on
the number of neighbors k. Unfortunately, our research has
shown that there is no value of k that generates an optimal
set of courses for all three study programs and semesters
and the two kinds of students: those who dropped out and
those who graduated. Two values, k = 3 and k = 5, emerge
as optimal or near-optimal and as never bad. The neighbors
provide students with examples of how fellow students have
enrolled and passed courses in their studies; this is one sup-
port that our students are looking for when they enroll [19].
Acknowledging this wish, matching the number of similar
people used in the interviews by Du et al. [5], and in order
to provide students with a variety of paths through their
studies that are close to their own path, we choose k = 5 for
further analysis in this work.

Step 2 prediction. Table 6 shows three proportions of stu-
dents who are predicted as dropouts using the recommen-
dations of five neighbors: P1 from step 1, P2GN based on
neighbors who graduated, and P2AN based on all neighbors.
We distinguish the predicted dropout risk by student status,
D or G, for a better overview of how the models perform.

Example CM2. Considering students who actually dropped
out (D), 86.6% are predicted to drop out in step 1, 77.6% in
step 2 using recommendations calculated with all neighbors
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Table 6: Mean predicted dropout risk in step 1 (P1) and
based on five neighbors and both neighbor types (AN, GN) in
step 2 (P2) by student status (D, G), program and semester
(PS). P2GN-P1 gives the corresponding change.

ST PS P1 P2AN P2GN P2GN-P1

D

AR2 0.814 0.674 0.558 -0.256

AR3 0.884 0.721 0.279 -0.605

CM2 0.866 0.776 0.716 -0.149

CM3 0.881 0.821 0.716 -0.164

PT2 0.857 0.619 0.619 -0.238

PT3 0.857 0.905 0.810 -0.048

G

AR2 0.082 0.014 0.027 -0.055

AR3 0.014 0.041 0.000 -0.014

CM2 0.026 0.051 0.051 0.026

CM3 0.026 0.051 0.026 0.000

PT2 0.031 0.406 0.312 0.281

PT3 0.094 0.250 0.188 0.094

(AN), and 71.6% using recommendations calculated with
neighbors who graduated (GN). Looking at students who
actually graduated (G), 2.6% are predicted to drop out in
step 1, 5.1% in step 2 using recommendations calculated
with all neighbors, and also 5.1% using recommendations
calculated only with students who graduated. Thus, if we
use the course recommendations and assume that these ex-
act courses are passed, the risk decreases by 14.9% for actual
dropouts and increases by 2.6% for actual graduates. Based
on the size of the test dataset (Table 1), this means in ab-
solute numbers: of 67 dropouts, 10 more students are pre-
dicted to graduate and of the 39 graduates, one more student
is predicted to drop out compared to the step 1 prediction.

5.1.3 RQ1 Findings and Discussion
The question ”Do the recommendations lower the risk of
dropping out?” can be answered with yes, our approach low-
ers the dropout risk in most cases and we explore the risk
reduction scores from different perspectives more precisely:

Graduates and dropouts. As we analyze Table 6, we expect
the values in column P2GN to be equal to or smaller than
those in column P1, and this holds true for students with sta-
tus D, who are the primary focus of our recommendations.
Additionally, for the AR program, we observe the same pat-
tern for students with status G. However, for the program
CM semester 2 and the program PT, the values in column
P2GN are higher than those in column P1 , specifically for
the graduated students. A glance at Table 1 reveals that
the number of students with status G is small in the test
set of CM2, while the program PT has a smaller number of
students overall than the other two programs. This could
explain these somewhat negative results, particularly for the
PT program.

AN-based and GN-based recommendations. Comparing col-
umn P2AN of Table 6 with column P1, one notices that the
values are everywhere smaller or equal in column P2AN for
the students with status D, except for PT3. This is less true
for the students with status G. Comparing column P2AN

with column P2GN , one notices that the values in column
P2GN are everywhere smaller or equal, except for the stu-
dents with status G in AR2. These results indicate that
calculating the recommendations by choosing the neighbors
among all students could already be helpful. They also con-
firm that choosing neighbors among the students who grad-
uated gives better results.

2nd and 3rd semester. Looking at the column P2GN−P1,
we expect all values for the students with status G to be
small, as not many students who graduated are predicted to
drop out; one notices the small value -0.048 in PT3 for the
students with status D. We conjecture that this is due to
the high number of elective courses proposed in semester 3
of this study program. As students can freely choose five
courses from six among a list of about 25 courses, it is more
difficult for the algorithm to calculate accurate recommen-
dations.

Overall, the results show that students who dropped out will
benefit from enrolling and passing the courses recommended
to them, above all when the recommendations are calculated
with neighbors who have graduated. The assumption that
students will pass the courses recommended to them sounds
strong. However, as we shall see in section 5.3, the number
of recommended courses is on average one course less than
the number of enrolled courses. Focusing on fewer courses,
as the recommendations suggest to them, might be helpful.

The findings indicate that the utilization of machine learn-
ing algorithms for assessment purposes may be constrained
in scenarios where the student population is limited, partic-
ularly in the context of degree programs CM and PT with a
small number of students possessing status G. The outcomes
generated may not be reliable due to the small sample size.
Additionally, the study reveals a limitation in recommenda-
tions based on nearest neighbors when the degree program
is configured with a substantial number of elective courses,
such as in the third semester of program PT. Therefore, re-
lying on such recommendations may not be suitable in this
particular scenario.

5.2 Courses’ Intersection
We evaluate how the set of recommended courses calculated
with five neighbors intersects with the set of courses students
have passed using the means of the individual F1 scores and
recall (Table 7). To better distinguish for which student
groups the recommendations better align with actual courses
passed, the results are grouped by program and semester
(PS), student status (D, G), and type of neighbors (AN,
GN). Note that recall is shown when recommendations are
calculated with neighbors from the set GN.

Example CM2. The F1 score for students who actually
dropped out (D) is 0.328 for recommendations based on all
neighbors (AN) and 0.397 for recommendations based only
on neighbors who graduated (GN). Looking at students who
graduated (G), the F1 score is much higher, 0.824 for rec-
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Table 7: Mean F1 score for neighbor types (AN, GN) and
mean recall for neighbor type GN by student status (D, G),
program, and semester (PS).

F1AN F1GN RecallGN

PS D G D G D G

AR2 0.481 0.854 0.521 0.871 0.649 0.925

AR3 0.279 0.817 0.305 0.842 0.417 0.875

CM2 0.328 0.824 0.397 0.851 0.498 0.895

CM3 0.130 0.711 0.159 0.755 0.187 0.788

PT2 0.511 0.837 0.528 0.828 0.651 0.844

PT3 0.112 0.335 0.156 0.356 0.140 0.284

ommendations based on all neighbors (AN) and 0.851 for
recommendations based on neighbors who graduated (GN).
Recall is 0.498 for students with status D and 0.895, again
much higher, for students with status G.

5.2.1 RQ2 Findings and Discussion
We look at the question ”How large is the intersection be-
tween the set of courses recommended and the set of courses
a student has passed?” from different perspectives.

Graduates and dropouts. The recommendations should show
another, more promising way of studying to students who
are struggling while they should not disturb students who
are doing well. Thus, we expect the F1 score and recall to
be much higher for students with status G than for students
with status D. We consider only the two columns GN on
the right of Table 7 in the remainder of this section, namely
recommendations calculated using neighbors who graduated
as they gave the best F1 results, which means that overall,
graduate neighbors recommend better the courses that the
students have actually passed. The column F1AN is shown
for the seek of completeness. As expected, the mean F1GN

score and recall are always higher for students with status G
than for students with status D. F1GN is higher than 82%
in four cases and 75.5% in one case. Recall is always higher
than 78%. This means that the recommended courses re-
flect quite well how these students study. An exception is
program PT and semester 3. This might be due to the high
number of elective courses offered by that program in semes-
ter 3. Of the 26 courses recommended to at least one student
and also used in dropout prediction, only one is mandatory;
the other 25 are electives. For students with status D, the
mean F1GN score tends to be low, around 52% in two cases
and below 40% in the other cases.

2nd and 3rd semester. The mean F1 score and the mean
recall are higher in all cases for the 2nd semester than for
the 3rd semester. The higher the semesters, the more the
courses students pass drift apart. On the one hand, this
makes it more difficult to find close neighbors, and on the
other hand, it makes the recommendation itself more diffi-
cult: the neighbors sometimes disagree and have passed too
many different courses, which means that no majority can

be found for many courses and these courses are not recom-
mended. This is particularly true for PT3 because of the
high number of elective courses, as already mentioned.

Overall, the results indicate that the recommended courses
match quite well the courses passed by students who grad-
uated and show another way of studying to students who
dropped out. The results also confirm a limitation of the
proposed recommendations when the study degree program
foresees many elective courses in a semester. For compari-
son with related work, we provide the mean F1GN score for
all students across programs and semesters with a value of
0.646 and the mean RecallGN with a value of 0.689. De-
pending on the semester, the scores of Ma et al. range from
0.431 to 0.472 [10] and Polyzou et al. obtain an overall mean
score of 0.466 [17].

5.3 Number of Recommended Courses
We answer the questions ”a) How many courses are recom-
mended and b) does this number differ from the number of
courses passed and enrolled in by students?” in two parts.

5.3.1 Number of Recommended Courses
Figure 1 contrasts the number of recommended courses based
on all neighbors and students who graduated. As already
written, the recommendations are calculated with five neigh-
bors. Their number varies between 0 and 7 in both cases.
The charts show for each number the respective percent-
age of students grouped by status (D, G), program (AR,
CM, PT), and semester (2, 3). When comparing the top
and bottom charts of Figure 1, it is clear that recommen-
dations calculated with all neighbors result in an empty
set, i.e., 0 courses recommended, more frequently than rec-
ommendations calculated only with students who gradu-
ated. This confirms that the recommendations calculated
only with neighbors who graduated give better results. There-
fore, and as before, we consider only the recommendations
calculated with neighbors who graduated in the remaining
of this section.

Example CM2. In the upper half of the GN chart (bottom
of Figure 2), we begin with row G-CM-2. According to the
handbook, more than half of the students who graduated
get six courses recommended, about 20% get five courses
recommended, and the remaining students get four, three,
or two courses recommended; a few students get one; no
student gets an empty set. Row D-CM-2 is now under con-
sideration. The picture looks different. About 50% of the
students are recommended four or three courses, over 30%
are recommended six or five courses, and the remaining stu-
dents are recommended two or one course; no student is
recommended an empty set.

Further investigation of the small number of courses recom-
mended. Since some students do not receive any recom-
mendations, see for example the rows CM3 and AR3, we
examined the number of recommended courses as a func-
tion of the distance between students and their neighbors.
Figure 2 shows for program CM a scatter-plot of the mean
distance of the students from their neighbors (y-axis) by the
number of recommended courses (x-axis) distinguishing sta-
tus D and status G; semester 2 is on the left, semester 3 on
the right. We can observe that when neighbors are farther
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Figure 1: Distribution of students by the number of recom-
mended courses (0 to 7), student status (D, G), program (AR,
CM, PT), and semester (2, 3); top: neighbor type AN, bot-
tom: neighbor type GN.

away, fewer courses are recommended. The trend is similar
for the status dropout, though less drastic, and for the 3rd
semester; it is also similar for the two other programs, not
represented here. As an example, students with good grades
but enrolling in only part of the courses in semesters 1 and
2, might be far from their nearest neighbors because of the
imputed value of 7.0 for the courses not enrolled in.

RQ3a) Findings and Discussion. The percentage of students
who receive no recommendation or only one course recom-
mended is much smaller when the recommendations are cal-
culated with neighbors who graduated than with all neigh-
bors. This is especially noticeable for students who dropped
out. This finding confirms again the superiority of calcu-
lating the recommendations with GN. For graduates in AR,
CM, and PT in semester 2, the number of recommended
courses is for the majority of the students close to the num-
ber planned in the curriculum, i.e., five or six courses. Again,
PT3 differs. As is visible in the evaluation of the intersec-
tion in section 5.2, there is less agreement about the courses
among the neighbors, which can be explained by a large
number of elective courses in semester 3. This leads to
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Figure 2: Mean Distance from neighbors by number of rec-
ommended courses for program CM; left: semester 2, right:
semester 3. Markers and colors correspond to student status
D and G.

smaller set sizes regarding course recommendations. Our
results show also that students who are very different from
their neighbors, especially those with status G, are likely to
get few recommendations.

5.3.2 Numbers: Recommended, Enrolled, and Passed
Table 8 provides the difference between the median number
of courses recommended and the median number of courses
enrolled (R - E) or passed (R - P). To better distinguish for
which student groups the recommendations are closer to the
actual numbers, the results are grouped by status (D, G),
neighbors type (AN, GN), program, and semester PS. Note
that the results with two kinds of neighbors, AN and GN,
are shown for the seek of completeness. We only discuss
the results calculated with neighbors who graduated, GN,
as these results are better.

Example CM2. We consider first students who dropped out
(D). The column (R - E) > GN has the value -1.0, which
means that the number of recommended courses is on av-
erage 1 less than the number of courses the students enroll
in. Comparing the number of recommended courses with
the number of those passed (R - P) > GN, we see a value
of 2.0, meaning that the number of recommended courses is
on average 2 more than the number of courses the students
pass. Considering students who graduated, we see no dif-
ference in the number of courses recommended, enrolled in,
and passed on average: all values are 0.

RQ3b) Findings and discussion. On the one hand, the rec-
ommender system suggests to students who dropped out to
focus on fewer courses, the column (R - E) > GN has ev-
erywhere negative values, i.e., enroll in fewer courses with
the expectation that they can pass more courses instead,
the column (R - P) > GN has everywhere positive values,
except in PT3. On the other hand, nothing changes on av-
erage for graduates: there is no difference, except for PT3.
The problem with PT3 is the lower number of recommended
courses in general, as also visible in Figure 1, which can be
explained by a large number of elective courses, as already
written.
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Table 8: Median difference between the number of courses
recommended and the number of courses enrolled in (R-E)
and the number of courses passed (R-P) by student status (D,
G), neighbor type (AN, GN), program, and semester (PS).

D G

R - E R - P R - E R - P

PS AN GN AN GN AN GN AN GN

AR2 -2.0 -1.0 0.5 1.0 0.0 0.0 0.0 0.0

AR3 -3.0 -1.0 0.0 2.0 0.0 0.0 0.0 0.0

CM2 -3.0 -1.0 0.0 2.0 0.0 0.0 0.0 0.0

CM3 -4.0 -2.0 0.0 1.0 -1.0 0.0 0.0 0.0

PT2 -2.0 -1.0 1.0 1.0 0.0 0.0 0.0 0.0

PT3 -5.0 -4.0 -0.5 0.0 -4.0 -3.0 -3.0 -3.0

6. PRELIMINARY USER EVALUATION
The approach has been evaluated with 12 students of the
study program CM as part of an assessment in the elective
course “machine learning”. Students were in their 4th or 5th
semester, and all performed well in their first two semesters.
Beforehand, students had the possibility to hand in their
records anonymously and have recommendations calculated
for semesters 2 and 3. Three students made use of this pos-
sibility. The recommendations were identical to the courses
that they actually passed in three cases (F1=100%). The
three other cases had an F1 score of 90.1%, 86,1%, and 0%,
respectively. The last case refers to a student with relatively
good grades who enrolled in three courses only in semester 2
resulting in an average distance of 13 from the neighbors.
Overall, these results confirm our assumption that, for stu-
dents with good academic performance, the recommenda-
tions should closely match the courses that they pass.

The evaluation mainly consisted of a semi-guided group dis-
cussion concerning the recommendations. We report here
the answers and discussion to two questions: 1. Are the
recommendations understandable? 2. Would you use such
a recommender system? All groups answered the first ques-
tion with yes but also gave ideas for improvement. For ex-
ample, they considered three to five neighbors to be the most
useful, as this is the quickest and clearest way to grasp how
the recommendations come about. This fits very well with
the dimensions of interpretability that Guidotti et al. give
[8], namely “time limitation” but also “nature of user exper-
tise”. Six students answered the second question with yes,
four with no, and two were undecided. One main reason not
to use such a system was the following: seeing the grades of
others can be stressful: will I perform as well as the given
examples? Interestingly, an undecided student said that it
might be encouraging to see that other fellow students did
not always get good grades but were able to graduate. These
utterances are similar to the findings in [3]. More evalua-
tions, particularly with students who are unfamiliar with
machine learning, are required to study the interpretability
and related trust in the recommendations.

7. CONCLUSION AND FUTURE WORK
This paper presents a comprehensive evaluation of a novel
course recommender system designed to primarily support
students who face difficulties in their initial semesters and
are at risk of dropping out. The evaluation utilizes data from
three distinct study programs that vary in terms of their
subject matter, student population, and program structure,
including a program with a high number of elective courses
in the third semester.

The evaluation of the first research question indicates that,
overall, the recommendations lead to a reduction in the
dropout rate, particularly for the targeted at-risk students
who dropped out. However, the results are less conclusive
for students who graduated, which may be due to the limited
data available in the test set.

The evaluation of the second research question reveals that
the recommended courses generally align with the courses
that graduated students passed, except for the 3rd semester
of program PT, which contains many elective courses. This
is not the case for students who dropped out, as the recom-
mendations suggest a different approach to their studies.

The evaluation of the third research question demonstrates
that the number of recommended courses is close to the
number of courses planned in the curriculum for graduat-
ing students, except for the aforementioned 3rd semester of
program PT. However, for students who dropped out, the
number of recommended courses is generally lower than the
number of courses they enrolled in.

Overall, the evaluations have revealed two main limitations
of our recommender system. Primarily, it is better suited
for curricula consisting mostly of mandatory courses that
all students must pass, as is often the case in the first two
semesters of a program. Additionally, it recommends very
few courses for students with distant neighbors, and there-
fore, a different approach to handling passed courses in the
recommender system should be explored. However, it does
allow for presenting the paths of five neighbors as an im-
pulse.

Summing up, the paths followed by students who graduated
are helpful to other students, especially those who struggle.
It is worth noting that our approach to course recommen-
dation is generalizable even if enrollment data is not stored,
as is the case in some institutions. Except for comparing the
number of recommended courses to the number of enrolled
courses, the evaluation remains the same.

A preliminary evaluation with students indicates that the
recommendations are understandable. Further research with
2nd or 3rd semester students is planned to determine how
ready and willing they are to use such recommendations as
well as the advantages of using sets instead of rank lists.
In addition, it is necessary to evaluate whether students un-
derstand the recommendations and what additional support
they need to pass all recommended courses, aside from tak-
ing fewer and different courses than they might think. As
stated in the German context [7], a combination of well-
orchestrated interventions usually leads to academic success.
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ABSTRACT
With the recent release of Chat-GPT by OpenAI, the au-
tomated text generation capabilities of GPT-3 are seen as
transformative and potentially systemically disruptive for
higher education. While the impact on teaching and learn-
ing practices is still unknown, it is apparent that alongside
risks these tools offer the potential to augment human intel-
ligence (intelligence augmentation, or IA). However, strate-
gies for such IA, involving partnership of tool-human, will
be needed to support learning. In the context of writing,
an investigation of potential approaches is needed given em-
pirical data and studies are currently limited. We intro-
duce a novel visual representation CoAuthorViz to examine
keystroke logs from a writing assistant where writers inter-
acted with GPT-3 writing suggestions to co-write with the
machine. We demonstrate the use of our visualization by
exemplifying different kinds of writing behaviour from users
writing with GPT-3 support and derive metrics such as their
usage of GPT-3 suggestions in relation to overall writing
quality indicators. We also release the materials open source
to further progress our understanding of desirable user be-
haviour when working with such state-of-the-art AI tools.

Keywords
Keystroke analysis, Visualization, Writing analytics, GPT-
3, Language models, Coauthor, Artificial Intelligence, Chat
GPT, Generative AI, CoAuthorViz

1. INTRODUCTION
Changes due to evolving technology is a constant across sec-
tors, but certain technologies have had a profound effect on

∗Corresponding author
†Corresponding author

redefining educational strategies. In academic writing, tech-
nologies such as word processing that digitised writing from
paper-based formats, the internet and cloud that enabled
widespread communication and collaboration, and compu-
tational linguistics and Natural language processing that en-
abled real-time support and automated feedback are key in-
novations that led to transformations in writing practices
and the curriculum [20]. With the recent release of large lan-
guage models such as Generative Pre-trained Transformer 3
(GPT-3), automated text generation and the use of Artifi-
cial Intelligence (AI) to support writing are touted as the
next writing transformation.

The open release of powerful tools such as ChatGPT1 for
GPT-3 made visible the dramatic capabilities of generative
AI - anyone can write a prompt to ChatGPT in plain En-
glish providing instructions, and the tool can generate well-
written texts replicating human knowledge. The potential
harms and disruptions it can cause to traditional writing cur-
ricula have been discussed widely, including concerns about
academic integrity, but little is known about how these tech-
nologies can best work in practice in partnership with human
writers. One such work involves CoAuthor, a human-AI col-
laborative writing dataset that was created from machine-
in-the-loop argumentative and creative writing with writers
using automated text suggestions generated from GPT-3 as
real-time feedback [21]. The dataset consists of keystroke-
level data captured from the writer’s typing and is predom-
inantly used by writing analytics and psycholinguistic re-
searchers to learn about cognitive processing. In this paper,
we introduce a visual graph CoAuthorViz to aid the analysis
of such log data to study human-AI collaboration in writing
using more interpretable representations. The intended au-
dience for the CoAuthorViz is researchers who can use the
visualisation and related metrics to study the phenomena of
working in partnership with AI tools for writing.

2. USING GENERATIVE AI FOR WRITING
Research in the last few decades has seen increasing evidence
of the effectiveness of automated writing evaluation (AWE)
systems in supporting writers develop their academic writ-
ing skills [41] [24] [18]. Automated writing feedback tools

1https://openai.com/blog/chatgpt/
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provide scalable and innovative computer-based instruction
in linguistic, domain, or mixed orientations [14], often tar-
geting specific writing features of interest [18]. However, the
most recent advancements in generative AI include the use
of large language models for writing, which might funda-
mentally change how writers learn to write in the future.

Generative Pre-trained Transformer 3 (GPT-3) is a large
language model trained on internet data that can automati-
cally generate realistic text [32]. It is a deep learning neural
network with over 175 billion machine learning parameters
that makes its machine-generated text convincingly similar
to what humans write. When a user provides an input text
in natural language, the system analyzes the language and
predicts the most likely output text. While the beta release
of GPT-3 by OpenAI came about much earlier (June 2020),
the most recent release of Chat-GPT for public testing in
November 2022 has triggered strong reactions to its impli-
cations for human writing. Discussions are a mix of initial
conversations and scholarly literature given the recency of
the topic.

Firstly, we note the potential for GPT-3 usage in writing
contexts through applications implemented and evaluated
in practice. Automated text generation is the most com-
mon application of GPT-3 for generating formal forms of
writing, but the model also has the capability to generate
poetry, play chess, do arithmetic, translations, and role play,
and write code based on user requirements [8]. One use case
was seen in ’sparks’, sentences generated by the AI writing
assistant to inspire writers to create scientific content [13].
The purpose was to aid writers with crafting detailed sen-
tences, providing interesting angles to engage readers, and
demonstrating common reader perspectives.

Multiple Intelligent Writing Assistants have made use of
GPT-2 and GPT-3 language generation capabilities to help
writers develop their content. Examples include writers
making integrative leaps in creative writing with multimodal
machine intelligence [36], a web application called Wordcraft
where users collaborated with a generative model to write
a story [42] and a system providing automated summaries
to support reflection and revision beyond text generation
[9]. A larger evaluation engaging over 60 people to write
more than 1,440 stories and essays was performed using
CoAuthor, where the interactions between the writer and
the GPT-3 suggestions were also captured using keystroke
logging [21]. Another writing task that can now be sup-
ported by intelligent agents is revision. In the human-in-the
loop iterative text revision system called Read, Revise, Re-
peat (R3), writers interacted with model-generated revisions
for deeper edits [11].

However, there are known problems in large language mod-
els such as the generation of factually false hallucinations
or contradictory information that can exacerbate disinfor-
mation [27], bias and immorality arising from human sub-
jectivity [25] and the lack of diversity in its outputs [16].
Perhaps, the more complex problems arising from GPT-3
content relate to social factors such as how it interferes with
existing systemic practices affecting people and policies in
the real world. There is widespread fear that the automati-
cally generated content amplifies academic dishonesty which

is already prevalent in the education sector providing easy
means for students to cheat with plagiarism [29]. This is
particularly a threat to online learning where the real iden-
tity of the writer is hard to discern.

Despite the concerns, there is also hope that these tools
might accelerate learning and induce creativity. Like multi-
ple technologies that came before it, some consider these AI
tools to be yet another example of humanity’s inefficiency
dealing with something new that throws their normality into
disarray [1]. There is an increasing push to rethink assess-
ments, so we move away from setting assignments that ma-
chines can answer towards assessment for learning that cap-
tures skills required in the future[33], [39] and students using
GPT-3 as part of the curriculum to enhance their learning
[30]. There is emerging work such as the launch of ’GPT-2
Output Detector’2 to identify content authored by Chat-
GPT, but with a caveat of having a high false positive rate
- dismissing original content as plagiarism could be worse
than accepting plagiarised content from the tool for writing
assessment. This can be particularly harmful to non-native
English writers as GPT detectors may unintentionally pe-
nalize writers with constrained linguistic expressions due to
their in-built biases [23].

Similar tools and technologies will evolve over time and
many students already use AI-based writing tools such as
Quillbot3 as part of their writing practices, so there is an
opportunity to investigate how to collaborate with them ef-
fectively rather than banning or abolishing them completely
[28]. GPT-3 applications where a human stays in the loop
are considered safer and the way forward, where the writer
uses the machine to augment their writing by utilising its
unique capabilities and acknowledges its use [8]. The var-
ied roles AI can take: as an editor, co-author, ghostwriter,
and muse have been identified [17], with particular inter-
est towards co-authoring that helps writers develop their
writing skills through human-AI partnership [21] that we
explore in the current work. Early explorations of two new
types of interactions with generative language models show
how writers can keep control of their writing by manipu-
lating the auto-generated content [3]. More recent work
also involves building a collaborative language model that
imitates the entire writing process such as writing drafts,
adding suggestions, proposing edits, and providing explana-
tions for its actions, and not just generating the final result
[31]. These align with the Intelligence Augmentation (IA)
paradigm where human and artificial intelligence work to-
gether as a symbiotic system [43], and is of relevance to edu-
cation where new technology can augment existing teaching
and learning strategies [19]. In these cases of co-writing, it
is useful to determine the most efficient ways for writers to
interact with GPT-3 for optimal partnership and IA, and
methods to analyse such behaviour are discussed next.

3. STUDYING WRITING BEHAVIOUR US-
ING KEYSTROKE ANALYSES

Writing is a complex cognitive process that involves recur-
sive and interleaving activities such as planning, translating,
reviewing, and monitoring by the writer [12]. Researchers

2https://huggingface.co/roberta-base-openai-detector
3https://quillbot.com/
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use different approaches and data to study the writing pro-
cess that informs user behaviour. While early work typ-
ically relied on resource-intensive manual observation and
coding of writing behaviour, computational analysis tech-
niques and log data are now used to study learning processes
at scale [10]. These help uncover new patterns from fine-
grained information about the learner’s writing behaviour
through non-obtrusive stealth measurements and keystroke-
level data capturing [2][26].

Keystroke logging is a method of automatically capturing
data on a user’s typing patterns as they write. Analy-
sis of such data can be used to gain insight into various
aspects of writing behavior, including typing speed, error
rate, and the use of specific keyboard shortcuts. Keystroke
analysis has been used for biometric authentication using
keystroke dynamics [38], measuring text readability using
scroll-based interactions [15], and predicting writing quality
for feedback [6]. However, there often exists a disconnect
between keystroke level logs and useful insight on cognitive
processes that can be derived from it as the data is too fine-
grained. Complementary techniques such as eye-tracking
and thinking-aloud protocols are often used in combination
to capture additional context on the writing [22] [40]. In
addition, newer graphic and statistical data analysis tech-
niques offer new perspectives on the writing process.

Visual representations provide a useful starting point to
study the complex interactions between sources and writ-
ers. Network analysis and graph representations have been
used by writing researchers to visualise the temporal devel-
opment of ideas and links between multiple sources during
editing and revising a writer’s document [22] [4]. A multi-
stage automated revision graph was used to study the evo-
lution of drafts in the revision process that led to the final
product and students’ interaction with automated feedback
based on their frequency of requests [34]. In other work that
investigated collaborative writing processes, a revision map
was created to represent the joint development of ideas by
a group of authors [37]. Such visualisations provide new
ways of looking at data to uncover interesting insights and
patterns of user behaviour from writing scenarios.

4. OUR WORK
In our work, we introduce a novel visualization called“CoAu-
thorViz” to represent writing behaviours from keystroke logs
of users in the CoAuthor dataset (described next). We
demonstrate how CoAuthorViz can be used by writing re-
searchers to study co-authorship behaviours of writers inter-
acting with GPT-3 suggestions to co-write with the machine,
and investigate metrics derived from such interaction with
relation to overall writing quality indicators. We discuss how
the work can be extended further to study effective forms of
co-authorship with GPT-3 and other AI writing assistants.

4.1 Dataset used
Data for this study comes from the CoAuthor dataset [21]
which consists of a total of 1445 writing session data in
jsonl format, including 830 creative writing (stories) and
615 argumentative writing (essays) sessions. The dataset
contains keystroke-level interactions in a writing session log-
ging 17 events: event name, event source, text delta, cursor
range, event timestamp, index of event, a writing prompt to

start with, current cursor location, suggestions from GPT-
3, number of suggestions to generate per query, the maxi-
mum number of tokens to generate per suggestion, sampling
temperature, nucleus sampling, presence penalty, and fre-
quency penalty. Descriptions for each variable are provided
in the original article [21], and a sample set of rows from
the dataset is shown in Table 1. Replays of each individ-
ual writing session are also made available on the project
website4.

The writer is provided with an initial prompt by the re-
searchers instructing them to write on the assigned topic,
and are required to continue their writing session on their
own or with the assistance of GPT-3 sentence recommen-
dations. The writers receive up to five sentence suggestions
when a GPT-3 call is made and can do so at any point dur-
ing their writing sessions - suggestions provided by GPT-3
can be partial or full sentences.

4.2 CoAuthorViz Description
We develop CoAuthorViz to represent co-authorship behaviours
of users interacting with GPT-3 suggestions at a sentence-
level. This visual representation makes it easier to inter-
pret co-writing processes in comparison to more fine-grained
keystroke level logs that capture individual characters and
mouse movements. The visualization highlights key actions
made by a writer when working with GPT-3 suggestions
such as choosing to accept the suggestion as it is, accept
suggestion and edit it further, or reject the suggestion and
continue writing on their own - these events recorded as part
of the keystroke logs can provide significant insight into how
AI writing assistants are taken up by writers in practice.
Our work is inspired by Automated Revision Graphs previ-
ously used for visualising student revision in writing drafts,
transferred to the context of co-writing with AI [34].

CoAuthorViz performs sentence-level analysis to visualise
interactions between the writer and GPT-3. Three different
shapes — circle, triangle, and square represent authorship
- the initial prompt provided by researchers is shown as a
black circle and ranges from 1 to 9 sentences each (the writer
is instructed to base the rest of their writing around it).
Since the writer’s actual writing starts from the last sentence
of the initial prompt, our visualization starts from here.
Text entered by the writer is displayed as a gray square,
and text written by GPT-3 is displayed as a black triangle.
Text modified by the writer after obtaining a GPT-3 sugges-
tion from GPT-3 is displayed as a square overlapping a gray
triangle. Empty GPT-3 calls illustrating scenarios where
the writer requests for and obtains GPT-3 suggestions, but
chooses to ignore them are shown as white triangles. Dotted
lines between the shapes indicate a sequence of actions at a
sentence level to improve the readability of the visualization
and do not have additional meaning.

An example of CoAuthorViz is illustrated in Figure 1. Here,
most of the writing was done by the writer independently
(see sentences 9, 13, 14, 16-18 with black squares), and even
when text from GPT-3 was provided (sentences 8, 10-12, 15
with GPT-3 written text), they went on to add additional
text themselves. We also see places where a GPT-3 call was

4https://coauthor.stanford.edu/browse/
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Table 1: Examples from the dataset with selected rows and columns

eventName eventSource textDelta currentCursor currentSuggestion
text-insert user ’ops’: [’retain’: 2017, 2017 []

’insert’: ’a’]
text-insert user ’ops’: [’retain’: 2018, 2018 []

’insert’: ’\n’]
suggestion-get user NaN 2019 []

suggestion-open api NaN 2019 [’index’: 0, ’original’: ’smiled at him, and he
walked over to her table.’, ’trimmed’: ’Priscilla

smiled at him, and he walked over to her table.’,
’probability’: 1.1132658066910296e-05, ’index’: 1,

’original’: ’man walked over to her table
and sat down.’, ’trimmed’: ’The man walked over

to her table and sat down.’, ’probability’:
1.0074578955483344e-07]

suggestion-hover user NaN 2019 []
suggestion-select user NaN 2019 []
suggestion-close api NaN 2019 []

text-insert api ’ops’: [’retain’: 2020, 2077 []
’insert’: ’Priscilla smiled

at him, and he walked over
to her table.’]

made, but the suggested texts were dismissed and not used
by the writer (white triangle in sentences 9, 13, 14, 16-18).

Figure 1: Example of a CoAuthorViz with descriptors

CoAuthorViz generates a simple visualization to represent
co-authorship with GPT-3 from relatively complex, fine-
grained keystroke-level data. It reveals insights on the writer’s
frequency of autonomous writing without AI assistance and
their usage, dismissal, and modification of GPT-3 text sug-
gestions provided. These can be used to inform the study
of user behaviour when engaging with AI writing assistants
such as GPT-3.

4.3 Technical Implementation
The lack of standards in capturing and analysing keystroke
data is an identified challenge in this kind of research [22].
To this end, we provide a detailed explanation of the con-
struction of CoAuthorViz and release the materials open

source (including the scripts and plots generated) to help fa-
cilitate knowledge exchange among research groups [Github
link].

The keystroke log is first read by iterating over all the tracked
events. Text at any given keystroke is rebuilt from the log us-
ing events and cursor positions. This is done by maintaining
a text buffer during the entire process providing the current
state of the document - when a text insertion keystroke is
encountered, the corresponding text is added to the buffer;
when text deletion occurs, the corresponding characters are
deleted from the buffer; cursor positions are used to iden-
tify the locations in the buffer when such events occur. The
events and their corresponding text buffers are grouped by
the number of sentences in the buffer, providing a sequence
of all events at the sentence level. From this sentence-level
event sequence, the following steps are performed to define
key constructs of interest:

1. GPT-3 Suggestion Selection: “suggestion-get” events
that are succeeded by a “suggestion-select” event are
identified as GPT-3 calls where the writer obtained
a suggestion and made use of it. Related “suggestion-
open”,“suggestion-hover”,“suggestion-down”,“suggestion-
up”, and “suggestion-reopen” events are removed as
they are all indicative of the same event - author choos-
ing from the GPT-3 suggestions. “text-insert” events
occurring immediately after the“suggestion-select”events
are removed as they also signify the insertion of GPT-3
suggestion selected by the writer

2. Empty GPT-3 Call: “suggestion-get” events that do
not have a succeeding selection event are identified as
empty GPT-3 calls where the author did not incorpo-
rate any suggestion provided by GPT-3

3. GPT-3 Suggestion Modification: Any“cursor-backward”,
“cursor-select”or“text-delete” events immediately suc-
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ceeding a “suggestion-select” event, but without any
“text-insert” event in between are perceived as modi-
fications done by the author to the GPT-3 suggestion
they chose. All cursor movement events, text deletion
events and “suggestion-close” events are removed

4. User Text Addition: Consecutive “text-insert” events
are grouped for piecing together text written by the
writer

Metrics are calculated by counting the key events in relation
to GPT-3 calls, and authorship in sentences. The sequence
of key identified events from the above constructs is gener-
ated as a visualisation using the Pillow package [5]. The full
implementation runs on a Python notebook, and is repre-
sented in Figure 2.

Figure 2: Steps in the construction of CoAuthorViz

Figure 3: Correlation matrix with statistical significance of
CoAuthorViz metrics

5. FINDINGS AND DISCUSSION
In this section, we discuss the main findings from our visu-
alisation and examine sample cases in detail demonstrating
the application of CoAuthorViz for researching writing.

5.1 Analysis of CoAuthorViz metrics
A summary of the key events noted in CoAuthorViz is gener-
ated for each writing session providing tangible metrics that
can be studied along with the visualization. Three types:
Sentence level, API-based, and Ratio metrics are provided
- see Table 2 for the summary statistics of these metrics.
Each of the 1445 writing sessions in the CoAuthor gener-
ates a total number of sentences ranging from 11 to 78, and

an average of 29 sentences in the final writing. The initial
prompt in a writer’s writing session can vary from 0 to 9
sentences, with an average of around 4. The number of sen-
tences in the initial prompt is 0 in cases where the writer
deletes the initial prompt and rewrites it from scratch.

Metrics on the number of sentences written entirely by the
writer, GPT-3, or a combination of the writer and GPT-
3 are populated. Additional metrics include the frequency
of using GPT-3 suggestions with and without modification,
as well as the number of instances where a GPT-3 call was
made but the suggestion was rejected, likely because the
writer was dissatisfied with the suggested texts. Ratios were
also calculated to characterize GPT-3 versus writer author-
ing in relation to the total number of sentences generated in
a writing session.

From the summary statistics table in Table 2, we derive
insights on the usage of GPT-3 across the 1445 writing ses-
sions. The average number of times GPT-3 calls were made
(AA) was 12.5 but varied widely across the sessions (SD =
9.2) with a minimum of 0 and a maximum of 65. Similarly,
there was high variance in the number of times a GPT-3
suggestion was incorporated (AB) ranging from 0 to 47 (M
= 8.9, SD = 7.4), and the number of times a GPT-3 sugges-
tion was accepted as it is (AE) (M = 7.3, SD = 7.2). Total
GPT-3 usage in their sentences (RC) was calculated from
the ratio of the sum of sentences using GPT-3 suggestion,
and the total number of sentences in the writing ranged from
0 to 0.87 (M = 0.3, SD = 0.2). The ratio of the number of
times the suggestion is rejected to the number of times the
author calls for GPT-3 (AC/AA) indicates that suggestions
made by GPT-3 were rejected 29.31% of the time, and sug-
gestions were accepted as is 58% of the time (AE/ AA).

We also calculate correlation to examine relations within
CoAuthorViz metrics. Figure 3 shows the matrix of Pear-
son correlation coefficients (CC) for each pair of metrics in
the summary table. The statistical significance of each cor-
relation is indicated by the number of asterisks adjacent to
the value (in order of increasing significance: p-value < 0.05
is flagged with one star (*), p-value < 0.01 is flagged with
2 stars (**), and p-value < 0.001 is flagged with three stars
(***)). Related pairs of metrics such as AA and AE have
high CC ranging from 0.8 to 1.0 because the metrics are
computed from similar underlying values such as the num-
ber of GPT-3 calls made.

A negative correlation (r = -0.6) was found between the au-
tonomous writing indicator (RB) and the number of times a
GPT-3 suggestion is accepted as is (AE). Similarly, writers
having high GPT-3 dependence indicators had more sen-
tences completely authored by GPT-3 (r = 0.9) suggesting
their reliance on GPT-3 for writing without making further
edits. On the contrary, writers who had a high number of
sentences completely authored by them preferred to write
their sentences independent of GPT-3 and hence tended to
have high autonomous writing indicators (r = 0.8). The
total number of GPT-3 calls made positively correlated to
both the number of times its suggestion was accepted as is
(r =0.9) and the number of sentences co-authored by GPT-3
and the writer (r = 0.9).
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Table 2: Summary Statistics of CoAuthorViz metrics

Type Metrics (for sample size n=1445) Mean Median Standard Min Max
Deviation

Total number of sentences (SA) 28.962 27 10.388 11 78
Number of sentences in initial prompt (SB) 4.421 4 2.390 0 9

Sentence Number of sentences completely authored by the writer (SC) 16.242 15 9.535 0 64
Metrics Number of sentences completely authored by GPT-3 (SD) 0.685 0 1.886 0 22

Number of sentences co-authored by GPT-3 and writer (SE) 7.613 6 5.953 0 42
Total number of GPT-3 calls made (AA) 12.531 10 9.204 0 65
Number of times GPT-3 suggestion is accepted (AB) 8.857 7 7.424 0 47

API Number of times writer rejected GPT-3 suggestion (AC) 3.673 3 3.530 0 24
Metrics Number of times GPT-3 suggestion is modified (AD) 1.586 1 1.796 0 10

Number of times GPT-3 suggestion is accepted as it is (AE) 7.271 5 7.233 0 47
GPT-3 dependence indicator - Number of sentences 0.021 0 0.054 0 0.611
completely authored by GPT-3 / Total number of sentences (RA)

Ratio Autonomous writing indicator - Number of sentences 0.541 0.564 0.205 0 0.962
Metrics completely authored by writer / Total number of sentences (RB)

Total GPT-3 usage in sentences [(SD+SE)/SA] (RC) 0.285 0.25 0.183 0 0.867
lemma ttr (LTTR) 0.401 0.4 0.054 0.240 0.585
adjacent overlap all sent (AOAS) 0.212 0.210 0.043 0.076 0.389

TAACO adjacent overlap all para (AOAP) 0.256 0.258 0.090 0.0 0.863
Metrics lsa 1 all sent (LSA1AS) 0.309 0.305 0.094 0.094 0.688

lsa 1 all para (LSA1AP) 0.477 0.490 0.171 0.0 0.948
all connective (AP) 0.068 0.067 0.017 0.017 0.131

Table 3: t-test results for TAACO Metrics with alpha value as 0.025 and degree of freedom as 1444.

Metrics Low GPT-3 usage Group High GPT-3 usage Group T-Statistic P-Value
Mean Standard Mean Standard

Deviation Deviation

LTTR 0.406 0.052 0.396 0.056 3.592 3.386 × 10−4

AOAS 0.203 0.040 0.220 0.044 -7.787 1.298 × 10−14

AOAP 0.259 0.084 0.253 0.096 1.360 1.739 × 10−1

LSA1AS 0.307 0.094 0.312 0.093 -1.099 2.716 × 10−1

LSA1AP 0.488 0.161 0.466 0.180 2.432 1.511 × 10−2

AP 0.068 0.016 0.068 0.017 0.472 6.363 × 10−1

5.2 Relation between CoAuthorViz metrics and
writing features

We additionally analysed the final written texts from the
CoAuthor sessions using TAACO to derive indicators of
writing quality from language features [7]. Key indicators
of lexical diversity, lexical overlap, semantic overlap, and
connectedness below were used to derive the metrics, and
include descriptions from TAACO on how the metrics are
calculated:

• Lemma ttr (LTTR) - number of unique lemmas (types)
divided by the number of total running lemmas (to-
kens)

• Adjacent overlap all sent (AOAS) - number of lemma
types that occur at least once in the next sentence

• Adjacent overlap all para (AOAP) - number of lemma
types that occur at least once in the next paragraph

• Lsa 1 all sent (LSA1AS) - Average latent semantic anal-
ysis cosine similarity between all adjacent sentences

• Lsa 1 all para (LSA1AP) - Average latent semantic

analysis cosine similarity between all adjacent para-
graphs

• All connective (AP) - number of all connectives

The above TAACO metrics were used for preliminary analy-
sis of our visualization metrics in relation to writing quality
features since the CoAuthor dataset did not contain a qual-
ity metric for the text outputs from the writing sessions - the
correlation matrix is shown in Figure 4. However, we do not
see a significant correlation between any CoAuthorViz met-
ric and automated writing features extracted from TAACO.

We further split session users into two groups based on the
number of GPT-3 calls initiated to study potential differ-
ences between groups. Sessions with the total number of
GPT-3 calls above or equal to the median value were classi-
fied as belonging to the high GPT-3 usage group and below
median sessions formed the low GPT-3 usage group. We per-
formed a t-test (Findings in Table 3) to compare TAACO
metrics between the high GPT-3 usage group (n = 718) and
the low GPT-3 usage group (n = 728).

Results suggest that there was a significant difference in
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Figure 4: Correlation matrix with statistical significance of
CoAuthorViz and TAACO metrics

Lemma type-token ratio (LTTR) between the high usage
group (M = 0.396, SD = 0.057) and the low usage group (M
= 0.406, SD = 0.053); t(df=1444) = 3.6, p < .005, meaning
that writers who accessed GPT-3 less produced a higher pro-
portion of the text that consisted of content words (nouns,
lexical verbs, adjectives, and adverbs derived from adjec-
tives) indicating higher lexical diversity. An opposite effect
was observed for the TAACO metric Adjacent sentence over-
lap all lemmas (AOAS) between the high usage group (M =
0.221, SD = 0.045) and the low usage group (M = 0.203, SD
= 0.041); t(df=1444) = -7.8, p < .005, suggesting that writ-
ings from the high GPT-3 usage group had higher lexical
overlaps in adjacent sentences leading to more cohesion.

A significant difference was also observed in Lsa cosine sim-
ilarity in adjacent paragraphs (LSA1AP) between the high
usage group (M = 0.467, SD = 0.18) and the low usage group
(M = 0.489, SD = 0.162); t(df=1444) = 2.4, p = .02. Here,
writing from the low GPT-3 usage group had a higher se-
mantic overlap exhibiting high average latent semantic anal-
ysis cosine similarity between all adjacent paragraphs. A
descriptive box plot showing the minimum, maximum, me-
dian, lower, and upper quartiles of the three metrics in the
high and low groups is shown in Figure 5. No significant
difference in group means was noted for the other three met-
rics (AOAP, LSA1AS, and AP). While the findings indicate
effects of high/ low GPT-3 usage in the output writing pro-
duced, higher level features are required in order to draw
stronger links to writing quality, likely using some form of
human assessment in the future.

5.3 Case studies of writer interaction with GPT-
3 for co-authorship

We further demonstrate the use of CoAuthorViz to study in
detail writer interactions with GPT-3 using example writing
sessions. We show three cases from the dataset in Figure 6
showcasing differences in writers’ behaviour when working

Figure 5: Box plots describing differences in TAACO Met-
rics for the high and low GPT-3 usage groups

with GPT-3 suggestions on their writing. Metrics from these
writing sessions are shown in Table 4.

Table 4: Summary table for the writing session shown in 6.

Metrics Case-1 Case-2 Case-3
SA 27 33 36
SB 1 7 4
SC 26 1 6
SD 0 2 22
SE 0 23 4
AA 2 33 30
AB 0 29 26
AC 2 4 4
AD 0 10 0
AE 0 19 26
RA 0.0 0.060 0.611
RB 0.962 0.030 0.166
RC 0.0 0.757 0.722

LTTR 0.383 0.389 0.308
AOAS 0.290 0.186 0.295
AOAP 0.354 0.218 0.0

LSA1AS 0.392 0.409 0.423
LSA1AP 0.532 0.535 0.0

AP 0.077 0.083 0.105
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(a) Case-1:
Fully au-
tonomous
writer

(b) Case-2:
Autonomous
writer with
GPT-3 assis-
tance

(c) Case-
3: GPT-3
dependent
writer

Figure 6: Sample cases of user’s writing sessions demonstrated using CoAuthorViz

5.3.1 Case 1: Fully autonomous writer
The first sample session illustrated in Figure 6a illustrates
an example where the writer is completely autonomous and
decides not to use any GPT-3 suggestions in their writing.
Starting to write from the initial prompt in sentence 1, the
writer makes two GPT-3 calls but rejects its suggestions
and decides to write by themselves thereon. The writer was
perhaps not satisfied with the sentence suggestions offered
by GPT-3 and decided not to get any more suggestions from
it to not waste their time further. Table 4 shows that this
session’s autonomous writing indicator (RB = 0.96) is very
high.

5.3.2 Case 2: Autonomous writer with GPT-3 assis-
tance

The second case shown in Figure 6b shows an example where
the writer incorporates a lot of GPT-3 suggestions in their
writing, but modifies the sentences to suit their writing style.
They start to write following the 7-sentence prompt pro-
vided and frequently get suggestions from GPT-3. In ten
instances, the writer modifies the GPT-3 suggestion pro-
vided (overlapping triangle and square in sentences 11-13,
15, 26, 31-33) and in over 15 instances, they go on to add
their own phrasing in addition to GPT-3 sentence sugges-
tions (Sentences 8-10, 14, 16, 18, 19, 21, 23-30). Even though
the autonomous writing indicator is low (RB = 0.03) for
this session (because it is influenced by the number of sen-
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tences completely authored by the writer), we observe that
throughout the entire writing session, while they get assis-
tance from GPT-3, the writer still demonstrates some au-
tonomy in their writing by adding text on their own or mod-
ifying the GPT-3 suggestion. This is a great example of the
potentially optimal use of machine assistance in combination
with the writer’s own writing and intelligence augmentation
[43]. From Table 4, we observe that LTTR is 0.389, which
is the highest of all three cases - the writing generated with
GPT-3 assistance exhibited more diverse vocabulary [21].

5.3.3 Case 3: GPT-3 dependent writer
The final case illustrated in Figure 6c depicts the case of a
writer who primarily used GPT-3 to create their piece of
writing. Here, the writer starts off by adding sentences of
their own 4 and 5 (following the initial prompt containing 4
sentences), before they become heavily dependent on GPT-3
for suggestions. The GPT-3 dependence indicator (RA) was
0.611 and the autonomous writing indicator (RB) was 0.166,
evidencing that a considerable part of their writing was writ-
ten by GPT-3. However, note that the writer demonstrated
some autonomy by modifying GPT-3 suggestions, likely be-
cause they did not find them suitable (Sentences 18, 21, 31,
and 32) and authored a few sentences themselves (Sentences
17, 21, 22, 31-35). This example demonstrates a writing
style where the writer relied on GPT-3 suggestions repeat-
edly and used the system to its full advantage. The LTTR,
in this case, is the lowest of the three cases (0.308) - there
is less diverse vocabulary in this writing in comparison to
both the autonomous writing by the writer in case 1 and
GPT-assisted writing in case 2.

6. CONCLUSION
The paper introduced a novel approach to studying the co-
authorship behaviour of writers interacting with GPT-3, a
recent artificial intelligence (AI) tool producing auto-generated
content. Keystroke logs from users’ writing sessions in CoAu-
thor [21], where writers used automated text suggestions
generated from GPT-3 as real-time feedback formed the ba-
sis of our analysis. Empirical studies on user interaction
with GPT-3 are limited - this research fills the gap by in-
troducing new methods of analysis and demonstrating di-
verse user behaviour when interacting with generative AI.
The insights are also derived at an interpretable level for
researchers building on keystroke data containing low-level
details such as the character entered, current cursor location,
etc. which is hard to read.

We developed ’CoAuthorViz’, a visualization to represent
interactions between the writer and GPT-3 at a sentence
level - this captured key constructs such as the writer incor-
porating a GPT-3 suggested text as is (GPT-3 suggestion
selection), the writer not incorporating a GPT-3 suggestion
(Empty GPT-3 call), the writer modifying the suggested
text (GPT-3 suggestion modification), and the writer’s own
writing (user text addition). Three different sample cases
of writing exhibiting full autonomy in writing, using GPT-3
for assistance and GPT-3 dependence were shown to demon-
strate the use of CoAuthorViz to study writing behaviours.

We derived additional CoAuthorViz metrics such as a GPT-
3 dependence indicator, an autonomous writing indicator,
and other GPT-3 suggestion incorporation metrics to quan-

tify human and AI authorship. The average number of GPT-
3 calls across the 1445 writing sessions was 12.5, but varied
widely across the sessions (SD = 9.2). Automated sentence
suggestions from GPT-3 were accepted as is 58% of the time
and suggestions were rejected 29.31 % of the time, indica-
tive of diverse writing behaviours with respect to interac-
tion with GPT-3. Statistical analysis on CoAuthorViz met-
rics in relation to overall writing quality indicators derived
from TAACO [7] showed that writers who accessed GPT-
3 less produced writing with higher lexical density (more
content words) and higher semantic overlap (higher average
latent semantic analysis cosine similarity between all adja-
cent paragraphs). While the results showed the effects of
high/ low GPT-3 usage in the output writing in terms of se-
lected linguistic features, higher-level features are required
to draw stronger links to writing quality. This can be done
in the future by manually assessing the writing produced by
the two groups of writers using a standard rubric for writing
assessment.

From the three sample cases illustrated, we observed varied
levels of autonomy exhibited by the writer when incorporat-
ing GPT-3 suggestions in their writing. These insights are
useful for writing researchers to understand cognitive writ-
ing processes involved in human-AI partnerships from rich
and nuanced log data. This could be the first step towards
developing visual analytics that might be intelligible to a
trained instructor grading the writing, or the basis for auto-
mated textual feedback to the instructor and/or student to
improve their writing practices. We aim to further examine
CoAuthorViz and its metrics for investigating comparable
traits across different groups of writers and provide feed-
back for effective engagement. By studying effective user
behaviours for enhanced human-AI partnership in writing,
we can better understand how intelligence augmentation can
be achieved in practice through critical engagement [43] [35].

The general consensus is that a partnership between the ma-
chine and the human is desirable for learning [28], but we
need to understand and define what an optimal partnership
is when working with generative AI for intelligence augmen-
tation. There still remain questions on what constitutes de-
sirable behaviours when it comes to interaction with GPT-3
- Is more autonomy (in terms of self-writing and edits to
GPT-3) considered more optimal? Is it the one producing
a better piece of writing irrespective of the repetitive use
of GPT-3 and dependence? Do writers require foundational
knowledge and skills to use AI tools to critique and use them
appropriately? Do AI tools supplant critical processes and
thinking that the learner ought to develop? These questions
need further investigation.

Issues related to academic integrity also need due consid-
eration. How one should attribute GPT-3 usage when co-
authoring pieces of writing, and to what level is GPT-3 us-
age acceptable are open questions. In addition, the question
of fairness remains as students who get access to better AI
tools might be able to produce better writing [28] - acces-
sibility issues may be elevated when these tools start to be
distributed by companies for commercial profit at the end
of public evaluation periods. With continuing advances in
the intersection of technology, research, and practice, AI-
augmented writing should enrich human knowledge for all.
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[40] Å. Wengelin, M. Torrance, K. Holmqvist, S. Simpson,
D. Galbraith, V. Johansson, and R. Johansson.
Combined eyetracking and keystroke-logging methods
for studying cognitive processes in text production.
Behavior research methods, 41(2):337–351, 2009.

[41] J. Wilson and R. D. Roscoe. Automated writing
evaluation and feedback: Multiple metrics of efficacy.
Journal of Educational Computing Research,
58(1):87–125, 2020.

[42] A. Yuan, A. Coenen, E. Reif, and D. Ippolito.
Wordcraft: Story writing with large language models.
In 27th International Conference on Intelligent User
Interfaces, IUI ’22, page 841–852, New York, NY,
USA, 2022. Association for Computing Machinery.

[43] L. Zhou, S. Paul, H. Demirkan, L. Yuan, J. Spohrer,
M. Zhou, and J. Basu. Intelligence augmentation:
towards building human-machine symbiotic
relationship. AIS Transactions on Human-Computer
Interaction, 13(2):243–264, 2021.

193



To speak or not to speak, and what to speak, when doing
task actions collaboratively∗

Jauwairia Nasir†
University of Augsburg

jauwairia.nasir@uni-a.de

Aditi Kothiyal†
Indian Institute of Technology

Gandhinagar
aditi.kothiyal@iitgn.ac.in

Haoyu Sheng
École polytechnique fédérale

de Lausanne
haoyu.sheng@epfl.ch

Pierre Dillenbourg
École polytechnique fédérale

de Lausanne
pierre.dillenbourg@epfl.ch

ABSTRACT
Transactive discussion during collaborative learning is cru-
cial for building on each other’s reasoning and developing
problem solving strategies. In a tabletop collaborative learn-
ing activity, student actions on the interface can drive their
thinking and be used to ground discussions, thus affecting
their problem-solving performance and learning. However,
it is not clear how the interplay of actions and discussions,
for instance, how students performing actions or pausing ac-
tions while discussing, is related to their learning. In this
paper, we seek to understand how the transactivity of ac-
tions and discussions is associated with learning. Specif-
ically, we ask what is the relationship between discussion
and actions, and how it is different between those who learn
(gainers) and those who do not (non-gainers). We present a
combined differential sequence mining and content analysis
approach to examine this relationship, which we applied on
the data from 32 teams collaborating on a problem designed
to help them learn concepts of minimum spanning trees. We
found that discussion and action occur concurrently more
frequently among gainers than non-gainers. Further we find
that gainers tend to do more reflective actions along with
discussion, such as looking at their previous solutions, than
non-gainers. Finally, gainers discussion consists more of goal
clarification, reflection on past solutions and agreement on
future actions than non-gainers, who do not share their ideas
and cannot agree on next steps. Thus this approach helps
us identify how the interplay of actions and discussion could
lead to learning, and the findings offer guidelines to teachers
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first authorship. A majority of the work was conducted
while the authors were employed at CHILI Lab, EPFL∗(Does NOT produce the permission block, copyright infor-
mation nor page numbering). For use with edm article.cls.

and instructional designers regarding indicators of produc-
tive collaborative learning, and when and how, they should
intervene to improve learning. Concretely, the results sug-
gest that teachers should support elaborative, reflective and
planning discussions along with reflective actions.

Keywords
transactivity, sequence mining, content analysis, collabora-
tive learning

1. INTRODUCTION
When students collaborate to learn from computer supported
collaborative learning (CSCL) environments, their learning
depends not only on the quality of their interaction with
each other, but also with the learning activity [5]. In other
words, students need to align both in terms of their activities
(such as problem-solving steps or co-writing) and their dis-
cussion (of strategies and knowledge) [23]. Specifically, in
CSCL environments that involve problem-solving to build
conceptual understanding, for the activity to be effective
for learning, team members need to develop a joint problem
space and construct knowledge through the process of expla-
nation, negotiation and mutual regulation [24, 5]. To achieve
this, their actions must either move them towards the solu-
tion, or provide them some information that generates po-
tential and motivates future problem-solving actions [25].
Actions can thus help ground collaboration [2], if they are
followed with the right kind of discussion, i.e., students dis-
cussions should then build on and leverage this information
or potential to further understand the problem, decide on
next steps and construct meaning from the problem-solving
experience [24, 6]. Thus, discussion and actions together
play critical roles in problem-solving CSCL environments,
as it is through both these means that students obtain and
share task-related information to build a common ground,
develop problem-solving or learning strategies and regulate
their learning. For instance, as described in [4] children’s
body movements and task-related speech evolve together
and serve the purposes of communication and co-ordination,
and as cognitive tools for knowledge construction. Similarly,
research has also shown that acting together on task-related
objects accompanied with speech was related to effective
collaboration [15].
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Within the collaborative learning research space, transactiv-
ity or student’s discussion that builds on each other’s reason-
ing by interpreting team member’s statements, asking ques-
tions, extending, critiquing and integrating has been used
as a metric to evaluate the effectiveness of collaboration [29,
28]. We argue that in synchronous problem-solving CSCL
environments, the notion of transactivity should be extended
to discussion and actions together, i.e., actions that build
on students’ discussion, and discussions that build on ac-
tions. For instance, students should explicate the informa-
tion gained from an action such that team members can
then discuss about what this suggests for the next problem-
solving steps [6]. However, not all actions need be accompa-
nied with discussions. For instance, students may plan and
perform a set of actions, or they may perform and reflect on
each action [18]. The key question then is, should teams dis-
cuss while performing actions, i.e., building on each other’s
ideas ‘on the go’ or should they ‘stop and pause’ their ac-
tions to discuss their ideas, or both? Further, how are each
of these behaviours related to learning? Finally, which kind
of discussion accompanying actions is productive? The an-
swers of these questions are necessary to support teachers in
intervening at the right time to guide students actions and
discussions, or in the design of feedback built into CSCL
environments.

Previous research that analysed students’ discussion and ac-
tions together in an attempt to identify joint discussion and
action indicators of collaboration followed one of two ap-
proaches. The first one was considering whether actions and
discussion occur together, but not the nature of the actions
and the discussion that occur together [15]. The other ap-
proach analysed the synchronicity of actions and the trans-
activity of the discussions separately [23]. In this work, we
bring together these two approaches and propose a combined
differential sequence mining and qualitative content analy-
sis approach to examine the transactivity of discussion and
actions. Specifically, we ask the following questions:

• RQ1: What is the relationship between the discussion
and actions, and how is this relationship different be-
tween gainers and non-gainers?

• RQ2: What is the qualitative nature of verbal interac-
tions that happen along with a specific action of inter-
est?

We begin with the data of 32 teams working on a collab-
orative robot-mediated problem-solving activity where ac-
tions refer to any interaction with the activity interface and
discussions refer to quantity and quality of communication
between the two team members. To answer RQ1 we per-
formed differential sequence mining on the combined speech
and action sequence to identify the relationship between ac-
tions and speech, which actions are accompanied by speech,
and how this differs between gainers and non-gainers. Next,
to answer RQ2 we perform content analysis of the discus-
sion occurring around one particular action of interest and
examine the nature of discussion and how it varies between
gainers and non-gainers. Our two part approach helps us
illustrate the notion of action-discussion transactivity that
is conducive to learning and we find that reflective actions

accompanied with elaboration, reflection, negotiation and
planning regarding next steps, are related with learning.
The main contributions of this work are the notion of action-
discussion transactivity and a methodology to examine the
productivity of collaborative learning with this lens.

2. RELATED WORK
Research on collaborative learning has shown the key role
of verbal interaction in advancing thinking and learning [26,
3]. Groups that are successful in problem-solving usually
discuss and accept the correct proposal and their discus-
sions are more coherent [3]. Conversation is the process by
which students build and maintain a joint problem space
[24]. Transactive verbal interaction, which is characterized
by partner’s building on each other’s reasoning, can improve
learning as peers can generate more complex understanding
of the problem quickly through such verbal interactions [26].
When they generate explanations during collaboration peers
construct shared representations and this may be one of the
mechanisms that results in knowledge co-construction [12].
Actions done within a CSCL environment can also create
shared representations, which can be then referred to during
the discussion and thus improve the quality of collaboration
[6, 2].

In this direction, research identified productive action pat-
terns during collaborative learning with an interactive table-
top by analysing action logs with and without verbal inter-
action [7, 15, 23, 8]. [8] found that the number of touches
allowed (single or multiple) on the table did not affect the
level or symmetry of physical or verbal participation, but
the nature of the discussion, which was more task-focussed
in the multi-touch condition. [15] found that while the level
or symmetry of participation of each team member in terms
of action and speech did not relate to collaboration qual-
ity, certain sequences of actions and speech were related to
the quality of collaboration. Concretely, more collaborative
groups have more patterns of verbal discussion accompanied
with actions, less concurrency of actions and less parallel
actions. On the other hand, less collaborative groups had
actions with limited verbal interactions, high concurrency
and parallelism. This suggests that students in less collab-
orative groups were not as aware of their peers actions and
did not discuss about the actions. On the other hand, in a
chat-based collaborative learning environment, researchers
found that neither synchrony of students actions nor trans-
activity of students’ chats was related to performance on the
task, but other factors such as group dynamics and prior
knowledge had a more crucial role [23]. Thus, the role of
symmetry, synchrony and transactivity of actions and dis-
cussion during collaborative learning appears to depend on
the context.

In CSCL environments, several metrics of student dialogue
(speech or chats) have been identified which are indicative
of good collaboration. These include quantity (eg, number
and length of utterances, and talk time) and heterogene-
ity and transactivity of verbal participation (eg, turn taking
and building on each other’s reasoning), along with features
of speech such as voice inflection [29, 27]. Going further, re-
search employed a combination of audio and action features
to measure the quality of collaboration and collaborative
learning and found that classifiers using a combination of
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audio and action features always perform better than those
classifiers using audio or actions alone [27, 22]. This suggests
that combining conversation and action metrics together can
offer a better understanding of the quality of collaboration.
In this work, we build on this line of research by specifi-
cally examining the role of action-discussion transactivity in
collaborative learning, i.e, how actions and discussions can
build on each other to lead to learning.

3. METHODS
3.1 Learning Activity and Dataset
In order to understand action-discussion transactivity we
propose an approach which combines differential sequence
mining and qualitative content analysis, and choosing one
type of action - reflective actions - as an example, we show
how our analysis can identify what type of actions and dis-
cussion occurring together can lead to learning. We use
the speech and log action data from a multimodal temporal
dataset [17], and log actions and transcripts from its corre-
sponding dialogue corpus [20] collected from a robot medi-
ated collaborative learning activity called JUSThink [19]. In
JUSThink, two children play as a team to solve a minimum
spanning tree problem where the goal is to build railway
tracks to connect gold mines on a fictional Swiss map with a
minimum cost, as shown in Figure 1. The corpus comprises
data from 64 children aged 9 to 12 years, grouped into 32
teams, from international schools in Switzerland. The chil-
dren were familiar with collaborative activities and robots
as part of school activities, but did not have prior experi-
ence with QTrobot. The study was not part of a regular
classroom activity. Two different views are provided in this
activity, namely figurative and abstract as shown in Figure
2, and each child in a team only has one view at a time.
In the figurative view, one can add or remove tracks while
in the abstract view, one can see the cost associated with
building a track and review the team’s previous solutions.
Thus at a time, one child can do solution building actions
while the other can do reflective actions, so they have to
discuss with each other to plan the next steps. The views
of the team members are swapped every two edits. Hence,
with these collaborative script choices such as partial infor-
mation and role switching, only one member can perform
an action at a time, therefore every action is a team action.
Teams are allowed to submit solutions multiple times until
the time limit runs out. They can also check descriptions of
activity functionality and rules on the help page, which has
been elaborated for them by the robot before the activity
starts. More details of the activity can be found in [19].

3.2 Feature Selection and Encoding
The original multimodal temporal dataset consists of 56 fea-
tures including log features, audio features, video features
etc. Our analysis only focuses on the log features and speech
features. Therefore, we selected 5 features from the multi-
modal temporal dataset including T add, T remove, T hist,
T speech, T overlap over speech. With 32 teams, we have
a total of 4676 time windows in our analysis where each
time window corresponds to 10 seconds of activity. For each
time window, we have three descriptive features additionally,
which are team number, time in secs, and window number.
The log and speech features as well as the three descriptive
features are shown in Table 1.

Figure 1: The experimental set up of JUSThink

Table 1: Multi-modal Features
Feature Meaning
team The team to which the window

belongs to
time in secs Time in seconds until that window
window The window number
T add The number of times a team

added an edge on the map
T remove The number of times a team

removed an edge from the map
T hist The number of times a team

opened the sub-window with history
of their previous solutions

T speech The average of the two team
member’s speech activity in
that window/(until that window)

T overlap over speech The average percentage of time the
speech of the team members overlaps
in that window/(until that window).

We begin by encoding the log and speech features in each
10s time window so that we can get a sequence representing
the action+speech of each student in 10s increments. In the
data set, the choice of 10 seconds as the unit of analysis is
set considering the need to balance between too few and too
many robot interventions. Before diving into the encoding
details, we briefly elaborate on the terminology of gainers
and non-gainers that we will be using from here onwards. In
previous work based on this study [17], authors clustered the
teams in two ways, once on the multimodal behaviors and
once on task performance and learning gains (calculated as
the normalized difference between pre and post test scores).
Then, comparing the clusters using a similarity metric, they
found higher learning gains associated with two sets of mul-
timodal behaviors while lower learning gains were associated
with another set of behaviors. They named the former set
of 26 teams as gainers (those who gain knowledge) and the
latter 6 teams as non-gainers (those who do not gain knowl-
edge). For speech, it was found in [18] that speech behaviors
are different for gainers and non-gainers, in terms of both
quantity of speech and overlapping speech. So we define
three levels - low, medium and high level of speech/speech
overlap in each window on the basis of low and high thresh-
olds of speech/speech overlap defined by considering the av-
erage of the 25th (for the low thresholds) and the 75th (for
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Figure 2: The interface for JUSThink where the two screens,
separated by a barrier, show two different views: a figurative
view (above) that allows for interactions such as additions,
deletions of rail tracks, and an abstract view (below) that
showcases the associated costs.

the high thresholds) percentiles across the gainers and non-
gainers participants.Then we encode T speech or
T overlap over speech in each window by using the low and
high thresholds as shown in Table 2.

Table 2: Definition of Speech/Speech Overlap levels where x
is the continuous value of Speech/Speech Overlap in a time
window

speech/ condition
speech overlap level
LS/LSo x <= low threshold
MS/MSo low threshold <x <= high threshold
HS/HSo x >high threshold

For action logs, we only consider add edges (T add), remove
edges (T remove) and click solution history button (T hist)
within each time window as these are the meaningful ac-
tions that have been found to contribute to learning in this
context[18]. We identify which of the meaningful actions
happen in a time window and if an action happened at least
once in a time window, it is encoded as being present. Then
we have eight action combinations because each of the three
actions can be either present or absent. Finally there are 24
combinations of action + speech in each time window (com-
binations of three levels of speech and eight action combina-
tions) and we encode those combinations to 24 numbers as
shown in the following Table 3. Note that the same encod-
ing process is also applied to combinations of speech overlap
levels and meaningful actions.

After encoding features in each time window of each team,
we obtained two datasets of encoded features - one is en-

coded combinations of speech levels and actions, another is
encoded combination of speech overlap levels and actions.
Each dataset contains 32 teams’ sequences of activities in
ten-second time windows and we further separate each dataset
into gainer sequences and non-gainer sequences for analysis.

3.3 Differential Sequence Mining
To answer our RQ1 by differentiating action+ speech se-
quences between gainers and non-gainers, we applied differ-
ential sequence mining algorithm (DSM)[13].DSM algorithm
mainly uses the following two sequential pattern mining fre-
quency measures.

1. sequence support (s-support): For a set of sequences,
the number of sequences in which the pattern occurs,
regardless of how frequently it occurs within each se-
quence.

2. instance support ( i-support): For a given sequence, the
number of times the pattern occurs, without overlap,
in this sequence.

The algorithm firstly finds all patterns that meet the prede-
fined s-support threshold. Then the algorithm selects only
those patterns that have statistically significantly different
i-support values between the two groups. Concretely, the
algorithm filters frequent patterns based on the p-value of
a t-test comparing the i-support values of patterns in each
sequence, between the groups to find patterns whose p-value
is less than 0.05. Finally, the algorithm compares the mean
i-support value for each pattern between groups to identify
the patterns that occur more often in one group than the
other.

Before applying the DSM, we separated the two datasets we
get after feature selection and encoding into four datasets.
For each of the original two datasets as described in the pre-
vious sub-section, we divide the dataset (which contain 32
teams in total) into a sub-dataset that contained sequences
of 26 gainer teams and another sub-dataset which contained
sequences of 6 non-gainer teams.

Firstly, we set the minimum threshold of s-support to 0.6
and consider patterns that occur in at least 60% of sequences
as s-frequent patterns within a group. We employ a simple
sequential mining algorithm SPAMc [9] to find frequent pat-
terns for both gainers and non-gainers with the LASAT tool
[16]. Then we calculate the i-support of each frequent pat-
tern in each team sequence in both gainers and non-gainers.
For each frequent pattern, we generate a vector that con-
tains i-support for each team sequence. Then we apply
Welch’s t-test with 0.05 p-value threshold to filter frequent
patterns that are significantly different between gainers and
non-gainers. After the filtering, we compare the mean i-
support value for each frequent pattern between gainers and
non-gainers so that we could compare patterns that occur
more often in one group than the other. Finally, we get four
categories of frequent patterns - two categories in which the
patterns are s-frequent in only one group, and two categories
in which the patterns are frequent in both groups but oc-
curred more often in one group than the other.
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Table 3: Encoding at specific level

Speech Level Code Speech Overlap Level Code Meaning
LS Add LSo Add Low level of speech(S)/speech overlap (So), at least add one edge
MS Add MSo Add Medium level of speech(S)/speech overlap (So), at least add one edge
HS Add HSo Add High level of speech(S)/speech overlap (So), at least add one edge

LS Remove LSo Remove Low level of speech(S)/speech overlap (So), at least remove one edge
MS Remove MSo Remove Medium level of speech(S)/speech overlap (So), at least remove one edge
HS Remove HSo Remove High level of speech(S)/speech overlap (So), at least remove one edge

LS Hist LSo Hist
Low level of speech(S)/speech overlap (So)
and at least click history button one time

MS Hist MSo Hist
Medium level of speech(S)/speech overlap (So)
and at least click history button one time

HS Hist HSo Hist
High level of speech(S)/speech overlap (So)
and at least click history button one time

LS Add Remove LSo Add Remove
Low level of speech(S)/speech overlap (So), at least add one edge,
at least remove one edge

MS Add Remove MSo Add Remove
Medium level of speech(S)/speech overlap (So), at least add one edge,
at least remove one edge

HS Add Remove HSo Add Remove
High level of speech(S)/speech overlap (So),at least add one edge,
at least remove one edge

LS Add Remove Hist LSo Add Remove Hist
Low level of speech(S)/speech overlap (So), at least add one edge,
at least remove one edge and at least click history button one time

MS Add Remove Hist MSo Add Remove Hist
Medium level of speech(S)/speech overlap (So),at least add one edge,
at least remove one edge and at least click history button one time

HS Add Remove Hist HSo Add Remove Hist
High level of speech(S)/speech overlap (So), at least add one edge,
at least remove one edge and at least click history button one time

LS Remove Hist LSo Remove Hist
Low level of speech(S)/speech overlap (So), at least remove one edge
and at least click history button one time

MS Remove Hist MSo Remove Hist
Medium level of speech(S)/speech overlap (So), at least remove one edge
and at least click history button one time

HS Remove Hist HSo Remove Hist
High level of speech(S)/speech overlap (So), at least remove one edge
and at least click history button one time

LS Add Hist LSo Add Hist
Low level of speech(S)/speech overlap (So), at least add one edge
and at least click history button one time

MS Add Hist MSo Add Hist
Medium level of speech(S)/speech overlap (So), at least add one edge
and at least click history button one time

HS Add Hist HSo Add Hist
High level of speech(S)/speech overlap (So), at least add one edge
and at least click history button one time

LS NA LSo NA Low level of speech(S)/speech overlap (So) and no useful action happens
MS NA MSo NA Medium level of speech(S)/speech overlap (So) and no useful action happens
HS NA HSo NA High level of speech(S)/speech overlap (So) and no useful action happens

3.4 Identifying relevant episodes of interest
To gain more insights into the transactivity of speech and log
actions, we need to begin by identifying“patterns of interest”
within the frequent patterns. From literature and previous
research on the same dataset[18], we know that reflective
speech and actions differentiate between gainers and non-
gainers. Therefore, we are interested in reflection related
actions (particularly clicking history button) and want to
find what kind of verbal interaction happened along with it.
So we consider frequent patterns which have speech along
with open history action as episodes of interest for further
qualitative analysis.

To find the exact content of dialogues in the relevant episodes,
we matched the time window of the relevant episodes of
each team to their transcript datasets in JUSThink Dialogue
and Actions Corpus[20]. Due to the imprecision in match-
ing time windows and the fact that it is difficult to extract

meaningful information from very short segments (less than
60 seconds) of the dialogue, we have also included the con-
versation within 20 seconds before and after the matching
time window.

3.5 Content Analysis on Dialogues
To answer RQ2 and examine the qualitative nature of dia-
logue during the episodes of interest, we decided to perform
content analysis [14] on the selected dialogues. Content anal-
ysis is a qualitative analysis approach to code a corpus of
data according to certain existing categories with the goal
of doing statistical analysis on the numbers and identifying
certain trends or providing evidence for/against a hypothe-
sis. To look deeper into reflection behaviours, we focus on
the following three aspects of problem-solving discussions
and code the dialogue for these aspects:
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1. What do teams observe from past actions?

2. What decisions do they take about future actions on
the basis of these observations?

3. Do they reach any agreement on the future actions,
and if yes, how?

In order to code their negotiation and agreement on their
future actions, we applied the “refine” strategy in the nego-
tiation framework[1] to analyse all dialogues. The “refine”
strategy means that an agent decides to make another offer
that somehow “refines”, “builds” or “modifies” the original
offer proposed by another agent. In this strategy, the initi-
ating move includes an offer which is proposed by a speaker
for agreement. The reactive moves include acceptance, rat-
ification and rejection. Ratification refers to an acceptance
which follows an acceptance by the other. Additionally, af-
ter an initial coding of the data, we defined additional cate-
gories in the negotiation framework, i.e., “goal clarification”
and “sharing understanding” because they are relevant for
this collaborative educational setting. The goal of this ac-
tivity is to build tracks with the minimum cost – 22 francs.
Team members must clarify this goal and share their under-
standing of the problem with each other due to the fact that
they have two complementary views of the problem.

To illustrate the content analysis we conduct, we show some
representative dialogues from both gainers and non-gainers
in Table 12. For gainers’ dialogue with index 1, team 8
set a wrong goal that they need to achieve the cost of 34
after the submission since they do not seem to understand
the meaning of the word minimum. They make a decision
to start in the middle and go around it as future problem
solving steps. Then team 8 correct their previous wrong goal
clarification in the dialogue with index 4 and decide to find
the route that costs a lot as they perhaps want to remove
the route with high cost.

4. RESULTS
4.1 RQ1: What is the relationship between the discussion

and actions, and how is this relationship different be-

tween gainers and non-gainers??
The results of the DSM between the gainers and non-gainers
action and speech sequences show that there are 12 patterns
that are only frequent among gainers as shown in Table 4
and 17 patterns that are only frequent among non-gainers
as shown in Table 5. Four patterns are frequent among both
gainers and non-gainers, but occur more often among gainers
as shown in Table 6 and five patterns are frequent among
both gainers and non-gainers, but occur more often among
non-gainers as shown in Table 7. Note that in the interest
of the space, where there are several patterns we report only
the top-10 patterns here and the full list is available in the
appendix. In the following we elaborate on the obtained
patterns; while there were several interesting patterns, we
focus only on patterns which contain speech and actions
together as our interest is on action-discussion transactivity.

As shown in Table 4, 92% (11/12) frequent patterns of gain-
ers start with high speech, and 45% (5/11) of them are ac-
tions of adding edges with high speech level. The mean

i-support of HS Hist (clicking on the review history button
with high level of speech) of gainers is 4.00 which is almost
6 times as much as that of non-gainers (0.67). This suggests
that compared with non-gainers, gainers tend to review his-
tory along with long periods of discussion more frequently.
Further, the mean i-support of HS Remove (remove an edge
with high levels of speech) of gainers is 3.54 which is more
than twice that of non-gainers (1.50). This indicates that
gainers remove an edge (a reflection action) along with high
discussion more frequently than non-gainers.

For speech level related patterns that are frequent only among
non-gainers as shown in Table 5 or more frequent among
non-gainers (Table 7), barring 2 patterns in all the other
patterns either the action of adding an edge or no action
happens along with low level of speech. This suggests that
compared with gainers, non-gainers tend to add edges more
frequently and don’t do as many reflection related actions
(click review history button and remove edge) frequently,
and that their actions are accompanied by low/medium lev-
els of speech.

For the DSM of speech overlap level sequences, there are
16 patterns that are only frequent among gainers (Table 8)
and 25 patterns that are only frequent among non-gainers
(Table 9). Besides, seven patterns are frequent among both
gainers and non-gainers, but occur more often among gainers
as shown in Table 10 and four patterns are frequent among
both gainers and non-gainers, but occur more often among
non-gainers as shown in Table 11.

From the patterns that are only frequent among gainers (Ta-
ble 8), we see that the mean i-support of the pattern high
level of speech overlap while clicking review history but-
ton (HSo Hist) among gainers (4.08) is more than twice the
mean i-support among non-gainers (1.5). This pattern indi-
cates that gainers have high level of speech overlap (inter-
jecting speech) with the action of clicking the review history
button. High level of speech overlap along with removing
an edge (HSo Remove) is also frequent only among gainers.
This indicates that gainers more frequently have high level
of overlapping speech while doing reflective actions such as
reviewing history or removing an edge.

There is however one frequent pattern with reflective be-
haviours seen only among non-gainers in Table 15: medium
level of speech overlap with clicking review history button,
followed by low level of speech overlap without any meaning-
ful action ([MSo Hist, LSo NA]). Compared with the pattern
[HSo Hist, HSo NA] (see Table 14) that is only frequent
among gainers, the difference is the level of speech over-
lap. We may infer that because non-gainers communicate
less when they click the review history button, they perhaps
take away less information from the history (reflection) than
gainers and we examine this in depth in the next section.

To summarize the above findings, gainers perform more re-
flection related actions (review history, remove edges) along
with higher level of speech/speech overlap compared with
non-gainers. Therefore, gainers reflected more via discus-
sion and improved their solutions based on previous solu-
tions continuously.
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Table 4: Patterns related to speech level and meaningful actions frequent only in gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support

[’HS NA’, ’HS NA’] 0.003 9.96 1.67 8.3
[’HS Add’, ’HS Add’] 3.4E-04 5.69 0.83 4.86
[’HS NA’, ’HS Add’] 1.960E-04 5.19 0.5 4.69
[’HS Add’, ’HS NA’] 1.6E-04 4.39 0.67 3.72

[’HS NA’, ’HS NA’, ’HS NA’] 0.017 4.0 0.67 3.3
[’HS Hist’] 3.4E-03 4.0 0.67 3.3

[’HS Remove’] 0.048 3.54 1.5 2.03
[’HS Add’, ’MS Add’] 1.7E-04 3.23 0.67 2.56
[’MS Add’, ’HS Add’] 1.7E-03 3.1 0.67 2.41

[’HS NA’, ’HS NA’, ’MS NA’] 8.5E-03 1.73 0.33 1.4
[’HS Add Hist’] 0.028 1.69 0.5 1.19

[’HS Add’, ’HS Add’, ’MS Add’] 7.7E-05 0.96 0.0 0.96

Table 5: Top 10 patterns related to speech level and meaningful action frequent only in non-gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’LS Add’, ’LS NA’] 5.441E-03 0.92 5.17 -4.25
[’LS Add’, ’LS Add’] 1.173E-03 1.8 5.0 -3.2
[’LS NA’, ’LS Add’] 1.341E-02 1.0 4.17 -3.17

[’LS Add’, ’LS NA’, ’LS NA’] 4.124E-02 0.19 2.5 -2.31
[’LS NA’, ’LS NA’, ’MS NA’] 2.759E-02 0.46 2.33 -1.87

[’LS Add’, ’LS Add’, ’LS Add’] 9.626E-03 0.62 2.17 -1.55
[’LS NA’, ’MS Add’] 1.513E-02 0.73 2.0 -1.27

[’LS NA’, ’LS NA’, ’LS Add’] 2.554E-02 0.35 1.83 -1.48
[’LS NA’, ’LS Add’, ’LS NA’] 3.035E-02 0.23 1.5 -1.27

[’LS NA’, ’LS NA’, ’LS NA’, ’LS Add’] 1.418E-02 0.27 1.5 -1.23

4.1.1 Discussions while performing actions or when
pausing actions

We are specifically interested in whether actions are per-
formed with speech or whether actions are paused during
speech and the difference between gainers and non-gainers
in this regard. So, we calculate the percentage of no useful
action (NA) happening among frequent patterns in each cat-
egory we get from DSM. For speech level related patterns,
38.36% of patterns that are only frequent among gainers
do not have any meaningful action (NA) and 30.00% that
are more frequent among gainers do not have any useful
action (NA). On the other hand, 57.28% of patterns that
are only frequent among non-gainers are without any useful
action (NA) and 61.54% that are more frequent among non-
gainers are without any useful action (NA). For speech over-
lap level related patterns, 33.62% of patterns that are only
frequent among gainers do not have any useful action (NA)
and 36.00% that are more frequent among gainers do not
have any useful action (NA). While 54.24% of patterns that
are only frequent among non-gainers are without any use-
ful action (NA) and 57.89% that are more frequent among
non-gainers are without any useful action (NA). These re-
sults indicate that speech and action occuring concurrently
is more frequent among gainers than non-gainers.

4.2 RQ2: What is qualitative nature of speech that occurs

along with actions of interest?

4.2.1 Identifying relevant episodes of interests
In [18], it was suggested that 1) speech overlap was one of
behaviours which discriminated gainers from non-gainers in

this context 2) students dialogue during episodes of speech
overlap helped them build an understanding towards a so-
lution and 3) gainers had more reflective actions than non-
gainers. Therefore to explore the difference in the nature
of the speech that occurs with actions, we choose reflec-
tive actions (specifically, reviewing history) as our action of
interest. In our analysis above, we have identified some fre-
quent, history related patterns that can serve as the relevant
episodes of interest to perform the content analysis. Among
those patterns, we pick [MSo Hist, LSo NA] which is only
frequent among non-gainers and [HSo Hist, HSo NA] which
is only frequent among gainers as the relevant episodes of
interest for non-gainers and gainers, respectively (see ap-
pendix). In the current analysis, we focus on specific in-
stances of when such speech overlap behaviors occur in con-
junction with a action of reviewing history. The aforemen-
tioned two frequent patterns have the same time window
length and similar actions but with different levels of speech
overlap. An in-depth analysis of the content of dialogues
happening during and around those episodes can help us
better understand reflection behaviours of gainers and non-
gainers, and any difference between them.

4.2.2 Content Analysis of Dialogues
We only have dialogue transcripts for a subset of teams
(10) in JUSThink Dialogue and Actions Corpus[20]. Af-
ter matching transcripts with relevant episodes, we get 13
dialogues from four gainer teams (teams 7, 8 , 9, and 47)
and 4 dialogues from two non-gainer teams (teams 18, 20).
Out of these 17 dialogues, 4 dialogues (24%) were analysed
together by the first three authors of the paper until there
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Table 6: Frequent patterns related to speech level and exact meaningful action among both groups, but occurring more often in
gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’HS NA’] 4.858E-03 2.9 1.1 1.8
[’HS Add’] 1.475E-06 20 4.5 15.5

[’HS Add Remove’] 1.678E-02 3.5 1.17 2.33
[’MS NA’, ’HS Add’] 1.138E-02 2.1 0.8 1.3

Table 7: Frequent patterns related to speech level and exact meaningful action among both groups, but occurring more often in
non-gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’LS NA’] 1.735E-02 10.15 36.50 -26.35
[’LS Add’] 4.617E-03 6.69 17.67 -10.98

[’LS NA’, ’LS NA’] 4.460E-02 2.77 16.17 -13.4
[’MS Hist’] 1.393E-02 3.19 5.33 -2.14

[’MS Hist’, ’MS NA’] 7.960E-03 0.92 2.17 -1.25

was complete agreement on the coding scheme. After these
the remaining dialogues were analysed by one of the three
researchers.

The codes for two exemplar gainer and non-gainer team di-
alogues are shown in Table 12. We began the analysis by
summarizing the content of the dialogue. This was followed
by coding for the negotiation mechanisms based on Baker’s
model of negotiation [1]. Finally, we coded for specific in-
stances of reflection on past actions, planning for future ac-
tions and agreement because it is known that these shared
regulation processes are necessary for collaborative problem-
solving and learning [10].

The difference between the gainer and non-gainer teams is
seen from their dialogues in Table 12. For instance, from
the dialogues of non-gainer team 18 we see that each team
member talks less compared with gainer team’s dialogues.
In dialogue with index 0, team 18 compares their previous
solution with the current solution, but only speaker A per-
forms some reflection and no one proposes any further steps
to solve the problem. In the dialogue with index 1, team
18 discusses the result they get from their submission and
decide to start over directly. Speaker A is still the only one
who proposes ideas and B just follows A’s requests. Further
speaker A does not give any reason why he/she proposes
those routes.

On the other hand in gainer team 8, two team members
talk about their ideas actively. They always reflect on the
previously submitted solution and clearly state a current
problem solving strategy. For non-gainer team 18, they do
not share their ideas as only one team member talks about
his/her idea, and they reflect minimally on their previous
solution. Compared with gainer team 8, non-gainer team 18
does not specify any further step to take in any episode.

Apart from these four representative dialogues, we conducted
content analysis on all the available dialogues around rele-
vant episodes for gainers (13 in total) and for non-gainers
(4 in total). We found that for gainers’ dialogues around
relevant episodes, 58.3% (7/12) of them contain goal clari-
fications. Apart from dialogues around episodes 10 and 11,

all the other dialogues -83.3% (10/12) dialogues - show some
reflections from the past solutions. 91.7% (11/12) dialogues
include making some decisions to take further steps based on
past solutions. Offer-Acceptance happens more than twice
in nearly half (5/12) of the dialogues.

In contrast, 25% (1/4) non-gainers’ dialogues include goal
clarifications. Only one non-gainer team takes some reflec-
tions from the previous solution and it is a wrong reflec-
tion. Only half of the dialogues contain decisions to take
some steps for the future. There is no episode where offer-
acceptance happens more than twice among non-gainers.

Our results are limited because of a skew in terms of much
fewer numbers of non-gainer team dialogues than gainer
team dialogues. Still, to summarize the findings of our con-
tent analysis, we note that gainers on average have more
productive communication along with actions, because ap-
proximately half of their dialogues reached more than two
agreements within 60 seconds as compared to none of the
non-gainer dialogues. Gainers also tend to reflect more on
past solutions and make timely decisions for future actions
as compared to non-gainers.

5. DISCUSSION AND CONCLUSION
In this paper, we investigate the relationship between speech
and actions, as well as the qualitative nature of the speech
that occurs with the actions. Our first RQ was related
to identifying the relationship between speech and actions.
To answer this RQ, we applied differential sequence min-
ing (DSM) to differentiate frequent patterns between gain-
ers and non-gainers. We found that gainers and non-gainers
demonstrate different relationships between speech and ac-
tions. Gainers perform all types of actions (solution building
and reflective) along with high levels of speech/overlapping
speech more frequently than non-gainers. While previous
research indicated that gainers speak more [18], our findings
nuance those findings by suggesting that speaking while per-
forming actions is productive for learning. Our findings align
with previous findings related to the concurrency of actions
and speech among more collaborative groups [15]; however
our findings extend to groups which learned more and are in
a different collaborative scripted context. Gainers also show
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Table 8: Top 10 patterns related to speech overlap level and exact meaningful action frequent only in gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’HSo Add’, ’HSo Add’] 7.9e-05 6.7 0.5 6.2

[’HSo NA’, ’HSo NA’, ’HSo NA’] 0.006 5.3 1.0 4.3
[’HSo NA’, ’HSo Add’] 1.1e-05 4.58 0.3 4.2

[’HSo Hist’] 0.04 4.08 1.5 2.58
[’HSo Add’, ’MSo Add’] 0.002 3.08 0.5 2.58
[’HSo Add’, ’MSo NA’] 9.09e-09 2.73 0.17 2.56
[’HSo NA’, ’MSo Add’] 0.0005 2.66 0.67 1.99
[’MSo NA’, ’HSo Add’] 3.08e-06 2.66 0.33 2.32

[’HSo Add Hist’] 5.28e-05 2.15 0.0 2.15
[’HSo Add’, ’HSo NA’, ’HSo NA’] 0.0004 1.46 0.0 1.46

Table 9: Top 10 patterns related to speech overlap level and exact meaningful action frequent only in non-gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’LSo NA’, ’LSo NA’, ’LSo NA’] 0.04 1.07 6.66 -5.58

[’LSo Add’, ’LSo Add’] 0.00 1.34 5.83 -4.48
[’LSo Add’, ’LSo NA’] 0.00 0.65 5.66 -5.01

[’LSo Remove’] 0.03 1.0 4.5 -3.5
[’LSo NA’, ’LSo Add’] 0.01 0.84 4.5 -3.65
[’LSo NA’, ’MSo Add’] 0.00 0.65 3.33 -2.67

[’LSo NA’, ’LSo NA’, ’LSo NA’, ’LSo NA’] 0.03 0.5 3.33 -2.83
[’MSo NA’, ’LSo Add’] 0.00 0.88 2.83 -1.94
[’MSo Add’, ’LSo NA’] 0.01 0.69 2.66 -1.97

[’LSo Add’, ’LSo NA’, ’LSo NA’] 0.02 0.19 2.33 -2.14

longer patterns of continuous speech indicating that they
communicate more actively since they usually have medium
and high levels of speech/speech overlap while non-gainers
often have low and medium levels of speech/speech overlap.

To look deeper into the speech that happens along with ac-
tions (RQ2), we performed content analysis on dialogues
around the episodes of interest which are identified based
on the DSM results. We already know that gainers tend to
access the history (reflect) more [18], however here we addi-
tionally find that gainers share the information and under-
standing obtained from the reflective actions to a greater de-
gree as they review their history with higher level of speech
or speech overlap compared with non-gainers, and decide
on future steps towards the goal. Perhaps non-gainers are
unable to extract the needed information from their past so-
lutions i.e, their reflective actions, which is why they do not
discuss as much during the episodes of interest and do not
arrive at a consensus regarding next steps. This suggests
that some additional scaffolding is needed within the envi-
ronment to point out to students what they should observe
from the history. Another significant point of difference be-
tween gainers and non-gainers dialogue is that gainers clar-
ify the goal of the task more frequently, which is a sign that
the action of reviewing history is being used to ground their
shared understanding of the task [2]. While DSM only shows
us that some patterns are more frequent in one group vs the
other, the qualitative analyses elaborate on how the patterns
are different between the groups in terms of the content of
their dialogue. The above findings, together with previous
literature which suggests that elaborative discussions lead
to learning in a collaborative scenario [26, 24], points to the
fact that it is the nature of discussions during these differ-
entiating patterns that could be reason for the difference in

the learning between the groups.

Our presented approach combining DSM and qualitative
analysis allows us to illustrate the importance of action-
discussion transactivity in collaborative learning, and iden-
tify the nature of the discussion that can build on certain
actions and make them productive. The qualitative analyses
of the patterns unpacks the nature of the action-discussion
patterns in each group. Specifically, we identify that the
gainer groups do more elaborative, reflective and planning
discussions which build on the history check action, com-
pared to the non-gainer group. In other words, gainers had
a greater degree of action-discussion transactivity, because
they articulated their ideas and information obtained from
doing the history check action, which helped them progress
in the solution building. Compared to previous work [15,
23], our findings highlight the nature of the actions and dis-
cussions occurring together, how they build on each other
and their association with collaborative learning, as opposed
to the quality of collaboration or task performance. To sum-
marize, our findings suggest that those who learned had a
greater degree of action-discussion transactivity, and that
they more frequently articulated their ideas and information
obtained from doing actions, which helped them progress in
the solution building. Taken together with previous litera-
ture in collaborative learning (eg. [21]) which speaks about
the necessity of elaboration and transactivity in discussions
and actions, our findings indicate that students should be
encouraged to articulate their ideas or information obtained
from doing actions and a teacher or a scaffold build into
the CSCL environment can prompt the students to do so.
Regulation of their performance and learning is challeng-
ing for students and researchers have proposed technological
tools to support students [11]. This work provides sugges-
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Table 10: Patterns related to speech overlap level and exact meaningful action frequent among both groups, but occurring more
often in gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’HSo NA’] 0.00 31.69 12.66 19.02
[’HSo Add’] 2.41e-08 21.53 3.0 18.53

[’HSo NA’, ’HSo NA’] 0.00 11.5 3.0 8.5
[’HSo Remove’] 0.00 4.38 1.33 3.05

[’HSo Add’, ’HSo NA’] 7.17e-06 4.26 0.66 3.60
[’HSo Add Remove’] 0.00 4.0 1.0 3.0

[’MSo Add’, ’HSo Add’] 0.00 3.0 0.83 2.16

Table 11: Patterns related to speech overlap level and exact meaningful actions among both groups, but occurring more often
in non-gainers

frequent pattern p value mean gainer i support mean non gainer i support diff mean i support
[’LSo NA’] 0.00 9.0 37.33 -28.33
[’LSo Add’] 0.00 6.26 21.0 -14.73

[’LSo NA’, ’LSo NA’] 0.03 2.57 15.0 -12.42
[’MSo NA’, ’LSo NA’] 0.04 2.5 7.16 -4.66

tions regarding when such tools can be most productive for
students, for instance, prompts for goal clarification after a
failed problem-solving attempt.

Our analysis in this paper is limited from the following as-
pects. The number of non-gainer teams is much lesser than
gainer teams, and as a result the number of non-gainer team
dialogues is also much lesser than gainer team dialogues.
However, the imbalance between gainers and non-gainers is
due to the nature of the experiment setting - the experiment
was designed to facilitate learning. Secondly, the interac-
tion for each team of around 20-25 minutes is organized in
windows of 10 seconds in the multimodal temporal dataset
while dialogues start and end time are recorded as exact
timestamps in the transcripts dataset. When we pick dia-
logues within identified relevant episodes, the difference in
time features of the two datasets can cause slight inaccu-
racies of the matched results. To solve this problem, we
pick up dialogues before and after 20 seconds of the relevant
episode. Finally, the transcripts dataset does not include all
teams. We have only analysed a subset of the dialogues from
available transcripts. Our future work focuses on obtaining
more data to extend this approach to larger sets of gainers
and non-gainers, and other actions of interest in collabora-
tive learning.
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Table 12: Representative Dialogues

index team dialogues
negotiation
mechanism

general
summary

reflect
past
act

reflect
future
act

agreement

Gainers
1 8

A: ”it’s expensive you just used 5 .”
B: ’go , to mount gallen .’
A: ”and i think we’re done .”
B: ’go .’
A: ’i think we have more .’
B: ’wait !’
A: ”we’re done .”
R: ’you are not that far from
the minimum the difference
is only 6 francs i am sure
you can do it .’
A: ’can i show you how to do it ?’
B: ’oh , i know !’ ’wait .’
’27 29 30 31 32 33 34 .’
A: ’what if we start in the middle and
then go around it ?’]
B: ’wait .’ ’34 .’ ’the minimum is 34 .’
B: ’see we have to spend okay .’
B: ’so do the circle , okay but do the circle , go .’
A: ’okay um .’
B: ’mount , neuchatel , okay , over there .’
B: ’then you have to make an’

A: Offer
B:Acceptance
for the
immediate
action but
not for
the quality
of the solution

A: Offer
B: Acceptance
A: Ratification

After the
submission,
they set a
wrong goal
to achieve 34.
It seems that
they
misunderstand
the
meaning of
minimum.

Wrong
Goal
Clarification
- get the
minimum:
34

start in
the middle
and then
go around
it

Yes for
immediate
action

No for
quality of
the solution

Yes for
problem
solving
approach

4 8

B: ”i’m gonna submit .”
A: ’waiting for your’
R: ’you are not that far
from the minimum
the difference is only 7
francs i am sure
you can do it’
A: ’7 francs.’
B: ’what ?’ ’what ?
A: ’the minimum is 7 francs .’
B: ’uh we have to get 7 francs less .’
B: ’we know mount zermatt to
mount interlaken is 4 francs and
we know mount neuchatel to
mount basel is 4 francs.’
B: ”we don’t want”
A: ’one , one of them you said was 5.
B: ’which , what ?’
A: ”i can’t remember which one
that was though .”
A: ’i think it was mount basel to
mount zurich .’
B: ’no that was not never
connected let me see .
B: ’uh the one that was 5 was
neuchatel to bern.’
A: ’yeah .”it’s hard’
B: ’um’

B: Offer
A: Acceptance
for the
immediate
action but not
for the quality
of the solution

Share
Understanding

Team 8 correct
their previous
misunderstand
here.

Goal
Clarification:
they should
spend 7
francs less

Find the
route
cost
5 frans

Yes for the
immediate
action but
not for the
quality of
the solution

Non-gainers
0 18

B: ’oh yes , click the check .’
A: ’okay .’
R:’...’
B,:’what ?’ ’what’ ’oh now we start again , basically .’
A: ’oh , oh i see , compare solutions .’
B: ’what can we do ?’
A: ’oh okay um .’
A: ’oh this is our previous solution price 64 .’
B: ’so’
A: ’oh i get it we have to get the most price , but .’
I: ’....’
A: ’oh by by 40 francs so’
A: ’oh so we need to get 24 .’

B: Offer
A: Acceptance

A: Offer
B: Acceptance
A: Ratification

They reviewed
their previous
solution and
they set the
wrong goal
that the
minimum
is 24.

Wrong Goal
Clarification:
’we need to
get 24’

No
Yes for
immediate
actions

1 18

B: ’i think’
A: ’oh .’
B: ’so we submit it ?’
A: ”yeah let’s start over .”
B: ’robot say something to us .’
R: ’...’
B: ’yeah .’ ’should we’
I: ’...’
A: ’oh .’
R: ”i don’t care we .”
A: ’where is 2 ? ’give me a 2 .’
A’, ’2 francs one .’
B: ’2 francs um’ ’interlaken to zermatt .’
A: ’interlaken to zermatt .
A: ’zermatt oh interlaken .’ ”that’s 2 ?”
B: ’interlaken to zermatt .’
A: ”that’s 2 ?”
B: ’yes .’
A: ’oh .’
B: ’and you want another 2 ?’
A: ’yeah .’
B: ’or 3 ?’
A: ’yeah uh as much 2s and then as much 3s .’
B: ’zermatt to montreux .’ ’montreux .’
A: ’oh montreux .’ ’uh’

B: Offer
A: Acceptance

Share
Understanding

Ask for
something
without
sharing any
idea

They tried
to find those
tracks with
cost of 2
or 3 francs.

No No
Yes for
immediate
actions
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Table 13: Speech level patterns frequent only among non-gainers
frequent pattern p value mean gainer i support mean non gainer i support diff mean i support freq decode pattern
[0, 21] 5.441E-03 9.231E-01 5.167E+00 -4.244E+00 [’LS Add’, ’LS NA’]
[0, 0] 1.173E-03 1.808E+00 5.000E+00 -3.192E+00 [’LS Add’, ’LS Add’]
[21, 0] 1.341E-02 1.000E+00 4.167E+00 -3.167E+00 [’LS NA’, ’LS Add’]
[0, 21, 21] 4.124E-02 1.923E-01 2.500E+00 -2.308E+00 [’LS Add’, ’LS NA’, ’LS NA’]
[21, 21, 22] 2.759E-02 4.615E-01 2.333E+00 -1.872E+00 [’LS NA’, ’LS NA’, ’MS NA’]
[0, 0, 0] 9.626E-03 6.154E-01 2.167E+00 -1.551E+00 [’LS Add’, ’LS Add’, ’LS Add’]
[21, 1] 1.513E-02 7.308E-01 2.000E+00 -1.269E+00 [’LS NA’, ’MS Add’]
[21, 21, 0] 2.554E-02 3.462E-01 1.833E+00 -1.487E+00 [’LS NA’, ’LS NA’, ’LS Add’]
[21, 0, 21] 3.035E-02 2.308E-01 1.500E+00 -1.269E+00 [’LS NA’, ’LS Add’, ’LS NA’]
[21, 21, 21, 0] 1.418E-02 2.692E-01 1.500E+00 -1.231E+00 [’LS NA’, ’LS NA’, ’LS NA’, ’LS Add’]
[0, 0, 21] 2.575E-02 3.077E-01 1.333E+00 -1.026E+00 [’LS Add’, ’LS Add’, ’LS NA’]
[21, 0, 0, 0] 2.913E-02 2.308E-01 1.000E+00 -7.692E-01 [’LS NA’, ’LS Add’, ’LS Add’, ’LS Add’]
[21, 1, 22] 2.006E-02 1.538E-01 1.000E+00 -8.462E-01 [’LS NA’, ’MS Add’, ’MS NA’]
[0, 0, 21, 21] 4.219E-02 0.000E+00 8.333E-01 -8.333E-01 [’LS Add’, ’LS Add’, ’LS NA’, ’LS NA’]
[21, 22, 21, 22] 4.669E-02 1.154E-01 6.667E-01 -5.513E-01 [’LS NA’, ’MS NA’, ’LS NA’, ’MS NA’]
[21, 22, 22, 22, 22] 4.669E-02 1.154E-01 6.667E-01 -5.513E-01 [’LS NA’, ’MS NA’, ’MS NA’, ’MS NA’, ’MS NA’]
[0, 0, 0, 21] 3.716E-02 7.692E-02 6.667E-01 -5.897E-01 [’LS Add’, ’LS Add’, ’LS Add’, ’LS NA’]

Table 14: Speech overlap level patterns only frequent among gainers
frequent pattern p value mean gainer i support mean non gainer i support diff mean i support freq decode pattern

[2, 2] 7.928934765535499e-05 6.730769230769231 0.5 6.230769230769231 [’HSo Add’, ’HSo Add’]
[23, 23, 23] 0.006002839704649775 5.3076923076923075 1.0 4.3076923076923075 [’HSo NA’, ’HSo NA’, ’HSo NA’]
[23, 2] 1.1371592327013828e-05 4.576923076923077 0.3333333333333333 4.243589743589744 [’HSo NA’, ’HSo Add’]
[8] 0.036533665925983824 4.076923076923077 1.5 2.5769230769230766 [’HSo Hist’]
[2, 1] 0.0022205587982335228 3.076923076923077 0.5 2.576923076923077 [’HSo Add’, ’MSo Add’]
[2, 22] 9.087126987994823e-09 2.730769230769231 0.16666666666666666 2.5641025641025643 [’HSo Add’, ’MSo NA’]
[23, 1] 0.0005621716567395286 2.6538461538461537 0.6666666666666666 1.9871794871794872 [’HSo NA’, ’MSo Add’]
[22, 2] 3.082910493793244e-06 2.6538461538461537 0.3333333333333333 2.3205128205128203 [’MSo NA’, ’HSo Add’]
[20] 5.2819931032191796e-05 2.1538461538461537 0.0 2.1538461538461537 [’HSo Add Hist’]
[2, 23, 23] 0.00043067995679562895 1.4615384615384615 0.0 1.4615384615384615 [’HSo Add’, ’HSo NA’, ’HSo NA’]
[23, 23, 2] 0.0019868197228214823 1.4615384615384615 0.0 1.4615384615384615 [’HSo NA’, ’HSo NA’, ’HSo Add’]
[2, 2, 23] 0.0003332574321561345 1.4615384615384615 0.0 1.4615384615384615 [’HSo Add’, ’HSo Add’, ’HSo NA’]
[23, 2, 2] 0.0006605272364293755 1.3076923076923077 0.0 1.3076923076923077 [’HSo NA’, ’HSo Add’, ’HSo Add’]
[8, 23] 0.0004105089572129998 1.2692307692307692 0.0 1.2692307692307692 [’HSo Hist’, ’HSo NA’]
[5, 23] 0.0030286337078061225 1.1538461538461537 0.16666666666666666 0.9871794871794871 [’HSo Remove’, ’HSo NA’]
[22, 2, 2] 2.101257038827904e-05 0.8846153846153846 0.0 0.8846153846153846 [’MSo NA’, ’HSo Add’, ’HSo Add’]

Table 15: Speech overlap level patterns only frequent among non-gainers
frequent pattern p value mean gainer i support mean non gainer i support diff mean i support freq decode pattern

[21, 21, 21] 0.04939554474004129 1.0769230769230769 6.666666666666667 -5.58974358974359 [’LSo NA’, ’LSo NA’, ’LSo NA’]
[0, 0] 0.0018586234032742692 1.3461538461538463 5.833333333333333 -4.487179487179487 [’LSo Add’, ’LSo Add’]
[0, 21] 0.00016706039378552398 0.6538461538461539 5.666666666666667 -5.012820512820513 [’LSo Add’, ’LSo NA’]
[3] 0.035109050581296 1.0 4.5 -3.5 [’LSo Remove’]
[21, 0] 0.013026456729087523 0.8461538461538461 4.5 -3.6538461538461537 [’LSo NA’, ’LSo Add’]
[21, 1] 0.008836545666620073 0.6538461538461539 3.3333333333333335 -2.6794871794871797 [’LSo NA’, ’MSo Add’]
[21, 21, 21, 21] 0.03860139794859445 0.5 3.3333333333333335 -2.8333333333333335 [’LSo NA’, ’LSo NA’, ’LSo NA’, ’LSo NA’]
[22, 0] 0.006750888971567344 0.8846153846153846 2.8333333333333335 -1.948717948717949 [’MSo NA’, ’LSo Add’]
[1, 21] 0.01443329824984804 0.6923076923076923 2.6666666666666665 -1.9743589743589742 [’MSo Add’, ’LSo NA’]
[0, 21, 21] 0.023209371486681146 0.19230769230769232 2.3333333333333335 -2.141025641025641 [’LSo Add’, ’LSo NA’, ’LSo NA’]
[0, 0, 0] 0.009755427161716556 0.2692307692307692 2.0 -1.7307692307692308 [’LSo Add’, ’LSo Add’, ’LSo Add’]
[0, 0, 21] 0.0056742454761588585 0.19230769230769232 1.6666666666666667 -1.4743589743589745 [’LSo Add’, ’LSo Add’, ’LSo NA’]
[7, 21] 0.013914091446642511 0.11538461538461539 1.3333333333333333 -1.2179487179487178 [’MSo Hist’, ’LSo NA’]
[21, 21, 1] 0.013914091446642511 0.11538461538461539 1.3333333333333333 -1.2179487179487178 [’LSo NA’, ’LSo NA’, ’MSo Add’]
[21, 1, 21] 0.014075354800622239 0.038461538461538464 1.1666666666666667 -1.1282051282051282 [’LSo NA’, ’MSo Add’, ’LSo NA’]
[0, 0, 21, 21] 0.011724811003954628 0.0 1.0 -1.0 [’LSo Add’, ’LSo Add’, ’LSo NA’, ’LSo NA’]
[21, 0, 0, 0] 0.013173766481180184 0.038461538461538464 1.0 -0.9615384615384616 [’LSo NA’, ’LSo Add’, ’LSo Add’, ’LSo Add’]
[0, 0, 0, 21] 0.04085940385929584 0.0 1.0 -1.0 [’LSo Add’, ’LSo Add’, ’LSo Add’, ’LSo NA’]
[22, 22, 0] 0.020519815735647172 0.2692307692307692 0.8333333333333334 -0.5641025641025641 [’MSo NA’, ’MSo NA’, ’LSo Add’]
[0, 21, 22] 0.0041047159800533225 0.0 0.8333333333333334 -0.8333333333333334 [’LSo Add’, ’LSo NA’, ’MSo NA’]
[21, 21, 1, 21] 0.004307836785291385 0.038461538461538464 0.8333333333333334 -0.7948717948717949 [’LSo NA’, ’LSo NA’, ’MSo Add’, ’LSo NA’]
[21, 21, 1, 21, 21] 0.02503101581845297 0.0 0.6666666666666666 -0.6666666666666666 [’LSo NA’, ’LSo NA’, ’MSo Add’, ’LSo NA’, ’LSo NA’]
[21, 21, 22, 21] 0.04669295353054086 0.11538461538461539 0.6666666666666666 -0.5512820512820512 [’LSo NA’, ’LSo NA’, ’MSo NA’, ’LSo NA’]
[21, 1, 21, 21] 0.02503101581845297 0.0 0.6666666666666666 -0.6666666666666666 [’LSo NA’, ’MSo Add’, ’LSo NA’, ’LSo NA’]
[0, 21, 21, 21] 0.030127010101375896 0.038461538461538464 0.6666666666666666 -0.6282051282051282 [’LSo Add’, ’LSo NA’, ’LSo NA’, ’LSo NA’]
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ABSTRACT
Recent research seeks to develop more comprehensive learner
models for adaptive learning software. For example, models
of reading comprehension built using data from students’
use of adaptive instructional software for mathematics have
recently been developed. These models aim to deliver ex-
periences that consider factors related to learning beyond
performance in the target domain for instruction. We in-
vestigate the extent to which generalization is possible for
a recently developed predictive model that seeks to infer
students’ reading comprehension ability (as measured by
end-of-year standardized test scores) using an introductory
learning experience in Carnegie Learning’s MATHia intelli-
gent tutoring system for mathematics. Building on a model
learned on data from middle school students in a single
school district in a mid-western U.S. state, using that state’s
end-of-year English Language Arts (ELA) standardized test
score as an outcome, we consider data from a school district
in a south-eastern U.S. state as well as that state’s end-
of-year ELA standardized test outcome. Generalization is
explored by considering prediction performance when train-
ing and testing models on data from each of the individ-
ual school districts (and for their respective state’s test out-
comes) as well as pooling data from both districts together.
We conclude with discussion of investigations of some algo-
rithmic fairness characteristics of the learned models. The
results suggest that a model trained on data from the smaller
of the two school districts considered may achieve greater
fairness in its predictions over models trained on data from
the other district or both districts, despite broad, overall
similarities in some demographic characteristics of the two
school districts. This raises interesting questions for future
research on generalizing these kinds of models as well as on

ensuring algorithmic fairness of resulting models for use in
real-world adaptive systems for learning.

Keywords
student modeling, reading comprehension, intelligent tutor-
ing systems, generalizability, algorithmic fairness, middle
school mathematics, neural networks

1. INTRODUCTION
Recent research seeks to develop more comprehensive mod-
els of students using adaptive software for learning. Such
models consider learning factors that are at least nominally
beyond the scope of the learning software’s target domain
(e.g., modeling students’ reading comprehension ability in
the context of their usage of software for mathematics in-
struction) [15] [1]. Richey el al. [15] considered a particu-
lar piece of introductory instructional content in Carnegie
Learning’s MATHia (formerly Cognitive Tutor [16]) intelli-
gent tutoring system (ITS) and used students’ performance
on that content as a proxy for their reading ability. Their
argument for this choice was that performance measures for
that content, generally providing instruction on how to use
the ITS and its various support features, were more likely to
be indicative of students’ reading ability than their mathe-
matics ability.

Almoubayyed et al. [1] built on this initial work by provid-
ing empirical support for the argument due to Richey and
colleages [15], demonstrating that performance on this intro-
ductory MATHia content is correlated with students’ perfor-
mance on end-of-year standardized test scores for English
Language Arts (ELA). Further, it was found that the cor-
relation of student performance with ELA test scores com-
pared to the correlation of student performance with mathe-
matics test scores was greater than almost all other content
in MATHia, suggesting the possibility that this early per-
formance in MATHia might serve as a type of instruction-
embedded assessment of reading ability. Such an assessment
of reading ability, especially early within a student’s use of
MATHia or other adaptive software, might serve at least two
purposes:

H. Almoubayyed, S. Fancsali, and S. Ritter. Generalizing predic-
tive models of reading ability in adaptive mathematics software. In
M. Feng, T. Käser, and P. Talukdar, editors, Proceedings of the 16th
International Conference on Educational Data Mining, pages 207–
216, Bengaluru, India, July 2023. International Educational Data
Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115782
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• Early prediction(s) that a student may still be emerg-
ing as a reader of English at their grade-level can serve
as quick (relatively low-stakes) diagnoses that adap-
tive reading supports should be made available to stu-
dents. In the situation in which such supports are
broadly available to all users of software, then messag-
ing prompts or similar “nudges” might be adaptively
presented to suggest their usage to particular students
based on these kinds of predictions.

• Predictions that a student is likely an emerging En-
glish language learner (ELL) or for some other reason
is struggling to read can be used in retrospective anal-
yses and design-loop adaptivity processes [Aleven et
al., 2017] to better understand whether various soft-
ware features, content improvements, and/or supports
for reading, meta-cognition, or other learning factors
are having their desired effect (e.g., via randomized
experiments or so-called “A/B tests” [18]), especially
if such features, content, or supports are targeting a
particular population of learners like ELLs. In large-
scale deployments of adaptive learning software like
MATHia, standardized test outcome data or student-
level characteristics like ELL status are generally not
available, neither to the software at run-time, nor to
developers and analysts who seek to better understand
how to improve users’ learning experiences.

Almoubayyed et al. [1] develop neural network based predic-
tion models for ELA exam scores that use performance fea-
tures in this introductory content that are promising for at
least the two above uses-cases.1 These models were trained
and tested on data from hundreds of students, including
data for hundreds of thousands of student actions, in a single
school district in a mid-western U.S. state. A natural ques-
tion concerns the extent to which models learned in a single
school district (and state) generalize to other school districts
in other states. We build on the work of Almoubayyed et
al. [1] to consider this question of generalizability.

2. MATHIA
MATHia (formerly Cognitive Tutor [16]) is an ITS for math-
ematics instruction that is a part of a blended, basal cur-
riculum for middle school and high school mathematics de-
veloped by Carnegie Learning, and used by around half
a million students across the United States. Instruction
in MATHia is delivered via complex, multi-step problems,
with most steps within problems mapped to one or more
knowledge components (KCs, or skills [11]). Students work
through “workspaces” that provide practice on a set of KCs
until the ITS has determined that the student has reached
mastery [3] of all such KCs (using the Bayesian Knowledge
Tracing framework [2]) in the workspace (or the student
reaches a pre-defined maximum number of problems). When
the student reaches mastery of all KCs (or the maximum
number of problems), the student is moved on to the next
workspace in the curriculum set by their teacher or school
for their grade-level.

1Models developed by Almoubayyed et al. [1] that consider
data from content beyond introductory content may be espe-
cially useful for retrospective analyses germane to the second
use-case.

To introduce students to the practice opportunities they will
receive in MATHia, the first workspace in MATHia, referred
to by MATHia developers as the Pre-Launch Protocol, intro-
duces students to the ITS software, its user-interface (e.g.,
how to watch videos and provide input to the ITS), adap-
tive support features like just-in-time (JIT) feedback and
context-sensitive hints, as well as providing some motiva-
tional messaging about “growth-mind-set” [13] and related
ideas (e.g., the video about “growing your brain” visible in
the screenshot provided by Figure 1). Problems in the Pre-
Launch Protocol are not necessarily about mathematics, but
rather engage students with questions that are nearly certain
to require students to engage with adaptive features of the
software, such as hint requests. For example, one question
asks students to provide the name of an animal that begins
with the letter “e.” Since the answer is not obvious (e.g., not
“elephant”), students almost always have to request a hint
and receive feedback on incorrect answers as they make at-
tempts to correctly guess what the ITS is “thinking” about.
The Pre-Launch Protocol is a non-mastery workspace in
MATHia, and performance on the Pre-Launch Protocol is
not related to KCs, but students’ interactions, attempts,
and correctness is nonetheless tracked in the Pre-Launch
Protocol. Student performance data from the Pre-Launch
Protocol workspace have figured prominently in two pre-
vious papers on developing more comprehensive models of
reading comprehension while students use MATHia [15], [1].

The usefulness of the Pre-Launch Protocol in this context is
due to several reasons: Firstly, the Pre-Launch Protocol is
the very first thing that a student interacts with in MATHia,
and therefore, the possibility of making accurate predictions
using only Pre-Launch Protocol data can be powerful. Such
predictions can be used to improve and personalize students’
learning experiences in MATHia very early on in the aca-
demic year (whereas making a prediction near the end of the
year would be less useful for many applications). Secondly,
while content in intelligent tutoring systems is typically per-
sonalized to the student, and thus not every student encoun-
ters the same problems, that issue is not relevant for the
Pre-Launch Protocol. Every student using MATHia com-
pletes an identical Pre-Launch Protocol, resulting in com-
plete data. Finally, expecting the Pre-Launch Protocol to
have predictive signal about factors of student learning not
related to mathematics is well-motivated, due to the fact
that it is the only piece of content in MATHia that does
not deliver content directly related to mathematics or the
student’s curriculum.

The present work builds on the intuition of Richey et al.
[15] and the initial empirical validation of their argument
by Almoubayyed et al. [1] that student performance in this
introductory content may serve as an instruction-embedded
assessment of reading ability2 that can be used to develop a
more comprehensive student model within an ITS for math-
ematics. By considering additional data than these previous
works, we seek to better understand whether the predictive

2Using statistical models of student performance and pre-
dictions about behavior and affective states in systems like
MATHia as instruction-embedded assessments for the sys-
tem’s target domain (i.e., for predicting mathematics stan-
dardized test scores) has been explored in some depth across
software platforms and U.S. states (e.g., [17] [12] [5]).
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model developed in [1] generalizes to a new school district
context. The new school district context includes a larger
sample of students in a different U.S. state with outcome
measures from a different standardized test. We now con-
sider our data in more detail.

3. DATA
Relying partially on data provided by the authors of [1], we
use two datasets of student end-of-year English Language
Arts (ELA) standardized (state) test scores in Grade 7 in
the 2021-2022 academic year. The datasets come from two
school districts: one from a mid-western U.S. state that was
studied in [1] and one from a south-eastern U.S. state. Here-
after, we refer to the dataset from the mid-western state as
MW, the dataset from the south-eastern state as SE, and the
combination of both as the Combined dataset. The datasets
additionally include demographic information of the stu-
dents. Although the demographics were similar in some
aspects, for example, around 60% of the student popula-
tion in both districts were white; there were large differences
in overall student performance between them. Specifically,
78% of students in our MW dataset passed their end-of-year
ELA state test, compared to 49% in our SE dataset. There
were also a large difference between the size of the districts
and the Grade 7 students for whom we have data, while MW
had 831 students, SE had 4,349 students. For the purposes
of this study, we categorized student performance as a bi-
nary measure of either passing or failing to pass the state
test. We also received access to the students’ action-level
performance in MATHia on the 36-step Pre-Launch Proto-
col. In total, we received 563,650 action-level student records
for the two districts combined, which is equivalent to 3 ac-
tions per step per student on average. There was no missing
data for any student for any step: because the Pre-Launch
Protocol is the first workspace a student interacts with in
MATHia, and is presented identically across students, ev-
ery student completed every step in the Pre-Launch Proto-
col. Students can either make an attempt or request a hint.
If a student makes an incorrect attempt, they may receive
JIT feedback if their mistake is deemed by MATHia as a
“common misconception.” Following the feature engineering
steps that Almoubayyed, et al. defined in [1], we generate
the following features from the data:

• correct: Whether a student’s first attempt on a step
was correct (1) or incorrect (0).

• hint: The number of hints that a student requested
on a step. This number can be between 0 and 3.

• jit: The number of JIT feedback a student received
on a step

• attempt: The number of attempts a student made on
a step until reaching the correct answer.

We split each of the datasets into a training set and a test
set, each containing half of the number of students selected
at random. When training and testing on a combination of
the datasets, we combine the two training set and the two
test sets separately.

Test score and demographic data were provided by the two
districts to Carnegie Learning according to data sharing

agreements between Carnegie Learning and the district that
allows for the use of these data for research purposes.

4. READING ABILITY PREDICTIVE MODEL
GENERALIZATION

Almoubayyed et al. [1] found that the Pre-Launch Protocol
is one of the workspaces in MATHia that are most corre-
lated with end-of-year ELA test scores, compared to their
correlations with end-of-year mathematics test scores, across
grade levels. Additionally, they were able to build a predic-
tive model of student end-of-year ELA achievement levels
by training machine learning models on Pre-Launch Proto-
col data.

We aim to extend the predictive models of reading ability
in MATHia to both explore the generalizability of such a
model and to increase trust in it such that it can be used
with higher confidence over a large population of users to
predict students’ reading ability from their interaction with
a mathematics ITS.

We use a Multi-Layer Perceptron (MLP) model with iden-
tical architecture to the highest-performing model that Al-
moubayyed et al. developed in [1]. In particular, the model
is an MLP with a single hidden layer containing 100 nodes,
with a relu activation function and adaptive learning rate.
The model is trained with a categorical cross-entropy loss
function, optimized by the stochastic gradient-based opti-
mizer defined in [10]. We note that Almoubayyed et al. [1]
carried out model exploration with several set-ups. Addi-
tionally, while this model explicitly does not provide causal
evidence, Almoubayyed et al. do investigate confounding
factors in [1]. We do not replicate that work here and we
encourage interested readers to refer to [1] for more details
on the model details.

We train the model on four sets of features separately: the
four sets being the correct, hint, jit, attempt defined
in Section 3. For each set, there are 36 features correspond-
ing to the steps in the Pre-Launch Protocol. While we retain
the model architecture and feature engineering steps, we re-
train the model with the following changes:

• We train the model on a binary classification task
(passing or failing to pass the state test), rather than
achievement levels. This is due to the fact that differ-
ent states have different numbers of achievement lev-
els, and a binary classifier may be of more practical
usefulness. It is possible to use post-processing on a
classifier that predicts achievement levels instead of re-
training, but we decided that retraining the model on
binary classes would be a more consistent implemen-
tation across the two districts.

• We treat the Pre-Launch Protocol steps to be the same
features regardless of whether a student attempts the
Pre-Launch Protocol in a different grade level. The
Pre-Launch Protocol itself is identical for any grade
level, however, the fact that it is attempted a different
grade level may still have predictive signal. We find,
however, that the number of students that attempt the
Pre-Launch Protocol varies very largely between the
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Figure 1: Screenshot of a problem within MATHia’s “Pre-Launch Protocol” introductory workspace. The student is presented
a brief video animation on the left and then asked questions about the video on the right, serving as an introduction to the
MATHia ITS, its user interface, and the adaptive support it can provide.

two districts, and that treating the Pre-Launch Proto-
col steps to be the same features more appropriate for
generalization purposes.

• Almoubayyed et al. [1] developed an ensemble model
to combine the four models by taking the mode of the
predictions (i.e., a “majority vote” of the four models).
Instead, for an ensemble predictive model, we average
the predicted probabilities of the four models. Using
probabilities allows us to construct a Receiver Opera-
tor Characteristic (ROC) curve and avoids situations
where the predictions of the four models result in a tie.
We refer to this model as prob.

We use the ROC curve and the area under the ROC curve
(AUC) as metrics to compare models. The ROC curve shows
the False Positive Rate (FPR), and the True Positive Rate
(TPR), for decision thresholds ranging between 0 and 1 for
the classification task. The FPR and TPR are defined as
follows:

FPR = FP/N

TPR = TP/P

where FP, or False Positives, are defined here as students
who are predicted to pass the end-of-year ELA test, but in
reality fail to pass it. Conversely, TP, or True Positives,
are students who are predicted to pass the end-of-year ELA
test, and do indeed pass it. N and P are the total number
of negatives and positives respectively in the ground truth
dataset.

Analyzing ROC curves allows for choosing specific models
with different thresholds depending on the purpose (a lower
threshold results in a model with lower FPR and lower TPR,
an appropriate choice if minimizing the FPR is a priority.
On the other hand, a higher threshold results in a model
with higher FPR and higher TPR, an appropriate choice if
maximizing the TPR is the priority).

To assess the generalizability of this model, we train and test
the models on every combination of training and testing sets.
Specifically, we train the 4 (correct, hint, jit, attempt)
models and compute the ensemble prob model on each of the
(MW, SE, Combined) training sets, and for each of these
models, we test them on each of the (MW, SE, Combined)
test sets. This results in 9 combinations (with 4 trained +
1 ensemble model for each of the 9 combinations).

Figure 2 shows the ROC curves for the model trained on
the MW dataset and tested on the MW, SE, and Combined
datasets, top to bottom respectively. Figure 3 shows the
ROC curves for the model trained on the SE dataset and
tested on the SE, MW, and Combined datasets, top to bot-
tom respectively. Finally, Figure 4 shows the ROC curves
for the model trained on the Combined dataset and tested on
the Combined, MW, and SE districts, top to bottom respec-
tively. The ensemble models generally perform significantly
better than the four trained models; suggesting that there
is a signal gained from combining the four trained models
in each case. While a model trained and tested on data
from the same school districts performs better, there are no
cases where a model tested in a different district performs
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Table 1: AUC scores for the ensemble predictors in each case.
Each ensemble predictor uses four trained models on each
of the MW, SE, and Combined training set, and then each
is tested on the MW, SE, and Combined test sets. Models
trained and tested on with a dataset from the same district
consistently achieve an AUC score of 0.80, while training on
one and testing on the other achieves a slightly lower AUC
score. Models trained on the Combined training set consis-
tently achieves 0.80 on either test set.

Model
Tested on
MW SE Combined

MW 0.80 0.76 0.77
SE 0.78 0.80 0.80
Combined 0.80 0.80 0.80

significantly poorer.

Table 1 shows the AUC scores of the ensemble (prob) models
in each of the 9 cases. We find that the AUC scores range
between 0.76 and 0.80. A model trained and tested on the
same district, in each of the districts, achieve an AUC of
0.80, while a model trained in one district and tested on the
other achieves a slightly lower AUC of 0.76-0.78. Finally,
a model trained on both districts achieves an AUC of 0.80
on either district. This suggests that adding data from an
additional district makes the model perform better, however,
even a model trained in one district and tested in another
only slightly underperforms.

Although the district have significantly different performance
and base pass rates, the models seem to transfer well without
additional changes. Adding data does improve the perfor-
mance of the models, however, but the performance of these
models seems to saturate with an AUC of 0.80 across the
two districts.

5. FAIRNESS ASSESSMENTS
Considering how the models perform for different student
populations is important to build learners’ and other stake-
holders’ trust in the ITS and ensure that models generalize
well over populations of diverse learners nation-wide (and
perhaps world-wide). Such considerations are especially im-
portant if we are to reach the goal of such embedded assess-
ments playing a role in deployed, real-world ITSs. We look
at the ROC curve for each of the ensemble models previously
describe (trained on MW, SE, or Combined training sets)
when tested on subsets of demographics in each of the test
sets. In particular, we look at race and gender information
as provided by the school districts. In order to obtain large
enough test sets for the demographic subsets, we bifurcate
the data into two categories for each demographic. Namely,
we look at model performance for white (W) and non-white
(NW) students; and for female (F) and male (M) students.
We recognize that this bifurcation is broad and does not
provide complete information (e.g., on relative model per-
formance for students of different non-white races and for
students with different gender identities). We leave more
comprehensive and nuanced analyses for important future
work.

Figure 5 shows the models’ performance when predicting
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Figure 2: The performance of the four trained models of read-
ing ability and the ensemble model, depicted by the ROC
curve of the models, showing the FPR and TPR at different
thresholds. These models are trianed on the MW dataset and
tested on the MW, SE, and Combined test sets from top to
bottom. While the four trained models generally have simi-
lar performance, the ensemble model has consistently better
performance.
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Figure 3: The performance of the four trained models of read-
ing ability and the ensemble model, depicted by the ROC
curve of the models, showing the FPR and TPR at differ-
ent thresholds. These models are trained on the SE training
set and tested on the SE, MW, and Combined test sets from
top to bottom. While the four trained models generally have
similar performance, the ensemble model has better perfor-
mance in most cases.
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Figure 4: The performance of the four trained models of read-
ing ability and the ensemble model, depicted by the ROC
curve of the models, showing the FPR and TPR at different
thresholds. These models are trained on the Combined train-
ing set and tested on the Combined, MW, and SE test sets
from top to bottom. While the four trained models gener-
ally have similar performance, the ensemble model has con-
sistently better performance.
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the reading ability of non-white and white students in each
of the districts. In all cases, evaluating the model on a
test set from the same district yielded similar ROC curve
across white and non-white students. However, interest-
ingly, the performance varied significantly when evaluating
the models on the other district. Specifically, we see that
the model trained on MW data generalized similarly across
both non-white and white students, but the model trained
on SE and evaluated on MW performs significantly poorer
for non-white students compared to white students. Given
the relatively similar proportion of white and non-white stu-
dents in both districts, this suggests that any relatively sim-
ple assumption that such similarity ought to lead to similar
performance across districts appears flawed. These results
are also possibly surprising due to the fact that the MW
dataset is significantly smaller in sample size than the SE
dataset. In particular, the SE dataset contains over 5 times
as many students as the MW dataset.

Similarly for gender, Figure 6 shows the models’ perfor-
mance broken into female and male students. We find a
similar trend here, where the model trained on MW gen-
eralizes similarly well across female and male students in
SE; while there is a significant difference in how the model
trained on SE generalizes across female and male students.
In particular, we find that the model trained on SE performs
significantly poorer when evaluated on male students in MW
compared to female students.

Due to the fact that the Combined model is more influenced
by data from the (larger) SE district, it performs more sim-
ilarly to the SE model when broken down by demographics.
This leads us to believe that, although the Combined model
has a higher AUC on the whole, the MW model might be the
better model in practical implementations, due to its simi-
lar performance across demographics, at the cost of a slight
loss of 0.03-0.04 in AUC performance. Additional data from
diverse school districts will be needed to further consider nu-
ances of how models generalize across student populations
and the relative fairness characteristics of such generalized
models.

While we only consider model performance on different de-
mographics, it may also be valuable to use algorithmic fair-
ness metrics and bias mitigation algorithms. For example,
Stinar and Bosch [19] compare the effectiveness of several
unfairness mitigation algorithms in the context of mathe-
matics end-of-year state test scores for around 5 million mid-
dle school students in Texas; using algorithms such as Dis-
parate Impact Preprocessing [6], Reweighing [4], and Equal-
ized Odds Postprocessing [7].

Disparate Impact Preprocessing, for example, aims to mod-
ify the model (by modifying the training data) such that it
achieves a Disparate Impact metric closer to unity; where
Disparate Impact is defined as

DI =
Pr (y = 1 | D = g1)

Pr (y = 1 | D = g2)
, (1)

where y is the target (i.e., y = 1 corresponds to passing
the state test), and D is the protected class (i.e., the demo-
graphic), with g1 and g2 being two groups in the protected
class. When computing the DI metrics on the MW and SE
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Figure 5: The ROC curve of the ensemble predictors trained
on (top to bottom) the MW, SE, and Combined training sets.
In the cases where a model was trained on a single district,
solid lines correspond to the ROC curve evaluated on a test
set that comes from the same district, while dashed lines cor-
respond to evaluation on a test set from the other district.
The performance of the predictors are evaluated for white
(W) and non-white (NW) students on each of the MW and
SE test sets to assess model fairness when generalized to an-
other student population. The plots show that the models
trained on the SE and Combined datasets perform signifi-
cantly poorer when predicting non-white students’ reading
ability in the MW district. Conversely, the model trained on
the MW training set seems to perform similarly well when
predicting the reading abilities of both non-white and white
students in both districts.
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Figure 6: The ROC curve of the ensemble predictors trained
on (top to bottom) the MW, SE, and Combined training sets.
In the cases where a model was trained on a single district,
solid lines correspond to the ROC curve evaluated on a test
set that comes from the same district, while dashed lines cor-
respond to evaluation on a test set from the other district.
The performance of the predictors are evaluated for female
(F) and male (M) students on each of the MW and SE test sets
to assess model fairness when generalized to another student
population. The plots show that the models trained on the
SE and Combined training sets perform significantly poorer
when predicting male students’ reading ability in the MW dis-
trict. Conversely, the model trained on the MW training sets
seems to perform similarly well when predicting the reading
abilities of both female and male students in both districts.

datasets we found that the base rates for the DIs (i.e., the
DIs computed on the ground truth data) was in some cases
significantly different than 1, and thus there is a trade-off be-
tween (a) achieving a DI closer to 1 and (b) achieving better
performance on predicting reading ability for students across
demographic groups. Upon inspection of the DIs, we do find
that the DIs for the model predictions were always slightly
closer to unity than the DIs of the test sets. We leave a
more comprehensive study of these metrics and whether it
is appropriate to use algorithms that aim to alter them to
future work.

6. CONCLUSIONS
Results of the present exercise in generalizing a model to
predict reading ability built first on data from a school dis-
trict in the mid-western U.S. [1] to a larger school district in
the south-eastern U.S. are promising. We see largely simi-
lar predictive performance results (ranging from 0.76 to 0.8
AUC) regardless of whether we learn and/or test models on
either of the districts individually or “pool” together or com-
bine data from both districts to create a single dataset for
training and testing. These results suggest that such models
may be helpful in suggesting relatively“low-stakes” interven-
tions to support readers who may be experiencing difficulty
with reading in their mathematics learning in the MATHia
software (e.g., behavioral nudges or suggestions to engage
with reading supports or possibly directly presenting stu-
dents with such supports). Additionally, these models are
likely to help learning engineers and analysts to better un-
derstand whether such supports are working for those they
are intended to help (especially if presented across a wide
population learners for which data about their reading abil-
ity is unavailable).

Our investigations into one facet of algorithmic fairness of
the approach we consider leads us to an interesting result:
the model trained on a smaller dataset performs better in
terms of prediction accuracy across two demographic cate-
gories (i.e., a bifurcation of race and gender) we considered
while only performing slightly worse overall compared to
a model learned over a much larger, pooled dataset. Pre-
vious work on data from Cognitive Tutor [21] found a re-
sult that was analogous in some ways to the present result,
specifically that a model trained over a smaller amount of
“high quality”usage data (i.e., students with a lot time using
the software and completing content) out-performed models
learned over larger populations of students without regard
to inclusion criteria for usage. However, the present work
considers a much different prediction task, namely ensem-
bled neural network model performance on an end-of-year
standardized test outside the target instructional domain of
the system, rather than predictions of individual student
actions within an ITS. Additionally, the model trained on
the larger dataset does out-perform the model trained on a
smaller dataset overall; it is just when we begin to consider
demographic breakdowns of model performance (as one op-
erationalization of algorithmic fairness, among many) that
we start to notice the potential that the model trained on
a smaller dataset may be out-performing the model trained
on the “larger” dataset. There are other metrics and unfair-
ness mitigation algorithms that have been developed, such
as Disparate Impact Preprocessing, Reweighing, and Equal-
ized Odds Postprocessing – we leave a more comprehensive
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study of these metrics to future work.

While we studied two districts in two states in different re-
gions across the United States, we found that models trained
on one or the other have varying performance over different
demographics. With data from more states with different
demographic make-ups, it would still be interesting to test
how these models further generalize, and whether the MW
model that generalized well across demographics in both the
MW and SE datasets, would also generalize well to districts
in more regions.

We believe that taking steps to ensure trust and fairness
in predictive models in education are essential when using
these models for practical purposes. For example, models
that generalize well could be used in A/B testing experi-
ments to predict the reading ability of a large population of
students to see how different aspects of personalized learning
may work better for them (e.g., by using them to person-
alize BKT model parameters to students with reading diffi-
culties). An example of such a personalization could, for ex-
ample, find it more suitable to allow students with predicted
reading difficulties to attempt more practice opportunities
on mastery content, and vice versa. Such personalization
and other adaptive supports may improve student learning
and user experience in ITSs, but could also have adverse ef-
fects if the predictive ability of the models is unfair towards
certain demographics.

We look forward to further engaging with these questions
of both generalization and fairness as well as how different
goals for prediction are likely to impact appropriate choices
for how to operationalize fairness to ensure more trustwor-
thy, equitable, and high-quality learning experiences for all
learners.
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ABSTRACT
Computer-mediated social learning contexts have become
increasingly popular over the last few years; yet existing
models of students’ cognitive-affective states have been slower
to adopt dyadic interaction data for predictions. Here, we
explore the possibility of capitalizing on the inherently social
component of collaborative learning by using keystroke log
data to make predictions across conversational partners (i.e.,
using person A’s data to make prediction about if person B
is mind wandering). Log files from 33 dyads (total N = 66)
were used to examine: a) how mind wandering (defined here
as task-unrelated thought) during computer-mediated con-
versations is related to critical outcomes of the conversation
(trust, likability, agreement); b) if task-unrelated thought
can be predicted by the keystrokes of one’s partner; and c)
how much data is needed to make predictions by testing var-
ious window-sizes of data preceding task-unrelated thought
reports. Results indicated a negative relationship between
task-unrelated thought and perceptions of the conversation,
suggesting that attention is an important factor during com-
puter mediated chat conversations. Finally, in line with our
hypothesis, results from mixed effects models showed that
one’s level of task-unrelated thought was predicted by the
keystroke patterns of their conversational partner, but only
using small window sizes (5s worth of data).
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mind wandering, chat, keystrokes, task unrelated thought

1. INTRODUCTION
Imagine you are messaging with a classmate about a home-
work assignment that is due in your programming class later
that day. You exchange rapid messages back and forth, dis-
cussing how to debug the problem. You send a last message,
but your partner does not immediately reply. Until this mo-
ment, your attention had been almost entirely focused on the

conversation. But now, in this moment of silence, your at-
tention is captured by thoughts of going to the grocery store
once you’re finished. You think about how crowded it will
probably be, then brainstorm what you want to cook later,
and start to think about how you wish you had a sandwich
right now. At some point a few minutes later, your friend
messages you back and you suddenly realize how far your
mind had wandered away from the conversation you two
were having.

This example illustrates a critical feature of our attention –
namely, that it is constrained by the actions of the people we
interact with. In the context of conversation, for example,
we are influenced by the content of the messages that our
partner sends but also by a variety of more subtle behaviors,
such as the timing of the responses themselves. Such timing
information is commonly captured via log files in educa-
tional technologies, and there is a long history of using this
information to predict cognitive and affective states during
learning [8]. However, these approaches typically rely on log
file information for a particular student to make a prediction
about that same student’s cognitive state. As our example
above illustrates, it may be the case that the behaviors of
a conversational partner can provide important information
about students’ cognitive states that would not otherwise be
apparent. With only access to your log data, we would not
know why you stopped messaging your partner – was it be-
cause you were bored, gave up, or got distracted? Knowing
your partner’s behaviors helps answer this question perhaps
even better than your own.

Here, we expand traditional modeling approaches in the
EDM community by examining the predictive power of part-
ner log data to predict attentional states. We designed a
computer-mediated conversation task and logged keystroke
data from pairs of students while they talked. Periodically,
the students were asked to provide self-reports of their atten-
tional states, operationalized here as task-unrelated thought
(TUT). Rather than using each student’s keystrokes to pre-
dict their own attentional state, we test whether they can
be predicted from the keystrokes of their partners. Assess-
ing the feasibility of using partner data to predict cogni-
tive states is particularly timely today where interactions
amongst individuals are increasingly occurring online and
may continue in this direction with the advent of large lan-
guage model based chatbots (e.g., Chat-GPT). It is therefore
important that we consider new methodologies that rely on
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numerous sources of log data beyond those of the individ-
ual student, which can provide opportunities to model and
respond to student attention.

1.1 Related Work
1.1.1 Task-Unrelated Thought

TUT tends to occur around 20-30% during computerized
reading [9], 30-40% during online lectures [22], and 20%
while interacting with an intelligent tutoring system [16].
Importantly, TUT frequency has consistently demonstrated
a negative relationship with affective valence [18] and learn-
ing outcomes [9, 25]. Given the frequently negative con-
sequences of TUT on learning, researchers and educational
technology developers have placed a strong emphasis on the
development of models that can detect when a student has
gone off task based on log data that can be readily integrated
within a system. These models have relied on a variety of
different sources of data to date, such as reading times, eye
gaze, and EEG signals [11, 10]. These detectors can then
be used to increase adaptivity and personalization in edu-
cational technologies. For example, recent work has shown
that a TUT-sensitive intervention was effective for promot-
ing long-term comprehension compared to a control group
who did not receive the interventions at the moment they
needed them [17].

Despite the substantial body of work on TUT during learn-
ing, it has rarely been examined in collaborative contexts,
such as computer-mediated communication (CMC) or in-
teractive learning contexts where chats are the most com-
mon form of communication among students (or between
teachers/bots and students). One exception is recent work
demonstrating that TUT occurs quite frequently when stu-
dents are chatting with one another on computers in sepa-
rate locations; instances of TUT were also correlated neg-
ative affective valence and other variables during the chat,
providing initial evidence that it might be an important in-
dicator of chat outcomes [4]. However, this study currently
exists in isolation, leaving large gaps in our understanding
of if and how TUT matters during conversations.

Given the nascent work in this area, our first research ques-
tions center around if and how such instances of TUT relate
to perceived conversational outcomes; that is, what is the
benefit of knowing whether students are off-task, and is it
predictive of outcomes we care about in collaborative learn-
ing? Answering these questions will provide a baseline for
future work in the context of EDM – namely motivating
why we should consider modeling attention in the context
of student computer mediated chats. A few variables that
are of particular interest along these lines are likability and
trust [19, 23]. However, trust is often difficult to measure
directly or in real-time, so proxy stealth measurements that
are linked to trust could provide “early warnings” for inter-
ventions. Indeed, for any chat-based system to be effective,
these variables will be critically important to understand
and detect early on so that students don’t disengage before
it’s too late.

At the same time, if TUT is predictive of key outcomes,
then we also need to understand effective ways to model it
as chat conversations unfold. In our context, we are focused
on understanding which behaviors, that can be readily ex-

tracted in chat data, may be used to predict cognitive states
– particularly ones that capture the inherent social interde-
pendence that exists within dyadic chats. This may be quite
timely to explore given that CMC – especially remote, real-
time chats – is becoming increasingly used in educational
settings.

1.1.2 Keystroke Data
We chose to use keystroke data to explore this question given
past work showing that keystroke log files are able to pro-
vide fine-grained temporal information about students’ lan-
guage production. For instance, the number of keys a stu-
dent presses at the beginning of a writing task can provide
insights into the degree to which their ideas were developed
before they began the task. Similarly, a high number of
backspaces may indicate that the student was revising their
ideas in the moment. Keystroke features such as these have
been linked to numerous factors related to learning, such as
emotions [1, 3], reflective evaluation [24], and the quality of
written product itself [14, 1, 5].

Predictive models using keystroke data have predominantly
focused on writing tasks completed by single students, such
as argumentative essays (see [6] for a review). However,
there is some work in the CMC literature that examines
the role of message timing in conversational success; for
example, research indicates that shorter pauses with fewer
keystrokes are associated with increased trust in your con-
versational partner [13]. These prior studies provide a foun-
dation for work using keystrokes in CMC contexts; however,
many questions remain unanswered. Relevant to the current
work, how might the keystrokes of our partners relate to our
own attentional states? As illustrated above, it is likely that
the rhythm of our conversational partner may have a direct
influence on our own attentional states; however, research is
still needed to provide a more formal account of how part-
ners’ behaviors relate to cognitive and affective states.

1.2 Overview and Novelty of Current Work
There is no shortage of educational technologies that can
detect and respond to an individual’s cognitive states. Still,
relatively few studies have leveraged the inherent interde-
pendence between individuals in social contexts to inform
such technologies. As collaborative learning becomes in-
creasingly popular, understanding these links may open new
doors to predictive modeling in collaborative tasks. Towards
this goal, we expand the traditional application of log files
to make cross-partner predictions of attention in a dyadic
conversation from readily available keystroke log files from
33 dyads. In doing so, we answer the following research
questions: a) how TUT during computer-mediated conver-
sations is related to critical outcomes of the conversation
(trust, likability, agreement); b) if TUT can be predicted by
the keystrokes of one’s partner; and c) how much data is
needed to make predictions by testing various window-sizes
of data preceding task-unrelated thought reports.

2. METHODS
2.1 Data Collection
2.1.1 Participants

We collected data from participants using an online plat-
form called Prolific, where participants were paid to engage
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Table 1: Keystroke features and descriptions.

Feature Type Keystroke Feature Description Mean (Std.)

5s 15s

Non-message Verbosity
Number of keystrokes in the
window

20.34
(6.229)

47.98
(16.63)

Backspace Frequency
Number of times the backspace key
was hit in the window

0.002
(0.020)

0.005
(0.028)

Maximum Latency
Maximum difference between two successive
keystrokes in the window

5713
(4578)

15257
(10933)

Median Latency
Median difference between two successive
keystrokes in window

1152
(2616)

864.8
(2485)

Message Inter-Word Time
Mean time between consecutive words
in the recreated message

334.6
(120.9)

619.4
(272.3)

Inter-Sentence Time
Mean time between consecutive
sentence in the recreated message

354.3
(1194)

588.9
(1736)

Number of Words
Number of words in recreated message
(separated by space key)

2.563
(0.903)

5.997
(2.244)

Maximum Sentence
Length(# of Keystrokes)

Maximum number of words
logged to type a sentence

18.79
(1.665)

41.33
(14.53)

in our chat-based study. All participants (n=218) locations
were limited to the United States and the United Kingdom.
Prolific has been shown to be a reliable source for data col-
lection and can yield more diverse datasets in terms of par-
ticipant background and age. Participants had a mean age
of 34.016 (SD=11.45). 73.7% were female, 24.7% male, and
1.6% reported being non-binary. 79.1% participants were
Caucasian, 11% Asian, 3.4% Hispanic, 1.1% Black, 0.5%
American Indian and 4.9% as ‘other.’

2.1.2 Chat Platform
We built our own online chat platform where two partici-
pants would be automatically matched and converse with
each other while answering in-situ “thought probes” about
whether they were experiencing TUT throughout the chat
session. The chat was designed to be much like an large on-
line discussion, where two students may be randomly paired
with each other and asked to chat. The entire conversation
lasted a total of 16 minutes. During the conversation, all
keystrokes and their associated timestamps were logged. We
attempted to keep the conversations relatively open-ended
to mimic real-life chats between students. Each conversa-
tional pair was given one of three different instructions for
the conversation to create diversity in the chats (i.e. so any
findings could not be attributed to forcing a single type of
chat/topic): 1) high constraints, where the participants were
asked explicitly to learn about remedies for the common cold
from one another; 2) low constraint, in which participants
were asked to discuss medically relevant topics; 3) no con-
straints, where participants were simply asked to chat with
each other. Note that this manipulation was not necessarily
intended to lead to differences in our dependent variables
(and we find no significant differences in the key variables
across conditions); rather, we include it to test whether our
findings generalize across multiple topics. However, for the
sake of caution, we included topical condition as a “control”
variable in all of the analyses presented.

After the task, participants were redirected to a survey page
where they answered questions about their demographics,

valence, and arousal. Valence measures how positive to
negative participants feel, whereas arousal captures partici-
pant’s level of activation, or how sleepy to active they feel.
The survey also consisted of questions about trust, likability,
and agreement the participant felt towards their partner.

2.1.3 Thought Probes
Six brief thought probes were administered pseudo-randomly
throughout the duration of the conversation. Both partic-
ipants saw the probes simultaneously about every two and
a half minutes. The probe read: “On a scale of 7, please
select a number that most reflects your attention on the
current task right now. 1 being you are completely focused
on task and 7 being you are not focused on the task at all.”
This thought probe method is the gold-standard in TUT
research, particularly in educational contexts [9]. Although
there are inevitably some limitations that come with using
self-reports, this method has been validated numerous times
in different contexts (lab settings, online research, class-
rooms). Results suggest that thought probes do not have
a negative influence on task performance, and the responses
have reliable correlates [21]. In our study, both conversa-
tional partners received the probe simultaneously. Message
sending was disabled until the participant responded to the
probe.

2.1.4 Trust, Likability, and Agreement Questionnaires
Participants answered questions about trust, likability, and
agreement immediately after talking to their chat partner.
An 11 item scale designed by McCallister [15] was used to
measure trust. Likability was measured using a modified
version of the Rysen Likability Scale (RLS; [20]). Out of
the original 11 items on that scale, we chose five to include
that were relevant to online interactions. Items on both
questionnaires were reported using a 7-point Likert scale.
Five questions were constructed to measure the agreement
of chat perceptions between participants. An example of a
question was ”I was interested in my partner’s viewpoint.”
Participants reported on a 9-point Likert Scale. Participants
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answers were added for each scale and these sums were used
in subsequent analyses.

2.2 Data Processing and Analyses
2.2.1 Data Cleaning

We collected 218 keystroke files. Due to a glitch in the
server, 33 of the files logged keystrokes as “Unidentified.”
Additionally, four files contained fewer than 200 keystrokes.
These 37 files could not be used for the feature extraction
process and were dropped. Given that our second research
question was based on interdependence, it was imperative
that were able to align data from both conversational part-
ners. However, given that we were unable to align for these
same 37 participants, their respective conversational part-
ners was also dropped. We also removed all pairs of partici-
pants who did not get a total of six probes due to an error in
the triggering system (N = 39 pairs). The final total num-
ber of participants that could be used for analysis was 66
(33 pairs).

2.2.2 Window Creation
Our primary goal is to assess whether keystroke patterns can
be used to predict the attention of someone’s conversational
partner. We thus needed to align keystroke patterns with
thought reports in a time-sensitive manner. That is, we
needed to extract keystroke data from a“window”leading up
to the thought report (but not including the report itself).
This windowed approach is commonly used for detecting
TUT in real-time [11], but this is the first time it has been
applied in a dyadic context, where we take data from one
person to make a prediction about the other.

We created windows leading up to each thought probe using
two window sizes that have been successful in prior research:
5s and 15s [11]. We created these windows in the time lead-
ing up to the probe, such that keystroke data extracted from
the chat would predict their partner’s future level of TUT.
The window was defined by the nearest keystroke to the
thought probe. That is, if a person did not type in the 5s
window immediately preceding the thought probe, the algo-
rithm would instead search for the closest keystroke and be-
gin the window at this point. This approach was necessary
given the dyadic nature of the task, where conversational
partners often take consecutive turns. If the keystroke pre-
ceding the probe was typed outside of the window size, only
that keystroke would be included in the window. This re-
sults in the features extracted from these windows to have
low values, compared to when keystrokes are present.

2.2.3 Features
Once a window was defined, keystroke features were ex-
tracted and classified into two categories: message and non-
message features (see Table 1). Message features require the
recreation of the message within the window, whereas non-
message features use the raw keystrokes. The non-message
features that we selected were based on Bixler and D’Mello
[3]. Messages in the window were recreated by processing
the keystrokes in the window in a sequential manner. A
space key indicated a new word. A period, exclamation
mark, or question mark indicated the end of a sentence. If a
backspace key was encountered in a window, the previously
typed key would be deleted.

Table 2: Correlation matrix of self-reported TUT, arousal,
and partner perception.

Prop.
TUT

reports
Valence

Aro-
usal

Trust
Lika-
bility

Valence -.201

Arousal .117 .194

Trust -.372* .083 .075

Likability -.261. .311. .122 .600**

Agreement -.312. .193 .009 .742** .521**

**p<0.01, *p<0.05, .p<0.1

2.2.4 Analytical Approach
The lme4 package [2] in R was used to create mixed-effects
models. We extracted features from the raw keystrokes and
used the standardized version of them as data. Models were
fitted with random intercepts, with the participant acting as
the random effect. This accounted for within-subjects vari-
ance in the responses. For this analysis, the independent
variables were the individual keystroke features of a par-
ticipant. The dependent variable was the response of their
partner for the TUT probe. We report the unstandardized
regression coefficient (B), p-value, 95% confidence intervals,
and standardized β.

3. RESULTS
Given that TUT has not been studied often in the context
of CMC, a major contribution of this work is evidence that
participants’ average level of TUT was 2.40. This indicates
they were predominantly on task relative to the midpoint of
the scale (3.5 on a 1 to 7 scale), but nevertheless went off
task quite a bit (SD = 1.36). Participants also seemed to
feel generally positive with an average affective valence of
3.53 (SD = .78), and they appear to moderately trust and
agree with their conversational partners.

3.1 Does TUT relate to the perceptions of con-
versation?

TUT has a consistent negative relationship for affective va-
lence and learning outcomes, but these are almost explic-
itly studied in individual tasks. Our first research question
was thus to explore how levels of TUT relate to affective
states as well as perceptions of the chat. These correlations
help address a basic question: is TUT worth detecting in
the context of conversations? Table 2 presents the Pearson
correlation values between variables, where each person’s
own level of TUT was correlated with their self-reported
affect and perceptions of the chat. Out of the 66 partic-
ipants, only 62 were used to calculate these values. Data
for the remaining four were missing. First, we replicated
the typically observed negative relationship between TUT
and affective valence positive [18]. Second, we also observed
significant correlations between TUT and perceptions of the
chat – namely, increased TUT was associated with less trust,
likability, and agreement with your conversational partner.

3.2 Do keystrokes predict partner TUT and at
what window size?
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Table 3: Results of mixed effects models.

Predictors
(Keystroke features)

Attention level of conversational partner

5s window 15s window

B β p 95% CI B β p 95% CI

Lower Upper Lower Upper

Intercept 3.02 0.00 <0.001 2.61 3.43 3.02 0.00 <0.001 2.61 3.43

Verbosity 0.17 0.08 0.04 0.00 0.35 0.08 0.04 0.42 -0.11 0.26

Backspace
frequency

0.00 0.00 0.99 -0.16 0.16 -0.01 -0.01 0.81 -0.18 0.14

Maximum latency 0.08 0.04 0.31 -0.08 0.24 -0.02 -0.02 0.67 -0.20 0.13

Median latency 0.13 0.06 0.11 -0.03 0.29 0.07 0.07 0.05 -0.01 0.31

Inter-word time 0.10 0.05 0.20 -0.06 0.26 -0.03 -0.03 0.46 -0.23 0.10

Inter-sentence time -0.17 -0.08 0.03 -0.33 -0.01 -0.06 -0.06 0.08 -0.30 0.02

Word count 0.15 0.07 0.08 -0.02 0.32 0.03 0.03 0.50 -0.12 0.24

Maximum sentence
length (Keystrokes)

0.18 0.08 0.04 0.01 0.36 0.03 0.03 0.42 -0.11 0.25

Table 3 provides the full results for all regression models.
For the 5s window, three keystroke features significantly pre-
dicted partner’s level of TUT: verbosity, inter-sentence time
and maximum sentence length. Verbosity was positively re-
lated to partner TUT, suggesting that when someone types
for longer periods (with more keystrokes), their partner’s
mind is more likely to drift off-task. A similar relationship
was observed between maximum sentence length and TUT.
Taken together, these relationships indicate that when in-
dividuals produce longer messages, their partners may be
more likely to go off-task, perhaps while waiting for their
partner to complete their thought.

Unlike the keystroke features above, the inter-sentence time
feature was negatively related to partner TUT, with a one
standard deviation increase in inter-sentence length corre-
sponding to a 0.17 decrease in TUT. The inter-sentence time
feature provides information about when partners pause be-
tween the sentences they produce. Thus, it provides some
context for the pauses in the chat rather than simply ex-
amining all pauses regardless of when they occur. The neg-
ative relationship between this feature and TUT suggests
that certain types of pauses may be more or less important
for a partner’s TUT. In particular, if an individual pauses
after drafting a full sentence, it is more likely the case that
their partner now has a complete idea that they can reflect
upon and respond to, rather than something more incom-
plete. This is a particularly compelling interpretation, given
that overall pause times (latencies) were unrelated to part-
ner TUT reports.

Importantly, all of the significant relationships that we ob-
served were for keystroke features calculated at the 5s win-
dow, not at the 15s window. This suggests that the keystroke
features were predictive of partner TUT rates, but only for
those recorded immediately before the probe was delivered.
We cannot make causal claims about why this is the case;
however, a strong possibility is that the window sizes for
keystroke features are sensitive to the specific type of con-
versation that is taking place. Here, students were asked to
have a conversation while not engaging in any other tasks –

this single-task paradigm resulted in relatively rapid turn-
taking between the partners.

Finally, it is worth noting that even the significant models
revealed a relatively small effect in terms of the variance ex-
plained by the fixed effects effects in our linear mixed effects
regressions. The predictors verbosity, inter-sentence time,
and maximum sentence length had a conditional R2 value
of 0.007, 0.006, and 0.007, respectively – leaving an oppor-
tunity to refine such models in future work.

4. DISCUSSION
Collaborative learning environments are inherently social.
One person’s actions will inevitably influence others. The
current study leveraged this interdependence among indi-
viduals in a conversational setting in order to determine if
log file data can be helpful for predicting cross-partner cog-
nitive states. Our main hypothesis was that, in a conver-
sational setting, one partner’s keystrokes may be indicative
of their partner’s attentional state. Taken together, our re-
sults support this hypothesis – highlighting the idea that
incorporating the interdependence between individuals into
predictive models may be beneficial for adaptive educational
technologies supporting collaborative learning. Specifically,
we demonstrate that keystrokes are one such feature that
can be leveraged to make these predictions in the context of
computer-mediated conversations.

Verbosity, inter-sentence time, and maximum sentence length
were the three keystroke features that were reliably pre-
dictive of partner TUT. However, it is worth noting that
these features were only significant within relatively short
(5s) window sizes. The window sizes at which keystroke fea-
tures should be calculated are likely to depend on the con-
text of the conversation taking place; thus, when examining
keystroke data, researchers should extract features at mul-
tiple window sizes to determine which are most appropriate
for their context. A second implication of our study for fu-
ture research using keystroke data is the use of non-message
and message features. We found that inter-sentence time
was a reliable predictor of partner TUT ratings, but there
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were no relations to overall pause time. This indicates that
keystroke features may benefit from the addition of contex-
tual information from the conversation itself. For example,
pauses after highly emotional messages may reflect differ-
ent processes than those after relatively mundane messages,
such as making plans or asking simple questions.

Our study adds to the growing body of work suggesting that
keystrokes are an indicator of cognitive states. Keystroke
features, such as the ones extracted here, are readily avail-
able in most log files, yet are not commonly used in multi-
modal models. It may therefore be worthwhile adding this
feature to increase predictive power in both individual and
collaborative settings. Our paper is focused on the latter
context; as such, we believe there may be particular promise
in interactive group contexts as individual models may not
always reveal the whole story: is someone interacting less
because they are bored, frustrated, or confused? One’s own
data may not be the best way to answer this question; per-
haps the person cannot get a word in because the conversa-
tion is moving too fast, or perhaps everyone else has stopped
responding. Adding keystrokes to predictive models can
thus allow for the social component to be included in a more
explicit way, facilitating time-sensitive nudges or subtle feed-
back to conversational partners on their interactions.

A final set of findings emerged to suggest that TUT is worth
monitoring in CMC. People seemed to experience TUT quite
often during computer-mediated conversations, in line with
previous work showing it is ubiquitous in almost all aspects
of our lives, including educational activities [12, 25]. Not
only does it happen often, these experiences do not appear
to be particularly positive; increased levels of TUT were
consistently and negatively related to trust, likability, and
agreement amongst partners in ours study. This comple-
ments prior work that links TUT to negative affect and clin-
ical conditions – underscoring a potential need to detect it
and respond in educational technologies.

An interesting possibility to consider, particularly as chat-
bots (e.g., Chat-GPT) are likely to continue rapidly evolv-
ing, is how our findings can be expanded in a chatbot setting.
With chatbots becoming more knowledgeable and accessi-
ble, a possibility that bots can be used in education can-
not be ignored. Future work may consider exploring how
chatbots mimicking keystroke patterns that are associated
with lower levels of TUT may influence engagement, and
thus learning outcomes [25]. There is already some evidence
that predictive models of TUT (using one’s own keystrokes)
are accurate during dyadic CMC interactions, and that the
results generalize to chatbot settings; expanding this work
in more ecological and with multiple conversational partici-
pants’ keystrokes would likely be fruitful (i.e. even beyond
dyadic interactions to group interactions).

Like most research, ours is not without limitations. For ex-
ample, we created our own chat platform and did not pro-
vide participants with an explicit learning goal. Although
we took care to vary the topic, replicating our results under
different goal conditions will be an important next step. We
were also somewhat limited with sample size, limiting our
scalability. Nevertheless, our analytical approach provides
proof-of-concept for the usefulness of using partner data.

Future research may also wish to improve our models by
including content-dependent features, such as the conversa-
tional topic. These limitations and caveats notwithstanding,
we believe that “attending to attention” [7] will be helpful
in building technologies that can facilitate effective online
collaboration.
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ABSTRACT
Detailed learning objectives foster an effective and equitable
learning environment by clarifying what instructors expect
students to learn, rather than requiring students to use prior
knowledge to infer these expectations. When questions are
labeled with relevant learning goals, students understand
which skills are tested by those questions. Labeling also
helps instructors provide personalized feedback based on
the learning objectives each student struggles to master.
However, developing detailed learning objectives is time-
consuming, making many instructors unable to pursue it.
Labeling course questions with learning objectives can be
even more time-intensive. To address this challenge, we de-
velop a benchmark for automatically labeling questions with
learning objectives. The benchmark comprises 4,875 ques-
tions and 1,267 expert-verified learning objectives from col-
lege physics and chemistry textbooks. This dataset provides
a large library of learning objectives, and, to the best of our
knowledge, is the first benchmark to measure performance
on labeling questions with learning objectives. We use meta-
learning methods to train classifiers and test them against
our benchmark in a few-shot classification setting. These
classifiers achieve acceptable performance on a test set with
previously unseen questions (AUC 0.84), as well as a course
with previously unseen questions and unseen learning ob-
jectives (AUC 0.84). Our work facilitates labeling questions
with learning objectives to help instructors provide better
feedback and create equitable learning environments1.

∗Equal contribution.
1Repository: https://github.com/AmirZur/smartstem-ai

Figure 1: Deliberate practice framework adapted from [6].

Keywords
educational equity, assessment, learning objectives, peda-
gogical tool, personalized feedback, meta-learning

1. INTRODUCTION
Ericsson and colleagues argue that instructors can maxi-
mize their students’ learning and improvement over time
by facilitating deliberate practice [6]. To facilitate delib-
erate practice, instructors should break targeted skills into
separate subskills, and design learning activities to practice
each subskill in a way that takes students’ prior knowledge
into account. Importantly, students should receive “immedi-
ate informative feedback” about their performance on these
tasks. Afterwards, students should be given the opportu-
nity to improve their performance, whether by revising their
work or by applying what they learned to a similar task.
Our version of the deliberate practice framework is shown
in Figure 1 [16].As shown by Glaser and Chi, breaking down
larger skills into smaller subskills can also facilitate develop-
ment of mental schema to organize domain knowledge, a key
characteristic of expertise [4]. Deliberate practice provides a
useful theoretical framework for understanding the benefits
of detailed learning objectives and labeling course materials
with these objectives.

A. Zur, I. Applebaum, J. Nardo, D. DeWeese, S. Sundrani, and
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Implementing deliberate practice in a classroom environ-
ment requires providing effective feedback. Ramaprasad ar-
gues that true feedback entails clearly articulating a goal,
providing information about the gap between current per-
formance and this goal, and ensuring that this information
is used to bring current performance closer to the goal [19].
Ruiz-Primo and colleagues apply these criteria in their study
of formative assessment [20]. Ruiz-Primo et al. argue that
instructors should address three questions when teaching:
“Where are we going?”, “Where are we now?”, and “How
will we get there?”. Completing the “Where are we going?”
step involves writing learning objectives and clarifying what
is considered evidence of achieving these learning objectives.
Detailed learning objectives therefore provide a clear goal to
measure student performance against. The “Where are we
now?” step involves assessment, which provides a measure
of students’ current and prior knowledge. If assessments
are intentionally designed around relevant learning objec-
tives, and questions are labeled with the learning objectives
they assess, this clarifies the gap between students’ perfor-
mance and the goals defined by the learning objectives. The
“How will we get there?” step involves instructors tailoring
their instructional practices to meet students’ specific needs,
which can include reinforcing concepts that a student may
be struggling with and allowing students to revise their work
[20, 24]. Labeling questions with learning objectives allows
instructors to analyze the specific areas where each student
needs help, and more effectively tailor instruction to the
needs of their students. Finally, exam questions labeled with
detailed learning objectives can particularly benefit students
with less prior preparation, since these students may be less
able to independently identify the skills tested by questions
[17, 21, 22].

However, developing detailed learning objectives is difficult
and time-consuming, which causes many educators to avoid
writing learning objectives altogether, or to write only a
few general learning objectives that do not communicate
the specific skills that they expect students to demonstrate.
Labeling questions with the relevant learning objectives is
even more challenging and time-intensive, making it harder
to provide effective feedback to students. To address such
challenges, this work uses data mining and AI techniques
to help instructors reap the benefits of learning objectives
to facilitate equitable learning outcomes. We develop a
benchmark for automatically labeling questions with learn-
ing objectives, using a custom dataset comprising a total
of 4,875 questions and 1,267 expert-verified learning objec-
tives drawn from four OpenStax college physics and chem-
istry textbooks, a widely-used college chemistry textbook,
and Stanford University’s general chemistry course materi-
als (hereafter, Chem 31A). This dataset provides educators
with a large library of learning objectives and questions,
and, to the best of our knowledge, is the first benchmark
to measure performance on labeling questions with detailed
learning objectives. We use our benchmark to train and
test three different types of classifiers: a multi-class multi-
label (MCML) classifier, a ProtoTransformer, and a classi-
fier adapted from GPT-3 embeddings. The ProtoTransform-
ers and GPT-3 classifiers perform few-shot classification, a
meta-learning task in which a classifier predicts the class of
an input out of previously unseen classes given a few example
items for each class (see Section 2.1 for more detail). Our re-

sults show that these few-shot classifiers achieve acceptable
performance on our held-out test set, which consists of pre-
viously unseen course questions (AUC 0.84). Furthermore,
the ProtoTransformer and GPT-3 classifiers generalize to a
held-out course, which consists of previously unseen course
questions and previously unseen learning objectives (AUC
0.84). Our work facilitates labeling questions with learning
objectives, which can help instructors to incorporate learn-
ing objectives into their courses, provide better feedback,
and create more equitable learning environments for stu-
dents.

2. RELATED WORKS
Although previous research has supported educators’ efforts
to generate and analyze learning objectives [3, 12, 18], there
has been limited research on facilitating the automatic la-
beling of questions with learning objectives. Some rele-
vant work has been done on automatic exam grading, which
can be viewed as labeling questions with rubric items [14,
30, 31]. Our work follows most closely the ProtoTrans-
former [31], which uses prototypical networks [25] to train
a transformer-based model [29] to automatically grade com-
puter science exams. In this section, we reintroduce the
problem of few-shot classification, expand on the Proto-
Transformer approach to this problem, and compare it with
two other classification methods: multiclass-multilabel (MCML)
classifiers and GPT-3 adapted as a few-shot classifier [2].

2.1 Few-Shot Classification
Few-shot classification is a meta-learning task in which, given
a few training examples of each class, a classifier must adapt
to predict new classes that were not previously seen in train-
ing [10, 11, 15, 25]. In our work, we formulate the task of la-
beling questions with learning objectives as a few-shot clas-
sification problem in which the classifier is trained to label
questions with learning objectives, and the set of learning
objectives and questions can vary from course to course.

In our learning setting, we consider a distribution D con-
sisting of task indicators, input examples, and output labels.
Formally, let (t, x, y) ∼ D be a task indicator, input exam-
ple, and label drawn from a distribution of meta-learning
tasks. We consider learning objectives t ∈ T to be task in-
dicators, and questions x ∈ X to be model inputs. The task
label, y ∈ Y = {0, 1}, is such that y = 1 if question x is la-
beled with learning objective t, and y = 0 otherwise. In this
work, our goal is to train a model fθ to accurately predict y
given question x and learning objective t.

To perform few-shot classification, we are given a support
set of k examples for each of the n prediction classes, S =
{(x1, y1), . . . , (xk×n, yk×n)}. This work considers binary
classification (n = 2), and so we interpret our support set as
follows: S contains k examples of questions that are labeled
with learning objective t (i.e., examples where y = 1), and
k examples of questions not labeled with learning objective
t (i.e., examples where y = 0). The goal of a few-shot clas-
sifier fθ is, given S and an unlabeled question x, to classify
whether or not it should be labeled with learning objective t.
Note that the classes predicted by a few-shot classifier may
not be the same between training time and inference time.
In fact, the classes differ with each task type. That is, for
the same input question x, the correct label may sometimes
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Figure 2: Example few-shot learning tasks in our setting, with
k = 2. Each task consists of a task indicator (learning objec-
tive) t, a support set S containing k negative examples of
questions (i.e., questions not labeled with learning objective
t) and k positive examples of questions (i.e., questions labeled
with learning objective t), an input question x, and a label y,
where y = 1 if x should be labeled with t, and 0 otherwise.

Figure 3: Visualization of prototypical networks adapted from
Snell et al., 2017 [25], with n = 2, k = 3. For each class (i.e.,
questions labeled with t and questions not labeled with t) we
are provided three examples of questions. The network fθ
maps each question to an embedding, and computes the pro-
totype pc of each class by averaging the class embeddings. A
new input question, x, is then classified by taking the closest
prototype to its embedding (in this figure, x is labeled 1).

be 0 and sometimes be 1, depending on the learning objec-
tive indicator t. Hence, a few-shot classifier must rely on the
support set S, which consists of example questions for each
class (i.e., examples of questions that should and shouldn’t
be labeled with t). As long as we can provide a support set
S, a few-shot classifier can classify new questions with new
learning objectives that do not appear during training. An
example of few-shot classification is provided in Figure 2.

2.2 Prototypical Networks
One method for few-shot learning classification is prototyp-
ical networks [25], which serves as the basis of the Proto-
Transformer and adapted GPT-3 classifiers [2, 31]. Proto-
typical networks embed inputs into vectors, such that similar
inputs are closer together within the network’s embedding
space. For each prediction class, prototypical networks cre-
ate a prototype embedding by taking the average embedding
of all support examples in that class. New inputs are then
classified by finding the closest class prototype within the
network’s embedding space.

Here we formalize the prototypical network algorithm. Given
a support set S and class label c, let Sc = {(xi, yi) ∈ S |
yi = c} be all examples of class c in S. For example, S0

contains all questions in the support set not labeled with
learning objective t. The prototype embedding of class c is
pc = 1

k

∑
xi∈Sc

fθ(xi). That is, the prototype of each class
represents the mean embedding of inputs with the same class
label. The prototypical network then predicts the label y of
an unseen question x by taking a softmax over the distance
of the model’s embedding of x, fθ(x), from each prototype
pc (see Equation 1). In our setting, this is equivalent to
asking, “Is the network’s embedding of our question closer
to the average embedding of questions labeled with learning
objective t or questions not labeled with t?”

p(y = c | x) =
exp(−dist(fθ(x), pc))∑
c′ exp(−dist(fθ(x), pc′))

(1)

The network is trained to minimize the negative log-probability
− log p(y = y | x) of the true class y. In our setting, dist is
the L2 distance function.

2.3 ProtoTransformer Classifier
The ProtoTransformer classifier is a prototypical network
with a transformers-based architecture [31]. One key feature
of the ProtoTransformer classifier is its ability to incorporate
textual information from the task indicator (i.e., learning
objective), which we expand upon in this section.

Prototypical networks generalize to previously unseen input
examples (i.e., course questions) and to previously unseen
task indicators (i.e., learning objectives). However, repre-
senting learning objectives as task indicators does not allow
our model to utilize textual information from the learning
objectives themselves. Note that as illustrated in Figure 3,
prototypical networks do not make use of the content of the
task indicator t – they only use the positive and negative
examples of the task – in order to classify a new input x.
The ProtoTransformer classifier addresses this problem by
incorporating information from the task indicator in its em-
bedding layer. The ProtoTransformer uses a separate em-
bedding function gϕ, a pre-trained transformers model [29]
with frozen parameters, to compute a vector representation
of the learning objective, and adds this vector representa-
tion to the beginning of its model embeddings. The result-
ing embedded representation (i.e., learning objective token
concatenated with question embedding) is passed into the
transformers architecture, so that the interaction between
the learning objective and question information can be used
to construct an output vector. That is, the ProtoTrans-
former treats a learning objective as a sort of “task token,”
which informs the model of the relation between the input
question and its learning objective. An example ProtoTrans-
former embedding layer is illustrated in Figure 4.

2.4 MCML Classifier
Another approach to labeling questions with learning ob-
jectives utilizes multi-class multi-label (MCML) classifiers
[28]. MCML classifiers, given an input question x, learn to
predict a binary vector y with an entry for each learning
objective t, such that the t-th entry of y is 1 for all learning
objectives that x should be labeled with, and 0 otherwise.
Although MCML classifiers are not few-shot learners, in that
they do not use the support set S in their predictions, they
contribute to a field of prior research on fine-tuning trans-
former classifiers [29]. In our setting, we fine-tune an MCML
model with a transformers-based architecture on a collected

226



Figure 4: Figure adapted from Wu et al., 2021 [31], illustrat-
ing the embedding-space architecture used in our model in
order to incorporate textual information from the task indi-
cator (learning objective) t.

Table 1: Cross-comparison of classifiers used in this work to
label questions with learning objectives. Both ProtoTrans-
formers and GPT-3 perform few-shot classification, while
MCML does not. Although GPT-3 does not require any fine-
tuning or additional training, it is not freely accessible and
must be accessed through a monetized API.

Classifier Few-Shot Fine-tuned Free Access

ProtoTransformer ✓ ✓ ✓

MCML ✗ ✓ ✓

GPT-3 ✓ ✗ ✗

dataset of questions labeled with learning objectives. The
MCML model serves as our baseline, since it is not trained
by the meta-learning algorithm for prototypical networks.

2.5 GPT-3 Classifier
Recent research has investigated the potential of large lan-
guage models to perform few-shot classification without ad-
ditional training [1, 2]. In our work, we adapt a recent
large generative model, GPT-3 [2], as a prototypical net-
work. That is, when run on an input question x, the adapted
GPT-3 model output fGPT-3(x) is the activation of the last
hidden layer within the GPT-3 model. The final layer ac-
tivation constitutes a vector representation that is used to
compute the prototype embedding for each class within the
support set during few-shot classification. One advantage of
GPT-3 is that since it is a large pre-trained language model,
we expect its hidden layers to provide rich embeddings of
text across various domains, including our collected course
questions and learning objectives. Hence, GPT-3 does not
require any fine-tuning nor additional training in our set-
ting. On the other hand, GPT-3 is not publicly available,
and, as of time of writing, is only accessible through a mon-
etized API. This restriction does not apply to the Proto-
Transformer and MCML classifiers, and is further discussed
in Section 7.2.

In summary, we are not aware of prior research which has
focused on the task of labeling course questions with learn-
ing objectives. Nevertheless, recent research on ProtoTrans-
former, MCML classification, and large language models
such as GPT-3 provides avenues for developing models to
label questions with learning objectives from previously un-
seen courses. We summarize the key attributes of proto-
typical networks, MCML classifiers, and few-shot GPT-3 as
pertains to our work in Table 1.

3. METHODOLOGY

Our work introduces a benchmark for automatically labeling
questions with learning objectives, on which we analyze the
ProtoTransformer, MCML, and adapted GPT-3 classifiers.
In this section, we provide details on the benchmark data
collection process and the classifier training process.

3.1 Benchmark Creation
We collected 4,875 questions and 1,267 expert-verified learn-
ing objectives from four publicly available OpenStax text-
books (Chemistry 2e [8], University Physics I, II, and III
[13]), a commonly-used university chemistry textbook (Prin-
ciples of Chemistry 3rd edition [27]), and a Stanford Univer-
sity introductory chemistry course (Chem 31A). The ques-
tions from all OpenStax textbooks, as well as from the uni-
versity chemistry textbook, are labeled with the correspond-
ing list of learning objectives included in each textbook. To
collect data from Chem 31A, we worked with members of
the course teaching team to manually develop a list of 75
specific learning objectives for the course. For reliability, we
independently labeled 30 exam questions (30 percent of the
total dataset) and reached an agreement of 98 percent with
a Cronbach’s alpha score of 0.90, consistent with excellent
inter-rater reliability [26]. We then labeled 98 exam ques-
tions from the 2021 offering of the course, consisting of four
assessments, with the relevant learning objectives from our
list. After coding all 98 exam questions, we found that only
53 of our learning objectives were covered by these exam
questions. Although other repositories of learning objec-
tives are available [3, 12, 18], to the best of our knowledge
this is the first dataset to allow for training and benchmark-
ing machine learning models on the labeling of course ques-
tions with relevant learning objectives. Example data points
from our dataset can be found in Table 4, and are further
discussed in Section A in the Appendix.

3.2 Classifier Training
Our main contribution in this work, besides the creation
of the benchmark, is a collection of classifiers (ProtoTrans-
former, MCML, GPT-3), trained and tested on our bench-
mark for labeling questions with learning objectives. We
use a ProtoTransformer with a BERT architecture, keeping
the default settings from the original paper [29] (∼110M pa-
rameters). We train the ProtoTransformer with an Adam
optimizer [9] and a learning rate of 1 × 10−5 for 8 epochs
on our training dataset, which consists of ∼950 of k-shot
classification tasks. The k value during training is 5, al-
though we vary k during inference time. Our implemen-
tation of MCML is a BERT model (same hyperparameters
as the ProtoTransformer) fine-tuned on our training data.
We train the MCML classifier with an Adam optimizer and
a learning rate of 1 × 10−5 for 5 epochs on our training
dataset. Lastly, we adapt GPT-3 using the OpenAI curie
model [2] (∼6.7B parameters) as described in Section 2.5,
without additional training.

4. EXPERIMENTS
4.1 Experiment 1: Held-Out Test Set
We evaluate our model on a held-out test set, which consists
of previously unseen learning objectives. Although questions
were shared with the training set, the support set and query
set consist of previously unseen combinations of questions
and corresponding learning objectives, hence constituting
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a previously unseen task. In our benchmark test dataset,
positive examples (i.e., question-learning objective pairs in
which the question is labeled by that learning objective)
are balanced with negative examples (i.e., question-learning
objective pairs in which the question is not labeled by that
learning objective).

4.2 Experiment 2: Held-Out Course
Our second experiment considers using the trained classifiers
to automatically label questions with learning objectives on
a full course. We use a held-out course, Chem 31A, which
consists of 53 previously unseen learning objectives and 98
previously unseen questions. We note that the MCML clas-
sifier is inapplicable in this setting, since the learning objec-
tive class labels are unavailable to it during training. Hence,
we only compare the ProtoTransformer and GPT-3 classi-
fiers. Unlike the test set, our held-out course is unbalanced
with regards to positive and negative examples. A course
question in Chem 31A is labeled with one to eight learning
objectives of the total 53 available; therefore, our held-out
course data is skewed towards negative examples.

Due to the imbalance in our dataset and multiple learning
objective labels per question, we evaluate models with re-
spect to ROC-AUC and F1 scores in addition to accuracy
[7, 23]. The ROC-AUC metric considers a moving deci-
sion boundary, allowing us to better interpret the tradeoff
between precision, or the ability to predict a short list of
learning objectives that match the true learning objectives
per question (with the risk of excluding true learning objec-
tives), and recall, or the ability to predict all learning true
objectives per question (with the risk of providing a long
list containing unrelated learning objectives). Likewise, the
F1 score balances precision and recall in its computation,
accounting for class imbalances. We use the accuracy, AUC,
and F1 evaluation metrics in both the held-out test and
held-out course experiments.

4.3 Experiment 3: Recall Over Top-mmm
Due to the imbalanced nature of our held-out course dataset,
in which questions are labeled with one to three of 53 learn-
ing objectives, we expect our model to over-predict the list
of learning objectives with which to label a question (i.e.,
generate an overly-long list of candidate learning objectives
for a single question). Interestingly, error types in our set-
ting are imbalanced as well. A false positive (type I error)
in our setting occurs when our model labels a question with
an incorrect learning objective, meaning that an educator
would need to filter a longer list of predicted learning ob-
jectives in order to label a question. Meanwhile, a false
negative (type II error) occurs when our model fails to la-
bel a question with one of its correct learning objectives,
meaning that an educator would need to search through the
entire course list of learning objectives in order to find the
correct learning objective. As a result, false negative er-
rors would be far more time-consuming for an educator to
correct. Hence, our last experiment considers recall, which
measures a classifier’s protection against false negative er-
rors. We consider a graph of recall over top-m, where m
represents the number of positive labels that the classifier
assigns (i.e., the number of learning objectives labeled per
question), chosen by taking the m learning objectives with
the highest probability predicted by the classifier. A higher

Table 2: Comparison of classifier performances on held-out
test set. Highest scores are in bold.

k Classifier Accuracy AUC F1
0 MCML 0.52± .02 0.51± .00 0.34± .00

1
GPT-3 0.53± .02 0.55± .03 0.43± .02

ProtoTransformer 0.68± .01 0.79± .02 0.63± .02

2
GPT-3 0.53± .02 0.54± .03 0.43± .02

ProtoTransformer 0.74± .01 0.83± .02 0.71± .02

5
GPT-3 0.52± .02 0.53± .03 0.44± .02

ProtoTransformer 0.77± .010.77± .010.77± .01 0.84± .010.84± .010.84± .01 0.74± .010.74± .010.74± .01

m represents more post-processing on behalf of educators
(e.g., filtering from a list of five vs. ten predicted learning
objectives); meanwhile, a higher recall score indicates that a
greater percentage of true learning objectives are contained
in the list of m learning objectives.

5. RESULTS
Below we detail classifier performance across each of our
experiments. We also provide example classifier outputs in
Table 5, and a preliminary qualitative analysis of classifier
behavior in Section B in the Appendix.

5.1 Experiment 1: Held-Out Test Set
We report accuracy, ROC-AUC, and F1 scores on our held-
out test set for the ProtoTransformer, MCML, and GPT-3
classifiers, across varying values of k (see Table 2). Higher
values of k denote more examples provided to a few-shot
learner per classification (in our case, more examples of ques-
tions that are labeled with a certain learning objective), and
hence a greater manual effort to label questions with learning
objectives. Since the MCML model is not a few-shot classi-
fier, we treat it as a zero-shot classifier with k = 0. Both the
ProtoTransformer and GPT-3 classifiers significantly out-
perform the MCML classifier, with the ProtoTransformer
achieving the strongest performance at k = 5 (AUC of 0.84).

5.2 Experiment 2: Held-Out Course
We compare the ProtoTransformer and GPT-3 classifiers on
a held-out course, Chem 31A, which consists of previously
unseen questions and previously unseen learning objectives.
We report results across varying values of k, correspond-
ing to the number of example questions per learning objec-
tive that the classifier requires in order to label the remain-
ing course’s questions (see Table 3). The ProtoTransformer
model requires at least k = 1 example per learning objec-
tive. Meanwhile, GPT-3 can be used as a zero-shot learning
model, where each learning objective class is represented by
the GPT-3 embedding of the learning objective itself. In
this experiment, GPT-3 outperforms the ProtoTransformer
classifier, achieving an AUC of 0.80 on the k = 1 setting.

5.3 Experiment 3: Recall Over Top-mmm
Figure 5 illustrates the trade-off between m, the total num-
ber of learning objective labels that a model assigns to a sin-
gle input question, and the model’s recall. A larger m means
that an educator would need to filter between a longer list
of outputted learning objectives. Meanwhile, a larger recall
means that the list of outputted learning objectives contains
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Table 3: Comparison of classifier performances on held-out
course. Highest scores are in bold.

k Classifier Accuracy AUC F1
0 GPT-3 0.76± .02 0.66± .05 0.49± .02

1
GPT-3 0.63± .03 0.80± .040.80± .040.80± .04 0.46± .02

ProtoTransformer 0.47± .05 0.73± .04 0.36± .03

2
GPT-3 0.77± .03 0.75± .05 0.55± .03

ProtoTransformer 0.63± .02 0.74± .05 0.46± .02

5
GPT-3 0.84± .030.84± .030.84± .03 0.79± .05 0.61± .030.61± .030.61± .03

ProtoTransformer 0.66± .03 0.77± .04 0.48± .02

Figure 5: Model performance, measured as recall of true
learning objectives, over m, or the number of learning ob-
jectives predicted by the model.

a higher percent of the learning objectives that match the in-
put question. The plot below shows that at larger m values
and k = 5, the ProtoTransformer model achieves stronger
recall than GPT-3. Nevertheless, GPT-3 achieves higher re-
call at k = 1 and k = 5 when limited to lower m values
(between 8 and 12).

6. DISCUSSION
The main contribution of our work is a custom benchmark
and a collection of classifiers trained on our benchmark to fa-
cilitate the process of labeling questions with learning objec-
tives. Our classifiers generalize to a held-out course, Chem
31A, with previously unseen questions and learning objec-
tives. We therefore believe that these classifiers can be ap-
plied to other courses to help educators introduce learning
objectives in their classrooms.

Our experiments evaluate an MCML classifier and two few-
shot classifiers, the adapted GPT-3 and ProtoTransformer.
When benchmarked on our held-out test set, which con-
sists of previously unseen course questions and seen learning
objectives, the ProtoTransformer significantly outperforms
both the GPT-3 and MCML classifiers (AUC of 0.77, 0.52,
0.52, respectively). These results suggest that the Proto-
Transformer model generalizes to new few-shot classifica-
tion tasks, and is suitable for use in courses that share sim-
ilar learning objectives to our dataset (e.g. university-level

STEM courses). Meanwhile, the MCML classifier, without
the ability to perform few-shot classification, is not as suit-
able as the meta-learning approaches of the adapted GPT-3
and ProtoTransformer classifiers.

In the second experiment, we analyze classifier performance
on our held-out course, Chem 31A, with previously unseen
questions and learning objectives. The results of this exper-
iment demonstrate how few-shot classifiers could be used
to automatically label new questions with new learning ob-
jectives. Both the ProtoTransformer and GPT-3 classifiers
achieve acceptable performance on the k = 5 setting (AUC
0.77, 0.79, respectively), in which the instructor would need
to provide 5 examples of questions for each learning objec-
tive. Interestingly, the GPT-3 classifier tested on the k = 1
setting – requiring only one example question per learning
objective – achieves the strongest AUC score of 0.80. This is
a promising result which showcases the capability of GPT-
3 to perform few-shot classification without any additional
training. Therefore, the GPT-3 classifiers can be a better
choice for labeling questions with learning objectives of a
new course with unseen learning objectives and questions.

Our recall over top-m plot, seen in Figure 5, confirms the
strength of GPT-3 as a few-shot classifier. The ProtoTrans-
former achieves the strongest recall given a larger m value,
meaning that when allowed to tag a question with 20 learn-
ing objectives, the ProtoTransformer is the most likely model
to include the correct learning objectives within the list of
20 predictions. Nevertheless, the k = 5 GPT-3 classifier
achieves acceptable recall (0.63) at m = 10 , striking a bal-
ance between overly-long lists of learning objectives and the
retrieval of accurate learning objectives. We note that the
GPT-3 classifier in the k = 1 setting, which requires less
manual question labeling on behalf of an educator, achieves
an acceptable recall (0.69) at m = 12. Figure 5, then, il-
lustrates the power of the ProtoTransformer and adapted
GPT-3 classifiers to label previously unseen questions with
previously unseen learning objectives.

7. LIMITATIONS
7.1 Benchmark Limitations
While the results in this work suggest that our dataset of
questions labeled with relevant, specific learning objectives
is a reliable and useful benchmark, it is limited by the speci-
ficity of the OpenStax learning objectives and their corre-
sponding questions. An inspection of the OpenStax portion
of our benchmark, which constitutes the training dataset for
our models, reveals that a question is labeled by each of its
subchapter’s learning objectives, not all of which may be rel-
evant. This limitation also means that questions spanning
multiple concepts are only labeled with learning objectives
from a particular course unit. See Section A in the Appendix
for a detailed analysis of the OpenStax dataset.

The fact that OpenStax questions are not labeled with sub-
sidiary learning objectives from other sub-chapters while
Chem 31A questions are labeled with such subsidiary learn-
ing objectives may help explain why classifiers trained on
OpenStax questions perform better on the held-out course,
Chem 31A, than on the held-out OpenStax dataset (see Ta-
bles 2 and 3). Another potential explanation is that the
OpenStax dataset contains 1,267 learning objectives while
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the Chem 31A dataset contains 53 learning objectives, mean-
ing that the classifiers need to choose from fewer learning
objectives when labeling Chem 31A questions. The smaller
number of learning goals in Chem 31A is likely more rep-
resentative of a single course, rather than a textbook that
could be used to teach a series of courses. Therefore, the
OpenStax dataset could pose a more challenging labeling
task than the intended use case of assisting course instruc-
tors.

Another notable limitation is that we automatically col-
lected the OpenStax data using a custom web scraping pro-
gram (available on our GitHub repository), without any data
preprocessing such as removing special unicode characters or
addressing typos. While this limitation does not seem to pre-
vent our classifers from performing effectively on the Open-
Stax dataset, systematically correcting typos could improve
classifier performance and increase the dataset’s usefulness
to both instructors and researchers.

7.2 Classifier Limitations
Key differences between our ProtoTransformer and GPT-
3 models, beyond classification performance, include model
size and accessibility. Our trained ProtoTransformer model
is an order of magnitude smaller than the respective GPT-3
classifier (∼110M vs. ∼6.7B parameters), and is freely acces-
sible for usage and further training. As of time of writing,
GPT-3 is only accessible through a monetized API2, and,
partly due to its size, is not readily available for additional
training. Hence, we encourage further use and exploration
of the ProtoTransformer classifier.

At the same time, we acknowledge that although achiev-
ing an AUC score of 77% on a held-out course is promis-
ing, the ProtoTransformer classifier may not be accurate
enough for use in all introductory STEM courses. We hope
that future research using our benchmark will improve clas-
sifier accuracy, and potentially generalizability to different
course subjects. For immediate use in classroom settings,
we recommend that instructors investigate model outputs
carefully, and filter its predicted learning objectives down to
the ones most relevant to the question at hand. Instructors
can use Figure 5 to determine the number of learning objec-
tives that they would like to filter from (we recommend an m
between 12 and 16). Furthermore, future research could en-
semble multiple classifiers together (e.g. ProtoTransformer
at k = 5, GPT-3 at k = 1, and GPT-3 at k = 5) in order to
improve classifier accuracy [5].

Lastly, our preliminary qualitative analysis of example model
behavior (see Section B in the Appendix) suggests that the
performance of our few-shot classifiers is limited by the pro-
vided input. That is, access to high-quality support exam-
ples during inference time (i.e., questions that are already
labeled with learning objectives by the instructor) is essen-
tial for accurate prediction. Future work on decreasing k
while maintaining high accuracy, along with work on identi-
fying learning objectives that do not receive as much course
coverage, can significantly enhance the capabilities of our
classifiers.

2Information about the OpenAI API can be found here:
https://openai.com/blog/openai-api

8. FUTURE WORKS
Our results enable many exciting future works for educators
in chemistry, physics, and other STEM fields. By facili-
tating the process of labeling questions with learning objec-
tives, we aim to help educators introduce learning objectives
into their classrooms and label course materials with these
objectives, actions that support students towards mastery-
based learning approaches and promote equity [17]. Since
our classifiers can label new questions with existing learning
objectives and our dataset includes expert-verified learning
objectives from multiple fields, our classifiers can be used to
generate lists of detailed learning objectives for courses that
currently have none. Rather than designing learning objec-
tives from scratch, instructors could use our classifiers to la-
bel their existing course materials with the relevant learning
objectives from our dataset. The list of learning objectives
chosen by the classifiers can serve as a draft list of learn-
ing objectives for the course, which instructors can adapt to
fit their needs. To facilitate these applications, our research
team is currently developing an interactive web-based tool to
allow instructors to experiment with our trained classifiers.
This tool will allow instructors to automatically label their
own questions with learning objectives from our datasets, or
with other learning objectives that they provide. In addi-
tion, the tool will allow instructors to choose the value of hy-
perparameters such as m, the number of learning objectives
that they would like the model to recommend as potentially
relevant to each question, in order to best align with their
needs. Furthermore, the performance of GPT-3 in this work
as a prototypical neural network and as a zero-shot classifier
motivates further exploration of GPT-3 as a meta-learning
model, and its use within educational domains. Lastly, we
encourage data scientists and educators to use and expand
on our dataset of learning objectives, which we believe is the
first benchmark of its kind to label questions with learning
objectives.

9. CONCLUSIONS
Questions labeled with learning objectives can help students
use feedback to better navigate their course, particularly
benefiting students with less prior preparation. However,
the task of labeling questions with learning objectives is
time-consuming, making many instructors unable to pur-
sue it. In this paper, we introduce a benchmark and trained
classifiers for automatically labeling course questions with
learning objectives. We show that meta-learning classifiers
trained on our benchmark achieve acceptable performance
on a test set with previously unseen questions (AUC 0.84),
as well as a previously unseen course (AUC 0.84). We be-
lieve that our work, and future research in this realm, can
support educators by facilitating the process of developing
and utilizing learning objectives in their courses to create
more effective and equitable learning environments.
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APPENDIX
A. SAMPLE DATA
In this section we provide an overview of the OpenStax por-
tion of our benchmark. Table 4 provides example input
questions and their corresponding learning objective labels,
sampled from our OpenStax training dataset.

We note that all questions from each sub-chapter of a given
OpenStax textbook were labeled with every learning objec-
tive that the authors included for that subsection, rather
than each question being hand-labeled with unique learn-
ing objectives. For example, all questions from the Open-
Stax Chemistry 2e [8] sub-chapter “6.1 Solving Problems
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with Newton’s Laws” would be labeled with all five of the
learning objectives for this sub-chapter (see Table 4). This
simplifying assumption allowed us to create a much larger
dataset, including 4,875 labeled questions spanning 1,267
specific learning objectives from OpenStax university-level
science textbooks, than would have been possible had we
hand-labeled each question individually. While not every
question in each sub-chapter focuses on every learning ob-
jective for that sub-chapter, the key learning objectives for
each question are likely to be included in the learning objec-
tives for that question’s sub-chapter. Similarly, it is likely
that all of a sub-chapter’s learning objectives are relevant
in varying degrees to the questions from that sub-chapter,
so questions from the OpenStax portion of our dataset are
unlikely to be labeled with off-topic learning objectives.

The most significant limitation resulting from this simplify-
ing assumption is that questions in our OpenStax dataset
are never labeled with subsidiary learning objectives from
other sub-chapters. In theory, this could limit the useful-
ness of the OpenStax portion of our dataset in training clas-
sifiers to label questions that focus on integrating multiple
course topics. As shown by our experimental results (see
Table 3), classifiers trained on our OpenStax dataset were
able to perform effectively on our Chem 31A dataset, where
chemistry experts individually hand-labeled questions with
learning objectives. Additionally, many questions from the
Chem 31A dataset focus on integrating skills from multiple
course topics, particularly the longer free-response questions
and questions from the final exam. Our classifiers’ ability
to generalize to the Chem 31A dataset after being trained
on the OpenStax dataset suggests that the benefits of the
method we used to label the OpenStax questions, such as
enabling the creation of a much larger dataset for training,
outweigh the limitations mentioned above.

B. SAMPLE OUTPUTS
Table 5 presents the outputs of the ProtoTransformer clas-
sifier with k = 5 on a sample of questions from the held-out
Chem 31A course.

A brief inspection suggests that the ProtoTransformer clas-
sifier does not solely rely on semantic keywords. For exam-
ple, although the second question contains the phrase“vapor
pressure” multiple times, the top three classifier predictions
do not contain this phrase. Meanwhile, the first question
does not explicitly state the ideal gas law, PV = nRT ; how-
ever, the classifier infers the learning objective label.

Although a thorougher investigation is required to interpret
the ProtoTransformer classifier’s behavior, we hypothesize
that the classifier more accurately identifies core learning
objectives (e.g. “use the ideal gas law”, “interpret a phase
diagram”) which appear in many course questions, and less
accurately predicts learning objectives that are specific to a
sub-unit (e.g. “apply the concept of percent by mass”). This
is because few-shot classification requires access to high-
quality samples of related questions. Since the pool of ques-
tions related to the ideal gas law in Chem 31A is richer
than the pool of questions related to the concept of percent
by mass, the ProtoTransformer classifier is likely to achieve
higher accuracy on the former than on the latter.

232



Table 4: Sample questions and their corresponding learning objective labels from the OpenStax training dataset.

Course
+ subchapter

Question Learning Objectives

University Physics I

6.1 Solving

Problems with

Newton’s Laws

A 30.0-kg girl in a swing is pushed to one side and held

at rest by a horizontal force F so that the swing ropes are

30.0° with respect to the vertical. (a) Calculate the

tension in each of the two ropes supporting the swing

under these conditions. (b) Calculate the magnitude of F

Apply problem-solving techniques to solve for quantities

in more complex systems of forces

Use concepts from kinematics to solve problems using

Newton’s laws of motion

Solve more complex equilibrium problems

Solve more complex acceleration problems

Apply calculus to more advanced dynamics problems

Chemistry 2e

4.3 Reaction

Stoichiometry

What mass of silver oxide, Ag2O, is required to produce

25.0 g of silver sulfadiazine, AgC10H9N4SO2, from the

reaction of silver oxide and sulfadiazine? 2 C10H10N4SO2

+ Ag2O → 2 AgC10H9N4SO2 + H2O

Explain the concept of stoichiometry as it pertains to

chemical reactions

Use balanced chemical equations to derive stoichiometric

factors relating amounts of reactants and products

Perform stoichiometric calculations involving mass, moles,

and solution molarity

Table 5: Presents the outputs of the ProtoTransformer classifier with k = 5, run on four sample questions from the Chem 31A
course. The top m = 3 learning objectives predicted by the classifier are shown for each question, in order of model confidence.
Correct predictions by the model are highlighted in green, while incorrect predictions are highlighted in red.

Question True Learning Objectives Predicted Learning Objectives
(m = 3)

A mixture of 20.0 g of Ne and 20.0 g Ar

have a total pressure of 1.60 atm and

temperature of 298K. What is the partial

pressure of Ar?

Apply the concept of percent by mass and

percent by volume when solving problems

Use gas laws with stoichiometry to analyze

chemical reactions of gasses

Use the ideal gas law (PV=nRT) to solve

problems

Use the ideal gas law (PV=nRT) to solve

problems

Write and balance chemical and net-ionic

equations

Decreasing the external pressure on a

liquid at constant temperature will do

which of the following:(a) Increase the

boiling point, but not affect the vapor

pressure(b) Decrease the boiling point, but

not affect the vapor pressure(c) Increase

the vapor pressure, therefore decreasing

the boiling point(d) Increase the amount of

heat required to boil a mole of the

liquid(e) Both B and D are true

Calculate how vapor pressure will change as

the pressure, volume, temperature, or

amount are varied

Calculate changes in energy, enthalpy, and

temperature that result from a chemical

reaction

Interpret a phase diagram to determine

what phase change may occur for a given

change in pressure or temperature

Interpret a phase diagram to determine

what phase change may occur for a given

change in pressure or temperature

Know the difference between systems and

surroundings

At a constant external pressure, if work

was done by the system on the

surroundings, would you expect ∆E for the

system to be greater than, less than or the

same as the ∆H° for the system?(a) ∆E for

the system would be greater than ∆H°(b)
∆E for the system would be less than

∆H°(c) ∆E for the system would the same

as ∆H°(d) It is impossible to determine

without knowing the magnitude of work

done.

Calculate the work done by or on a gas Calculate how vapor pressure will change as

the pressure, volume, temperature, or

amount are varied

Know the difference between systems and

surroundings

Use the ideal gas law (PV=nRT) to solve

problems

Determine the longest wavelength of light

capable of removing an electron from a

sample of potassium metal, if the binding

energy for an electron in K is 1.76 × 103

kJ/mol. (a) 147 nm (b) 68.0 nm (c) 113

nm (d) 885 nm (e) 387 nm

Know how the photoelectric effect can be

used to assess binding energy

Know how the photoelectric effect can be

used to assess binding energy

Use the relationship between the frequency

and wavelength and velocity (speed) of a

wave to calculate any one (frequency,

wavelength or velocity) given the other two

Use the relationship between the frequency

and wavelength and velocity (speed) of a

wave to calculate any one (frequency,

wavelength or velocity) given the other two

Explain how electronic structure gives rise

to periodic trends (i.e. recognizing

isoelectronic species)
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ABSTRACT
Within the last decade, different educational data mining
techniques, particularly quantitative methods such as clus-
tering, and regression analysis are widely used to analyze
the data from educational games. In this research, we im-
plemented a quantitative data mining technique (clustering)
to further investigate students’ feedback. Students played
educational games within a week on the educational games
platform, Legends of Learning and after a week, we asked
them to fulfill the feedback survey about their feelings on
the use of this platform. To analyze the collected data from
students, firstly, we prepared clusters and selected one pro-
totype student closest to the centroid of each cluster to in-
terview. Interviews were held to explain the clusters more
and due to time and resource limitations, we were unable
to interview all (N=60) students, thus only the most rep-
resentative students were interviewed. In addition to the
students, we conducted an interview with the teacher as
well to get her detailed feedback and observations on the
usage of educational games. We also asked students to take
an exam before and after the research to see the impact of
games on their grades. Our results depict that though edu-
cational games can increase students’ motivation, they may
negatively impact some students’ grades. And even though
playing games made students feel interested and fun, they
would not like to play them on a daily basis. Hence, using
educational games for a certain duration such as subject re-
vision weeks may positively influence students’ grades and
motivation.

Keywords
clustering, educational games, educational technology, seri-
ous game analytics, legends of learning

1. INTRODUCTION
Serious games or educational games can be defined as games
that have the primary purpose of learning and education
rather than entertainment. Educational games are special

kinds of games that particularly aim to reach another out-
come in addition to entertaining players. These games are
used as a tool to increase the motivation and attention of
students. In addition to the positive impact of educational
games on students’ attitudes, they can also directly help
learners to increase their grades [31, 46]. However, it is im-
portant to mention that if not developed and implemented
correctly, educational games can also negatively interfere
with the learning outcome [22].

The implementation fields of educational games vary a lot.
For example, while educational games were used in social
science education such as English language education [1],
history education [25], they were also widely used in more
technical fields as well such as biology education [10], com-
puter science education [30]. Particularly, within the teach-
ing of complex subjects, educational games can help both
teachers and students to ease the learning process. These
games have the potential to get the attention of learners for
a longer period compared to traditional lectures and by using
different game elements, they encourage players to continue
studying. [47] carried out the research about the systematic
literature review on the use of educational games. Based on
their analysis of published papers between 2009 and 2018,
many factors can influence successful educational game us-
age. Gaming easiness, backstory, and production can be
examples of these factors. Furthermore, in this research,
we used the digital educational games platform called “Leg-
ends of Learning”. Legends of Learning 1 is an online educa-
tional game platform that offers over 2,000 math and science
games. Inside the platform, there are various games for each
subject and class. Teachers create playlists of games based
on standards and students work through completing each
one.

The aim of this research was twofold:

• First, our goal was to measure the impact of utiliz-
ing educational games during science subject revision
in one school in Azerbaijan. At the beginning and at
the end of the revision week, students did two different
tests: one pre and one postrevision test, which allowed
us to measure the impact of educational games on their
grades. Once the revision week ended, we asked stu-
dents to provide feedback on the usage of educational
games. Based on their test results and feedback on the

1www.legendsoflearning.com

A. Karimov, M. Saarela, and T. Kärkkäinen. Clustering to define in-
terview participants for analyzing student feedback: a case of legends
of learning. In M. Feng, T. Käser, and P. Talukdar, editors, Pro-
ceedings of the 16th International Conference on Educational Data
Mining, pages 234–243, Bengaluru, India, July 2023. International
Educational Data Mining Society.
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games, we developed four student clusters.

• Second, we aimed to implement a novel approach to
the selection of interview participants rather than se-
lecting them randomly. Because student clusters should
be interpretable and representative of the whole stu-
dent sample [37, 36]. While traditional educational
data mining is more about quantitative analysis of ed-
ucational data, qualitative data can give us a deeper
understanding of individual students and their traits.
Thus, the second aim of this research was to further
refine the student clusters through qualitative analysis
(semi-structured interviews) of each prototype student
in the data (i.e., for each cluster, the student closest
to the centroid).

2. LITERATURE REVIEW
2.1 Educational games in science education
Much research has been conducted on the usage of physi-
cal educational games in science education [27, 39, 8]. [23]
developed an educational card game, then measured its im-
pact on students’ performance. They found that there is
a significant difference between students’ test results be-
fore and after playing this card game. Students also pro-
vided very satisfactory feedback to the researchers (4.29 over
5.00). Moreover, [6] found that using physical educational
card games can enhance the educational experience of phar-
macy students. [6] asked students to answer 90 questions
before starting to play games and they played each game for
1 hour, 3 times over a 6-week period. The main subject of
the games was cardiology and infectious diseases and stu-
dents improved their assessment scores significantly (19.2%
vs. 5.1%, (p < 0.001) and 10.3% vs. 5.1% (p = 0.006). In
addition to increasing their grades, students also mentioned
that they would like to play these card games in the future.
Furthermore, [12] and [32] investigated educational board
games. [12] used a board game called “Gut Check” where
players try to develop a healthy microbiome for themselves
and they also disrupt opponents’ efforts. In the development
of this game, the researchers worked with gamers and biol-
ogists to develop both educational and entertaining games.
While [12] only focused on the educational board game, [32]
both created a new educational board game whose struc-
ture of spatial relationships mirrored the structure of ratio-
nal numbers and to measure the impact of the game, they
implemented pretest-posttest assessments. [32] found that
the correlation between posttest and pretest scores was not
statistically significant, r = .11, t(36) = 0.63, p = .531. The
baseline knowledge of their participants did not influence the
estimated normalized knowledge gains. Even though these
papers build a strong understanding and impact of using
education in science education, they focus on physical edu-
cational games. In our research, we focused on the impact
of digital educational games.

Some researchers investigated digital educational games and
their impact on students’ learning [42, 40, 5, 4]. [3] in-
vestigated the impact of using video gaming technology on
middle school students learning within the scope of basic
electromagnetism. For this, they used the game called “Su-
percharged!” which is a 3D action/racing game. In this
game, players try to maneuver through a set of obstacles
to obtain a certain goal. Supercharged! is designed based

on the laws of electrostatics and the game helps the play-
ers to build stronger intuitions about how charged particles
interact with electric and magnetic fields. [3] divided par-
ticipants into two categories: experiment and control. Ex-
periment group members learned the given physics subjects
by playing games on Supercharged!, however, control group
members learned the same physics subject by using the tra-
ditional learning method. The researchers found that the
experiment group outperformed the control group and there
was no significant difference from the perspective of gender.
The researchers also asked open-ended questions to students
and students mentioned that talking in the classroom dur-
ing the learning process is not familiar to them, thus in the
beginning it was challenging for some students to adapt. Ad-
ditionally, based on their findings, digital educational games
do not replace instruction, but they can support teaching.
Moreover, [44] and [10] focused on the utilization of digital
educational games in chemistry and biology education re-
spectively. Both of these authors implemented pretest and
posttest research methods where they divided students into
experiment and control groups and asked students to take a
test before and after playing digital educational games. [44]
found that compared to the traditional teaching approach,
the game-based learning approaches depicted better effects.
Additionally, they also found that students are prone to have
higher self-efficacy than those in a traditional lecture class
when learning science. [10] found similar positive results
from their research that there was a significant improvement
in the overall learning achievement of students after playing
digital games. Hereby, there was detailed research about the
implementation of digital educational games in science ed-
ucation, nonetheless, we could not find research carried out
in Azerbaijan. In our research, we focused on the usage of
digital educational games in a school located in Azerbaijan.

Furthermore, in some cases, the implementation of educa-
tional games is not successful [47]. For instance, [13] and
[15] found that educational games have a negative influence
on the relationship between mental workload and learning
effect. Additionally, [14] also investigated the digital educa-
tional games and they found that there were no significant
differences in in-depth learning among learners.

2.2 Research on Legends of Learning
In this research, we used Legends of Learning as a digital
educational game platform and we also did a literature re-
view of the research carried out about the platform. [18]
used the Legends of Learning platform to see how the plat-
form impacts students’ knowledge of the physics of light.
50 8th-grade students participated in the research and the
pretest-posttest method was implemented. They found that
there was a medium development for the concept mastery
enhancement and student curiosity enhancement has shown
a negative impact. Furthermore, the Legends of Learning
team partnered up with the team from Vanderbilt Univer-
sity and they investigated the usage of educational games in
the classroom [11]. They found that the students who used
educational games as part of their regular curricula perform
better than their peers on both factual knowledge and depth
of knowledge. Based on our search, Legends of Learning was
not utilized as a digital educational game platform in Azer-
baijan, and in our research, we used this platform to see
its impact on students’ learning and motivation in a school
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located in Azerbaijan.

2.3 Educational games in Azerbaijan
In Azerbaijan, educational games and gamified apps are not
familiar to the local market and the market lacks localized
or translated international educational games platforms [26].
In [26], the researchers designed and developed an educa-
tional game called “FunMath” in which players need to solve
mathematical problems to advance their scores. The app
is designed from scratch in collaboration with the teachers
and students. And after doing the usability test and fi-
nal interview with the school teacher, they found that even
though there could be more improvements, FunMath can
extensively be used within and outside of school to increase
learners’ motivation.

[43] investigated how gamified environment can impact learn-
ers’ motivation and math abilities. For this, they utilized
the platform called “Polyup”. Polyup is a computational
thinking playground where students can experiment with
numbers and functions. After playing games, they asked
students to provide feedback by fulfilling the survey. Stu-
dents mentioned that the platform can be used to connect
mathematics with real-life experiences as well as can also
enhance their mathematical calculation skills. Furthermore,
based on our research, apart from [26] and [43], we could
not find research focusing on educational games or gamified
platforms in Azerbaijan. Additionally, both of these papers
were focused on researching educational games within the
scope of math education, and in our research, we focus on
the impact of educational games in science education.

2.4 Educational games analytics by using clus-
tering algorithms

Educational or serious games analytics refers to analytics or
insights converted from gameplay data within educational
games for the aim of performance measurement, assessment,
or improvement [28]. Different supervised and unsupervised
data mining methods can be implemented to analyze data
from educational games [19]. Clustering is one of the unsu-
pervised techniques of data mining and it contains various
algorithms such as K-means, hierarchical clustering, and ex-
pectation maximization [38]. [2] did the systematic litera-
ture review study on the applications of data science tech-
niques to analyze data from educational games. In their
research, [2] found that 16 of the total 87 academic papers
utilized clustering as a data mining technique which was one
of the mostly-used methods along with linear regression and
correlation analysis. And in this research, we also used the
K-means algorithm to develop clusters.

[29] proposed and validated the questionnaire which is an
instrument to measure the game preferences and habits of
an intended audience. This instrument is called “The Game
Preferences Questionnaire (GPQ) which possesses 10 Likert-
scale items and produces a classification of the participants
into four discrete clusters. While creating these clusters, [29]
utilized the K-means algorithm and they found four main
clusters: casual players, no gamers, well-rounded gamers,
and hardcore gamers. Furthermore, [33] implemented K-
means clustering, K-means++ initialization, and CVIs al-
gorithms to investigate the creation of the new clustering-

based profiling method. For this, they used the platform
called “GraphoLearn” where users can play games for learn-
ing to read. [33] found that by utilizing their clustering
method it is possible to cluster various kinds of learners and
the method can help to track students who have reading dis-
abilities. Additionally, [9] also used the K-means algorithm
to analyze the measure of educational games on students.
They used the platform called “OMEGA+” and in that plat-
form, learners can play games to enhance their knowledge of
problem-solving, planning and organization, associative rea-
soning, and accuracy and evaluation. After the implementa-
tion of the k-means algorithm, they found four clusters based
on their activity status. [9] also mentioned that female play-
ers do not benefit from educational games due to their low
activity status. In our research, in addition to the clustering
analysis and interpretation of clusters, we utilized clustering
results to select the students for the qualitative data collec-
tion. From this perspective, our paper brings novelty since
it is a natural combination of qualitative and quantitative
data analysis rather than only utilizing quantitative cluster-
ing data for quantitative data analysis purposes.

In addition to the K-means, other clustering algorithms were
also used to analyze data from educational games. For in-
stance, [17] used the density-based spatial clustering of ap-
plications with noise (DBSCAN) algorithm to research stu-
dents’ behavior in educational games. Based on the DB-
SCAN, [17] propose a new method called “SPRING” that
helps student profile modeling in educational games. Fur-
thermore, [24] focused on the analysis of player strategies
in educational games, and for this, they utilized hierarchical
clustering. Within this study, they used “GrAZE” which is
a puzzle-based game where learners can improve their al-
gorithmic thinking by playing this game. [24] highlighted
problem areas that can be fixed in the early design phase.

3. METHODOLOGY
We implemented a mixed methodology: quantitative (sur-
veys) and qualitative (interviews). To measure the change
in students’ learning, we implemented the pretest-posttest
method where we asked students to take a test before and
after playing games. Additionally, we also asked students
to fulfill a survey which helped us to analyze their feed-
back and define clusters according to their background and
test results. Furthermore, we selected one prototype student
closest to the centroid of each cluster to interview (Figure
1).

3.1 Research set up and participants
Before starting the research process, we prepared agree-
ments to be signed by the school principal and students’
parents. All the permissions were collected from the princi-
pal and parents two weeks prior to the research. Students
whose parents did not sign the agreement also played games
but their data was not collected in any form. In parallel with
the collection of permission forms, the teacher selected edu-
cational games from the platform for each class (Appendix
C). On Legends of Learning, there are many games and each
game has a very different learning goal, thus it was necessary
to define the games for each class in advance. Moreover, we
also communicated with all parents and school administra-
tors to ensure that there is an internet connection in each
classroom and students have their devices with them.
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Figure 1: Research process

We recruited students who study in the 5th, 6th, or 7th
grades(5th-grade students = 43.3%, 6th-grade students =
25%, 7th-grade students = 31.7%). We gathered data from
67 students, nevertheless, since 7 students could not take
the test after playing educational games, we removed them
from the dataset. Exactly 50% of students mentioned that
they identify themselves as “male”, and the remaining 50%
selected the “female” option.

3.2 Legends of Learning platform
Legends of Learning contain many various games inside the
platform and the type of the game type can differ from mem-
ory type to matching games. Thus, it totally depends on the
learning goal of the instructor and what kinds of knowledge
they want to deliver. In our research, since the teacher had
prior experience using the platform in the classroom, she se-
lected games (Appendix C). The selected games can mainly
be categorized under three sections: matching, memory, and
video games. In the matching games, students were asked to
match images with the given information, and in the mem-
ory games, students were asked to memorize some of the
notions. And in the case of video games, students play a
regular game while in the middle of the game, the game
stops and it asks the question from the student in a quiz
format. If students answer questions correctly, then they
collect points. Furthermore, one of the interesting features
of Legends of Learning is the“Awakening”section. After fin-
ishing their regular games, students can move to the Awak-
ening part, a virtual world. During the Awakening section,
students can walk, meet each other, and solve additional
questions. There is no endpoint in the Awakening section,
thus one can collect as many points as one can. However,
since we selected games previously and we wanted all of the
students to play all selected games, we put a time limit of
five minutes for the Awakening section.

3.3 Data collection and analysis
In this research, we collected both quantitative and qual-
itative data 2. To collect quantitative data, we prepared
the survey and arranged special dates for students to fulfill
the survey at the school. To make sure that students un-
derstand how they need to fulfill the survey, the teacher ex-
plained each question to students while guiding them. In the
development of the survey questions, we used closed-ended
questions where participants choose one or more of the pre-
determined responses. The reason to select the closed-ended
questions is that they are easier and faster to answer [45].
Considering the age of this study’s participants, for us, it was
necessary to keep their attention while they were fulfilling
the survey. The main aim of this survey was to collect stu-
dents’ feedback. The feedback survey is designed in a five-
item Likert scale ((1) Strongly disagree; (2) Disagree; (3)

2The datasets generated during and/or analyzed during the
current study are available from the corresponding author
on request.

Neither agree nor disagree; (4) Agree; (5) Strongly agree).
In the development of statements for the survey, we con-
sidered our main research focus such as what kind of infor-
mation we would like students to provide, and additionally,
we used [20] as a reference to select some of the statements.
[20] developed these statements particularly to measure user
feedback after using the e-learning games.

To measure the impact of educational games on the learning
outcome, we implemented a pretest-posttest design where
we asked students to take two tests: pregame and postgame
tests [16]. The aim of asking students to take two tests was
to investigate how students’ grades changed before and af-
ter playing educational games. The difficulty of questions
in both tests was very similar and the teacher prepared all
questions. Moreover, on the first day of research, all students
were asked to take a test (pregame test) for 20 minutes, and
on the last of the research, students were again asked to
take another test (postgame test). For the postgame test,
students were also given 20 minutes to finish it. Further-
more, we wanted to measure whether the difference between
pregame and postgame scores is significant or not. Since we
had only two variables (pregame and postgame score), we
conducted a t-test.

To create clusters, we implemented the K-means algorithm
and we preprocessed the data before starting the algorithm
implementation phase. Initially, since we did not have any
missing values, we moved to the data transformation stage
where we converted categorical variables into binary or nu-
merical variables. As a next step, we standardized data by
using MinMaxScaler. Within the implementation of the K-
means algorithm, one of the important phases is to define
the optimal number of clusters (k) and for this, we used the
“Elbow method”. When we visualized the graph we observed
that the graph rapidly changed at a point and this happened
when the number of K was 4. Furthermore, for clustering
data, we used the following variables: students’ responses to
all questions in the feedback survey, pretest-posttest scores,
gender, previous gaming experience, and grade that they
study.

To collect qualitative data, we held semi-structured inter-
views. The main goal of holding these interviews was to
collect detailed feedback from students and teachers about
their experience using the platform. The reason why we
selected semi-structured interviews was that we wanted to
ask certain questions but we also wanted to investigate stu-
dents’ additional thoughts. While holding semi-structured
interviews, it is possible to direct the interview based on
participants’ responses [35]. Furthermore, once we had the
results from the clustering analysis, we selected one per-
son from each cluster (the closest prototype to the centroid)
because this student prototype would be the best represen-
tation of the cluster that they belong to. All interviews
were held in the school based on the availability of the se-
lected students and teachers. Interviews were recorded and
transcribed in the Azerbaijani language, however, for this
academic research, the main outputs were translated from
Azerbaijani into English. The parents of the interview par-
ticipants signed the agreement to give permission before we
start interviewing. To analyze interview data, we imple-
mented the coding scheme methodology [7].
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Table 1: Overview of clusters
Cluster ID Cluster description N Gender (female vs male) Gaming experience (yes vs no)

cluster 0 Lowly motivated and positive-grade-change students 8 37.5% vs 62.5% 85.7% vs 14.3%
cluster 1 Average motivated and negative-grade-change students 28 50% vs 50% 85.7% vs 14.3%
cluster 2 Average motivated and no-grade-change students 16 43.8% vs 56.2% 75% vs 25%
cluster 3 Highly motivated and high-positive-grade students 9 67% vs 33% 100% vs 0%

Figure 2: Change in the grades of each cluster on average

4. RESULTS
4.1 Survey results
In the survey, students provided feedback by answering ques-
tions where the maximum score was 5 and the minimum
score was 1. When we asked students about their feeling
while they revise the subject by playing games, they men-
tioned that they felt more satisfied (4.07) and more moti-
vated (3.67). Additionally, students gave a score of 4.22
for their experience from the perspective of enjoyment. It
depicts that students did not feel bored or anxious while
playing these games. Subsequently, students mentioned that
they would like to revise the study subjects by playing ed-
ucational games in the future as well (4.32). However, stu-
dents gave a score of 3.65 to the statement about improve-
ment in their knowledge. To sum up, even though students
provided high scores to the statements about their feelings
and willingness to use educational games in the future, their
scores for knowledge did not improve significantly.

4.2 Student profiles based on clustering results
According to the clustering results, we made four different
student profiles (Table 1) and they are as follows:

1. Highly motivated and high-positive-grade students: Stu-
dents in this cluster changed their grades by 4.71 points
on average (Figure 2). They were satisfied with their
experience on the platform and according to them, ed-
ucational games helped them to increase their knowl-
edge. Lastly, these students enjoyed the games most.

2. Average motivated and no-grade-change students: These
students felt less motivated and they felt bored more
at some parts of the games compared to the previous
cluster of students. Moreover, there was no change in
the grades of these students after playing educational
games.

3. Average motivated and negative-grade-change students:
The main characteristics of these cluster students look
alike with the second cluster students from the per-
spective of how they feel using educational games. The
main difference between the second and this cluster

was their grade change. Students in this cluster de-
creased their grades by 4 points on average. This was
the only cluster that depicted a negative change in
their grades after playing educational games.

4. Lowly motivated and positive-grade-change students:
Students in this cluster felt less motivated and they
were not satisfied in comparison with their peers. Even
though they provided lower points for their feelings
about using the platform, these students made a pos-
itive change in their grades by 1.3 points on average.

When we ran a t-test to measure the significance of the
change, we found that there is no sufficient evidence to say
that the average grade of students before and after using
educational games is different (p-value = 0.7746, alpha =
0.05). Moreover, we also analyzed the average score of each
cluster to the feedback survey where “5” means that they
strongly agree with the statement and “1” signifies that they
strongly disagree with the statement. Overall, cluster 3 pro-
vided very positive feedback from any perspective such as
being motivated to use educational games in the future and
feeling positive and joyful while playing games. Cluster 0
provided lower scores compared to other clusters on average
and the scores from cluster 1 and cluster 2 were almost the
same. Nevertheless, almost all clusters (except cluster 2)
gave the lowest score to the statement about the increase in
their knowledge (“The games increased my knowledge.”).

4.3 Students’ and teacher’s feedback on the
platform

To collect detailed feedback, we selected one prototype stu-
dent closest to the centroid of each cluster. During the in-
terviews, students provided their feedback about the plat-
form and their educational games experience (Appendix A).
Most of the students highlighted positive points about the
usage of educational games and they also emphasized that
Legends of Learning is a very user-friendly platform, thus
it was a good experience to play games on this platform
(cluster 3 and cluster 2). Moreover, all interviewed stu-
dents mentioned that they own previous experience in us-
ing gamified educational tools or educational games. Stu-
dents also provided feedback about the disadvantages of us-
ing educational games. Cluster 2 and cluster 3 prototype
students mentioned that it is challenging for them to learn
new knowledge on the platform. Even though they encoun-
tered new notions and terms, after playing games, they could
not remember most of them. Furthermore, cluster 1 proto-
type student noted that in some parts of the game, answer-
ing questions correctly did not influence their game perfor-
mance, so they were trying to click any buttons so that they
can move to the next stage faster. Lastly, cluster 0 proto-
type students mentioned that some types of games such as
memory games even decreased their motivation to continue.

In addition to students, we also conducted an interview
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Figure 3: Responses of each cluster to the survey questions

with the teacher to understand students’ attitudes, her feed-
back on teaching through educational games, and the chal-
lenges that she encountered during the research week (Ap-
pendix B). Overall, the teacher mentioned positive feedback
on the use of educational games since she observed a positive
change in students’ behavior. She highlighted that students
collaborated with one another to explain some problems and
it increased the engagement inside the classroom. Partic-
ularly, after finishing the research, some inactive students
started to participate in the classroom more actively and
she thought that games helped them to see science from a
different perspective. The teacher also mentioned some chal-
lenges and negative feedback that she observed and heard
from students. According to her, some students did not have
any prior knowledge of playing games or even using comput-
ers, thus adoption of the educational games took longer time
compared to their peers. Moreover, even though playing ed-
ucational games was fun, students were not interested in
playing them on a daily basis.

5. DISCUSSION AND CONCLUSION
The objective of the present study was to investigate the
impact of utilizing educational games as a tool to revise
science subjects. In the first step, we asked students to
take a test before starting to play educational games. After
taking a pregame test, they played games on the platform
called “Legends of Learning” for a week. On the last day
of the week, students took a postgame test. Pregame and
postgame tests helped us to measure the change in students’
grades. Subsequently, students fulfilled a feedback survey
where we asked them to rate statements about their feeling
about using educational games. Based on the data from
the feedback survey and their pregame and postgame test
scores, we created clusters by using the K-means clustering
algorithm. Then, we selected one prototype student from
each cluster to get detailed feedback on their experience of
using educational games. As a last step, we did an interview
with a teacher to understand her perspective on teaching
through educational games and students’ behavior change
based on her observation.

[34] and [21] highlight that players with prior gaming expe-

rience positively impact their performance in other games.
In our research, we also found a similar relationship between
students’ prior gaming experience and their attitudes. Most
of the students had prior experience playing educational
games or using gamified platforms and all students men-
tioned that playing games in the classroom was entertaining
(cluster 0), exciting (cluster 1), fun (cluster 2), and interest-
ing (cluster 3). [3] mentioned that educational games cannot
replace traditional instructions, however, they can support
learning. Based on the interviews with students, we can also
see similar answers where they highlighted encountering dif-
ficulties to learn a new subject by only playing games. All
students and the teacher mentioned that they would prefer
playing games only during revision weeks since regular lec-
tures help them to learn more effectively. Additionally, as
[41] found in their papers, the teacher also mentioned that
games motivated introverted and passive students and they
started participating in classroom discussions.

There are limitations to this work that should be noted.
In this research, we used one digital educational games plat-
form and within this study, we focused on elementary school
students which restricted the scope of the research. Due to
our resources, it was only possible to hold this research with
a group of students, and the implementation of one platform
was possible. Moreover, there is a wide range of future work
that we want to address based on the results presented in
this paper. Firstly, the participant profile can be changed
to see whether it affects their motivation and grades differ-
ently. For instance, holding this research with primary and
secondary school students can result in different outcomes.
Secondly, instead of utilizing Legends of Learning, another
digital educational games platform can be used. Because
each platform is different and may bring different results.
Last not but least, the games inside the Legends of Learn-
ing can be further studied.

5.1 Ethical concerns
To maintain participants’ confidentiality they were assigned
a number rather than their name, and data were stored and
will be disposed of securely according to the agreement that
parents signed. Students were also given the right to with-
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draw whenever they want to stop and leave at any point in
the study.
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APPENDIX
A. STUDENTS’ FEEDBACK
Cluster 0 student:

Since the teacher does not explain anything, it is
very hard to actually understand anything from
scratch. Because in the classroom, our teacher ex-
plains everything many times and very easily but
in the games, they just provide information and
the explanation is not detailed. So maybe I would
not like to play games to learn something from
scratch. And I was not sure whether I am learn-
ing new things or not and that was bad. I would
not like to play games daily because I would feel
bored after some time but for the revision week,
it would be amazing to play games always. I liked
playing games because I felt more entertained in
the classroom. I play these kinds of games very
often at my tutoring sessions and it always makes
me want to play more. The games on Legends of
Learning were okay and I did not feel that bored
except for memory games. Because in the mem-
ory games, I struggled a lot and I could not find
many hints to use. But in general, it was good
and exciting to play these games in the classroom.

Cluster 1:

It was neither good nor bad, it was fun to play
games but after a certain point, I felt a bit bored.
At the beginning of each class day, I was excited
to play games and I think some of the games are
not as fun as others. But I think the platform
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is good because it does not have many bugs be-
cause most of the games that I play at home have
bugs or they work very slowly. I especially liked
the Awakening section of the platform. Because I
liked that there are no limits and I could do many
things. Actually, at that point, I understood that I
can just keep playing even if I answer the question
correctly or wrongly. And I also remember that I
can skip some points in which I could learn some-
thing. So it was a bit bad that sometimes I did
not feel I am learning anything I was only playing
games and ignoring the learning part. However, in
the classroom, our teacher generally asks random
questions in the classroom and I try to follow her
so that I can answer her question. I think we can
use games only for the revision week and it would
not be good to use them every day.

Cluster 2:

I liked playing games during the revision week,
it was very fun. In some parts of the game, I was
asked to answer some questions and in these parts,
I memorized what I learned previously in the class
so it was very good to revise previous subjects.
I also learned new information on the platform.
Maybe we learned this in the classroom previously,
I learned some of them in the games. Normally, I
struggle a lot to sit and try to read something but
by playing games, it felt more like free-time activ-
ity rather than really studying something. Even
I was very excited to be in Science class. I previ-
ously played some educational games such as Ka-
hoot! and Bluekit but they were only in the French
and Biology classes. In general, I like playing edu-
cational games. I think the biggest disadvantage is
that it is very hard to learn something new by only
playing games. For example, I learned some new
things but I already forget most of them. Because
they appeared only in one part of the game and
I used them to move to the next sessions. But I
think that we can play games two or three times a
month about the subjects that we already learned
at school.

Cluster 3:

It was so much fun and interesting to play these
games. I try to find and play similar games at
home as well and these ones were very entertain-
ing. But at home, I start feeling bored after some
time and the best thing was that I was playing
games together with my friends at school. Hon-
estly, it did not feel like a lesson at all. I think
I also learned new things by playing games. It
was also good to answer questions that I already
learned at school. I think I collected many points
because I was trying to remember and select the
right answer to each question calmly. I liked games
on Legends of Learning because they differ from
one another a lot. For example, I did not like
memory games and in these games, and I was try-

ing to finish the memory games and move on to
more interesting ones. I do not think it has a huge
disadvantage because I really enjoyed but maybe
it is only good for the revision week. Because I
was mainly using my previous knowledge on the
topic and that is why I managed to finish many
games earlier than my friends. And I also want to
say that I think some students were just clicking
randomly just to continue and collect points in the
knowledge-sharing parts.

B. NOTES FROM THE INTERVIEW WITH
THE TEACHER

Teacher:

Students enjoyed the platform and the Awaken-
ing was the most interesting part of the section
because they were able to see one another and in-
teract. In general, they were more motivated when
they were collaborating and talking to one an-
other. Some students whom we can call “a gamer”
were more prone to solve problems and finish prob-
lems very quickly. Once they finished their games,
they were trying to help their friends by giving
hints and explaining the platform. There was also
one interesting situation with one of my students
who was very introverted and silent during our ca-
sual classes. But during the research week, I saw
that she was very active and a pioneer to finish
games way earlier than their peers. So I think ed-
ucational games directly impact gamers who are
not much active in regular classes. One of the
greatest things was that there were at least six
students who changed their attitudes toward the
Science class as well. Before this research, these
six students were not active in the classroom, but
even after the research week, I can clearly see that
they have more interest in Science class. I think
they saw the different perspectives of Science and
they really liked it. Students understand that the
games are fun but they prefer the teacher to ex-
plain something and learn before. Because in some
games, they particularly said that they did not
learn this topic in the classroom so they could not
pass to the next level. So I think these kinds of
educational games are only good to revise some
subjects. I also saw some students that were try-
ing to skip the instructions part and maybe they
managed to get some time in the beginning, but
once they moved to the games part, they struggled
a lot. Even some needed to go back and read the
instructions again.

C. SELECTED EDUCATIONAL GAMES
The games for the 5th-grade students:

• Particle trip: Structure of matter

• Matter memory

• Attack of the ice giants

• Matter popper

• LAB fever
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• Chemibot helps the city

• The roles of water in Earth’s surface processes

The games for the 6th-grade students:

• Population Frenzy

• Weather master

• Tornado tournament

• Climate cities

• The water cycle

• Tectonic designers

• Seafloor explorer

The games for the 7th-grade students:

• The spark of life

• Dr. Franks’ cell matching adventure

• Codex - neural disarray

• Cell explorers

• Ener-jump

• Little big plant

• Photosynth Adventure
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ABSTRACT 
In adaptive learning systems, various models are employed to ob-

tain the optimal learning schedule and review for a specific learner. 

Models of learning are used to estimate the learner’s current recall 

probability by incorporating features or predictors proposed by psy-

chological theory or empirically relevant to learners’ performance. 

Logistic regression for knowledge tracing has been used widely in 

modern learner performance modeling. Notably, the learning his-

tory included in such models is typically confined to learners' prior 

accuracy performance without paying attention to learners’ re-

sponse time (RT), such as the performance factors analysis (PFA) 

model. However, RT and accuracy may give us a more comprehen-

sive picture of a learner’s learning trajectory. For example, without 

considering RT, we cannot estimate whether the learner’s perfor-

mance has reached the automatic or fluent level since these criteria 

are not accuracy based. Therefore, in the current research, we pro-

pose and test new RT-related features to capture learners’ correct 

RT fluctuations around their estimated ideal fluent RT. Our results 

indicate that the predictiveness of the standard PFA model can be 

increased by up to 10% for our test data after incorporating RT-

related features, but the complexity of the question format con-

strains the improvement during practice. If the question is of low 

complexity and the observed accuracy of the learner can be influ-

enced by guessing, which results in the imprecision measured by 

accuracy, then the RT-related features provide additional predictive 

power. In other words, RT-related features are informative when 

accuracy alone does not completely reflect learners’ learning pro-

cesses. 

Keywords 
Performance Factors Analysis, Response Time, Memory, Fact 

Learning, Logistic Regression 

1. INTRODUCTION 
As early as Atkinson [4], model-based adaptive scheduling has 

been explored extensively and deeply to improve learners’ learning 

efficiency and long-term retention. According to the theory of 

knowledge tracing [9], one general and important preceding step 

behind this sort of research is to build a learner model that can ac-

curately estimate the learner’s probability of correctly answering 

questions they will encounter based on their prior behaviors [10]. 

One area of learner modeling methods is derived from Item Re-

sponse Theory (IRT) framework, leveraging the Rasch model's 

logistic transformation [34]. Several different logistic regression 

learning models have been successfully built by considering differ-

ent facets of learners’ learning history, such as the Additive Factors 

Model (AFM) [7], which uses the number of prior practices, the 

Performance Factors Analysis (PFA) [32] which uses the perfor-

mance (correct or incorrect) on previously practiced items, the 

Instructional Factors Analysis (IFA) [8] which uses the previous 

instructional interventions the learner has received, in addition to 

many other predictors reviewed recently [30]. 

We noticed that the response time (RT), one commonly used indi-

cator in cognitive domains, was not used in such adaptive models, 

despite its long history as a factor that traced learning [15]. How-

ever, when depicting a learner’s performance, accuracy is not 

enough to give us the whole picture of the learner’s learning trajec-

tory. Accuracy is discrete and may not be precise enough when 

measuring learners’ learning. For example, the learner’s incorrect 

responses could be caused by slipping, and similarly, the learners’ 

correct responses could be caused by guessing [5]. Therefore, to 

measure learners’ learning and performance more precisely, we hy-

pothesize that RT and accuracy during learning should be used 

jointly. For example, quicker correct responses indicate learners 

have stronger memory traces of materials [1, 43]. Furthermore, re-

sponding fluently or automatically is often seen as a criterion of 

learning and training in practical situations [25], such as foreign 

language, emergency medicine, and simple facts learning [14, 18, 

42], so incorporating it as a predictor may increase the generaliza-

bility of such modeling. 

Considering the connection between learners’ RT and their perfor-

mance, some researchers have integrated information implied by 

RT in adaptive learner modeling [11, 37] and experimentally vali-

dated the effectiveness of such RT-based components in improving 

learners’ acquisition and retention [19, 20, 22, 23, 24, 25, 38, 39, 

40, 41, 42]. For instance, Sense and van Rijn [42] incorporated the 

learner’s observed RT to adjust the model’s parameter controlling 

the decay rate of a specific item and showed that RT is informative 

and can significantly contribute to predicting recall. Their results 

showed that the scheduling algorithm incorporating the RT infor-

mation results in higher retention than the random presentation 

schedule. Similarly, Mettler and colleagues [25] assumed that com-

pared to slow correct RT, faster correct RT for a specific item 

reflects the learner has stronger learning strength of the item. Thus, 

in their adaptive response time-based sequencing system (ARTS), 

items that have been answered correctly and quickly would be re-

peated in a longer recurrence interval for the learner. Consequently, 

the ARTS system outperforms the Atkinson [4] method in learning 

efficiency [24]. However, Lindsey et al. [19, 20] pointed out that 

despite the predictiveness power of learners’ future performance 

provided by RT, it was redundant with information held in the ac-

curacy. Thus, RT information of learners was not used in their later 
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adaptive scheduling system, DASH [22]. Table 1 briefly summa-

rizes both adaptive scheduling systems incorporating RT 

information. 

Table 1. Summary of RT-related features in different adaptive 

scheduling systems 

System 
Theoretical As-

sumption 

Model Me-

chanic 

RT-related 

features 

Sense 

& van 

Rijn 

[42] 

Strength theory: 

Correct response 

speed positively 

correlates to 

memory trace 

strength [27] 

ACT-R de-

clarative 

memory 

module [2, 

33] 

A parame-

ter (α) 

represents 

the decay 

rate of 

memory 

traces 

Mettler 

et al. 

[25] 

Learning strength: 

A hypothetical con-

struct related to 

probability of future 

successful recall 

Adaptive Re-

sponse Time-

Based Se-

quencing 

(ARTS) 

Priority 

Score for 

items that 

have been 

answered 

correctly 

In summary, from a theoretical perspective, RT-related features are 

informative for capturing facets of individual differences, such as 

the memory strengths of items during practice. In practical applica-

tions, whether the prediction of learning models can be improved 

after incorporating RT-related features still needs further explora-

tion due to the noisy nature of RT data in many applications. 

Therefore, in the current research, we investigated if the predictive-

ness of the standard PFA model can be improved by incorporating 

the learner’s correct RT history. Specifically, we focused on esti-

mating the learner’s fluent RT after reaching the automatic 

response level, then compared the learner’s correct RT during 

learning with their estimated fluent RT to capture the strength 

changes of memory traces.    

2. METHOD 

2.1 Performance Factors Analysis  
Performance factors analysis (PFA) is a logistic regression model 

using learners’ prior practice performance on knowledge compo-

nents (KC) to estimate their future probability of a correction [32]. 

A KC is defined as a mental structure or process a learner uses alone 

or in combination with other KCs to solve problems [17] and can 

be operationalized as facts, concepts, or complex skills depending 

on the granularity of analyses. In PFA, the learner’s performance, 

correct and incorrect responses are selected as indicators of learn-

ers’ learning processes. The mathematical format for PFA is shown 

in Equation 1 and Equation 2. Equation 1 captures the strength val-

ues for KCs, where 𝑖  represents an individual learner, 𝑗  represents 

a specific KC, 𝛽 represents the easiness of the KC, 𝛼  represents the 

ability of the learner, 𝑠  tracks the prior successes for the KC for the 

learner (𝛾  scales the effect of these prior successes count), and 𝑓  
tracks the prior failures for the KC for the learner (𝜌  scales the 

effect of these prior failures counts). Equation 2 converts strength 

values to predictions of correctness probability according to the lo-

gistic distribution. Since the standard PFA does not integrate the 

information provided by learners’ RT, which is also probably a 

strong indicator of learners’ learning, we believed the modifica-

tions we conducted for the standard PFA described in the following 

sections would be helpful. 

𝑚(𝑖,   𝑗  ∈  𝐾𝐶𝑠 ,  𝑠,  𝑓)  = ∑ (𝛾𝑗𝑠𝑖,𝑗   +  𝜌𝑗𝑓𝑖,𝑗   +  𝛽𝑗)
 
 𝑗 ∈ 𝐾𝐶𝑠

  +  𝛼𝑖     

(1) 

𝑝(𝑚) = (1 − 𝑒−𝑚)−1                  (2) 

2.2 Variants of PFA with Correct-RT-Related 

Features 

2.2.1 The Exponential Law of Practice 
The “law of practice” function describes the relationship between 

RT and practice opportunities. Many researchers have shown that 

simple mathematical functions can fit this relationship [3, 13, 28]. 

Anderson [3] showed that RT is an exponential function of memory 

activation, and the intercept can capture a learner’s neural integra-

tion time and motor response time. Newell and Rosenbloom [28] 

showed that RT follows a power function of prior practice oppor-

tunities. Heathcote and colleagues [13] extensively compared the 

overall fitting of exponential functions and the power functions 

across 40 sets of data, and they found that for unaveraged data, such 

as data from individual learners which were commonly used in 

adaptive modeling, the exponential function fitted the data better 

than the power function. As it turns out, averaging exponential 

functions produces power functions, making these results sensible 

[3]. 

Thus, in the present research, to fit the individual learner’s RT as a 

function of the practice opportunity, we used the exponential func-

tion as shown in Equation 3, where 𝐸 (𝑅𝑇𝑛) represents the expected 

value of RT on practice opportunity 𝑛 , 𝐵  represents the change in 

the expected value of RT from the beginning of learning (n = 0) to 

the end of learning (the xth practice opportunity when the learner 

reaches their fluent RT), 𝐴𝑖 represents the expected value of RT 

after learning has been completed for the individual learner 𝑖 , and 

𝛼  is the rate parameter and controls the amount of nonlinearity dis-

played by the exponential function.   

𝐸 (𝑅𝑇𝑛)  =  𝐴𝑖  +  𝐵𝑒−𝛼𝑛   (3) 

Our main goal was to estimate the value of 𝐴𝑖 for the individual 

learner 𝑖  , which represents the RT needed for the learner to per-

form fluently (fluentRT). In other words, we assumed that if the 

learner truly mastered the materials, no retrieval time would be in-

cluded in 𝐴𝑖 implying an automatic response that captures a 

learner’s neural integration time and motor response time. The es-

timation was conducted using the optim function from the ‘stats’ R 

package [35]. 

2.2.2 Correct-RT-Related Features and PFA Vari-

ants 
After having the estimated fluentRT value of each learner, we need 

other correct RT information from the learner’s practice history to 

calculate predictive components to examine whether incorporating 

such correct-RT-related features added to the standard PFA im-

proves its predictiveness. We followed the method used by 

Eglington and Pavlik [10]. For each learner 𝑖 , for each KC 𝑗 , and 

each trial 𝑡 , a median trial RT was calculated from the previous 

trials 1:  𝑡 − 1  for which the learner was correctly answered. For 

the first trial for a specific learner, and all trials before a correct 

response had been produced, the value was set to zero (hereafter, 

this value was named mediancorRT). A dummy variable (dummy) 

was also created and also added to the model. The dummy captures 

the performance difference between first trials and other consecu-

tive wrong trials at the beginning of the practice session where 

calculating the mediancorRT is impossible. For example, suppose the 

learner’s responses are (wrong, wrong, wrong, wrong, correct with 
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latency 4000ms) for the first five trials for the same KC. In that 

case, the calculation for this learner’s running mediancorRT is (0, 0, 

0, 0, 4000), where the corresponding dummy code for the learner’s 

first five responses was (1, 1, 1, 1, 0). This dummy provides a base-

line for all trials before the first correct result, which offsets the 

value of 0 that is needed to predict the correct latency effect (0 since 

there has been no correct latency). Since we cannot use 0 for these 

trials (since it is just a placeholder), we need this dummy to charac-

terize the baseline performance when we have no correct prior trials 

for the KC. Indeed, by itself, the dummy provides some small im-

provement since it marks a one-time increase in the prediction after 

the first correct response is counted. The main purpose, however, 

is to allow the coefficient for the effect of the prior correct median 

to be fit freely without the 0 placeholder data values affecting this 

result. 

According to the above correct RT-related component mediancorRT, 

we computed a new feature to capture how the learner’s correct RT 

during the practice process fluctuates around their estimated ideal 

fluentRT. The logic behind this feature calculation is that if a 

learner’s correct RT fluctuation for a specific KC is large, even if 

they just answered the question correctly, the memory traces for the 

KC maybe still unstable, and the learner probably needs more prac-

tice trials on the same KC. The calculation is straightforward, for 

each learner 𝑖 , for each trial 𝑡 , the fluentRT is subtracted from the 

mediancorRT. The new feature is labeled as fmediancorRT. 

2.2.3 Logistic Knowledge Tracing (LKT) package in 

R 
For logistic regression models, like PFA, the additive nature of fea-

tures increases their flexibility, making it easy for researchers to 

add new or drop out old features and build their models. We used 

the ‘LKT’ package [30], which makes the logistic model-building 

and parameter-searching processes simpler by reducing high-level 

technical skills and knowledge demands for researchers. For exam-

ple, the models in this paper were run with single calls to LKT 

following the data preparation for latency analysis. The LKT code 

has been publicly shared as an R package in GitHub, and examples 

with detailed notes are available for reference [31]. 

2.3 Datasets and Data Preprocessing 
The model comparison was conducted across several datasets to 

examine the improvement from the addition of the correct RT-re-

lated features we mentioned above. For calculating the mediancorRT 

and the estimation of fluentRT, the dataset needs to include a column 

identifying the time elapsed between the start of the presentation of 

the specific practice trial and the response reaction made by the in-

dividual learner. We used the time from the first seeing the question 

to the learner’s first action as our RT measurement by assuming 

that this time duration reflected the learner’s retrieval time. Specif-

ically, for multiple-choice questions, the learners’ response was 

measured by the mouse click; for short-answer and cloze questions, 

the response duration was from the first keypress. Furthermore, for 

fitting logistic models in LKT, columns are required to identify the 

learners’ deidentified id, response accuracy (correct or incorrect), 

KC id, and the practice opportunity of each KC for the individual 

learner. We expected that the model predictiveness improvement 

after incorporating RT-related features should generalize across da-

tasets with different learning materials and formats of practice 

trials. 

The same data preprocessing criteria were applied to all datasets by 

adopting the procedure of Pavlik and colleagues [30]. Within each 

dataset, students with less than 25 observations were omitted. KCs 

with less than 300 observations overall were also omitted. Extreme 

correct RT outliers (>95th percentile) were winsorized to equal the 

95th percentile correct RT values. Missing RT values were imputed 

with the overall median trial duration for the student. Observations 

relevant to instructions, learning and review trials, or hints were 

omitted since we focused on RT values from learners’ practice at-

tempts for this study. Furthermore, learners whose accuracy values 

during the practice session were less than the probability of a ran-

dom guess were omitted (less than 25%). We used 25% as a general 

accuracy criterion to maintain consistency across all datasets.  

2.3.1 Dataset1. Chinese Vocabulary Pronunciation 
Memory Multiple-Choice Questions 

Dataset 1 was from an experiment designed to explore the best 

practice context and review spacing schedule for learners to re-

member the pronunciation of foreign vocabulary words. The 

learning materials were 27 aural Chinese words. The experiment 

was conducted by using an online Flashcard learning system. Par-

ticipants were recruited from Amazon’s Mechanical Turk. The 

format of practice trials was multiple-choice. For each trial, learn-

ers were asked to select the correct meaning of the aural Chinese 

word they had just heard. Learners have 5 seconds to make their 

choice. Correct answers were provided for learners after their in-

correct attempts, and they were encouraged to learn from the 

feedback within 5 seconds. The 5-second response threshold was 

chosen because for such a simple task it results in very little trun-

cation of the latency distribution and prevents outlier data from 

being collected, preferring to mark such unlikely long-duration re-

sponses wrong [29]. One Chinese word pronunciation was seen as 

a unique KC. After data cleaning, 190 learners and a total of 39,282 

observations, of which 23,981 correct observations were retained 

in dataset 1.  

2.3.2 Dataset 2. Japanese-English Word Pairs Short 

Answer Questions 
Dataset 2 was from an experiment in optimal learning [9], Experi-

ment 2. The experiment was designed to investigate the 

effectiveness of an optimal difficulty threshold adaptive scheduling 

for improving learners’ memory retention. The learning materials 

were 30 Japanese-English word pairs. Participants were recruited 

from Amazon’s Mechanical Turk. All practice trials were short-an-

swer questions, and learners were asked to type in English 

translations after seeing Japanese words. One unique Japanese-

English word pair was seen as a unique KC. The initial dataset in-

cluded 72,455 observations from 291 adult learners, after data 

cleaning, 262 learners and a total of 59,885 observations were re-

tained in the dataset, of which 42,482 correct observations were 

retained. 

2.3.3 Dataset 3. Statistics Content Cloze Questions 
Dataset 3 from practice with cloze sentences about introductory sta-

tistics was downloaded from the Memphis Datashop repository 

(https://datashop.memphis.edu) [16]. The experiment was designed 

to explore the effect of spacing schedules and repetition of KCs on 

learners’ memory of simple statistical concepts. The learning ma-

terials were 36 sentences about different statistical concepts. 

Participants were recruited from Amazon’s Mechanical Turk. All 

practice trials were cloze items, and learners were asked to type in 

the missing word for each sentence. The initial dataset consisted of 

58,316 observations from 478 learners. After data screening, 462 

learners and a total of 53,277 observations were retained, of which 

29,708 were correct observations.    
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3. RESULTS 

3.1 The fluentRT Estimation Results 
Within each dataset, we used Equation 3 and the optim function 

from the ‘stats’ R package [35] to estimate the ideal fluentRT value 

for each learner. We also calculated the correlation between the 

learners’ estimated fluentRT and their average RT during the prac-

tice session (averageRT). Table 2 shows the descriptive statistics 

and correlation test results for all three datasets.   

Table 2. Descriptive statistics for estimated fluentRT and its cor-

relation with averageRT  

Dataset 

FluentRT 

M (SD) 

AverageRT 

M (SD) 

FluentRT 

and AverageRT 

correlation 

1 
1381.717 

(558.811) 

1917.562 

(655.858) 
0.898*** 

2 
2442.846 

(855.596) 

3231.382 

(1132.548) 
0.934*** 

3 
3883.096 

(956.854) 

5910.799 

(1215.972) 
0.908*** 

Note. *** p <.001 

First, we found a highly positive correlation between the learner’s 

estimated neural integration time (fluentRT) and motor response 

time 𝐴𝑖, and the learner’s averageRT during the practice session in 

all datasets. The consistent highly positive correlation suggested 

that learners’ averageRT reflected their neural integration time and 

motor response time which is reasonable since the individual dif-

ferences in neurons’ response speed. Second, individual differences 

in neural integration time and motor response time were observed 

from the fluentRT. For instance, the estimated fluentRT of two learn-

ers with different response speed tendencies from Dataset 1(the 

multiple-choice dataset) was shown in Figure 1. It was clear that 

learner A tended to respond faster than learner B. Based on each 

learner’s correct RT history, the estimated neural integration time 

and motor response time for learner A was only 759.56 millisec-

onds, while for learner B, 1830.72 milliseconds corresponded to 

fluent responding. 

 

Figure 1. Estimated fluentRT as a function of the practice oppor-

tunity for two learners with different response speed from 

Dataset 1 (Multiple-Choice Dataset) 

3.2 Model Fit and Comparison Results 
Five models were fitted to the three datasets. Table 3 shows the 

features included in each model. The $ operator produces a unique 

coefficient for each learner and each KC. For example, the ‘inter-

cept$learner’ feature fits a unique intercept for each learner. While 

for features without the $ operator, a single coefficient would be fit 

for the feature. All features shown in Table 3 represent independent 

variables in logistic regression. The third model (PFAdummy) we 

built here was used as a baseline model to split the unique effects 

of RT-related features, mediancorRT and fmediancorRT, which we 

were most interested in. 

Table 3. Features included in each model 

Model Features 

1_PFA 
intercept$learner + intercept$KC + line-

sucKC + linefailKC 

2_PFAfluentRT 
intercept$learner + intercept$KC + line-

sucKC + linefailKC + fluentRT$learner 

3_PFAdummy 
intercept$learner + intercept$KC + line-

sucKC + linefailKC + dummy 

4_PFAmediancorRT 

intercept$learner + intercept$KC + line-

sucKC + linefailKC + dummy + 

medianRT$learner 

5_PFAfmediancorRT 

intercept$learner + intercept$KC + line-

sucKC + linefailKC + dummy + 

fmedianRT$learner 

Table 4 shows the model comparison and five-fold unstratified 

cross-validation results. According to McFadden’s R2 and Akaike 

information criterion (AIC) values, we can examine whether the 

predictiveness of standard PFA is improved after incorporating RT-

related features. By inspecting the averaged R2 after 5-fold cross-

validation, we want to ensure that the improvement is not caused 

by over-fitting. 

Table 4. Model comparison and cross-validation results  

Model 

Model Comparision 

R2 

(AIC) 

Δ R2 

(Δ AIC) CV R2 

Multiple-Choice Dataset 

PFA 
0.1082 

(47273.57) 
- 0.0984 

PFAfluentRT 
0.1082 

(47275.56) 
- 0.0984 

PFAdummy 
0.1315 

(46053.14) 

0.0233 

(-1220.43) 
0.1215 

PFAmediancorRT 
0.1417 

(45516.02) 

0.0102 

(-537.11) 
0.1318 

PFAfmediancorRT 
0.1438 

(45409.95) 

0.0123 

(-643.18) 
0.1338 

Short-Answer Dataset 

PFA 
0.1966 

(58704.92) 
- 0.1855 

PFAfluentRT 
0.1966 

(58706.92) 
- 0.1855 

PFAdummy 
0.2133 

(57503.39) 

0.0166 

(-1201.53) 
0.2022 
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Model 

Model Comparision 

R2 

(AIC) 

Δ R2 

(Δ AIC) CV R2 

PFAmediancorRT 
0.2217 

(56898.67) 

0.0084 

(-604.71) 
0.2105 

PFAfmediancorRT 
0.2163 

(57287.38) 

0.0030 

(-216.00) 
0.2052 

Cloze Dataset 

PFA 
0.2752 

(54229.77) 
- 0.2564 

PFAfluentRT 
0.2752 

(54232.25) 
- 0.2564 

PFAdummy 
0.2920 

(53002.99) 

0.0168 

(-1226.78) 
0.2728 

PFAmediancorRT 
0.2929 

(52940.5) 

0.0008 

(-62.49) 
0.2736 

PFAfmediancorRT 
0.2923 

(52979.33) 

0.0003 

(-23.65) 
0.2731 

Note. Δ McFadden's R2 calculates the difference between PFAdummy 

and PFA; the difference between PFAmediancorRT and PFAdummy; the 

difference between PFAfmediancorRT and PFAdummy, respectively. Val-

ues reflect the pure influence predicted by the mediancorRT and 

fmediancorRT features. 

First, the model comparison results showed that adding the fluentRT 

feature did not improve the predictiveness of standard PFA much 

for all three datasets. This suggested that the learner’s overall pro-

cessing speed contributed little to predicting their future 

performance. Second, after incorporating the mediancorRT and the 

fmediancorRT features to model learning-correlated speedup, the pre-

dictiveness of the standard PFA was improved most in the 

Multiple-choice dataset (Dataset 1). At the same time, the improve-

ment was not crucial for both the Short-answer dataset (Dataset 2) 

and the Cloze-question dataset (Dataset 3). Third, the dummy fea-

ture caused stable improvement for the standard PFA model across 

three datasets, indicating that incorrect trials before the first correct 

response of the learner, perhaps represented the learner’s encoding 

phase [44]. 

4. DISCUSSION 
When predicting learners’ future performance, accuracy-based fea-

tures have been used in various learner modelings, such as 

knowledge tracing [9, 12] and logistic regression [7, 8, 30, 32]. Re-

cently, some researchers have argued that learners’ response time 

(RT) during practice is also informative for predicting their future 

performance [21, 23, 24, 25, 26, 41, 42]. The key theoretical ra-

tionale behind such assumptions is the strength theory [27] which 

emphasizes the positive correlation between the correct RT and the 

strength of memory traces. Quicker correct responses indicate more 

stable memory traces have been generated than slower correct re-

sponses. 

Following the strength assumption, in the present research, we cal-

culated two RT-related features, then investigated how much the 

predictiveness of the standard performance factor analysis model 

(PFA) can be improved after combining the learner’s RT history. 

The first feature, mediancorRT, captures the sequential median cor-

rect RT for the specific KC of an individual learner. The second 

feature, fmediancorRT, captures how the learner’s median correct RT 

fluctuates around their estimated ideal fluent RT (fluentRT). The flu-

entRT for each learner is estimated using the exponential law of 

practice function [13]. The intercept of the exponential function is 

seen as the fluentRT which represents the neural integration time and 

motor response time without retrieval time, in other words, the as-

sumption here is that the intercept reflects the minimum RT needed 

for an individual learner to correctly answer a specific KC after 

reaching to the automatic level. 

Our results show that the improvement of standard PFA by medi-

ancorRT and fmediancorRT features on the learner’s future 

performance are constrained by the practice questions format. For 

multiple-choice questions, the observed accuracy perhaps cannot 

precisely reflect the learner’s latent learning processes since the 

correct responses might be caused by guessing. Thus, after incor-

porating RT-related features, such measurement imprecision of 

accuracy can be somewhat offset, resulting in improvements of pre-

dictiveness. While for short-answer and cloze questions, the lack of 

precision of the latency in representing strength limits the method's 

effectiveness.  

One exciting aspect of the research was the unexpected benefit of 

using the dummy variable we computed to differentiate trials be-

fore the first correct response from trials after a correct response. 

This improvement is not directly related to reaction time hypothe-

ses we had, and indicates future work is needed to understand this 

result and its generality (though it was more broadly applicable than 

the RT terms themselves). We speculate that the dummy feature 

may trace the transition between stages of learning. Perhaps indi-

cating the student is moving from an encoding to responding stage 

of learning similar to what has been proposed in cognitive theories 

of skill acquisition [36, 44]. Another possible underlying construct 

traced by the dummy feature may be relevant to the moment-to-mo-

ment learning proposed by Baker and colleagues for Bayesian 

knowledge tracing [6]. For instance, the dummy feature which de-

tects the first correct response in a series of responses could indicate 

a learner's state change between unlearned and learned at a coarse 

grain size. 

Limitations of the present research should be noted here as future 

research directions. One limitation is the method we used to esti-

mate the learner’s ideal fluentRT. In Equation 3, for simplifying 

calculations, 𝐵  and 𝛼  values were assumed as the same for all 

learners across all to-be-learned items to keep the parsimonious 

model. Consequently, the practice curves for different learners have 

the same shape and are only different in the vertical y-coordinate 

direction (see Figure 1). We also estimated the same 𝐴  value for 

each learner across all items. These simplifications may constrain 

the implications of RT-related features since the same learner's flu-

ent RT for different items is variable, and more difficult items 

typically require longer RT than easier items [15]. Thus, in future 

research, more precise estimated fluentRT values for each specific 

KC may be required before incorporating RT-related features in the 

real-time adaptive scheduling system. Another limitation in the cur-

rent research is that our results are most relevant to simple-fact 

memory tasks. Thus, one further research direction is how to gen-

eralize the RT-related features to more complex tasks such as 

arithmetic. However, different from simple memory tasks, how to 

accurately decompose learners’ RT data to precisely reflect their 

cognitive processes involved in complex tasks requires more effort 

before generating the RT-related features. 
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ABSTRACT
The General Data Protection Regulation (GDPR) in the Eu-
ropean Union contains directions on how user data may be
collected, stored, and when it must be deleted. As similar
legislation is developed around the globe, there is the poten-
tial for repercussions across multiple fields of research, in-
cluding educational data mining (EDM). Over the past two
decades, the EDM community has taken consistent steps to
protect learner privacy within our research, whilst pursuing
goals that will benefit their learning. However, recent pri-
vacy legislation may cause our practices to need to change.
The right to be forgotten states that users have the right to
request that all their data (including deidentified data gen-
erated by them) be removed. In this paper, we discuss the
potential challenges of this legislation for EDM research, in-
cluding impacts on Open Science practices, data modeling,
and data sharing. We also consider changes to EDM best
practices that may aid compliance with this new legislation.
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1. INTRODUCTION
Data from learners is a critical component of Educational
Data Mining (EDM). This data can include demographic
information, performance data, and interactions with edu-
cational resources such as games, intelligent tutoring sys-
tems, and online learning platforms. This data is essential
for core goals within EDM research, including contributing
to learning theory [5], informing learning interventions [48],
creating dynamic and personalized learning technology [30],
and informing education policy [3]. The collection and use
of learner data raises a number of ethical and legal concerns,
including privacy and data security. However, with proper
safeguards in place, such data can have significant bene-
fits for both students and educators. By providing valuable
insights into student learning, EDM can support the devel-

opment of more effective educational practices and policies,
and ultimately improve student outcomes.

The data that facilitates EDM research can often include
personal identifying information (PII) and other protected
information. As such, there has been increased attention to
privacy protection in recent years. De-identification (remov-
ing or obscuring PII from data) has become a standard prac-
tice for data sharing. Similarly, researchers have used secure
platforms to store and share data that leverage access con-
trols, encryption, and other security measures to safeguard
the data. Furthermore, there are also research methods
such as Differential Privacy [13, 19], which aims to provide
privacy-preserving data analysis by adding noise to the data
to mask any information about individuals while preserving
the overall trends and patterns. There has been consider-
able research attention to finding the balance between data
privacy and having the data required to drive meaningful in-
sights [32, 51] and creating environments where data can be
analyzed in its entirety, without being directly shared [29].

Outside of the EDM community, data privacy concerns are
also rising. School districts and public advocates have ex-
pressed concerns about the increasing amount of education
data becoming available at scale (either for commercial or
research use) [42, 58]. Klose et al. [34] note that educational
repositories have the potential to contribute to identity theft
if hacked, and have shared potential solutions to facilitate
the storing of educational data. The Student Data Privacy
Consortium, meanwhile, has created a template data agree-
ment between educators and researchers. This template re-
quires that any sharing of a dataset (including deidentified
data) must be agreed upon by the local education authority
on each occasion [57, 59]. Such measures will undoubtedly
protect learners, but are onerous to the point that they will
likely limit how much data is actually shared, subsequently
limiting the potential for research to benefit students.

More broadly speaking, legislators are also considering the
issue of user data and are passing laws that govern how it
can be collected, used, and shared. In the United States,
the Family Educational Rights and Privacy Act (FERPA)
has governed many aspects of educational data since 1974,
however, it is more general data privacy laws that may have
the most impact on research today. The General Data Pro-
tection Regulation (GDPR) in the European Union and the
Children’s Online Privacy Protection Act (COPPA) in the
United States each try to protect users and give them more
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control over their data when interacting online. Local gov-
ernments have also taken steps to legislate around how data
might be used, for example, the Colorado Privacy Act and
the California Consumer Privacy Act (CCPA) also both con-
tain guidelines on user data, both with regard to storage and
sharing. With this trend of increased legal guidance around
user data, we must consider how legislation might impact
research practice, and how to adjust our research practices
accordingly.

One such aspect of legislation that may impact EDM re-
search, and the focus of this paper, is the right to erasure
- more commonly called the right to be forgotten. This
right, included in GDPR, with variations in other legislation,
states that a user may request that their data be removed.
Given the high volume of learner data that is central to
EDM research, this has the potential to impact our research
practices. For example, Such removal of data could impact
if a scientific result replicates, or create a ripple effect with
those with whom the data has been shared. In the remain-
der of this paper, we present some of the primary challenges
the right to be forgotten may impose upon EDM research so
that we may be proactive in addressing and understanding
the implications of these laws.

2. BACKGROUND
2.1 Privacy Legislation and the Right to be

Forgotten
On May 25, 2018, the European Union (EU) implemented
the General Data Protection Regulation (GDPR), a com-
prehensive data protection law. It seeks to unify data pro-
tection laws across the EU and replaced the 1995 EU Data
Protection Directive. In addition, it gives EU citizens more
control over their personal data [62]. Regardless of whether
an organization is based in the EU, it must comply with
the GDPR if it processes the personal data of EU citizens
[16]. The right to erasure, also known as the ”right to be
forgotten,” (RTBF) is one of the GDPR’s most significant
provisions, relative to previous legislation. When specific
requirements are met, EU citizens have the right to request
that their personal data be erased under the RTBF [53, 64].
This may occur when a person withdraws their consent to
processing their data, for instance, or when the personal
data is no longer required for the purpose for which it was
collected.

This legislation gives users more control over how their per-
sonal information is shared and formalizes an issue that had
already been discussed in the courts. In the 2014 case of
Google Spain vs. Agencia Espanola de Protección de Datos
(AEPD) and Mario Costeja González, the European Court
of Justice determined that a person has the right to ask for
the removal of links to personal information from a search
engine if the information is unreliable, insufficient, irrele-
vant, or excessive for the data processing. Furthermore, the
court ruled that the data controller (in this case, Google
Spain) was required to take reasonable steps to notify third-
party controllers (any other organization with which the
data was shared) of the individual’s request. Due to this
decision, Google established a procedure for people to sub-
mit RTBF requests known as the ”right to be forgotten”
form [18]. However, the ruling was not absolute. It could be

superseded by other rights and interests, such as the right to
information and freedom of expression. With the passing of
GDPR, there are still elements of ambiguity of supersedence,
for example, if the processing of the data is required to carry
out a task in the public interest or the exercise of official au-
thority vested in the controller [8, 36].

Similarly worded legislation has been enacted outside the
EU, including in the US, Canada, and Asia. For exam-
ple, the California Consumer Privacy Act (CCPA) was en-
acted in the US on January 1, 2020. It grants residents of
California certain rights regarding their personal data, in-
cluding the right to ask for the deletion of personal data
held by a company (though with less severe penalties than
GDPR) [26, 1]. The Personal Information Protection and
Electronic Documents Act (PIPEDA) in Canada governs
the private sector’s gathering, use, and disclosure of personal
information. It does not explicitly address the right to be
forgotten. However, according to the Office of the Privacy
Commissioner of Canada in 2019, the Act grants individu-
als the right to access and amend their personal information
and the freedom to revoke their consent to its collection, use,
or disclosure [50, 37].

Comparably, Singapore’s Personal Data Protection Act 2012
(PDPA) governs how businesses collect, use, and disclose in-
dividuals’ personal information [63, 11]. It grants people the
right to withdraw their consent for the collection, use, or dis-
closure of personal information and access and correct their
personal data. Additionally, organizations must delete per-
sonal data under section 26 of the act when it is no longer
required for the purpose for which it was collected. The
common theme across each of these laws is that they pro-
vide people more control over their data and the ability to
ask for the deletion of data that is no longer relevant or
necessary. The GDPR has established a high bar for data
protection in the EU. However, with varying levels of legisla-
tion across the world, remaining in compliance with each of
the varying laws can be challenging (especially if a dataset
contains users from multiple locations). This can be espe-
cially challenging for researchers striving to share data and
provide transparency regarding their scientific methods.

2.2 Replicability Crisis
Replication (in this context) refers to the verification of a
scientific study’s finding through reproduction, either from
the same data, or new data following the same design. The
purpose of this process is to better understand the reliabil-
ity, validity, and merit of a study’s findings [15]. A study is
deemed reproducible if a research team is able to obtain its
original results through the execution of its original method
on the original or a comparable dataset [22]. “Reproducibil-
ity is a minimum necessary condition for a finding to be
believable and informative” [6].

Despite this importance, replication studies remain some-
what rare in education research and in data research more
broadly. In a study conducted on 400 previously published
works from leading artificial intelligence venues, none of the
papers analyzed reported all details necessary to fully repli-
cate their work [24]. In a study conducted on 30 published
works on text mining, for example, only one of the studies
provided source code to replicate their findings [46]. The re-
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port cited lack of access to data, computation capacity, and
implementation methods as primary barriers to replication.

The lack of replication leads to a surprisingly large propor-
tion of spurious results being widely reported, as reported
by the Open Science Collaboration [47]. In their report, the
OSC, an open collaboration of scientists that seeks to im-
prove scientific values and practices, replicated a hundred
studies from three top psychology journals. Their study
found that 64% of the replications conducted failed to obtain
statistically significant results. These findings highlight the
importance of replication research and the need to validate
published findings. As such, a growing body of research has
begun advocating for researchers to take more active steps
to facilitate replication through Open Science practices.

2.3 Open Science and Open Data
Recent years have seen increasing movements developing in
favor of Open Science and Open Data. The Open Science
movement involves a variety of initiatives and values aimed
at making scientific research more accessible, more trans-
parent, and more reproducible and replicable. Open Science
incorporates a number of different elements, including open
(public) access to scientific publications, the use of open-
source software, and (of particular relevance to this article)
Open Data. Though ideas around Open Science have been
around for a considerable time [12], the contemporary Open
Science movement arguably dates to the Budapest Open Ac-
cess Initiative [10], which called for open archives and open
access journals. So too, scientific data has been shared pub-
licly for a considerable time [43], accelerating with the ad-
vent of the public Internet/World Wide Web [25]. However,
a large proportion of scientific data remains inaccessible to
other scientific researchers [60], much less the general public.

Within education specifically, the amount of data available
openly expanded considerably in the first decade of the 21st
century, with repositories such as TalkBank [41] and the
Pittsburgh Science of Learning Center DataShop [35]. In
recent years, many learning platforms have made their data
sets public, and the International Educational Data Mining
Society has inaugurated a prize for each year’s best pub-
licly available data set. Indeed, this year’s conference (2023)
includes Open science badges to encourage researchers to
share data, and materials, and pre-register their analysis.
Increasingly, many funding agencies supporting educational
research worldwide have begun to require data management
plans, with strong encouragement to make data openly avail-
able [44, 17], and a recent Executive Order by the U.S. gov-
ernment mandates open access to scientific publications and
open sharing of data starting in 2026 [45]. As such, the
already increasing moves within the field towards Open Sci-
ence and Open Data appear likely to expand considerably
in the next few years.

3. RIGHT TO BE FORGOTTEN AND EDM
The right to be forgotten (RTBF) can have a significant
impact on the practice of researchers in educational data
mining. Under RTBF, all data generated by a learner must
be removed from databases upon their request. This can be
a difficult and time-consuming task, especially if the data is
stored in multiple locations, has been shared with colleagues,
or even made publicly available. This can result in a ripple

effect where the request to remove the data must be passed
on to anyone who received a copy of the data, making it diffi-
cult to ensure that the request has been completely satisfied.
This could lead to researchers or other data providers stop-
ping data sharing altogether, which would considerably slow
research progress and disproportionately impact researchers
from communities where funding is more scarce.

Moreover, the data covered by RTBF is extensive. Data that
has previously been protected, such as personal identifying
information (PII), is covered, but so is any additional data
generated by that learner. Interaction data generated as a
learner plays an educational game, for example, although
in many cases not identifying, would still be covered. Simi-
larly, data from intelligent tutoring software, online learning
platforms, or MOOCs would all be covered. Thus, a domino
effect of data removal occurs, one that, in collaborative sys-
tems, may go beyond an individual learner. There are some
that argue that such a broad definition of user data is not
required under the legislation, and there that there is ambi-
guity. To our knowledge, the inclusion of data beyond PII
has not yet been tested/challenged in the courts, but such
a challenge may well happen in the future. It is also worth
noting that despite the lack of testing, many organizations
(including the authors’ universities and other universities)
are acting with this broad definition of user data, which
may in time set a precedent outside of the courts.

Placing the right to be forgotten into the context of EDM
requires complex planning and execution, given that the re-
moval of a learner’s data is not as simple as deidentifica-
tion. Considering the GDPR legislation specifically, data
providers would need to remove all data generated by that
learner from databases and shared data sets. In order to
mitigate the impact of RTBF on EDM research, it becomes
necessary for researchers to keep detailed records of who
has access to the data and to plan for the possibility of data
removal in the future. By necessity, researchers are also re-
quired to keep identifiers for all data so that data can be
accurately deleted upon request. This means that datasets
that would normally be fully deidentified, must now retain
some level of identification, potentially creating additional
privacy risks. Some mitigation strategies may include using
secure data-sharing platforms that allow for selective data
removal and data-sharing agreements that include specific
provisions for compliance with RTBF legislation. We do
not currently know of any published statistics of how many
RTBF requests are being made, however, anecdotally, the
third author of this paper holds an administrative leader-
ship role involving handling these requests for their univer-
sity. Although the university is located in the United States,
there have been dozens of requests from EU citizens to be
removed, with new batches every month. These requests are
then legally required to be processed quickly.

There may also be further impacts of RTBF on research
practice. For example, what if the data has been published
publicly? What if results have been published, and they
can no longer be replicated if the analysis were run again?
What if the data is in ongoing use? If a current study can
not replicate a past finding, should they compare to the pub-
lished version of the finding or the finding from the current
data set? How can we detect scientific fraud when published
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results can no longer be checked? In the remainder of this
section, we consider the potential impacts RTBF may have
on the field’s practices.

3.1 Data Sharing
The right to be forgotten requires that all learner data be
removed. If all of the data is stored in one location, this
is a somewhat simple (though potentially time-consuming)
task. If the data is stored in multiple locations (e.g., multi-
site collaborative projects), the task is more challenging and
requires slightly more coordination. Should the data have
been shared with colleagues outside the immediate collab-
oration (for purposes of replication or data sharing), it be-
comes more challenging still, with perhaps the highest chal-
lenge being if the data is shared publicly, with no record of
who downloaded it.

The right to be forgotten can create a ripple effect, with the
request needing to be passed to anyone who received a copy
of the data from the original researcher. This effect could
result in a significant amount of time required to remove an
individual learner’s data. This effort increases drastically
if the researchers do not have a clear record of who has
the data, and it becomes almost impossible if the data was
shared publicly. In this case, a researcher could remove the
learner’s data from the public posting, but not from everyone
who had already downloaded a copy, thus not completing
their responsibility.

One option to counter the challenge that the right to be for-
gotten places upon data sharing, is to simply stop sharing
data. To stop publishing datasets online or sharing with
colleagues. However, this comes with significant disadvan-
tages. Data collection is expensive [14], if data is not shared,
data-driven research (such as data mining) will be limited
to those that can afford to collect their own data. This
will limit much of the research in our field to data own-
ers (i.e., industry and those able to complete primary data
collection), or to data sets from countries with less restric-
tive regulations. Put simply, should data sharing stop, re-
search progress will be slowed, and this slowdown will have
a disproportionate impact on researchers from communities
where external funding is more sparse (and therefore it is
impractical to collect large data sets). Such an equity issue
would take the field backwards, and thus we should consider
methods that could facilitate data sharing, without creating
this particular ripple effect.

3.2 Replicability
Another major ripple effect of the right to be forgotten is in
terms of replicability. As noted above, a disappointingly
large proportion of research – even machine learning re-
search, where both the data set and code are both available
– is not currently replicable [24, 46]. This lack of replica-
bility has several costs. The first and foremost of these is
being able to verify if a prior set of analyses was authentic
and correctly conducted.

Unfortunately, the right to be forgotten – under certain in-
terpretations – is likely to considerably worsen this problem,
and undo the gains of the last several years. If the data set
that a past analysis was run on becomes no longer available,
it cannot be replicated. Even the removal of one student

from a very large data set presents the possibility that a dif-
ferent model will be obtained, or that goodness metrics or
statistical results will shift. The field does not currently have
methods tailored to determining how much shift could plau-
sibly be expected if one or more students are omitted, and it
will be difficult to develop a general framework for predicting
shift of this nature, across the broad range of algorithms and
models currently used in educational data mining and data
science more generally. The field also does not have prac-
tices for what to do if – for example – a published finding is
no longer obtained within the reduced version of the data set
now available. With the right to be forgotten, building on
past research will become more difficult and even identifying
scientific fraud will be impaired.

Similarly, the right to be forgotten places requirements on
data that is ”no longer required or relevant” [62]. It is dif-
ficult to tell when data is no longer required or relevant, if
replication is a future possibility. It is not presently clear if
storing data for the purposes of replication will be consid-
ered ”required” or ”relevant” under the legislation. This, in
turn, means that further challenges may appear as the prac-
tical implications of the legislation (and its interpretation by
the courts) become more clear.

3.3 Progressive Science
In addition to replicating previous work, RTBF can present
challenges for building upon previous work. There is a chance
that RTBF requests will result in the deletion of data that
is still useful for research [23] - uses that may not be clear at
the time of deletion. Similarly, RTBF may limit our ability
to compare new work to previous results [4]. For instance,
if we cannot replicate prior work, it becomes impossible to
tell if a new algorithm is genuinely an improvement upon
past work, particularly if a different validation approach
is deemed appropriate. Comparative analysis is a crucial
technique for assessing the efficacy of different models and
pinpointing potential areas for development and future im-
provement. For instance, a positive recent trend in research
on knowledge tracing is the comparison of models across var-
ious data sets [20]. This makes it possible for academics and
industry professionals to assess the generalizability of their
findings, gauge the robustness of new models, and spot data
biases or outliers. However, it might be challenging to make
these kinds of comparisons and to assess the efficacy of vari-
ous models if data is removed in response to RTBF requests
– two papers could obtain different findings for the same
algorithm and supposed same data set.

3.4 Longitudinal Followup
RTBF may also impact the ability to conduct longitudinal
studies and monitor student progress. If students exercise
their right to be forgotten, comparing and linking data on
future outcomes will become more challenging [21]. The
goal of longitudinal followup research is often to determine
if a curriculum or pedagogy that was effective in the short-
term has longer-term benefits for students, particularly stu-
dents in historically underrepresented groups who are less
well-served by current educational systems [52]. Students in
historically underrepresented groups are more likely to opt-
out of their data being used [40] – in combination with the
RTBF, this means that longitudinal research may only be
able to demonstrate long-term effectiveness for students who
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are already well-served. If an analysis does not explicitly
check for consistency of effects across demographic groups,
this may lead to an approach being adopted despite (un-
known) lower effectiveness for historically underrepresented
students.

3.5 Models
One consistent area of EDM research has been the training
of statistical and machine-learned models. These models are
then integrated into learning environments, dashboards, etc.
to provide better learning experiences, and analytics [61].
For example, in [31], models of engagement were trained on
data collected from learners, and were later used to create
a more adaptive intelligent tutor that responded to student
engagement and improved learning [30]. Processes such as
these allow the research of the EDM community to directly
reach learners and broaden our overall impact.

Currently unclear in legislation is how (and whether) data
products are different from the data itself. Consider a machine-
learned model from 100 learners’ data. That model has em-
bedded in it some representation of the 100 learners. It
is likely heavily transformed, and unlikely that the original
data could be recreated, but still, the model would be differ-
ent if only 99 learners’ data had been included. The model is
a product of the data collected from each of the 100 learners.
If a learner enacts their right to be forgotten, must they also
be removed from their data’s product, the model? Must the
model be re-fit?

In large-scale machine learning (such as that conducted by
Google), the removal of an individual user likely wouldn’t
change the model too much. However, given the small Ns
often seen in EDM research, the impact could be far greater,
and would require increased time on behalf of the research
team and place a burden on often limited resources. The
difference between data and data product is currently am-
biguous in legislation. One interpretation is that an exist-
ing model needn’t change, but any refinement of the model
would need to exclude a learner who had requested to be for-
gotten. As legislation of this kind becomes more widespread,
it is likely that this issue will be considered, and potentially
clarified. This clarification may come from legislators, re-
searchers, industry leaders, or the courts. In the meantime,
it is important that the EDM community be conscious of
this issue, and be involved as data privacy laws are refined.
Only by being part of the ongoing discussion surrounding
legislation can we ensure that all possible use cases of data
are being considered.

4. PATHS FORWARD
The RTBF aims to protect learners and safeguard student
privacy, a goal that EDM researchers generally agree with.
However, its exact application in EDM has the potential
to limit research, and force steps backward in replicability
and Open Science Practices. As such, the EDM community
should work now to find ways to achieve a balance between
research needs (e.g., the need for comparative analysis and
data-driven research) and the emerging rights of students to
be forgotten.

Given the differences by location, knowing for certain if you
are in compliance with privacy legislation can be challenging.

We, therefore, advocate for the generation of new best prac-
tices in EDM. Such practices could be standardized across
the community, and ensure that a researcher is in compli-
ance even with the strictest of RTBF requirements. Striking
a balance between research and privacy will not be perfect,
but by developing standards as a community, we will have
generated a common evaluation point for our research and
privacy standards for the learners we work with.

In addressing the challenges described above, we can build
on work from colleagues in Healthcare especially [33, 55],
where some of these issues have already been tackled. Sim-
ilarly, we can extend work in our own field that has con-
sidered privacy-preserving open science techniques. For ex-
ample, a recent special issue of the British Journal of Ed-
ucational Technology reported on technical frameworks for
ethical and trustworthy education research [38].

4.1 Privacy-Preserving Live Data Sharing
One possibility for tackling challenges posed to research by
RTBF is privacy-preserving Data Sharing. By keeping a
live copy of data in a central location, we mitigate a num-
ber of the concerns raised in section 3.1. By recording who
is authorized to access data, effective logging can be imple-
mented, and downloading or converting can be restricted.
An additional benefit of such approaches is they are typi-
cally a more accessible way to share data, real-time access
to data can be provided without the need for downloading or
converting data, which can support those who use assistive
technologies.

However, this does not present a perfect solution. Though
easier to control the ripple effect of data sharing, imple-
menting the necessary controls to guarantee compliance with
these laws may be more challenging. GDPR requires com-
panies handling the data of EU citizens to protect that data,
including by implementing privacy by design and by default.
Because it can be more challenging to monitor and regulate
how data is used in real-time, live data sharing can make
it more difficult to comply with these requirements. For in-
stance, it may be challenging to guarantee that authorized
users only access data (as opposed to downloading it) or
that it is being used for intended purposes. Some of the po-
tential solutions include leveraging cloud services that can
satisfy these requirements somewhat easily, as well as the ad-
dition of new controls. In such cases, however, a researcher
is then relying on a third party to ensure that the solution is
compliant. That said, it is not clear if stakeholders (parents,
school administrators, etc.) would be in support of the use of
third-party data sharing, meaning more exploration of such
a solution is needed. Similarly, live data may be suscepti-
ble to malicious activity such as hacks - invoking concerns
raised in [34]. More research is required to fully comprehend
the implications of live data sharing and to determine best
practices for overcoming the difficulties presented.

4.2 Privacy Preserving Enclaves
Privacy-preserving enclaves enable the processing and anal-
ysis of sensitive data while preserving its integrity and con-
fidentiality [39]. These enclaves isolate a secure environ-
ment from the rest of the system using hardware and soft-
ware based security mechanisms. One such enclave is In-
telSGX [54, 56]. To create a secure environment for run-

255



ning code and storing data, Intel SGX combines hardware
and software security features. Even if the rest of the sys-
tem is compromised, this isolation guarantees that data and
computations are shielded from unauthorized access or ma-
nipulation [9, 49]. The ability to enable privacy-preserving
live data sharing is one of the main advantages of privacy-
preserving enclaves. Real-time data processing and analysis
are constrained by traditional methods for sharing sensitive
data, such as differential privacy or encryption. On the other
hand, privacy-preserving enclaves allow sensitive data to be
processed and analyzed in a secure setting without compro-
mising the privacy of the people linked to the data.

An EDM-specific example of a privacy-preserving enclave
is the MOOC Replication Framework (MORF) which of-
fers a secure environment for the replication and analysis of
massive open online course (MOOC) data [29]. Millions of
students from all over the world now take part in MOOCs,
which have grown in popularity in recent years. However,
the data produced by these MOOCs is sensitive, in that
students may reveal personal details on discussion forums,
which are challenging to perfectly redact at scale [7]. MORF
presents a framework for analyzing MOOC data and repli-
cating past analyses without compromising student privacy.
MORF allows users to submit analysis code (in any pro-
gramming language). This code is then run on the MORF
database, and the results are provided to the user, with-
out ever having direct access to the data itself. MORF re-
lies upon a variety of security methods implemented within
Amazon Web Services, as well as software based protocols
that control the output provided to a user (e.g., a user can-
not submit a script to extract the data)[2].

Due to privacy concerns, data is frequently kept private in
MOOC research, making it challenging to confirm and vali-
date the results of earlier research. MORF provides accessi-
bility for researchers without compromising learner privacy.
As such, MORF offers a potential blueprint for privacy pre-
serving data sharing in the future.

These approaches are not without challenges, however. Keep-
ing the underlying hardware and software secure can be a
significant challenge. Intel SGX depends on the operating
system and hardware security for a secure environment to
run code and store data [65]. However, many security flaws
in Intel SGX have been found, raising questions about the
security of these enclaves. These enclaves’ performance is
another drawback because privacy-preserving techniques of-
ten increase the system’s computational and latency over-
head, making them less suitable for some use cases. As a
result, it’s crucial to weigh the trade-offs and ensure that
the advantages outweigh the drawbacks. In addition, it can
be harder for researchers to work on platforms with the re-
strictions that privacy-protecting enclaves such as MORF
enforce, such as the inability to direct view data or to use
unrestricted outputs for debugging. It should also be noted
that this approach does not directly address issues of replica-
bility, though it does take steps to prevent the ripple effect.

4.3 Engaging with the Legislative Process
As this legislation evolves and the practicalities are con-
sidered and ruled upon in the courts, there will likely be
calls for participation from lawmakers, funding organiza-

tions, and advocacy groups. Academic research is not some-
thing typically well represented by lobbyists [27], thus, we
must more actively engage in the process ourselves. This
may take many forms, including response to data collection
requests (e.g., surveys, interviews, etc.) from legislators, and
organizations working on these problems (such as the Na-
tional Science Foundation). Another form of participation
is providing feedback during comment periods for proposed
legislation. Engaging with the legislative process provides
a better chance that the needs of scientific work, as well as
those of the Open Science and Open Data protocols we are
encouraging, are considered by lawmakers.

4.4 Collaboration with other disciplines
The EDM community is not the only one facing these chal-
lenges. As such, there may be much to learn from how
other research areas and industries tackle these challenges.
For example, there are already protocols for sharing data
in healthcare that satisfy the Health Insurance Portability
and Accountability Act (HIPPA), and its privacy rule [28,
55]. Many of these protocols would also facilitate the kind
of logging required to satisfy RTBF requests. By taking ad-
vantage of existing advancements, we reduce the burden on
our research community and avoid ’reinventing the wheel’.

The push for Open Science and Open Data has been a promi-
nent movement across multiple scientific disciplines. The
conflicts discussed in this paper, along with the need to find
a balance of compliance with legal restrictions and scientific
integrity, are not unique to EDM. By working with our re-
search colleagues across disciplines, we can reach more stan-
dardized solutions, which would, among other benefits, sup-
port standardized requirements regarding Open Science and
Open Data in publishing venues, etc. Similarly, other disci-
plines may benefit from EDM advances in this area, such as
MORF [29].

5. CONCLUSIONS
The right to be forgotten, and similar legislative changes on
how we store and use data, are likely to have a significant
impact on Educational Data Mining. Though we have noted
some potential paths forward to adapt to this change, there
is not one clear solution. We encourage others in the EDM
community to consider the challenges outlined, the poten-
tial solutions, and to be proactive, rather than reactive, to
these changes. Such proactivity may take multiple forms:
it could include designing data-sharing infrastructure, re-
sponding to requests for feedback on proposed legislation
changes, or joining conversations regarding the interaction
of data privacy and research outside our community. A num-
ber of advances have been made with challenges similar to
these in the healthcare community, and there is much we
could potentially learn from other research environments.
The EDM community has had a significant impact on learn-
ers and education, and has a continued potential to do so. As
legislature changes, we must protect that potential, whilst
still providing learners with all the protection they can, and
should, receive. It is thus our argument that we should de-
velop and adopt best practices now, to be ready for these
changes as they are implemented.
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ABSTRACT
Dynamic Item Response Models extend the standard Item
Response Theory (IRT) to capture temporal dynamics in
learner ability. While these models have the potential to al-
low instructional systems to actively monitor the evolution
of learner proficiency in real time, existing dynamic item re-
sponse models rely on expensive inference algorithms that
scale poorly to massive datasets. In this work, we propose
Variational Temporal IRT (VTIRT) for fast and accurate
inference of dynamic learner proficiency. VTIRT offers or-
ders of magnitude speedup in inference runtime while still
providing accurate inference. Moreover, the proposed algo-
rithm is intrinsically interpretable by virtue of its modular
design. When applied to 9 real student datasets, VTIRT
consistently yields improvements in predicting future learner
performance over other learner proficiency models.

Keywords
Item Response Theory, Dynamic IRT, Proficiency modeling,
Variational Inference, Probabilistic Inference, Psychometric
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1. INTRODUCTION
Evaluating the proficiency of a student is a fundamental task
in education, and decades-long research in psychometrics
have developed accurate probabilistic models to measure ev-
idence of proficiency from student behaviors [17]. Item Re-
sponse Theory (IRT) is the most well-known and widely ap-
plied probabilistic approach to proficiency modeling, which
recognizes each response as a joint outcome of item features
and student proficiency [19], and allows a single proficiency
value per student to be estimated from responses to multiple
assessment items.

However, in many routine aspects of educational practice,
instructors and computer-based learning systems often use

assessments more actively to assist learning rather than to
evaluate learner proficiency post-hoc. Such assessments are
referred to as formative assessments and are used not only
to track student learning and make appropriate instructional
interventions, but also to allow learners to practice their
knowledge and skills, and make necessary self-corrections
[17]. When learning occurs alongside assessment, learner
proficiency is longitudinal rather than inert, and the assump-
tion of static proficiency makes standard IRT less suitable
as a model of proficiency measurement.

Dynamic Item Response models [14, 11] mitigate this issue
by removing the assumptions of static ability and instead al-
lowing it to stochastically change over time, but existing in-
ference methods rely on expensive iterative algorithms with
heavy runtime bottleneck. These methods scale poorly to
massive datasets, which can be critical since in most use
cases of dynamic proficiency modeling (e.g., learner pro-
ficiency monitoring), evaluation often needs to take place
real-time to monitor the evolution of learner proficiency.
This means that the expensive cost of inference must be
incurred not just once, but multiple times over the course of
a learner’s learning experience.

In this paper, we develop Variational Temporal IRT (VTIRT),
a fast and accurate framework for inferring dynamic learner
proficiency over time. VTIRT is based on the idea of amor-
tized variational inference [13], a fast approximate Bayesian
inference framework for complex probabilistic models. The
resulting algorithm infers the ability trajectory of a learner
by first making local ability estimates in the form of a Gaus-
sian distribution based on the item and response at each
timestep (which we call the “ability potentials”), then ag-
gregating these ability estimates across time in an intuitive
fashion. In particular, our work delivers the following key
innovations1:

• Interpretable Inference for Dynamic IRT. VTIRT al-
lows the use of a structured probabilistic inference al-
gorithm for sequence models through the notion of
ability potentials, a form of conjugate potentials de-
scribed in [12]. We concretely derive VTIRT in detail

1Our public implementation of VTIRT based on PyTorch
and Pyro [3] is available online in the following repository:
https://github.com/yunsungkim0908/vtirt

Y. Kim, S. Sankaranarayanan, C. Piech, and C. Thille. Variational
temporal irt: Fast, accurate, and explainable inference of dynamic
learner proficiency. In M. Feng, T. Käser, and P. Talukdar, editors,
Proceedings of the 16th International Conference on Educational
Data Mining, pages 260–268, Bengaluru, India, July 2023. Interna-
tional Educational Data Mining Society.
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and discuss the explainability of each of its compo-
nents.

• Fast and Accurate Inference. Our proposed inference
algorithm yields orders of magnitude speedup in in-
ference runtime compared to existing inference algo-
rithms while maintaining accurate inference.

• Applications to Real World Datasets. We apply our in-
ference algorithm to 9 real student datasets. VTIRT
consistently yields improvements in predicting future
learner performance compared to other existing profi-
ciency models.

2. RELATED WORKS
Many studies [20, 18, 7, 21, 22, 14] have investigated dy-
namic extensions of IRT that allow learner proficiency to
vary over time. A common structure shared by these ap-
proaches is that student ability is assumed to follow a ran-
dom walk:

θ`,t = θ`,t−1 + ε`,t,

where ε`,t models a stochastic change in ability (often a zero-
mean Gaussian). [7] finds a coarse approximation to the
posterior distribution of per-time-step ability by ignoring the
cross-temporal dependencies in the likelihood function while
assuming knowledge of the item parameters. [14] and [21]
use Markov Chain Monte Carlo (MCMC) methods [4] to
estimate the unknown ability and item parameters. These
methods draw samples asymptotically from the true poste-
rior distribution conditioned on the observed responses, but
the convergence of MCMC can be slow. On the other hand,
[11] and [22] use Expectation-Minimization (EM) to itera-
tively estimate the dynamic item response parameters. In
particular, [11] uses variational EM (VEM) to estimate the
parameters of a distribution that closely approximates the
true posterior distribution conditioned on the observed re-
sponse. Although generally faster than MCMC-based meth-
ods, VEM methods still require costly iterative updates.

Closely related to the task of dynamic proficiency model-
ing is knowledge tracing [6, 16], which attempts to trace the
knowledge of learners over time and accurately predict fu-
ture performance. While Markov chain-based methods such
as BKT [6] allow proficiency to be numerically measured
through the estimated probability of being at a “proficient”
state, the knowledge state representations of neural network-
based knowledge tracing models [16] are not readily compa-
rable or interpretable. Logistic regression knowledge tracing
models offer simple and interpretable alternatives to neural
network-based models. BestLR [9] and LKT [15] belong to
this family of methods and use the number of correct and
incorrect attempts as input features, while DAS3H [5] ad-
ditionally embeds explicit representations of learning and
forgetting over spans of time. VTIRT produces numerical
representations of learner proficiency that are comparable by
design across learners and across time, and its interpretable
inference is also sensitive to the features of the attempted
items.

Amortized variational inference has been used in [24] to de-
velop VIBO for standard IRT. VIBO and its relationship to
VTIRT are further discussed in Section 4.4.

3. VARIATIONAL INFERENCE REVIEW
Variational inference is a Bayesian framework for efficiently
inferring unobserved variables in complex probabilistic mod-
els. In this setting, observations are modeled as samples
from some underlying probability distribution (called the
generative model) where some of the random variables (de-
noted r) are observed, and the remaining latent variables
(denoted z) are unobserved. The goal of Bayesian infer-
ence then is to infer the latent random variables by finding
the posterior distribution p(z|r) given our knowledge of the
likelihood distribution p(r|z) and the prior distribution p(z).
This has the effect of “updating” the prior belief p(z) with
the observations to obtain the posterior belief p(z|r).

For complex generative models, the posterior distribution
p(z|r) is often intractable to compute exactly. Variational
inference is one way of doing approximate posterior inference
that treats inference as an optimization problem, where we
find the distribution q(z) that is closest to the true posterior
p(z|r) from a more constrained (yet rich) family of distribu-
tions Q of our choice. This is achieved by maximizing an
objective called “Evidence Lower BOund” (ELBO) for the
observation r with respect to q

L(q) , Eq(z)
[

log p(r|z)p(z)
log q(z)

]
, (1)

which is equivalent to minimizing the Kullback-Leibler di-
vergence between q(z) and p(z|r)2 due to the following equal-
ity:

L(q) +KL (q(z)‖p(z|r)) = log p(r) ≡ Constant w.r.t q.

Amortized Inference. What we just described is how VI
works for a single observation. If we have a set of multiple
i.i.d. observations sampled from the data-generating distri-
bution pD (which will be equal to the marginal distribution
p(r) if our generative model is correctly chosen), then find-
ing the approximate posterior is equivalent to the following
optimization problem

arg max
q
L(q) , EpD(r)

[
Eqr(z)

[
log p(r, z)

log qr(z)

]]
(2)

where we find one variational posterior factor qr for each ob-
servation r. As the number of observations grows, however,
finding qr for each observation can quickly become highly in-
efficient. Amortized Variational Inference [8] tries to avoid
this issue by learning a mapping φ(r) (also called the “recog-
nition model”) that maps observations to the parameters of
the corresponding posterior distribution, rather than infer-
ring each approximate posterior on the fly. By training a
good recognition model ahead of time based on data and
using it to retrieve the posterior distribution almost instan-
taneously at inference time, the cost of per-observation in-
ference can be amortized [8]. Now we can choose the recog-
nition model from a highly expressive family of functions
(e.g., a neural network) and optimize the recognition model

2In fact, if Q includes the true posterior, then the q that
achieves optimality will exactly be the the true posterior.

261



instead:

arg max
φ
L(φ) , arg max

φ
EpD(r)

[
Eqφ(r)(z)

[
log p(r, z)

log qφ(r)(z)

]]
.

(3)

4. THE VTIRT FRAMEWORK
Based on the ideas of variational inference introduced ear-
lier, we are now ready to describe the generative model and
the inference algorithm that together comprise the VTIRT
framework. The main intuition behind VTIRT’s generative
model is to incorporate temporality into IRT in a way simi-
lar to [7, 23]. Our framework, however, offers the additional
flexibility to use any form of the item characteristic func-
tion - potentially with learnable parameters - whereas prior
methods are constrained to a specific functional form.

4.1 The Temporal Ability Model
In our generative model (Figure 1a), we assume that the
response r`,t of learner ` at timestep t is determined by 2-
parameter IRT,

p (r`,t|θ, a, d) = f
(
aq`,t

(
θ`,t − dq`,t

))
, (4)

where q`,t denotes the assessment item, θ`,t ∈ [−∞,∞] de-
notes the ability of learner ` at timestep t, aq and dq each
denote the discrimination and difficulty of assessment item
q, and f denotes the linking function. To infuse temporality,
we take an approach similar to [7, 23] and impose an addi-
tional assumption that a learner’s ability is sampled from
a random walk with Gaussian noise, also called a Wiener
Process:

θ`,t+1|θ`,t ∼ N (θ`,t, σ
2
θ), θ`,0 ∼ N (0, σ2

θ).

This is an instance of a more general Linear Gaussian model
(LGM)

θ`,t+1|θ`,t ∼ N (α`,t · θ`,t + β`,t, s`,t) (5)

where the scale, bias, and standard deviation parameters are
set to (α`,t, β`,t, s`,t) = (1, 0, σθ).

3

The most popular choice for the linking function is the sig-
moid function for 2 parameter logistic (2PL) IRT and Gaus-
sian CDF for 2 parameter O-give (2PO) IRT. We will use
2PL as our modeling choice in our experiments considering
its popularity [19]. It is important to note, however, that
VTIRT makes no assumption about the linking function f
as long as f is differentiable. Moreover, we can straightfor-
wardly extend the model to admit a parameterized custom
linking function fψ which we can learn from data. A similar
approach in [24] has proven to yield better fit and higher
predictive performance in the case of standard IRT, and we
leave this extension to future research. This is in contrast
to prior algorithms [7, 23] that become intractable for any
linking functions other than a Gaussian CDF.

4.2 Choosing the Variational Family Q
3To allow for a fully Bayesian treatment, we also impose a
Gaussian prior distribution on the item parameters: aq ∼
N (1, σ2

a), and dq ∼ N (0, σ2
d).

To do inference on our generative model, we first need to
choose the variational family Q. We will choose Q to be the
family of distributions that factorize as follows:

q(ξ, θ; r) = q(ξ)q(θ|ξ, r) =

(∏

q

q(ξq)

)(∏

`

q(θ`|ξ, r)
)
,

(6)
where we have used the shorthand notation ξq = (aq, dq) to
denote the features of the assessment item q. Since we are
interested in inferring the temporal trajectory of abilities,
we will choose q(θ|ξ, r) to be a Linear Gaussian Model just
as its prior p(θ), and also choose q(ξ) to be Gaussian. More
precisely, we define q(θ|ξ, r) such that

θ`,t+1|θ`,t, ξ, r` ∼ N (α`,t · θ`,t + β`,t, s`,t) (7)

whose scale α`,t, bias β`,t, and standard deviation s`,t pa-
rameters are dependent on ξ and r`. Recalling the varia-
tional lower bound from Equation (1), our objective becomes

L(q) = Eq(ξ)q(θ|ξ,r)
[
p(ξ)p(θ)p(r|ξ, θ)
q(ξ)q(θ|ξ, r)

]
. (8)

Since the parameters α`, β` and s` are dependent on the
item parameters ξ and observed responses r`, it is tempt-
ing to apply the idea of amortized inference from Section 3
directly and model these parameters using learnable map-
pings. One such approach that we call VTIRTdir-loc is to map
the transition parameters at each timestep 1 ≤ t ≤ T based
on the item parameters and responses from that timestep

α`,t, β`,t, s`,t = φ
(
ξq`,t , r`,t

)
. (9)

While this approach is modular and its recognition model
is low-dimensional and visualizable, its parameter estimates
are not allowed to depend on responses through time, which
may produce sub-optimal fit as we will later demonstrate
through experiments. To allow dependence through time,
we could instead choose to use a sequence-to-sequence recog-
nition network (such as an LSTM network) to estimate the
parameters for all time-steps at once using the entire se-
quence of responses:

α`,1:T , β`,1:T , s`,1:T = φ
(
ξq`,1:T , r`,1:T

)
. (10)

We call this approach VTIRTdir-s2s. While this uses a more
expressive mapping, the increased complexity comes at the
cost of interpretability and potentially a greater demand for
more training data and long input sequences.

To mitigate this trade-off, we instead opt for an approach
that is both modular enough to yield interpretability and yet
also allows parameter estimates to depend on the responses
through time.

4.3 VTIRT’s Inference Algorithm
To describe our main inference method VTIRT, we first draw
our attention to the following property about Linear Gaus-
sian Models and Wiener processes, which will be founda-
tional to our proposed method (See Appendix A for the
proof):

Theorem 1. Let p(θ1:T ) be a Wiener process with stan-
dard deviation σθ and q(θ1:T ) be a probability distribution
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(b) VTIRT’s Inference Model

Figure 1: Graphical model view of VTIRT’s generative model and inference model. Shaded nodes indicate observed variables,
and arrows denote the direction of dependence. Squares denote the ability potentials in the form of a Gaussian density.

defined as

q(θ1:T ) ∝ p(θ1:T )

T∏

t=1

exp

{(
θt − µt
σt

)2
}
, (11)

for real numbers µ1,...,T and σ1,...,T .

Then, q(θ1:T ) is a Linear Gaussian Model4

θt|θt−1 ∼ N (µ̃t, σ̃t) (12)

with

µ̃t =

(
λθθt−1 + λtµt + (ρt+1λθ)τt+1

λθ + λt + (ρt+1λθ)

)
(13)

and

σ̃t = σθ
√

1− ρt+1, (14)

where λθ = 1/σ2
θ and λt = 1/σ2

t denote precisions and pa-
rameters ρt and τt are defined recursively as

ρt =

(
λt + (ρt+1λθ)

λθ + λt + (ρt+1λθ)

)
, ρT+1 = 0 (15)

and

τt =

(
λtµt + (ρt+1λθ)τt+1

λt + (ρt+1λθ)

)
, τT+1 = 0. (16)

In Equation (11), we are defining q by attaching local “ability
potentials” to the prior distribution p, where each potential
term is in the form of a Gaussian density with mean µt and
variance σ2

t . These potentials could be understood as local
“beliefs” about the ability in the form of Gaussian distribu-
tions, judged solely based on the item features and learner
response at the current timestep.

These potentials are combined across time with the prior
distribution p(θ). The resulting θt follows a Gaussian distri-
bution whose mean is a weighted average of the following 3
values that each represent information from different points
in time (Figure 2): (1) θt−1 of the previous timestep, (2) the
local potential mean µt of the current timestep, and (3) the
“future potential aggregate” τt+1 that recursively aggregates
potentials backwards from future timesteps via weighted av-
eraging (Equation (16)). Each value is weighted proportion-
ally to the precision (or “inverse uncertainty”) associated

4For notational convenience, we will use θ0 = 0
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Figure 2: Schematic of VTIRT’s inference at each timestep.

with it5, so the term with the lowest uncertainty contributes
most to the resulting mean.

Therefore, Theorem 1 suggests a way to aggregate local abil-
ity estimates (Gaussian ability potentials) across timesteps
using the global prior structure of the generative model.
This motivates us to choose the following family of distribu-
tions for our variational factor q(θ) (Figure 1b):

q(θ`) ∝ p(θ`)
∏

t

exp

{(
θ`,t − µ(ξq`,t , r`,t)

σ(ξq`,t , r`,t)

)2
}
, (17)

where µ(·, ·) and σ(·, ·) are parameterized functions (e.g.,
feed-forward neural networks) that play the role of the recog-
nition model. We refer to the resulting inference algorithm
as VTIRT.

4.4 Conjugate Potentials and Variational IRT
VTIRT can be considered as a special case of using conjugate
potential functions [12] to conduct approximate Bayesian
inference, which allows intuitive and efficient inference al-
gorithms designed for conditionally conjugate models to be
used even when the model violates conjugacy. Specifically,
the ability potentials in VTIRT enable efficient computa-
tion of variational posterior factors using a fast forward-
backward inference algorithm for Linear Gaussian Models
outlined in Theorem 1.

VIBO [24], an amortized variational inference algorithm for
standard IRT, also belongs to this family of methods. In
VIBO, the variational posterior distribution for ability is
a Product-of-Experts where each “expert” component is a
Gaussian distribution that depends locally on the response
and item parameters from each timestep. These “experts”
are also a form of conjugate potentials that allow variational
posterior factors to be computed in closed-form.

5ρtλθ can be viewed as the effective precision of the infor-
mation coming from future timesteps.
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Table 1: Statistics of the Workspace Learning Dataset

Course Name Items Learners Interactions

Interviewing 1 89 79,808 5,458,576
Interviewing 2 12 10,536 120,388

Design Thinking 12 45,369 458,232
Software Development 8 10,277 80,137

Document Writing 13 20,043 233,175
Management A-1 28 10,154 247,674
Management A-2 16 14,673 198,720
Management B-1 14 21,293 281,844
Management B-2 14 15,254 206,108

This leads to several commonalities in both frameworks.
Both use the same set of learnable parameters - the Gaus-
sian posterior parameters (µaq , µdq , σ2

aq , σ2
dq ) for each item

q, and two recognition function components µ(·, ·) and σ(·, ·)
- and make inference by aggregating local ability potentials.
While VIBO aggregates the conjugate potentials into a sin-
gle univariate distribution over ability through a Product-
of-Experts, VTIRT aggregates them into a Linear Gaussian
Model based on Theorem 1. In Section 5, we will demon-
strate through experiments that this difference in aggrega-
tion leads to VTIRT’s performance improvement.

5. EVALUATION
We will now demonstrate that VTIRT achieves orders of
magnitude faster inference than existing methods without
compromising inference quality while also providing an in-
terpretable structure. Experiments with real student data
will also demonstrate that VTIRT yields a better fit to stu-
dent behaviors than other learner proficiency models. We
first describe the 2 datasets we used for our experiments.

5.1 Datasets
5.1.1 Synthetic Dataset

Using a simulated dataset enables us to test our algorithm
under various hypothetical circumstances. We use VTIRT’s
generative model to simulate a set of learners responding to
assessment items in an arbitrary order. For each learner,
we first choose a random permutation of assessment items
to simulate learners responding to assessment items in arbi-
trary order. Responses to these items are sampled based on
the generative model defined in Section 4.1. This gives us
access to the ground-truth item features and ability values
that are otherwise unobtainable in real-world datasets. We
set σθ = 0.25 and σa = σd = 1 and vary the number of
learners and the number of items.

5.1.2 Real Student Dataset: Workplace Learning
This dataset contains anonymized learner responses to a se-
ries of assessment questions in workplace learning courses
taken by employees of a company. Each interaction record
consists of (1) the ID of the assessment item (question), (2)
ID of the learner, (3) correctness of the attempt, and (4) the
knowledge components6 with which each assessment item is
associated (of which there could be multiple). Learners with
fewer than 5 interactions throughout the course were omit-
ted, and if there were multiple attempts to a question, only

6Most courses had 2-4 knowledge components.

the first attempts were retained. A set of summary statistics
for this dataset is presented in Table 1.

5.2 Fast and Accurate Inference
The most important quality of an inference algorithm is its
capacity to promptly and reliably recover the unobserved
variables based on past observations. The synthetic dataset
allows us to measure this by comparing the computational
runtime of a single instance of inference and computing the
correlation of the inferred ability and item features against
the known ground-truth values.

We implemented the 3 variants of VTIRT (VTIRTdir-loc,
VTIRTdir-s2s, and VTIRT) along with 3 existing baseline
inference methods - Variational EM (VEM), MCMC using
Hamiltonian Monte Carlo7 (HMC), and TSKIRT [7] - and
used these algorithm to recover the latent ability values and
item features for all learners and trials, based on the re-
sponses from all timesteps. (See Appendix B for more de-
tails about the methods and the experiment.) We varied the
number of items from 32 to 500 while fixing the number of
learners to 5000, then varied the number of learners from
2,500 to 20,000 while fixing the number of items to 250.

Figure 3 plots the inference time and Pearson correlations
of the model estimates with the ground-truth values. Most
notably, all 3 variants of VTIRT are orders of magnitude
faster than other inference methods. Moreover, VTIRT con-
sistently yields the best discrimination estimates. Except
when there are few items, the difference in the quality of
ability and difficulty estimates are also minor compared to
VEM (up to 0.07 difference in ability correlation and 0.03
difference in difficulty correlation).

Among all variants of VTIRT, VTIRT using ability poten-
tials consistently outperforms direct amortization. As noted
earlier, VTIRTdir-loc ignores temporal dependency in esti-
mating the transition dynamics, while the complexity of
VTIRTdir-s2s could come at the cost of the need for more
training data and long input sequences.

5.3 Application to Real Student Data
We now compare VTIRT with other proficiency models in
modeling real student data. Since we do not have access to
the ground-truth learner ability in reality, our evaluation on
real student data must be based on a related proxy metric.
As a proxy, we will focus on the task of predicting the next
step response correctness of learners based on the model’s
current ability estimates and item features.8

We compared the predictive performance of VTIRT against
the following baseline: IRT, BKT, VIBO[24]9, VTIRTdir-loc,

7Hamiltonian Monte Carlo [2, 10] is an efficient MCMC al-
gorithm for continuous state spaces.
8Since the items in each course were associated with different
knowledge components, we estimated learner ability for each
knowledge component separately. Prediction on each item
was made based on the ability averaged across the knowledge
components associated with that item.
9To adopt VIBO to a sequential estimation setting, we com-
puted the ability estimates at each timestep separately using
the responses prior to that timestep.
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Figure 3: Performance on the synthetic dataset. Inference time was capped at 10 hours.

Table 2: Next-Step Performance Prediction ROC.

IRT BKT VIBO VTIRT VTIRTdir-loc VTIRTdir-s2s VTIRTtransfer

Interviewing 1 0.702 0.622 0.752 0.762 0.758 0.749 0.756
Interviewing 2 0.586 0.632 0.765 0.779 0.774 0.772 0.760

Software Development 0.565 0.648 0.701 0.711 0.695 0.667 0.702
Design Thinking 0.602 0.605 0.674 0.681 0.677 0.646 0.633

Document Writing 0.503 0.683 0.754 0.770 0.766 0.750 0.746
Management A-1 0.518 0.639 0.717 0.738 0.734 0.729 0.723
Management A-2 0.705 0.682 0.771 0.774 0.770 0.766 0.770
Management B-1 0.570 0.582 0.734 0.741 0.739 0.730 0.735
Management B-2 0.733 0.602 0.766 0.770 0.766 0.765 0.766

and VTIRTdir-s2s.
10 To study the effect of VTIRT’s forward-

backward inference algorithm, we also analyzed the perfor-
mance of a variant of VTIRT we call VTIRTtransfer in which
we train the recognition networks using VIBO and perform
inference using VTIRT’s inference algorithm.

Table 2 reports the average AUROC on this prediction task
over a 5-fold cross-validation, where the learners were split
into 5 equally-sized splits. These results suggest the follow-
ing observations:

VTIRT consistently outperforms other proficiency models.
VTIRT achieves up to 2.1 AUROC point advantage in
comparison to the best performing baseline, VIBO. As
VIBO and VTIRT share the same parameterization
scheme, the increased performance is attributable to
the VTIRT framework.

Ability potentials are more effective than direct amortization.
VTIRT using ability potentials outperforms both the
local and sequence-to-sequence direct amortization vari-
ants. It is interesting to note that local direct amor-

10We used the popular MIRT package in R for the IRT base-
line, and the implementation from the pyBKT package [1]
for the BKT baseline. Since VTIRT and VIBO’s estimates
take the form of a probability distribution, we used the mean
of the distribution as the model’s point-estimate and fed it
as input to the 2PL IRT likelihood function in Equation (4)
to compute the predicted probability of correctness.

tization also outperformed LSTM-based sequence-to-
sequence direct amortization in all courses, which may
be due to relatively short sequence length per knowl-
edge component.

VTIRT’s training mechanism is critical to its performance.
Since VTIRT and VIBO have the same parameteri-
zation schemes, it is natural to ask whether VTIRT’s
sequential training could be replaced with VIBO’s par-
allelizable training without much loss in performance.
Comparing the performance of VTIRTtransferwith VTIRT,
we see that VTIRT’s training mechanism is crucial
to the enhanced performance, and VTIRTtransferoften
performs far worse than VIBO itself.

5.4 Interpretability of VTIRT
VTIRT is a modular algorithm, and by virtue of its struc-
ture, all parts of its operations are intrinsically interpretable.
The ability estimates are computed from the local ability po-
tentials, following the logic outlined in Section 4.3. These
ability potentials provide “local beliefs” of the learner’s abil-
ity at each timestep in the form of a Gaussian distribution
and are aggregated through the forward-backward inference
algorithm based on Theorem 1.

One of the merits of this potential function is that its dimen-
sions are low enough to be visually analyzed. Figure 4 is a
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Figure 4: Mean and log variance of the ability potentials as
a function of the item correctness and item features.

plot of the mean and log variance11 of the potential function
for the “Interviewing 2” course for typical parameter ranges,
and its shape aligns with our intuitive expectations of how
a learner’s response would affect our belief of its ability de-
pending on the item features. In particular,

• For assessment items of any difficulty and discrimi-
nation, a correct response always yields higher ability
estimate than an incorrect response (which can be seen
from the range of the color bar).

• The uncertainty of the ability estimates are generally
lower (so the model is more certain about its estimates)
for items with higher discrimination. This aligns with
the expectation that high discrimination items are use-
ful for distinguishing learners with different abilities.

• Correct responses to high-difficulty items yield poten-
tials with greater mean and lower uncertainty than
correct responses to low-difficulty questions (and the
opposite for incorrect responses).12

6. LIMITATIONS AND FUTURE WORK

Adaptive and Self-Directed Learning. The key charac-
teristic of VTIRT is its ability to make sequential ability
estimates from responses to a set of heterogeneous assess-
ment items. For this reason, we hypothesize that the ideal
environment for VTIRT in comparison to other proficiency

11High variance indicates large uncertainty.
12Although it may seem as if correct responses to low-
discrimination items yield higher ability estimates because
the mean parameter is greater, the overall distribution is in
fact flatter and more spread out in general due to higher
variance.

models is one where learners possess great agency in choos-
ing their learning trajectories, or where the learning tra-
jectories are adjusted adaptively to the performance of the
learner. However, most learners in our real student dataset
followed similar learning trajectories with little variability,
and this hypothesis remains untested. An important direc-
tion for future work would be to test our framework in an
adaptive or self-directed learning environment.

Modeling Assumptions of VTIRT. One interesting topic
for future research is the modeling assumption made by
VTIRT. VTIRT’s generative model builds on a simple as-
sumption that learner ability starts close to 0 and that the
changes in ability are Gaussian with mean 0. Under this gen-
erative model, the temporal changes in ability may take on
both positive and negative values. While we have shown us-
ing real student data that the resulting inference algorithm
yields a more accurate fit, research remains to be done to
examine how the modeling assumptions could be further im-
proved.

Ability Potential for Atypical Item Parameter Values.
In Section 5.4, we visualized in Figure 4 the trained ability
potential function for one of the datasets for typical ranges
of the item parameter values. Yet, the input to the potential
function can be any tuple ξ = (a, d) of unbounded real num-
bers, and the typical range of input observed during training
comprise only a very small subset of this domain. For values
of the item parameters outside this typical range, the trained
potential function may fail to generalize as a result of sparse
training signal and exhibit arbitrary behaviors. Enhancing
the generalizability of the potential function and its robust-
ness to extreme values of the item parameters is an exciting
direction for future research.

Logistic Regression Knowledge Tracing Models. Logis-
tic regression models of knowledge tracing such as BestLR [9]
or LKT [15] share several similarities with VTIRT. As noted
earlier, these models use the number of correct and incorrect
past attempts in a learning trajectory to predict future per-
formance, and VTIRT makes inference on ability based on
both the historical performance of the learner and the fea-
tures of the attempted items. While the focus of this study
was to develop scalable inference for dynamic IRT models
and compare the model fit against other proficiency models,
it remains an interesting future research to compare VTIRT
against logistic regression knowledge tracing models under
both adaptive and non-adaptive learning environments.

7. CONCLUSION
We presented VTIRT, a fast and accurate inference frame-
work for dynamic item response models. VTIRT offers or-
ders of magnitude speedup in the inference runtime while
maintaining a highly accurate inference of learner and item
parameters. Moreover, every component of our inference al-
gorithm is interpretable by virtue of its modular design. Ex-
periments on real student data demonstrates that VTIRT
achieves improvements in inferring future learner perfor-
mance compared to other proficiency models.
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APPENDIX
A. PROOF OF THEOREM 1
We will first find the parameters αt, βt, st of the resulting
Linear Gaussian Model (Equation (5)) by solving for the
following equation:

log q(θ1:T )

=

(
θ1
σθ

)2

+

T∑

t=1

{(
θt − θt−1

σθ

)2

+

(
θt − µt
σt

)2
}

+ C

=

(
θ1 − β1
s1

)2

+

T∑

t=2

(
θt − αtθt−1 − βt

st

)2

+ C′, (18)

where C and C′ are constants with respect to θ1:T . Re-
arranging terms and comparing the coefficints of the terms
involving θtθt−1, we obtain

st = σθ
√
αt.

Substituting this into Equation (18) and comparing the terms
involving θt and θ2t , we obtain the following recursive system
of equations:

αt =
λθ

λθ + λt + (1− αt+1)λθ
,

βt =
µtλt + βt+1λθ

λθ + λt + (1− αt+1)λθ
,

where αT+1 = 1 and βT+1 = 0 are defined for notational
simplicity. Note from the above equation that

bt
1− αt

=
λt + (1− αt+1)λθ

µtλt + (1− αt+1)λθ
(

βt+1

1−αt+1

) .
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This motivates us to define ρt = 1−αt and τt = βt
1−αt , which

yields the formula in Equations (15) and (16):

ρt =

(
λt + (ρt+1λθ)

λθ + λt + (ρt+1λθ)

)
, τt =

(
λtµt + (ρt+1λθ)τt+1

λt + (ρt+1λθ)

)
.

µ̃t in Equation (12) then satisfies

µ̃t = αtθt−1 + βt = (1− ρt)θt−1 + ρtτt

=

(
λθθt−1

λθ + λt + (ρt+1λθ)

)
+

(
λtµt + (ρt+1λθ)τt+1

λθ + λt + (ρt+1λθ)

)

=

(
λθθt−1 + λtµt + (ρt+1λθ)τt+1

λθ + λt + (ρt+1λθ)

)
,

and σ̃t = st = σθ
√
at = σθ

√
1− ρt.

B. EXPERIMENT DETAILS
For all implementation of the VTIRT variants, we used a
2-layer feedforward neural network with 16 dimensional hid-
den layers with GELU activation for the potential function.

While TSKIRT requires the item parameters to be learned in
advance using standard IRT, we used the ground-truth item
parameters instead of training the item parameters with a
different model - all other algorithms had to infer the item
parameters from scratch.

All experiments were run on identically configured CPU ma-
chines (2 AMD EPYC 7502 32-Core Processors and 10 gi-
gabytes of memory) until convergence for a maximum of 10
hours, with the exception of VEM. VEM makes batch up-
dates to the latent posterior estimates, and its item parame-
ter updates can be significantly sped up through vectorized
indexing. This speedup, however, incurs a large memory
overhead. To make a conservative comparison of VTIRT’s
run time performance against the ideal setup for VEM, we
applied this vectorization to VEM, but had to allow it to use
4 times the memory allocated to other methods, especially
for the larger datasets.
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ABSTRACT
Academic advising plays an important role in students’ decision-
making in higher education. Data-driven methods provide
useful recommendations to students to help them with de-
gree completion. Several course recommendation models
have been proposed in the literature to recommend courses
for the next semester. One aspect of the data that has
yet to be explored is the suitability of the recommended
courses taken together in a semester. Students may face
more difficulty coping with the workload of courses if there
is no relationship among courses taken within a semester.
To address this problem, we propose to employ session-
based approaches to recommend a set of courses for the next
semester. In particular, we test two session-based recom-
mendation models, CourseBEACON and CourseDREAM.
Our experimental evaluation shows that session-based meth-
ods outperform existing popularity-based, sequential, and
non-sequential recommendation approaches. Accurate course
recommendation can lead to better student advising, which,
in turn, can lead to better student performance, lower dropout
rates, and better overall student experience and satisfac-
tion.

Keywords
session-based recommendation, course recommendation, deep
learning

1. INTRODUCTION
In higher education, one of the challenges that students face
is identifying the proper set of courses to register for every
semester so that they will successfully progress with their
degree. While selecting courses, students consider different
factors, like a balance between their personal preferences (in-
terests, goals, and career aspirations) and the requirements
of their degree programs. Students usually need to register
for some elective courses. Some courses have prerequisites.
These decisions are hard to make, and consequently, appro-
priate course selection is a non-trivial task for the students.

Courses can be selected based on example guides provided
by each department, but these are not adapted to individ-
ual cases [6]. Students may get personalized assistance from
academic advisors. However, the ratio of students to advi-
sors is very high, which limits discussion time between an
advisor and an advisee [11]. Lack of communication may
result in unfavorable situations where students fail to cope
with the course workload and become frustrated. As a mat-
ter of fact, the dropout rates at the undergraduate level of
US colleges are alarming [10].

Data mining techniques and machine learning models can
draw insights from historical data records and generate course
recommendations to assist with student advising. Collabo-
rative filtering algorithms and content filtering methods are
the most common approaches in this field of research. Ex-
isting work has explored the sequential nature of course en-
rollment data, the words associated with course description
data, and non-sequential approaches to prioritize students’
preferences and analyze their characteristics and skills to
recommend courses for a semester or even multiple consec-
utive semesters. However, no prior study in the literature
considers how well the courses would be suited to be taken
together within a semester. Some courses are usually taken
together if they cover complementary concepts. Also, it
is not a good idea for a student to take some very heavy
courses in the same semester. For example, if a student reg-
isters for three or four difficult courses in the same semester,
that could lead to poor performance in some or all of them,
as the student will not have enough time to study for all
the courses. In the end, their semester grade point average
(GPA) might be low compared to their efforts.

Students might be more likely to perform well if their courses
are related and not so difficult to study altogether within a
semester. The set of courses taken in a semester by past
students can provide impactful insights to measure the cor-
relation, relationship, and compatibility of a pair of courses.
These notions can be captured by session-based recommen-
dation approaches. We propose to adapt such approaches to
rank courses not only based on their suitability but based on
their synergy as well. There are long short-term dependen-
cies in the sequence of courses taken semester-by-semester,
and we can capture them by using deep learning models.

We explore two different models that capture these depen-
dencies. First, we propose CourseBEACON, where we cal-
culate the co-occurrence rate between a pair of courses to
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capture and estimate their relationship. Then, we incorpo-
rate this notion of course compatibility into sequential deep
learning models (recurrent neural networks) to perform the
recommendation task. Second, in CourseDREAM, we cre-
ate latent vector representation for each basket of courses
taken in a semester which is helpful to capture the courses
that are historically considered to be suitable to take within
a semester. Then, we use recurrent neural networks (RNNs)
to capture the sequential transition of courses over the se-
quence. Using real historical data, we evaluate these pro-
posed approaches. They outperform other baselines or ex-
isting state-of-the-art approaches we examined. Our course
recommendation model will be impactful in academic ad-
vising to help students with decision-making and decrease
the risk of dropout cases. The paper is organized as follows.
Sect. 2 introduces the background, notation, and related
work, while Sect. 3 delves deeper into the two proposed ap-
proaches. Sect. 4 presents our experimental setup in detail.
Sect. 5 shows our results and Sect. 6 concludes the paper.

2. BACKGROUND
2.1 Problem
Some courses are needed to fulfill degree requirements, oth-
ers are elective. Usually, it is up to the students to de-
cide which courses to take within a semester and in which
semester they will take any required courses. While select-
ing courses, students must remember degree requirements
and several factors such as personal preferences, course pre-
requisites, career goals, and which courses are needed to
build knowledge for future courses. Universities naturally
collect information about the course registration history of
students. Insightful patterns can be extracted by analyzing
the historical information of past students to recommend
courses to future students. Course recommendation is a
systematic way to evaluate which courses are appropriate
for a student with the goal of making advising easier. By
inspecting the student-course interactions, and sequential
transitions of courses over the semesters of past students,
we recommend courses for other students by implementing
various data-driven techniques.

2.2 Definition of Terms and Notations
Considering the terminology used in general recommenda-
tion literature, we can consider each student as a user, and
each course as an item.

A session is a finite amount of time for a user to complete
a set of activities together. In this paper, we consider a
student’s semester to be a session. A user can buy a set
of items together in a session. A student can take a set of
courses together within a semester. A basket is a similar no-
tion to a session. In session-based recommendation models,
we learn users’ preferences from the sessions generated dur-
ing the consumption process and pay increasing attention
to recent sessions as users’ preferences change and evolve
dynamically. A session-based recommendation system rec-
ommends a set of items for the next session, for which we
may or may not have some partial information (i.e., any
items already present in the session). A next-basket recom-
mendation is a special case when we generate a complete set
of items for the next session (i.e., without any partial infor-
mation). In this paper, we will recommend a complete set
of courses for the next semester.

Table 1: Notations

C, S set of courses and students, respectively

m, n cardinality of C, S, |C| = m and |S| = n

p, q courses, p, q ∈ C
u student, u ∈ S
i, j index for student and course, respectively

t index for semester

Bi,t set of courses i-th student took in semester t

Hi course registration history of i-th student

ti total number of semesters for i-th student, ti =
|Hi|

k total number of courses to recommend

R tensor R ∈ Rd×d×n with d latent dimensions

Fi,p,q number of (i, p, q) triples for i-th student

We adopt the following notation. We will use calligraphic
letters for sets, capital bold letters for matrices or tensors,
and lowercase bold letters for vectors. C indicates the set
of all courses (|C| = m) and S denotes the set of all stu-
dents (|S| = n). Bi,t represents a set of courses that i-th
student has taken in a semester t. Hi is the course regis-
tration history of the i-th student, Hi = [Bi,1,Bi,2, ...,Bi,ti ],
where ti = |Hi| is the total number of semesters that the
i-th student took courses. Additional notation is presented
in Table 1. We will refer to the student and the semester we
are trying to generate a recommendation for as the target
student and semester, respectively.

2.3 Related Work
Researchers have analyzed different types of data to build
course recommendation models using different techniques.
In terms of types of data, many researchers used real-life
course enrollment and course description datasets collected
from universities’ data warehouses [1, 8, 22, 23, 27, 32], and
others used online datasets collected from different online
course platforms [5, 19, 34]. Moreover, some of the re-
searchers collected data by taking feedback from students
conducting surveys [8, 22]. Some researchers considered the
grades of students in each course as a useful feature to rec-
ommend courses that students were expected to perform
well [8, 15, 17, 19, 32]. Others did not consider grades as an
important feature [1, 21, 22, 23, 34]. Very few researchers
considered the interests and skills of students to choose a
course [14, 28] by collecting students’ survey responses.

Different course recommendation systems have been pro-
posed in the literature. Parameswaran et al. introduced
the first course recommendation system based on constraint
satisfaction [20]. Al-Badarenah et al. propose a collab-
orative filtering-based course selection system using a k-
means clustering algorithm and an association rule min-
ing method [1]. The Apriori algorithm (an association rule
mining technique) has been used for a collaborative recom-
mendation system for online courses [19]. There are some
content-based filtering methods available in literature where
researchers analyze course descriptions and course content
to recommend courses [17, 18, 21, 22]. Pardos et al. propose
a course2vec model (like word2vec model) for course recom-
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mendation using both course enrollment and course descrip-
tion data [22]. Students’ preferences and student-course in-
teractions are neglected in these methods. To prioritize stu-
dents’ preferences, a matrix factorization model has been
proposed for course recommendation [29]. Pardos et al. pro-
pose a combination of long short-term memory (LSTM) net-
works and skip-gram models to recommend courses balanc-
ing explicit and implicit preferences of students [21]. RNN
models have also been used to recommend courses that are
expected to improve students’ GPAs [16]. Shao et al. intro-
duce a PLAN-BERT model to recommend multiple consecu-
tive semesters toward degree completion [27]. Polyzou et al.
present a random-walk-based approach, Scholars Walk, to
capture sequential transitions of different courses semester-
by-semester assuming that the past sequence of courses mat-
ters [23]. No prior study captures the relationship among
courses taken in a semester considering each semester as a
session to recommend correlated courses.

In commercial recommender systems, there are different types
of session-based recommendation systems to recommend the
next clicked item (next interaction), the next partial session
(subsequent part) in the current session, and the next bas-
ket or complete session with respect to the previous sessions
for a user [31]. For our problem setting, the last one is more
appropriate. Next-basket recommendation approaches can
be divided into two types: sequential and non-sequential
approaches. Generally, sequential approaches capture the
user-item interactions and sequential relationships of items,
by constructing a transition matrix observing item transi-
tions over sessions for a user. Rendle et al. introduced the
first next-basket recommendation system by presenting a
factorized personalized Markov chain (FPMC) model [26].
The FPMC model can capture the first-order dependency
of items. Long short-term dependency of items over the se-
quence of baskets can be captured by recurrent neural net-
works. Yu et al. propose a dynamic recurrent basket model
(DREAM) using LSTM networks [33]. Le et al. propose
a correlation-sensitive next basket recommendation model
named Beacon to recommend correlated items using trans-
action data of online grocery shops [13].

Non-sequential approaches prioritize users’ preferences of
items over the sequential transition of items. Matrix fac-
torization and tensor decomposition techniques have been
used to recommend the next item capturing users’ prefer-
ences of choosing one item over another item [7, 25]. Wan
et al. propose a representation learning model triple2vec
to recommend complementary and compatible items in the
next basket [30]. A tensor decomposition technique has been
proposed to recommend complementary items in the next
basket by using RESCAL decomposition [7].

In this paper, we explore both sequential and non-sequential
approaches for session-based recommendation to recommend
a set of synergistic courses for the next semester. Moreover,
our course enrollment data is different from transaction data
of items, i.e., one item can appear multiple times in different
sessions in a sequence of baskets for a user, but one course
is most likely to appear one time in a sequence of semesters
for a student.

3. SESSION-BASED COURSE RECOMMEN-
DATION

We propose to use a session-based, sequential course recom-
mendation system to capture the synergy between courses
taken in the same semester. Even though some courses
might be worth equal credit hours, the required working
time load varies based on the difficulty of subjects [4]. Stu-
dents’ course load can impact their performance [2]. A good
combination of courses can balance the workload of courses.
The courses well-suited to be taken together could cover
similar topics, be correlated, or just not be overwhelming
for the students. The influence of co-taken courses has been
considered important for other educational tasks, i.e., grade
prediction and designing an early warning system [3, 9, 24].

We analyze the relationship and correlation of courses by
incorporating the concept of session-based recommendation
(SBR) for the first time in course recommendation. We con-
sider a set of courses taken in a semester as a session and
inspect the session to understand the relationship among the
courses. Let Bi,t be a set of courses of the i-th student at
semester t. Given the courses for the first ti − 1 semesters
for the i-th student as input, our target is to recommend a
set of correlated courses, c1, c2..., ck for the target semester
ti where k is the number of courses to be recommended.
We extend two popular session-based models, the Beacon
model [13] to CourseBEACON, and DREAM model [33] to
CourseDREAM, for the purpose of course recommendation.

3.1 Assumptions
We make the following assumptions in the context of course
recommendations in higher education.

1. Time is discrete and moves from one semester to the
next.

2. The courses are ordered over the sequence of semesters,
but there is no order in the courses within a semester.

3. Learning is sequential; each course taken in a semester
provides some skills and knowledge that will help to
learn future courses in the following semesters. So,
the sequence of courses matters in course selection.

4. Course registration history of students might provide
beneficial insight into the curriculum and degree re-
quirements when sufficient domain experts are not avail-
able.

5. We know the number of courses the student will take
in the target semester.

3.2 CourseBEACON
We adopt the Beacon model to CourseBEACON to gen-
erate correlation-sensitive course recommendations for next
semester. The framework has three components: correlation-
sensitive basket encoder, course basket sequence encoder,
and correlation-sensitive score predictor. The basket en-
coder receives as input the sequence of courses taken in
the previous semesters [1, ..., ti − 1] and the global corre-
lation matrix, M ∈ Rm×m, which captures the relationships
among courses within a semester (basket). The encoder pro-
duces a sequence of basket representations as output for each
prior basket of a student. We feed these representations into
the course basket sequence encoder where LSTM networks
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capture the sequential association of courses over the se-
quence of semesters. Finally, we feed the output from the
sequence encoder and the correlation matrix as inputs to
the correlation-sensitive score predictor to produce the final
scores for the candidate courses. We recommend the courses
with the highest score for each student.

Building the Course Correlation Matrix We create the corre-
lation matrix using all semesters available in training data.
Let F ∈ Rm×m be the frequency matrix. For courses p, q ∈
C, ∀p ̸= q, we count Fp,q, which is the number of times
p, q co-occur together in a basket (i.e., taken in the same
semester). We normalize F to generate the final correlation

matrix M based on the Laplacian matrix M = D−1/2FD−1/2,
where D denotes the degree matrix, Dp,p =

∑
q∈C Fp,q [12].

F and M are symmetric by definition.

Correlation-Sensitive Basket Encoder For each semester, we
create a binary indicator vector for the set of courses that
were taken by a student. We convert a basket of courses Bi,t
to binary vector bi,t of length m for the i-th student, where
the j-th index is set to 1 if cj ∈ Bi,t; otherwise it is 0. We
get an intermediate basket representation zi,t for a basket
Bi,t as follows:

zi,t = bi,t ⊙ ω + bi,t ∗M, (1)

where ω is a learnable parameter that indicates the impor-
tance of the course basket representation, the circle-dot in-
dicates element-wise product, and the asterisk indicates ma-
trix multiplication. We feed zi,t into a fully-connected layer
and we get a latent basket representation ri,t by applying
the ReLU function in an element-wise manner:

ri,t = ReLU(zi,tΦ + ϕ), (2)

where Φ, ϕ are the weight and bias parameters, respectively.

Course Basket Sequence Encoder We use the sequence of
latent basket representations ri,t, ∀t ∈ [1, . . . , ti − 1] for the
i-th student as input in the sequence encoder. Each ri,t is
fed into an LSTM layer, along with the hidden output from
the previous layer. We compute the hidden output hi,t as:

hi,t = tanh(ri,tΨ + hi,(t−1)Ψ
′ + ψ), (3)

where Ψ, Ψ′ and ψ are learnable weight and bias parameters.

Correlation-Sensitive Score Predictor We use the correla-
tion matrix and the last hidden output as the input in the
correlation-sensitive score predictor to derive a score for each
candidate course. Let hi,ti−1 be the last hidden output gen-
erated from the sequence encoder. First, we get a sequential
signal si from the given sequence of baskets:

si = σ(hi,ti−1Γ), (4)

where Γ is a learnable weight matrix parameter and σ is the
sigmoid function. Using the correlation matrix, we get the
following predictor vector for the i-th student of length m:

yi = α(si ⊙ ω + si ∗M) + (1− α)si, (5)

where α ∈ [0, 1] is a learnable parameter used to control the
balance between intra-basket correlative and inter-basket se-
quential associations of courses. The j-th element of yi in-
dicates the recommendation score of course cj to be in the
target basket of i-th student.

3.3 CourseDREAM
We propose the Course Dynamic Recurrent Basket Model
(CourseDREAM), based on DREAM [33], to recommend
a set of courses for the target semester. We consider two
different latent representation techniques, max pooling and
average pooling, to create a representation of a semester of
courses. We use long short-term memory networks (LSTM)
to capture the sequential transition of courses over the se-
quence of semesters and a dynamic representation of stu-
dents which captures the dynamic interests of a student
throughout their studies. For prediction, we calculate the
score for each course ∀p ∈ C based on the most recent bas-
ket’s Bi,(ti−1) dynamic representation. We recommend the
courses with the highest scores for the target semester.

Latent Representation of Semester Each basket of the i-th
student consists of one or more courses. The j-th course
that i-th student took at semester t has the latent repre-
sentation ci,j,t with d latent dimensions. We create a latent
vector representation ri,t for the set of courses that the i-th
student took in semester t by aggregating the vector rep-
resentations of these courses, ci,j,t. We use two types of
aggregation operations. First, in max pooling, we take the
maximum value of every dimension over these vectors. The
l-th element (l ∈ [1, d]) of ri,t is created as:

ri,t,l = max(ci,1,t,l, ci,2,t,l, ....), (6)

where ci,j,t,l is the l-th element of the course representation
vector ci,j,t. Secondly, for the average pooling, we aggregate
the courses’ latent representations in semester t by taking
the average value of every dimension, as follows:

ri,t =
1

|Bi,t|

|Bi,t|∑

j=1

ci,j,t. (7)

Next, these representations of the sequence of baskets are
passed to the recurrent neural network (RNN) architecture.

Dynamic Representation of a Student We incorporate LSTM
networks in the RNN architecture where the hidden layer
hi,t is the dynamic representation of i-th student at semester
t. The recurrent connection weight matrix W ∈ Rd×d is
helpful to propagate sequential signals between two adja-
cent hidden states hi,t−1 and hi,t. We have a learnable
transition matrix T ∈ Rtm×d between the latent representa-
tion of basket ri,t and a student’s interests, where tm is the
maximum length of the sequence of baskets for any student.
We compute the vector representation of the hidden layer as
follows:

hi,t = f(Tri,t + Whi,t−1), (8)

where hi,t−1 is the dynamic representation of the previous
semester. f(·) is the sigmoid activation function, i.e., f(x) =
1/(1 + e−x).

Score generation The model generates a score yi,ti for all
available courses that the i-th student might take at target
semester ti by using the matrix M with the latent represen-
tation of all courses and the dynamic representation of the
student hi,t as follows:

yi,ti = MThi,t, (9)

where the j-th element of yi,ti , represents the recommenda-
tion score for the j-th course.
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Table 2: Data statistics

# students # courses # target baskets

Training 2973 618 14070

Validation 1231 540 2743

Test 657 494 1259

4. EXPERIMENTAL EVALUATION
4.1 Dataset
We used a real-world dataset from Florida International Uni-
versity, a public US university, that spans 9 years. Our
dataset consists of the course registration history of un-
dergraduate students in the Computer Science department.
The grades follow the A–F grading scale (A, A-, B+, B,
B-, C+, C, D, F). We only consider the data of students
who have successfully graduated with a degree. We re-
move instances in which a grade less than C was earned
because these do not (usually) count towards degree require-
ments [17]. We also remove an instance if a student drops
a class in the middle of the semester. In this way, we keep
course sequences and information that at least lead to suc-
cessful graduation and may be considered good examples.
We remove courses that appear less than three times in our
dataset.

After preprocessing, we have the course registration history
of 3328 students and there are 647 unique courses. We split
the data into train, validation, and test set. We use the last
three semesters (summer 2021, fall 2021, and spring 2022)
for testing purposes and the previous 3 semesters (summer
2020, fall 2020, and spring 2021) for validation and model
selection. The rest of the data before the summer 2020 term
(almost seven years’ course registration history) are kept in
the training set.

From the validation and test sets, we remove the courses
that do not appear in the training set. We also remove any
instances from the training, validation, and test set where
the length of the basket sequence is less than three for a stu-
dent. In other words, to generate recommendations we need
the history of at least two previous semesters. The statistics
of training, validation, and test data are presented in Ta-
ble 2. Each student might correspond to multiple instances,
one for each semester that could be considered as a target
semester. For example, if a student took courses from fall
2019 until Spring 2021, they are considered in two instances
on the test set (we generate recommendations from summer
2020 and spring 2021) and with three recommendations in
the validation (target semesters: summer 2020, fall 2020,
and spring 2021).

4.2 Evaluation metrics
As in prior work [13, 21, 23, 33], we used Recall@k score
as our main evaluation metric, where k is the number of
courses that the student took at the target semester.

Recall@k =
# of relevant recommendations

# of actual courses in target semester
(10)

We essentially calculate the fraction of courses in the target
semester that we correctly recommended to a student. In

the subsequent sections, we report the average score over
all the recommendations, i.e., target baskets. Recall and
precision scores are equal as we recommend as many courses
as the target student will take in the target semester. We
also calculate the percentage of students for who we offer at
least one relevant recommendation (%rel) as:

%rel =
# instances with ≥ 1 relevant recommendation

# total instances
(11)

This metric captures the ability of our recommendations to
retrieve at least one relevant course for each student.

4.3 Experimental setting
We use the training set to build the models, and we select the
parameters of the model with the best performance, based
on the Recall@k metric, on the validation set. For the model
selected, we calculate the evaluation metrics on the test set.

For the CourseBEACON model, for parameter α, we have
tested the values [0.1, 0.3, 0.5, 0.7, 0.9]. α balances the im-
portance of intra-basket correlation and inter-basket sequen-
tial association of courses. The lower value of α prioritizes
the sequential association more than the intra-basket corre-
lation; a higher value prioritizes the correlation of courses
within the basket more. We also examined embedding di-
mensions=[16, 32, 64], hidden units=[32, 64, 128] of LSTM
networks, and dropout rates=[0.3, 0.4]. For the Course-
DREAM model, we used both max pooling and average
pooling, however, the outcomes were very similar. In this pa-
per, the results are reported with the average pooling tech-
nique. We tried LSTM layers=[1, 2, 3], embedding dimen-
sions=[8, 16, 32], and dropout rates=[0.3, 0.4, 0.5, 0.6] for
the CourseDREAM model.

4.4 Competing approaches
4.4.1 Non-sequential baseline

We use a popularity-based approach as a non-sequential
baseline for course recommendation. Incorporating the hash-
ing technique, we create a dictionary for each semester,
starting from the first semester of each student, and count
how many students take course p ∈ C in that semester of
their studies. The top courses with the highest frequency
at the t-th semester are recommended for the t-th semester
of a target student. For example, if we have a student, and
the target semester is his fourth semester in the program,
we will recommend the most popular courses that students
in the training set take in their fourth semester.

4.4.2 Sequential baseline
We use a popular sequence-based approach as our sequential
baseline for course recommendation. For each pair of courses
∀p, q ∈ C, we check how many times students took course
q after course p. We create a bipartite graph with pairs
of courses on consecutive semesters available in the training
data. Courses are nodes and the weight of a connecting edge
increases by 1 if one course comes before another course (i.e.,
weight(p, q) += 1 if course p is taken just before course q by
a student). We normalize the weights as follows:

weight(p, q) =
weight(p, q)∑

∀r∈C weight(p, r)
(12)
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Given the courses that a target student took the previous
semester, Bi,ti−1, we can recommend a set of courses for
the ti-th (target) semester. The recommendation score of a
course is measured based on the summation of the weights
from all the courses of the previous semester to this course
in our created bipartite graph.

4.4.3 Tensor decomposition
We re-implement the session-based tensor decomposition tech-
nique [7] to recommend courses for the upcoming semester.
This model prioritizes users’ preferences of items in a bas-
ket over the sequential nature of items in the basket se-
quence of users. Using the training data, we create tensor
F ∈ Rn×m×m, where Fi,p,q stores the number of times that
courses p, q are taken together in the same semester from
the i-th student. This tensor is very sparse, as there are
many pairs of courses p, q that are not taken together by
each student.

So, we use the RESCAL tensor decomposition technique
with factorization rank, d, to get the approximate value
of Fi,p,q. We calculate the matrix A (course embedding,
A ∈ Rm×d) and tensor R (user embedding, R ∈ Rd×d×n),

and then, we calculate F̃i,p,q = Qp ∗ AT
q where Qp is the

query vector, i.e., the dot product of Ap ∈ R1×d for course
p and Ri ∈ Rd×d×1 for i-th student. To speed up the rec-
ommendation process, we implement a hashing technique
by using the approximate nearest neighbor (ANN) indexing
library, ANNOY. In this case, the query vector, Qp, is cal-
culated for any course p taken by i-th student and we find
the courses q which are nearest neighbors to the query vec-
tor using annoy indexing and calculate F̃i,p,q for those p, q
pairs. Then, for the i-th student, we recommend the courses
q that have the highest F̃i,p,q scores based on the courses p
that the student has already taken.

We tried different rank values for factorization, d=[1, 2, 3,
4, 5, 8, 10, 15, 20, 50], and different numbers of nearest
neighbors [5, 40, 100] for ANN indexing. However, we ob-
serve better results when we do not use ANN indexing which
takes the maximum number of nearest neighbors (all avail-
able courses) into consideration.

4.4.4 Scholars walk
We use the Scholars walk model [23], a non-session-based ap-
proach to recommend a set of courses for the next session.
First, we calculate matrix F ∈ Rm×m that contains the fre-
quency Fp,q of every pair of consecutive courses p, q ∈ C.
We normalize F to get the transition probability matrix, T.
Then we perform a random walk on the course-to-course
graph that is described by T. The probability of the walker
reaching the vertices after K steps gives an intuitive mea-
sure that is useful to rank the courses for a student to offer
a personalized recommendation. We use the scholars walk
algorithm to perform a random walk with restarts which
guides us to consider direct and transitive relations between
the courses.

We tried the following value for the parameters: the number
of steps allowed=[1,2,3,4,5]; alpha=[1e-4, 1e-3, 1e-2, 1e-1,
0.2, 0.4, 0.6, 0.7, 0.8, 0.85, 0.9, 0.99, 0.999]; beta values from
0 to 1.6 with step 0.1.

Table 3: Performance comparison in terms of Recall@k.

Model Validation Test

Non Sequential baseline 0.1600 0.1039

Sequential baseline 0.2991 0.2470

Tensor Decomposition 0.1596 0.1309

Scholars Walk 0.3619 0.2679

CourseBEACON 0.3859 0.2948

CourseDREAM 0.3856 0.3023

Figure 1: Percentage of instances with at least one relevant
recommendation

4.5 Recommending courses
We recommend the top courses for the target semester Bi,ti
based on the predicted score yi,j for course cj for i-th stu-
dent. The scores demonstrate how likely is for each course
to be taken on the next semester with respect to both corre-
lation of courses within the semester and sequential associ-
ations of courses over the semesters. We also create a list of
courses for each semester t observing which courses are of-
fered and available for all students. During post-processing,
while recommending courses for a student, we filter out the
courses which the student took in any previous semester and
the courses which are not offered at that target semester [21,
23]. Then, we recommend the top k = |Bi,ti | courses based
on the highest scores for that student.

5. RESULTS
In this section, we will discuss the performance of our pro-
posed approaches compared to the state-of-the-art sequen-
tial and non-sequential session-based or non-session-based
approaches. We will also present how the hyperparameters
affected the overall performance of our models.

5.1 Performance Comparison
The performance results of our proposed approaches and
other competing approaches are shown in Table 3. We present
Recall@k score for both the validation and test data. The
percentage of relevant recommendations (%rel, percentage
of at least one correct prediction for each instance) is pre-
sented in Figure 5.1.
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First, if we only consider existing approaches, the best per-
forming model is Scholars Walk. This model achieves recall
performance around 26.79% and produces at least one rel-
evant recommendation for 52.42% of the instances. On the
opposite side, the non-sequential baseline performs particu-
larly badly. The reason might be that in our school, we have
a lot of transfer students, and the courses that they take in
their second semester for example might be very different
from traditional students.

Second, sequential approaches (sequential baseline, Schol-
ars walk, CourseBEACON, CourseDREAM) outperform the
non-sequential approaches (non-sequential baseline and ten-
sor decomposition). This indicates that the sequence of
courses over the semesters is an important factor in course
selection. Sequential approaches can capture the student-
course interaction along with the sequential transition of
courses. On the contrary, non-sequential approaches just
capture student-course interactions and students’ preferences.
We actually tested another non-sequential approach, BPR-
MF, but the recall results were as low as the Tensor De-
composition, and we decided to only present one of these
non-sequential approaches.

Third, our proposed session-based approaches outperform
all the other competing approaches for course recommen-
dation that we tested. We have the highest Recall@k and
%rel with the CourseDREAM model. Between the two pro-
posed models, CourseDREAM seems to be more stable, as
there is a smaller difference between the validation and test
performance. The fact that CourseDREAM behaves betters
than CourseBEACON indicates that latent vector represen-
tation using the average pooling technique is more effective
than creating the correlation matrix for the courses taken
within a semester. An explanation could be that the corre-
lation matrix may suffer from and be dominated by popular
courses. We can also see that capturing the relationship of
courses taken in a semester in the session-based approach is
working better than other sequential approaches. The %rel
scores of CourseDREAM demonstrate that we can recom-
mend at least one correct recommendation for 59.65% of
the instances.

Fourth, deep learning models (like LSTM networks) can cap-
ture the sequential transition of courses over the sequence
of semesters. Incorporating the notion of the suitability of
courses co-taken within a semester produces more accurate
and useful recommendations.

5.2 The effect of different hyperparameters
First, we examine how the parameter α affects the results
of the CourseBEACON model. In Fig. 5.2, we present the
Recall@k of the validation and test set achieved for different
values of α for the combination of parameters that have the
best Recall@k (dropout rate = 0.4, embedding dimension
d = 64, and hidden units = 128). We observe that lower
values of α provide better performance, with the best model
having α = 0.3. This means that the sequential transition of
courses plays more importance than the intra-basket corre-
lation of courses within a semester. However, we still need to
consider the relationship between courses taken in the same
semester for course recommendation. This is what gives an
advantage to these session-based models.

Figure 2: The effect of α in CourseBEACON model

Table 4: The effect of different hyperparameters in Course-
DREAM model in terms of Recall@k (dropout rate = 0.4)

embedding
dimensions

RNN layers Validation Test

32 1 0.3587 0.2782

32 2 0.3559 0.2792

32 3 0.3856 0.3023

16 1 0.3706 0.2882

16 2 0.3649 0.2943

16 3 0.3770 0.2990

8 1 0.3721 0.2958

8 2 0.3602 0.2826

8 3 0.3312 0.2659

Next, we examine the performance of the CourseDREAM
model with respect to the parameters of embedding dimen-
sion and number of RNN layers in Table 4. Here, we have
set dropout rates to 0.4, which gives us the best-performing
model. We observe that the number of LSTM layers and
the number of embedding dimensions do influence the re-
sults. Except for the case of 8 embedded dimensions, our
models benefit from the increased number of RNN layers,
which capture more complex patterns in the data.

6. CONCLUSION
We propose the use of session-based recommendation ap-
proaches for recommending suitable and complementary courses
for the upcoming semester. In particular, we introduce Course-
DREAM and CourseBEACON, two sequential session-based
approaches that capture the relationship of the co-taken
courses in different ways. Our experimental results show
that our proposed models outperform all the sequential and
non-sequential competing approaches. CourseDREAM can
provide more relevant recommendations for the students so
that recommended set of courses are related and more likely
to be taken together within a semester. Our models will be
helpful in advising students to achieve better performance
overall and graduate on time.
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ABSTRACT
We explore multi-modal machine learning-based approaches
(facial expression recognition, auditory emotion recognition,
and text sentiment analysis) to identify negative moments of
teacher-student interaction during classroom teaching. Our
analyses on a large (957 videos, each 20min) dataset of class-
room observations suggest that: (1) Negative moments oc-
cur sparsely and are laborious to find by manually watching
videos from start to finish. (2) Contemporary machine per-
ception tools for emotion, speech, and text sentiment anal-
ysis show only limited ability to capture the diverse mani-
festations of classroom negativity in a fully automatic way.
(3) Semi-automatic procedures that combine machine per-
ception with human annotation may hold more promise for
finding authentic moments of classroom negativity. Finally,
(4) even short 10sec negative moments contain rich structure
in terms of the actions and behaviors that they comprise.

Keywords
classroom observation analysis, multi-modal machine learn-
ing, speech analysis, sentiment analysis

1. INTRODUCTION
In school classrooms, the emotional climate set by the teacher
can significantly impact student engagement, attitudes to-
ward learning, and downstream academic and socioemo-
tional outcomes [9, 8, 5]. Classrooms in which students feel
encouraged, excited, and supported to learn are associated
with positive engagement [9], fewer conflicts with teachers
[16], and stronger executive functioning of the learners [28].
Conversely, classrooms with negative classroom climate – as
exhibited by teacher irritability, anger, sarcasm, yelling, in-
timidation, etc. – are associated with poorer outcomes in
these areas. Given the connection between classroom nega-
tivity and worse student outcomes, it is important to help
teachers to reduce negativity in their teaching. Over the
years, educational researchers have devised professional de-
velopment and training programs to assist teachers in fos-

tering classroom climates that are more conducive to learn-
ing [15]. One useful practice is to identify and discuss spe-
cific moments – either in the teacher’s own classroom or
in someone else’s – that are especially positive or negative.
For the positive moments, one can then examine the ways
in which the teacher acted effectively; for the negative mo-
ments, one can discuss more constructive ways in which the
teacher could have navigated the situation.

Needle in a Haystack: One obstacle to providing teachers
with useful feedback on classroom observation is the need to
find “teachable moments” that are worthy of close examina-
tion within a long classroom video. Even in a large library of
classroom observation sessions, it may be difficult and labo-
rious to find a variety of interesting moments. New methods
for automated perception of school classrooms, as enabled
by advances in computer vision, speech analysis, and natu-
ral language processing during the past 5-10 years, offer the
possibility of accelerating the process of finding teachable
moments. For an individual teacher, these new tools could
make it possible to record their own teaching and quickly
identify candidate moments – on a regular basis, not just
1-2 per year – that they should examine more closely. De-
ployed on a larger scale, such perceptual tools could also
help researchers to systematically study moments of strong
positivity or negativity in collections of classroom videos. In
our paper, we assess the extent to which modern AI-based
tools for the recognition of facial expression, auditory emo-
tion, speech, and text sentiment could be used to find short
(10sec) negative moments of classroom interaction between
the teacher and the students.

Our definition of negative moment is rooted in the construct
of negative climate from the Classroom Assessment Scor-
ing System (CLASS; [25]). A classroom is said to exhibit
negative climate if it contains negative affect (irritability,
anger, harshness, etc.) by the teacher, punitive control, sar-
casm/disrespect, or severe negativity (victimization, bully-
ing, etc.). Negative climate under the CLASS framework
is labeled on the timescale of 15-20 minute video segments.
In contrast, we were interested in finding negative moments
(10sec), as this is an arguably more useful timescale on which
to give teachers specific feedback. This shorter timescale
matches more closely with the specific actions and interac-
tions that occur within a classroom teaching session (e.g., a
single sentence spoken by the teacher to a student; physical
actions such as touching or co-manipulation of an object by a
teacher and student simultaneously; a facial expression that
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is displayed briefly for one person to another). It aligns with
the natural timescale over which emotional states typically
change [4]. We also are primarily interested in negativity
expressed by the teacher, not by students.

Study Overview: We harness a large dataset of nearly 1000
videorecorded classroom observation sessions, each 20 min-
utes long, that were collected from individual teachers in
elementary and middle schools. In terms of research ques-
tions, we examine (RQ1) to what extent modern AI-based
machine perception tools can automatically find negative
moments from classroom observation videos. In addition to
fully automatic methods, we also explore (RQ2) whether a
semi-automatic detection paradigm that combines AI with
human annotation can yield a more accurate filtering mech-
anism. Finally, (RQ3) given the set of negative moments
that we find, we explore what kind of semantic structure
they contain and analyze them in terms of what happened
on an utterance-by-utterance and action-by-action basis.

Ethics of Automated Classroom Analysis: Our long-term goal
is to help teachers obtain more frequent and fine-grained
feedback about their own teaching compared to the standard
practice, which is to get very sparse feedback 1-2x/year from
a school principal. Our paper provides a sober assessment of
how realistic it is, using contemporary machine perception
tools, to provide such feedback.

2. RELATED WORK
Classroom Observation Protocols: With the goal of char-
acterizing classroom interactions more precisely and objec-
tively, as well as providing teachers with more useful feed-
back, educational researchers have devised a variety of class-
room observation protocols over the past two decades. These
include the Protocol for Language Arts Teaching Observa-
tions (PLATO; [13]), Assessing Classroom Sociocultural Eq-
uity Scale (ACSES; [10]), and the Classroom Assessment
Scoring System (CLASS; [25]). The CLASS is curriculum-
agnostic and one of the most widely used protocols; it fo-
cuses on inter-personal interactions between teachers, stu-
dents, and their peers.

Automatic Classroom Analysis: The EduSense system de-
veloped by Ahuja et al. [1] uses classroom audio and video
to detect temporally specific features such as who is talking
when, hand-raises, body posture, and smiles. These fea-
tures can be aggregated over time and visualized in a dash-
board for teachers that shows the total amount of instruc-
tor versus student speech, total number of hand raises, etc.
The system does not perform high-level semantic analysis
or make holistic judgments about the classroom experience.
Zylich & Whitehill [29] trained custom neural networks to
recognize key phrases associated with positive speech such
as “please”, “thank you”, “good job”, etc. They showed that
the counts of these detected phrases over 15min classroom
videos were correlated with some CLASS dimensions. Kelly
et al. [19] developed a system to detect how often teachers
are asking authentic questions of their students, i.e., ques-
tions whose answers are open-ended and facilitate produc-
tive classroom discourse. Their approach takes an automat-
ically generated transcript of the classroom audio; extracts
word, sentence, and discourse-level features; and then ap-
plies regression trees to estimate the proportion, over the

Figure 1: A random sample of 16 classroom videos (rendered
at low resolution to preserve privacy) from our dataset.

entire class period, of the teacher’s questions that were open-
ended. James et al. [18] used automatic facial expression
recognition from classroom videos to estimate Positive and
Negative Climate dimensions of the CLASS. Finally, Qiao
and Beling [27] explored a multi-instance learning approach
to identifying specific moments within classroom videos that
human coders should examine in order to perform CLASS
labeling more efficiently.

3. DATASET
The dataset we used in our experiments (IRB #17-151 at
Worcester Polytechnic Institute) was shared with our re-
search group by a California-based company for teacher train-
ing. It consists of 957 classroom observation videos (20min
each) ranging from kindergarten through middle school in a
Midwestern state in the USA. Each video contains a differ-
ent teacher and set of students. The videos were recorded by
the teachers themselves to obtain feedback on their teach-
ing; hence, the video camera model, placement, lighting,
etc., can vary strongly between videos. While the teachers’
faces and voices are usually clearly captured in each video,
the students’ often are not. See Figure 1.

4. MACHINE SENSORS
Our definition of negative moments involves the teacher’s af-
fect as well as the content of their speech and their actions.
While capturing all facets of classroom negativity using au-
tomated tools is likely infeasible, there already exist machine
perception tools that can detect certain aspects of negativity
and that might help to find negative moments more quickly
than by watching whole videos one-by-one. In particular,
we explored the utility of modern (i.e., developed during
the past 5 years) AI-based tools for speech recognition, text
sentiment analysis, facial expression recognition, and audi-
tory emotion recognition. We describe them below.1

4.1 Auditory Emotion Recognition
To analyze auditory emotion, we used the convolutional
neural network described in [6]. The network takes a 162-
dimensional feature vector (extracted by the Librosa pack-
age [21]) as input consisting of zero-crossing rates, Chroma-
STFT, MFCC, RMS, and Mel spectrograms, which are all

1In addition to the individual sensors, we also tried an en-
semble combining multiple sensors; however, the accuracy
was no better than one of the individual sensors.
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standard features in modern audio analysis. The features
are extracted from 5sec audio segments, whereby each seg-
ment is split into multiple windows in time, and the fea-
tures extracted from the windows are averaged before being
passed to the network. The network was trained to clas-
sify 8 emotions (anger, calm, disgust, fear, happiness, neu-
tral, sadness, and surprise) on a combination of 4 different
datasets: CREMA-D [7], RAVDESS [20], SAVEE [17], and
the TESS [26]. These datasets are widely used for audi-
tory emotion recognition and contain recordings of individ-
ual adult speakers. They do not span the highly challeng-
ing conditions (overlapping speech, high background noise)
found in school classrooms, nor do they contain children’s
voices; nonetheless, they are likely some of the best publicly
available training datasets available. The test accuracy (61%
over 8 emotions) of the trained network on these datasets is
consistent with that reported by the authors of [6].

For our study, to obtain a speech-based emotion estimate
for each 10sec moment of every classroom video, we split
each moment into two 5-sec chunks, classified each chunk
over the 8 emotion categories, and then averaged the esti-
mates over the two chunks. Finally, to obtain an estimate
of “negativity”, we summed the emotion probabilities for the
“anger” and “disgust” categories; since the focus of our study
is on the teacher ’s expressed negativity, we did not include
the “sad” emotion in this sum. We note that, in practice,
since most of the sound recorded in the videos comes from
the teacher’s speech, the auditory emotion detector is most
likely to contain information on the teacher’s expressed emo-
tion rather than the students’ auditory emotional responses.

Custom detectors: We also conducted a pilot experiment,
using the same audio features, on training a custom detec-
tor (using 50 negative moments for training; see Section 5).
The motivation was that training detectors on actual class-
room data, rather than a general-purpose auditory emotion
dataset, might be more effective. However, the test accuracy
was basically at-chance, and we abandoned the approach.

4.2 Facial Expression Recognition
We first considered using OpenFace [3], but this software is
specialized for analyzing a single face per image, not multi-
ple faces and it detects facial Action Units [11] rather than
semantic emotion labels (“anger”, “disgust”, etc.). Hence,
we instead used the pre-trained facial emotion recognition
convolutional neural network from [2], which achieves an
overall accuracy, over a set of 7 detected emotions (anger,
disgust, fear, happiness, sadness, surprise, neutral), of 66%
on the FER2013 dataset [12]. FER2013 spans a wide range
of lighting conditions and head poses (though not as extreme
as those in classroom videos), but contains mostly adults.

To obtain a facial emotion estimate for each 10sec moment of
every classroom video, we split each moment into 10 frames
(spaced at 1 Hz); detected all the faces in the frame using
OpenCV’s built-in Haar-based cascaded face detector; and
then analyzed the face for facial emotion using the trained
emotion classifier. To compute an aggregate score for each
emotion, we averaged the emotion estimates over all de-
tected faces within the set of all 10 frames. (If no frames in
the moment contained any detected faces, then the floating-
point value NaN (“not a number”) was assigned to all emo-

tions in the 10sec moment.) Finally, to obtain a score of
“negativity” for each moment, we added together the proba-
bility estimates for the “anger” and “disgust” emotions. We
note that the facial expression sensor is most likely to con-
tain information on the teacher’s emotion, as the teacher’s
face is often the visual focus of the camera in most videos.

Summed over all sampled frames from all 957 classroom
videos in the dataset, a total of 160398 faces were detected
and analyzed for facial expression. On average, therefore,
there were only about 0.14 faces detected per video frame,
i.e., most people were not detected in most frames.

4.3 Text Sentiment Analysis
To analyze text for its sentiment, we first transcribed each
video using the Web Speech API [22] developed by Mozilla
and Google. Each video was split into 10sec chunks of au-
dio, and each chunk was passed to the Web Speech API
separately. The average number of 10sec moments in which
the Web Speech API detected any speech at all was 80.19
(out of 120 total 10sec moments in a 20min video). The aver-
age number of transcribed words per video was 917.83. Each
automatic transcription was then classified for sentiment us-
ing the Google Cloud Natural Language API. It returns a
numeric score between -1.0 (most negative) and +1.0 (most
positive) for each input. Examples: “a handle like it why do
you think she got in his face and got upset with him” (sen-
timent: −0.9); “okay go ahead what’s your favorite season”
(sentiment: 0.4); and“very nice job on making your pros and
cons very even very lined up makes it easy to count” (senti-
ment: 0.9). To obtain an estimate of “negativity” using the
sentiment analyzer’s raw output s, we remapped the range
[−1, 1] to [0, 1] and reversed the scale, i.e., the negativity n
was computed as n = 1− (s/2 + 0.5) ∈ [0, 1].

5. FINDING NEGATIVE MOMENTS
AUTOMATICALLY (RQ1)

In our first analysis we assess how accurately modern ma-
chine sensors can find classroom negative moments.

5.1 Annotation Process
Ideally, we would have ground-truth annotations of every
10sec moment of all 957 videos; however, this would be pro-
hibitively expensive. Moreover, annotating a uniformly ran-
dom sample from the dataset would likely uncover very few
negative moments since they occur so sparsely. We thus
use a different strategy: Since we have a form of automated
labeling available to us (i.e., the sensors), we can use each
sensor to find videos in which there is, according to the sen-
sor’s outputs, the largest variance of negativity. We then
select the most negative and least negative moments (ac-
cording to the sensors) within each of those videos, label
these moments by hand, and then compute the accuracy
of the machine w.r.t. human labels. With this procedure,
we are essentially measuring the sensors’ abilities to iden-
tify coarse-grained differences in negativity rather than very
fine-grained differences if we had randomly selected pairs of
moments from anywhere in the whole dataset. We applied
this strategy for each of the three sensors as well as two
ensemble models. All in all, we obtained 100 moments (20
from each automated method).
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Table 1: Accuracy (AUC for absolute negativity, and propor-
tion correct for relative negativity) of the different sensors
used for fully automatic detection of classroom negative mo-
ments. Baseline for guessing is 0.5 in all cases.

Finding Negative Moments Automatically
Sensor Absolute Relative
Auditory Emotion 0.64 0.52
Facial Expression 0.41 0.35
Text Sentiment 0.61 0.52

The annotation team consisted of the three authors of this
paper, of whom the senior author is CLASS-trained. Prior to
annotation, the team examined a handful of video examples,
and each annotator labeled them independently. Next, the
team came together to discuss their labels and arrive at a
consensus understanding. Finally, each labeler proceeded to
annotate the remaining examples. We assessed inter-rater
reliability (IRR) as the average pairwise agreement between
annotators using the linearly weighted Cohen’s κ coefficient.

5.2 Annotation Tasks
The labeling task consisted of both an absolute rating task
and a relative rating task. The former is about distinguish-
ing the negativity between any two moments of classroom
teaching at any moment and from any teacher, whereas the
latter is about comparing the negativity of two moments
within the same teacher’s classroom.

Absolute negativity: Annotators were presented with a set of
100 moments and were asked to rate each one as “negative”,
“positive”, or “neutral”. These labels were then converted
into integers -1, 0, and +1, respectively. On this task, the
average pairwise IRR was κ = 0.39. Over the 3× 100 total
labels across the three annotators, only 16 were negative.
None of the 100 moments received a label of “negative” (−1)
from all three labelers. Only 1 out of the 100 moments
received 2 votes (out of 3) of “negative”. These numbers
reflect how classroom negativity often occurs very sparsely
in a classroom observation session.

Relative negativity: Annotators were presented with a set
of 50 pairs of 10sec moments, whereby each pair came from
the same video but different pairs came from different videos.
For each moment in each pair, they were asked to label which
of the two moments was more negative (-1 if the first moment
was more negative, and +1 if the second video was more
negative), with an option for “neither” (0) if no difference
in negativity could be discerned. On this task, the average
pairwise IRR was κ = 0.37. Only 4 of the 50 moment-
pairs received a unanimous vote across all 3 labelers that
one moment was either “more negative” than the other.

5.3 Accuracy of Machine Sensors
Absolute negativity: To estimate each sensor’s accuracy, we
first averaged the three annotators’ integer labels for each
moment to obtain a “ground-truth” label. For instance, if
two annotators labeled a moment as “neutral” and one la-
beled it as “negative”, then the average is −1/3. We then
computed binary labels for each moment (1 for “negative”

and 0 for “non-negative”) by thresholding this average with
0. After doing so, we obtained a set of 15 negative moments
and 85 non-negative moments. We then computed the Area
Under the ROC Curve (AUC) of each machine sensor us-
ing these binary labels. Using this procedure (see Table 1),
we obtained an AUC of 0.64 for the auditory emotion sen-
sor, 0.41 for the facial expression sensor (i.e., slightly worse
than just randomly guessing, though this is likely due to just
statistical noise), and 0.61 for text sentiment.

Relative negativity: We selected the set of moment-pairs in
which the average integer label (-1, 0, or +1) over the three
annotators was non-zero, i.e., the consensus was that one
of the two moments in each pair was “more negative” than
the other. This resulted in a set of 31 (out of the original)
50 moment-pairs. We then computed the fraction, for each
machine sensor, of the pairs in which the sensor’s output
agreed with the average label. Using this procedure, we
obtained a score (% correct) of 0.52 for the auditory emotion
sensor, 0.35 for the facial expression sensor, and 0.52 for the
text sentiment sensor. These accuracies are not significantly
better than just randomly guessing (0.5 in this case).

5.4 Discussion
No sensor performed substantially above chance for either
the absolute or relative negativity detection tasks, despite
the fact that the data was sample was selected to have a
high variance of negativity – i.e., the machine was tasked
with discerning coarse-grained rather than fine-grained dif-
ferences. Moreover, the IRR for both the absolute and the
relative negativity labeling tasks was fairly low (0.3-0.4).
This suggests that the machine sensors we tried had basi-
cally no ability to identify negative moments, and that ran-
domly selecting moments from a video will uncover very few
such moments of classroom interaction. This agrees with
the annotation team’s subjective experiences that there was
little clear negativity in the moments they labeled.

Based on manually watching hundreds of classroom video
segments, we suggest several possible explanations for why
the sensors did not perform well: (1) The emotion cate-
gories recognized by the sensors do not closely match aca-
demic emotions [24] that occur in school classrooms. (2) The
demographic diversity and difficulty of the training data is
much more limited compared to the classroom videos in our
dataset. (3) The face detector misses the majority of faces
that occur in our video dataset; when it is visible, it is often
difficult to perceive the person’s facial expression.

With regards to the more promising results reported in [18,
29], we speculate that the larger timescale in their studies
(15min) compared to ours (10sec) may help their models to
“smooth out” measurement noise in the sensors’ outputs.

6. FINDING NEGATIVE MOMENTS
SEMI-AUTOMATICALLY (RQ2)

With the limited success of the fully automated approach,
we next explored a semi-automatic approach that combines
algorithmic filtering with human annotation. Our method
was based on our observation that the automatic transcripts
of the classroom videos, though imperfect, still hold insight
into what transpired in each 10sec moment; moreover, in pi-
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lot data exploration we found that simple keyword searches
for certain phrases such as“sit down”would already find mo-
ments in which the teacher was correcting students’ behav-
ior and possibly also exhibiting negativity. In particular, we
heuristically formed a list of phrases that we deemed likely
to contain moments of behavioral corrections [14], such as
asking students to sit down, stop talking, pay attention, etc.
Corrections are not inherently negative, particularly if the
teacher redirects students toward more constructive behav-
iors and in a way that does not demean them. In practice,
they are often associated with teacher negativity, and thus
detecting behavioral corrections can help to uncover some
(but by no means all) kinds of negative moments.

We assembled a list containing the following phrases that we
deemed likely to capture situations that are associated with
behavioral correction: “excuse me”, “keep your”, “why are
you”, “I need you”, “stop”, “be quiet”, “sit down”, “eyes on
me”, “can you please”, “can you stop”, “listen”, “attention”,
“don’t talk”, “don’t yell”, “on your bottom”2, “noise”, and
“keep the volume”. We then devised the following procedure
to identify “corrective” moments: (1) Use automatic speech
recognition (ASR) to transcribe each 10sec moment from all
the videos. (2) Filter the set of all moments to include all
and only those that contain at least one of the keyphrases
above. (3) Manually read the transcripts (but do not watch
the corresponding video segment) of the filtered moments;
keep only those that are deemed to be “corrective”.

We performed the procedure above on our entire dataset of
957 classroom videos. In practice, we found the procedure
to be both intuitive to perform – i.e., the transcripts are
usually quite readable and give some sense of the classroom
interaction – and efficient – i.e., it took only a few person-
hours to read the transcripts filtered through step 2.

6.1 Annotation Process
To assess accuracy of the procedure, the annotation team
examined 100 moments: 50 that passed step 3, and 50 that
were filtered out during step 2 (since they did not contain
any keyphrase). They labeled each moment as “negative”
(-1), “neutral” (0), or “positive” (+1). To do so, they ex-
amined these 10sec moments with the video (i.e., not just
from the transcript like in step 3), including a few seconds
of context before/after the start/end of each video segment
so as to understand the moment more thoroughly. The av-
erage pairwise IRR on this task was κ = 0.60. In a similar
manner, the team also labeled each moment as “corrective”
vs. “not corrective” (IRR: κ = 0.8).

6.2 Accuracy of Semi-Automatic Procedure
Negative moments: Of the 50 moments that passed step 3
of the semi-automatic procedure, 29 (i.e., 58%) were con-
firmed – by taking the average numeric label across all 3 la-
belers and thresholding at 0 – to be “negative”. Of these 29
moments, 26 were further confirmed as “corrective”. More-
over, there were 12 moments in which all 3 labelers unani-
mously agreed were negative, and 5 more moments in which
2 out of 3 labelers agreed were negative. The AUC of the
semi-automatic procedure for distinguishing between nega-
tive and non-negative moments was 83.3%.

2a phrase sometimes told to young students to sit down

Corrective moments: Of the 50 moments that passed step
3 of the semi-automatic procedure, 33 (i.e., 66%) were con-
firmed by the labelers, after taking majority vote of their
corrective vs. not corrective labels, as being corrective. The
AUC of the procedure for distinguishing between corrective
and non-corrective moments is also 83.3%.

6.3 Discussion
This semi-automated procedure showed more promise for
accurately finding negative moments than did the fully au-
tomated sensors. The IRR of manually validating the output
of the procedure was also much higher (0.6 compared to 0.3-
0.4 for labeling the results of the fully automated approach)
and provides further validation that it is making meaningful
distinctions in negativity.

When examining the false detections – i.e., moments out-
put by the procedure that were not actually negative – we
found several in which the teacher was talking about neg-
ativity (e.g., about why it is important to follow rules in
society), rather than actually exhibiting negativity. This
semantic distinction would likely be very difficult for a ma-
chine to make automatically. Another source of false de-
tections that we found was the transcription error made by
the Web Speech API, such that a keyphrase in our list was
not actually spoken within the video. In terms of missed
detections – i.e., negative moments that were missed by the
procedure – there are likely many kinds of classroom nega-
tivity that are not associated with corrective behavior and
would thus be missed. However, by assembling a different
list of keyphrases and/or applying more sophisticated meth-
ods of analyzing the transcripts, it is possible that other
kinds of negative moments could also be discovered.

7. MANIFESTATIONS OF NEGATIVITY
Given that the machine sensors showed little success in un-
covering negative moments, we wanted to examine whether
this was because the negative moments in our dataset truly
do not actually exhibit any differences in facial expression
and/or auditory emotion, or whether the detectors we used
were too poor in accuracy or perhaps not trained on the
right kinds of data. To this end, we performed further an-
notation about which of the two 10sec moments in a pair
from the same video are “less negative” (-1) or “more nega-
tive” (+1) in terms of facial expression, and (separately) in
terms of auditory emotion. If no difference could be ascer-
tained, a label of 0 was assigned. Importantly, the focus of
this annotation task was to examine the facial and auditory
emotion in isolation, and to ignore higher-level semantics of
the content of the teacher’s speech or the trajectory of their
actions. We performed the annotation on the same set of
100 videos described in Section 6.1.

7.1 Negative Auditory Emotion
When judging which of the two moments exhibited more
negative auditory emotion, the average pair-wise IRR of the
annotators was κ = 0.32, suggesting low to moderate agree-
ment on individual moments. This number agrees with our
subjective impression that discerning differences in negativ-
ity based on auditory emotions is challenging, and that the
differences are much smaller than, say, the difference be-
tween “happy” and “angry” in standard datasets used for
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training speech emotion classifiers (Section 4.1). Neverthe-
less, once we averaged all three labelers’ responses for each
moment-pair, we found stronger evidence that the auditory
emotion of a moment is diagnostic for labeling it as “neg-
ative”: in 78% of the moment-pairs, the moment that was
identified as having “more negative” audio was the moment
in the pair that was labeled as a “negative moment” overall.

7.2 Negative Facial Expression
When examining facial expression, the IRR was 0.40, which
was slightly higher than for auditory emotion. After taking
the average label across all three annotators, we found that,
in only 58% of the moment-pairs was the moment identified
as having “more negative” facial expression the moment in
the pair that was labeled as a “negative moment” overall.

7.3 Discussion
Together, these results suggest that, while there is some re-
lationship between the facial and/or auditory emotion of
the classroom and the overall negativity of each 10-second
classroom moment, there is still considerable subjectivity
when judging each individual moment. Similar to our results
on fully automated approaches to finding negative moments
with different sensors, here too we found that auditory emo-
tion was more informative than facial expression. All in all,
it seems that examining auditory and facial expressions in
isolation is insufficient – what defines classroom negativity
depends on more detailed analysis of what transpires.

8. NEGATIVE MOMENT ANALYSIS (RQ3)
To understand better the semantic structure of negative mo-
ments, we examined a set of 43 video clips that were labeled
by our annotation team as “negative moments” in our previ-
ous analyses on fully automatic (Section 5) as well as semi-
automatic (Section 6) methods for finding classroom nega-
tivity. We qualitatively examined each video clip to obtain a
deeper understanding of the subject (the nature or cause) of
the negativity, as well as the trajectory of actions and utter-
ances that the 10sec moment comprised. As an example, the
subject of several negative moments was the teacher asking
students to sit down in their seats. This might involve ac-
tions and utterances such as pointing to the student’s seat,
approaching the student’s desk, and directing the student to
sit down. Through our qualitative coding process (described
below), we identified 4 recurrent subjects: “Stop Fidgeting”,
“Sit Down”, “Listen”, and “Stop Talking”. Further, we iden-
tified 6 types of actions & utterances: Direct Correction
(expressed either verbally or physically) of the student’s be-
havior, Sarcasm, Threat, Body Motion (e.g., aggressive pos-
turing of the teacher’s body w.r.t. the student), Deflection
(e.g., brushing off a student’s comment through a verbal
rejoinder), and Justification (explaining why the teacher is
correcting the student’s behavior). See Table 2.

Procedures: The review process of the negative moments
went as follows: (1) The annotation team watched the mo-
ment two times in a row together to gain a preliminary
understanding; (2) The annotators discussed their opinions
of the moments, how they believed each moment to break
down into multiple stages, and what they believed the tra-
jectory of actions and utterances to be; (3) The annotators
watched the moment, pausing at notable points in time, to

agree or disagree on each other’s labels; and finally, (4) the
annotators formed a consensus on the label trajectory of
actions/utterances in the 10sec moment. The qualitative
codes we used to analyze each clip, along with illustrative
examples, can be found in Table 2.

Results: Through the analysis of the 43 10-second video clips
we categorized using Table 2, we found that teachers, on
average, performed about 2 actions (X = 2.09, SD = 1.00)
per 10sec moment. Some negative moments even contained
up to 4 distinct actions/utterances. The action frequencies
can be seen in Table 3, where each column corresponds to a
different stage with each moment’s trajectory.

8.1 Vignettes of Classroom Negativity
To give a more vivid sense of what kinds of negative mo-
ments emerged, we describe three “vignettes” that illustrate
different subjects of negativity that we identified.

8.1.1 Vignette #1: Stop Fidgeting
There is a small round table in the classroom with four stu-
dents (likely between grades 2 and 4) surrounding it, with a
teacher standing a few feet away. The teacher is standing
next to a whiteboard with math ( i.e. 4 × 5 = 20) written
down. The teacher is providing instructions to the group of
students on how to complete a printed assignment in front
of each student. Most students are sitting still, watching the
teacher, and looking at their papers. However, one student,
who appears to be African-American, who is closest to the
camera, and whose back is facing the camera, begins to dance
in her seat: Her left arm is angled down towards the floor,
and her right arm is angled up towards the ceiling; she is
rocking her shoulders forward and back, causing her arms to
sway. The teacher is distracted by the dancing, looks at the
student with an angry expression, and then issues a verbal
command with a harsh tone: “I need you to stop. Thank
you.” [Direct Correction – Verbal]. The teacher then turns
to look at a boy seated at the table, who says something to the
teacher which elicits a verbal response of“Oh great, great”.

We speculate that this student’s body movements and ex-
pressiveness might be an instance of verve, which is a learn-
ing style associated with African-American students that
“can be defined as having energy, being intense, having ex-
pressive body language, and having a tendency to attend
to several different areas of focus”; it is sometimes misin-
terpreted by teachers as challenging or assertive [14]. The
last comment (“Oh great, great”) was spoken in a tone that
sounded sarcastic. This is a case where accurate and tem-
porally precise recognition of negative auditory emotion is
important to correctly interpret a teacher’s action.

8.1.2 Vignette #2: Sit Down
About 15 students (between grades 1 and 3) are sitting on
a large carpet with the teacher sitting on a rocking chair in
front of the students. The moment begins with the teacher
speaking to one male near the back of the carpet, asking him
to sit down [Direct Correction – Verbal]. Her voice becomes
more stern when she realizes multiple students are not fol-
lowing the direction to sit down. Her facial expression be-
comes more frustrated, and she states, “If I have to re-
mind the boys in the back how to sit sharp one more
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Table 2: Types of Actions & Utterances within Negative Moments

Teacher Action Descriptive Example

Direct Correction (Verbal)
The teacher is counting down from five to have her class be quiet. When she reaches zero,
she says, “shhhhhh”, to have the last few students be quiet.

Direct Correction (Physical)
The teacher verbally tells the child, “No, no”, while physically gesturing with her hand for
the child to direct them to stop talking.

Sarcasm “[Name], we will hear from you first. . . since you are eager to speak.”

Threat
“I want you to put this stuff away and follow directions, or I am going to have to call dad. . .
and grandma again, ok?”

Body Motion
The teacher is providing instructions to the class and the child in front of her is playing
with a plastic bag, which leads to the teacher physically removing it from the child’s hands.

Deflection
A child walks to the front of the room when they aren’t supposed to. The teacher walks them
back to their seat. The child protests; the teacher replies, “Ok, I am not hearing any of that.”

Justification “I see a lot of people who are off task. . . so we need to bring our attention up front.”

Table 3: Frequency of Actions Types in Negative Moments

First Second Third Fourth Total
Direct Correction

Verbal 15 13 5 – 33
Physical 12 8 3 2 25

Sarcasm 2 3 1 1 7
Threat 2 – 2 1 5
Body Motion 8 – – – 8
Deflection 1 – – 1 2
Justification 3 5 2 – 10

time, you are going to lose points” [Threat] while giv-
ing a single downward nod followed by her pointing behind
the easel. At this point, the students sit properly and the
teacher, after waiting a few seconds, resumes teaching.

8.1.3 Vignette #3: Listen
The classroom consists of about 15 students (likely between
grades 4 and 6) all situated at large communal tables in
groups of two to four, and one teacher. The teacher is walk-
ing to the front of the room while discussing Dı́a de Los
Muertos (Day of the Dead) when she looks up and notices a
group of students in the back of the class who are not on task.
The teacher stops walking around the room, looks at the boys
and, with a serious facial expression, she says: “Boys? I
hope you are listening, don’t play with the folder...”
[Direct Correction – Verbal]. While making her comments to
the boy, she extends her arm [Direct Correction – Physical]
and motioning for them to stop. After a short pause to make
sure the boys are listening, the teacher resumes teaching.

8.2 Discussion
Within the moments we analyzed, the Direct Correction ac-
tion was most frequent. Most moments contained multi-
ple distinct actions within them, despite the short duration
(10sec). One of the least frequent actions we observed was
Justification, even though this would likely be beneficial to
students. Finally, in order to fully understand what hap-
pened as well as the intensity of each negative moment, the
annotation team found it was necessary to combine informa-
tion about what was said or done (semantic content), how it
was said (tone of voice, facial expression), and what gestures
and body language accompanied the action/utterance. The
particular facial expressions and body movements that we

observed in the vignettes were often short (<1 sec), which
makes automatic detection even more challenging.

9. CONCLUSIONS
We conducted a machine learning analysis of how different
automated tools for facial expression recognition, auditory
emotion recognition, speech recognition, and text sentiment
analysis can be used to identify classroom “negative mo-
ments” automatically. We considered both fully automatic
as well as semi-automatic (i.e., speech recognition combined
with some human annotation) approaches to finding nega-
tive moments in a large collection (957 videos, 20min long) of
classroom videos. Moreover, we examined, on an utterance-
by-utterance and action-by-action level, a set of 43 negative
moments that were found by the semi-automated procedure.

Lessons learned: (1) Negative moments occur rarely, and
a random sample from a classroom observation is unlikely
to contain many of them. (2) The differences in facial and
auditory emotion that distinguish negative moments from
normal instruction are subtle – much more so than the dif-
ferences in emotion categories (happy, sad, etc.) found in
contemporary emotion datasets. (3) Full automation of the
search process for negative moments is very challenging for
contemporary AI systems that are trained on basic emotions
such as happy, sad, angry, etc. We found more promise in a
simple semi-automated procedure that combines automatic
speech recognition, keyphrase search, and some human an-
notation. (4) Even short 10sec negative moments often com-
prise multiple actions and/or utterances by the teacher.

Future research can explore whether large language models
(LLMs) such as ChatGPT [23] can be trained (by fine-tuning
and/or few-shot learning) to identify classroom negativity
more accurately. One bottleneck, however, is the accuracy of
speech recognition, especially given the noisy classroom con-
ditions with overlapping and sometimes inaudible speech. In
addition, training custom multimodal detectors of new be-
haviors and states such as “fidgeting”, “sarcasm”, etc., could
be useful to understand classroom interactions.
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ABSTRACT 
We propose an innovative, effective, and data-agnostic method to 
train a deep-neural network model with an extremely small train-
ing dataset, called VELR (Voting-based Ensemble Learning with 
Rejection). In educational research and practice, providing valid 
labels for a sufficient amount of data to be used for supervised 
learning can be very costly and often impractical. The shortage of 
training data often results in deep neural networks being overfit-
ting. There are many methods to avoid overfitting such as data 
augmentation and regularization. Though, data augmentation is 
considerably data dependent and does not usually work well for 
natural language processing tasks. Moreover, regularization is of-
ten quite task specific and costly. To address this issue, we 
propose an ensemble of overfitting models with uncertainty-
based rejection. We hypothesize that misclassification can be 
identified by estimating the distribution of the class-posterior 
probability P(y|x) as a random variable. The proposed VELR 
method is data independent, and it does not require changes to the 
model structure or the re-training of the model. Empirical studies 
demonstrated that VELR achieved classification accuracy of 0.7 
with only 200 samples per class on the CIFAR-10 dataset, but 
75% of input samples were rejected. VELR was also applied to a 
question generation task using a BERT language model with only 
350 training data points, which resulted in generating questions 
that are indistinguishable from human-generated questions. The 
paper concludes that VELR has potential applications to a broad 
range of real-world problems where misclassification is very 
costly, which is quite common in the educational domain.  

Keywords 
Ensemble learning with rejection, natural language processing, 
deep neural network, extremely low data regime, overfit. 

1. INTRODUCTION 
When applying a deep-neural network to real-world classification 
tasks, it is sometimes the case that only a very small amount of 
labeled data is available for training a model. When a deep neural-
network (DNN) model is trained with a small amount of data, the 
model often overfits to the training data due to over-parameteri-
zation. We call such a problematically small amount of data the 
extremely low data regime [36]. 

Regularization is a widely used technique to prevent the model 
from overfitting. However, it requires the hyperparameters to be 
fine-tuned a priori, and the model must be retrained each time the 
hyperparameters are changed. 

Another commonly used technique that is known to be an effec-
tive solution to the overfitting problem is semi-supervised 
learning, which utilizes unlabeled data in conjunction with la-
beled data for training [30, 33]. In recent years, data augmentation 
using Generative Adversarial Networks (GAN) has been actively 
studied to synthetically inflate data, significantly improving the 
performance of semi-supervised learning [4, 6, 10, 19]. However, 
there are situations where only a small amount of labeled data is 
available and data augmentation is not a suitable option. Text 
analysis in natural language processing is an example of one such 
data-augmentation incompatible task.  

Although some research has demonstrated that DNN models can 
generalize well with extremely small data regimes, the perfor-
mance is still lower than that of when an abundant amount of data 
is available [26, 32]. Low performance due to overfitting is a se-
rious problem, especially when the model is used for real-world 
tasks where misclassification can be very costly and even unethi-
cal such as medical diagnoses or educational interventions. To 
further expand the application of DNN to real-word tasks, it is 
therefore critical to develop a technique that can overcome the 
overfitting problem with extremely low data regimes. 

In this study, we propose a rigorous ensemble technique for esti-
mating class-posterior probabilities based on a collection of 
overfitting models. Our proposed method does not use any regu-
larization techniques or generative models for data augmentation 
to avoid overfitting. Instead of preventing overfitting while train-
ing models, we propose to identify unreliable classification using 
a soft voting ensemble method based on the distribution of the 
estimated class-posterior probability P(y|x) among the collection 
of overfitting models. 

In other words, we aggregate the class-posterior probabilities 
P(y|x) from multiple isomorphic models (aka soft voting) instead 
of aggregating the class prediction y (aka hard voting) [37]. We 
treat P(y|x) as a random variable while considering a predicted 
class-posterior probability from each model as an observation to 
estimate the distribution of this random variable.  

An unreliable classification will be rejected to reduce the risk of 
giving wrong predictions. We shall call our proposed method Vot-
ing-based Ensemble Learning with Rejection (VELR). 

With a lack of theoretical work in the design of a voting technique, 
we explored two soft-voting methods: min-majority voting and 
uniform voting. The min-majority voting estimates Gaussian 
Mixture Models and takes the minimum probability in a majority 
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cluster, whereas uniform voting sums the probabilities with a uni-
form weight. Although uniform voting itself is not novel, voting 
among overfitting models due to the extremely low data regime 
has not been studied, as far as we are aware.  

In addition, it is not clear in the current literature how classifica-
tion with rejection works in conjunction with voting over an 
ensemble of overfitting models. We demonstrated that classifica-
tion with rejection with voting shows a better performance than 
that with a single model when only an extremely low data regime 
is available. 

To validate VELR, we conducted evaluation studies on two tasks: 
(1) image classification on a commonly used bench-mark dataset 
and (2) pedagogical question generation for online courseware 
engineering. The results showed that voting-based ensemble 
learning with rejection was able to identify incorrect predictions 
and accuracy of classification increased significantly by rejecting 
those predictions.  

Our contributions are as follows: (1) We propose voting-based 
ensemble learning with rejection, VELR, a practical and data-ag-
nostic solution for training deep-neural network models with 
extremely small datasets that would otherwise be overfit to the 
training data. (2) We show that a combination of soft voting 
among overfitting models and rejection can significantly increase 
performance of a model that relies on estimation of a class-poste-
rior probability. (3) We demonstrated that VELR is data agonistic 
through two empirical studies—image and text analyses. (4) The 
code and data used for the current study have been open sourced1. 

2. VELR: VOTING-BASED ENSEMBLE 
LEARNING WITH REJECTION 

2.1 Training the Base Models 
VELR applies to any deep-neural network model that outputs nor-
malized posterior probability (or certainty), P(y|x) = [0, 1], which 
means that when multiple certainties are output (e.g., multi-label 
classification), the sum of P(yi|x) are 1 across all outputs. In the 
current paper, we assume multiple certainties are output, but it 
sshould be clear that the same logic applies to models with a sin-
gle certainty, e.g., a binary classification.  

 

1 The code and data are available at https://github.com/IEClab-
NCSU/VELR 

Suppose we have an input x ∈ X in a multi-dimensional space and 
class labels Y = {y1, y2, ..., yC}. In general, to train a classification 
model is to optimize a set of certainties P(yiÎY|x) in a training 
dataset.  

When trained with an extremely low data regime, the model will 
unavoidably overfit. We therefore propose to create a collection 
of models that are independently trained using the same deep-
neural network structure, the same training dataset, and the same 
hyperparameter settings. It is only that the random initial weights 
are different. Accordingly, a set of certainty Pm(yiÎY|x) for a sam-
ple x are computed, each independently by an individual model 
m (m = 1, …, M) as depicted in Figure 1. The question is how to 
make a consensus among multiple certainties. The next section 
describes a voting technique to compute the consensus certainty 
P*(yiÎY|x). 

2.2 Voting on Estimated Certainty Distribu-
tion 

An essential problem of ensemble learning is to determine which 
posterior probability, among a collection of competing ones, 
should be taken. In the current literature, one approach takes 
model as the unit of analysis—i.e., individual models make a pre-
diction based on their own posterior probabilities and then a 
majority vote is taken from the set of those predictions, aka hard 
voting [2]. 

VELR takes a different approach, where certainty is used as the 
unit of analysis. Namely, for each class yi Î Y, VELR makes an 
ensemble decision about the posterior probability P*(yiÎY|x) 
based on a set of certainties, Pm(yiÎY|x), m = 1, …, M, as shown 
in Figure 1. In the current literature, this approach is called soft 
voting [37]. In the rest of this paper, we call P*(yiÎY|x) as the 
consensus certainty2.  

We explored two different methods for voting: min-majority vot-
ing and uniform voting, as shown in the following subsections. 
Our basic hypothesis is that voting decisions should be made 
based on the distribution of the certainty P(yi|x) per class yi among 
the M models. Therefore, we define a random variable 𝑣!! =
{𝑣𝒙,$

!! = 𝑃$(𝑦%|𝒙); 	𝑚 = 1,… ,𝑀} for each sample x and class yi. 
We hypothesize that the decision of classification should be made 
based on voting among 𝑣’s.  

2.2.1 Min-majority voting 
For the min-majority voting, we assume that 𝑣!!  follows the 
Gaussian Mixture Model (GMM) defined as:   

𝑃(𝑣!!) =3 𝜋&𝒩(𝑣!!|𝜇& , 𝜎&)
'

&()
 

Σ&()' 𝜋& = 1, 
		𝒩(𝑣!!|𝜇& , 𝜎&)	:	Gaussian	Density	function	 

	𝐾: Number	of	clusters 
As Salman and Liu [25] analyzed, when models are overfitting, 
the probability distribution of the random variable 𝑣  tends to 
skew towards 0 and 1. We therefore assume K = 2 in the current 
implementation of VELR.  

For each sample x, the estimation of π, μ, and σ is done by the EM 
algorithm [7] over the random variable 𝑣 as mentioned above. 

2 We use the term “posterior probability”, “prediction”, and “cer-
tainty” interchangeably unless otherwise noted. 

 
Figure 1. Set of posterior probability (or “certainty”)  
𝑷𝒎(𝒚𝒊 ∈ 𝒀|𝒙) computed by a collection of models. 
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Once the density functions are estimated, VELR finds the major-
ity cluster that indicates the most dominant distribution of 𝑣!! as 
defined below:   

𝑘$,-./%0! = 𝑎𝑟𝑔𝑚𝑎𝑥&∈'	𝜋& 

Let 𝑣𝒙,$
!!  be an observation of 𝑣!! ,	which is 𝑃$(𝑦%|𝒙). Then, like 

a normal clustering method, we assign each certainty 𝑣𝒙,$
!! 	=

𝑃$(𝑦%|𝒙)	to a cluster ki (i Î {1, 2}):  

𝑘(𝑣𝒙,$
!! 	) = 	𝑎𝑟𝑔𝑚𝑎𝑥&∈'

𝜋&𝒩(𝑣𝒙,$
!! 	|𝜇& , 𝜎&)

∑ 𝜋&"𝒩(𝑣𝒙,$
!! 	|𝜇&2, 𝜎&2)'

&2()
 

Our goal is to reject samples whose prediction is likely to be 
wrong. To make the model prediction more conservative, we hy-
pothesize that the least confident certainty (i.e., posterior 
probability) should be taken. Therefore, for min-majority voting, 
the minimum Pm(yi|x) in the majority cluster is taken as the con-
sensus prediction for the posterior probability, denoted as 
P*(yi|x): 

𝑃∗(𝑦%|𝒙) = min
$∈44𝒙

$!	
𝑣𝒙,$
!! 	 

𝑀𝑀𝒙
!!	 = {𝑚 ∶ 𝑚 ∈ 𝑀	where	𝑘(𝑣𝒙,$

!! 	) = 	𝑘$,-./%0!	} 

By taking the majority cluster, the value of P*(yi|x) by min-ma-
jority voting is less likely to be zero.  

2.2.2 Uniform voting 
Uniform voting takes the mean of the certainty distribution per 
class yi, 𝑣𝒙,$

!! 	 = Pm(yi|x): 

𝑃∗(𝑦%|𝑥) = 	
1
𝑀Σ$∈4	𝑣𝒙,$

!! 	 

Notice that uniform voting is equivalent to soft voting with the 
uniform weight of one (1.0) [9]. 

2.3 Rejecting Uncertain Predictions 
Once the consensus certainty P*(yi|x) is determined for each class 
yi, a rejection method is applied. The rejection is made based on 
a hypothesis that a reliable prediction should agree with highly 
certain posterior probabilities across models.  

Our rejection function r(x) is defined with pre-defined threshold 
θ: R(0, 1) as: 

𝑟(𝒙) = max
!!∈6

𝑃∗(𝑦%|𝒙) − 𝜃 

The sample x is rejected if r(x) ≤ 0 and accepted otherwise. There-
fore, our classification function f(x) is:  

𝑓(𝑥) = ]
𝑅𝑒𝑗𝑒𝑐𝑡																																		𝑖𝑓	𝑟(𝑥) ≤ 0

𝑎𝑟𝑔𝑚𝑎𝑥!!∈6𝑃
∗(𝑦%|𝒙)															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Rejection increases the risk of not being able to make a prediction 
but decreases the risk of creating a wrong prediction. In some do-
mains, including education, the quality of the model output is 
more important than the quantity, and often making a wrong pre-
diction results in a harmful consequence. The task of pedagogical 
question generation, which is reposted later in section 4.2 as a 
sample task, is an example of such a sensitive task.  

3. RELATED WORK 
3.1 Training with Extremely Low Data Re-

gime 

Deep neural networks (DNN) are prone to overfit small training 
data. There has been extensive research conducted on preventing 
overfitting. Three commonly used techniques are: (1) restricting 
models and data, (2) pre-training models, and (3) augmenting 
data. 

Restricting the model and data is used to prevent the model from 
being too complex. Regularization techniques are commonly 
used, including dropout [29], dropconnect [31], random noise [20, 
22], and many others (for example, [11, 32]). Reducing the di-
mensionality of the input can also increase the generalizability of 
the model [1, 16]. However, it is not clear whether these regular-
ization techniques work for extremely low data regimes. 

Pre-training methods are used to initially train a model with data 
from a related task before fine-tuning the model using the target 
data. In NLP tasks, it is common to use pre-training models [8, 
28, 35]. Although fine-tuning might be done with less amounts of 
data when a model is sufficiently pre-trained, it does not always 
work. Indeed, fine-tuning did not work for the question genera-
tion task that we used for an evaluation (section 4.2).  

Data augmentation is conducted to increase the amount of train-
ing data. There are various methods proposed for DNN-based 
data augmentation [5, 14, 15, 18]. When unlabeled data are avail-
able, a generative technique model can be combined with semi-
supervised learning [3, 12, 34]. These generative models might 
apply to extremely low data regimes. Zhang et al. [36] proposed 
a GAN-based data-augmentation technique, called DADA, spe-
cifically for extremely low data regimes. DADA involves a 
device called Augmenter that generates a new image given ran-
dom noise and a label. DADA also involves a Discriminator, 
which acts as a classifier that outputs a binary decision for each 
class category, indicating whether the input belongs to the distri-
bution of the real data for the target class. 

Unlike the above-mentioned methods, VELR does not require 
changing a model structure or input data. Theoretically, VELR is 
thoroughly data-agnostic—it can be easily adapted to any classi-
fication or prediction tasks including NLP tasks. Practically, 
VELR should work as a reliable solution for many existing mod-
els with an extremely low data regime. 

3.2 Classification with Rejection 
For classification tasks that involve a high risk for misclassifica-
tion, there has been research on classification with rejection, 
where a classifier may choose not to make a prediction in order 
to avoid wrong predictions [21]. The original study on classifica-
tion with rejection [21] is based on a single model. It is not clear 
how classification with rejection works in conjunction with vot-
ing over an ensemble of overfitting models. The empirical study 
reported in the next section demonstrated that classification with 
rejection with voting shows a better performance than that with a 
single model in an extremely low data regime. 

4. EVALUATION STUDY 
An evaluation study was conducted to test the effectiveness of 
VELR. To validate the generality of the algorithm, VELR was 
applied to two different tasks—image classification and educa-
tional question generation. An NVIDIA GeForce RTX 3090 was 
used for the evaluation. 

4.1 First task: Image classification 
4.1.1 Method: Image classification 
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The first task used a subset of CIFAR-10 datasets [13] to simulate 
VELR being applied to an extremely low data regime.  

CIFAR-10 contains 10 classes with 5000 samples per class. The 
training datasets we used consist of 50 (1% of complete training 
dataset), 150 (3%), 200 (4%), 500 (10%), and 1000 (20%) sam-
ples per class randomly sampled from the CIFAR-10 dataset.  

To increase the reliability of the results, we created four different 
subsets of training data for each of the five different sample sizes 
mentioned above. The results reported below in the results section 
show the averaged performance among four subsets.  

For each training subset, we trained 5000 models, applied VELR, 
and validated the ensemble outcome using the CIFAR-10 test da-
taset, which contains 10,000 samples. 

The architecture of the classification model consists of two con-
volutional layers with max-pooling and three fully connected 
layers, as shown in Table 2 in Appendix. Each model was trained 
for 9000 steps. The batch size was 32. The learning rate was 10-3. 
No regularization technique was used.  

By applying VELR to this task, 10 consensus predictions 
P*(y1|x), …, P*(y10|x) were computed (cf. Figure 1). 

The results were compared with a state-of-the-art model for en-
semble learning with the extremely low data regimes, DADA 
[36]. Note that DADA uses data augmentation and regularization.  

For this task, we also explored how the size of ensemble, i.e., the 
number of models trained, influences the performance of the clas-
sifier. 

4.1.2 Results: Image classification 
Figure 2 shows the accuracy of the prediction (y-axis) with dif-
ferent numbers of training data (x-axis). The accuracy was 
averaged over 4 trials. Since the standard deviation was smaller 
than 0.01 for all data points, it is not shown in the figure.  

Figure 2-a shows results for min-majority voting, Figure 2-b 
shows uniform voting. Each line corresponds to a particular re-
jection threshold θ as shown in the legend. The numbers 
associated with a data point show the predicted ratio as defined as 
follows (not all data points show the predicted ratio for simplic-
ity): 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑟𝑎𝑡𝑖𝑜 =
#	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛	

#	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑡𝑒𝑠𝑡	𝑑𝑎𝑡𝑎 	 

The figure only shows data with 0.4 < θ < 0.8, because there was 
a clear trend that the larger the θ, the higher the accuracy becomes 
regardless of other factors (e.g., size of data and voting method). 
Also, when the threshold became greater than 0.8, a considerable 
number of samples was rejected.  

The figure shows that VELR with min-majority voting outper-
formed DADA when θ ≥ 0.6. VELR with uniform voting also 
outperformed DADA when θ ≥ 0.7. The current data demon-
strates that a very simple ensemble model with no data 
augmentation and regularization can outperform a complex 
model that includes a generative model for data augmentation.  

As shown in Figure 2 when the training data size was fixed (for 
example, see 500 per class), the larger the θ, the higher the accu-
racy but the lower the predicted ratio was. This indicates a trade-
off between the accuracy and the predicted ratio. We therefore 
investigated the trade-off of each voting method as shown next. 

We also plotted the trade-off between accuracy (y-axis) and the 
predicted ratio (x-axis), comparing training models with 200 (Fig-
ure 4-a in Appendix) and 1000 (Figure 4-b) samples per class. 
The plots clearly show a trade-off between accuracy and pre-
dicted ratio. Together with the fact that threshold and accuracy 
are negatively correlated, this finding suggests that when the 
threshold is increased, the accuracy also increases at the cost of 
predicted ratio (or the number of rejections). Figure 4 also shows 
that uniform voting was clearly better than a single model predic-
tion, and consistently better than or equal to min-majority voting. 
Because of this, we used uniform voting for the second task as 
shown in the next section.  

4.2 Second task: Educational Question Gen-
eration 

 
(a) Min-Majority method 

 
(b) Unform method 

Figure 2. Comparison with DADA in terms of accuracy. 
Each line shows the change of accuracy (y-axis) with a given 
threshold θ depending on the number of training samples (x-
axis). The value above each data point shows the predicted 
ratio (i.e., number of samples predicted without rejection / to-
tal number of samples). 
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The task of generating educational questions motivated us to de-
velop the VELR method. This section describes the overview of 
the question generation model that we developed and why we 
needed to invent VELR.  

4.2.1 Model to be trained: Question generation 
As part of our on-going effort to develop evidence-based learn-
ing-engineering methods that facilitate the creation of online 
courseware, called PASTEL [17], we developed a system for au-
tomated question generation, called QUADL [27]. A unique 
characteristic of QUADL is that it is aimed to generate a question 
for a key concept in a given didactic text that is assumed to help 
students attain a specific learning objective. The input to QUADL 
is a didactic text and a learning objective, and the output is a pair 
of a question and an answer.  

QUADL consists of two machine-learning models: (1) An answer 
prediction model that identifies a key token in a given didactic 
text that is related to a specific learning objective. (2) A question 
conversion model that converts the didactic text that contains the 
key token into a question for which the key token is the literal 
answer. Notice that the answer for the generated question can be 
literally identified in the source didactic text. Since the source di-
dactic text is sampled from the actual online courseware, the 
generated questions, by definition, are verbatim questions.  

The technical details of the models used in QUADL is provided 
elsewhere [27]. Here, we provide a quick overview of those mod-
els sufficient to understand how the ensemble technique VELR 
was applied to train QUADL.  

Given a pair of a learning objective LO and a sentence S, QUADL 
generates a question Q that is assumed to be suitable to achieve 
the learning objective LO (Figure 5 in Appendix shows an over-
view of QUADL). The following is an example of LO, S, and Q: 

Learning objective (LO): Describe the basic (overall) struc-
ture of the human brain.  

Sentence (S): The dominant portion of the human brain is the 
cerebrum.  

Question (Q): What is the dominant portion of human brain? 
Answer (A): cerebrum 

Notice that the target token is underlined in the sentence S and 
becomes the answer A for the question Q. 

The input of the answer prediction model is a single sentence S 
(or a “source sentence” for the sake of clarity) and a learning ob-
jective LO. The output from the answer prediction model is a 
target token index <Is, Ie>, where Is and Ie show the index of the 
start and end of the target token within the source sentence S rel-
ative to the learning objective LO. The models may output <Is=0, 
Ie=0>, indicating that the source sentence is not suitable to gen-
erate a question for the learning objective.  

For the answer prediction model, we adopted Bidirectional En-
coder Representation from Transformers (BERT) [8]. The final 
hidden state of the BERT model is fed to two single layer classi-
fication models. One of them outputs a vector of probabilities 
Ps(i) indicating the probability that the i-th token in the sentence 
is the beginning of the target token. Likewise, another classifica-
tion model outputs a vector of probabilities that the end index is 
located at the j-th token, Pe(j). To compute the probability of a 
target token index <Is=i, Ie=j>, a normalized sum of Ps(i) and 
Pe(j) is first calculated as the joint probability P(Is=i, Ie=j) for 
every possible span (Is < Ie) in the sentence. The probability 
P(Is=0, Ie=0) is also computed, which indicates the likelihood 

that the sentence is not suitable to generate a question for the 
learning objective. The index <Is=i, Ie=j> with the largest joint 
probability becomes the final prediction. 

For the question conversion model, we hypothesize that if a target 
token is identified in a source sentence, a pedagogically valuable 
question can be generated by converting that source sentence into 
a verbatim question using a sequence-to-sequence model that can 
generate fluent and relevant questions. Therefore, we decided to 
use the state-of-the-art technology, called ProphetNet [23], for 
now. ProphetNet is an encoder-decoder pre-training model that is 
optimized by future n-gram prediction while predicting n-tokens 
simultaneously.  

4.2.2 Methods: Question generation 
Training QUADL models.  For the current study, QUADL was ap-
plied to an existing online course “Anatomy and Physiology” 
(A&P) hosted on the Open Learning Initiative (OLI) at Carnegie 
Mellon University. The A&P course consists of 490 pages and 
has 317 learning objectives. To create training data for the answer 
prediction model, in-service instructors who actively teach the 
A&P course manually tagged the didactic text. The instructors 
were asked to tag each sentence S in the didactic text to indicate 
the target tokens relevant to specific learning objective LO.  

A total of 8 instructors generated 350 pairs of <LO, S> for mon-
etary compensation. Those 350 pairs of token index data were 
used to fine-tune the answer prediction model. As expected, fine-
tuning the BERT model with only 350 training data points re-
sulted in severe overfit—in average, only 38% of predicted target 
tokens were correct relative to the ground truth data (i.e., 350 
pairs of <LO, S>). VELR was then applied to training the answer 
prediction model to overcome the model overfit.  

To make an ensemble prediction, 400 answer prediction models 
were trained independently using the same training data, but each 
with a different parameter initialization. Using all 400 answer pre-
diction models, an ensemble model prediction was made as 
follows.  

To begin with, recall that for each answer prediction model APk 
(k = 1, ..., 400), two vectors of probabilities are output, one for the 
start index Psk(i), and another one for the end index Pek(j). Uni-
form voting was then applied for each vector. That is, those 
probabilities were averaged across all models to obtain the en-
semble predictions Ps*(i) and Pe*(j) for the start and end indices, 
respectively. The final target token prediction P*(Is=i, Ie=j) was 
then computed using Ps*(i) and Pe*(j) as described in section 
4.2.1. 

In the current study, we used threshold of 0.4 for rejection because 
otherwise the accuracy of the model is too low (token precision 
<0.60) or the recall is too small (token recall < 0.20) on the test 
dataset. How the token precision and the token recall were com-
puted is described in section 4.2.3 

For the question conversion model, we used an existing instance 
of ProphetNet that was already trained on the SQuAD1.1 dataset 
[24], one of the most commonly used datasets for question gener-
ation tasks that contains question-answer pairs retrieved from 
Wikipedia.  

Generating questions using QUADL.  Once trained, QUADL was 
applied to the pages of OLI A&P courseware (excluding pages 
that were used in the training dataset for the answer prediction 
model). A total of 2191 questions were generated from 490 pages 
with 317 learning objectives.  
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State-of-the-art question generation model. We used Info-
HCVAE [6], a state-of-the-art question generation model, as a 
baseline. Info-HCVAE generates questions without taking a 
learning objective into account. Instead, it extracts key concepts 
from a given paragraph and generates questions for them. There-
fore, our primary motivation to use Info-HCVAE as a baseline 
(besides its outstanding performance at the time of writing this 
paper) is to compare question generation with and without taking 
learning objectives into account. The details of the evaluation of 
question generation are beyond the scope of this paper but can be 
found in [27]. 

Survey. Five in-service instructors who actively teach the OLI 
A&P course (the “participants” hereafter) were recruited for a 

survey study. The survey contained 100 items, each consisting of 
a paragraph, a learning objective, a question, and an answer.  

Participants were asked to rate the prospective pedagogical value 
of proposed questions using four evaluation metrics on a 5-point 
Likert scale that we developed for the current study: answerabil-
ity, correctness, appropriateness, and adoptability. 

Answerability refers to whether the question can be answered 
from the information shown in the proposed paragraph. Correct-
ness is whether the proposed answer adequately addresses the 
question. Appropriateness is whether the question is appropriate 
for helping students achieve the corresponding learning objective. 
Adoptability is how likely the participants would adapt the pro-
posed question to their class.  

Each individual participant rated all 100 survey items. The ques-
tions used in the survey were created either by QUADL, Info-
HCVAE, or a human expert. There were 34 questions generated 
by QUADL, 33 questions by Info-HCVAE, and 33 human-gen-
erated questions from the same OLI A&P course. Since the 
survey did not mention the source of the included questions, the 
participants blindly evaluated the prospective pedagogical value 
of those questions.  

Consequently, five responses per question were collected, which 
is notably richer than any other human-rated study for question 
generation in the current literature, as these studies often involve 
only two coders.   

4.2.3 Results: Question generation 
Our primary research questions regarding the use of VELR with 
QUADL are: (1) How does VELR improve the accuracy (token 
precision) of the answer prediction? (2) How pedagogically ade-
quate are the questions generated by QUADL when combined 
with VELR? 

Accuracy of Answer Prediction Model. To investigate how 
VELR improved the accuracy of the answer prediction model 
used in QUADL, we evaluated the token precision with different 
threshold values.  

We operationalized the accuracy of target token identification us-
ing two metrics: token precision and token recall. Token precision 
is the number of correctly predicted tokens divided by the number 
of tokens in the prediction. Token recall is the number of correctly 
predicted tokens divided by the number of ground truth tokens. 
For example, suppose a sentence “The target tissues of the nerv-
ous system are muscles and glands” has the ground truth tokens 
as “muscles and glands.” When the predicted token is “glands,” 
the token precision is 1.0 and recall is 0.33. 

Figure 3 shows the change of token precision (a) and token recall 
(b) depending on the threshold when VELR is applied on 10 an-
swer prediction models vs. 400 models. The figure shows the 
aggregated average over 7 runs.   

Figure 3-a shows that VELR improves the token precision of the 
answer prediction model. When VELR is not used, the average 
token precision was 0.38 (as shown in the black dashed line). 
When VELR was used with a threshold of 0.6, for example, the 
token precision was 0.63.  

There was a trade-off between precision and recall as predicted. 
As Figure 3-b shows the token recall decreased when the thresh-
old increased. The plots in the figure also suggest that there was 
no significant difference between 10 models and 400 models 
when unified voting was applied.  

 
(a)Token Precision 

 
(b) Token Recall 

Figure 3. Average of token precision (a) and token recall (b) 
when VELR is used with 10 models (blue triangle markers) 
and 400 models (orange round markers). The dashed line 
(black) shows token precision and token recall by a single an-
swer prediction model with no rejection. 
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In sum, VELR improved the performance of the answer prediction 
model (which is based on the BERT architecture) even when it 
was trained with only 350 data points. For uniform voting, the 
number of models did not significantly impact the performance 
of the ensemble model. Due to the rejection, there is a clear trade-
off between the soundness (token precision) and the completeness 
(token recall) of the ensemble model prediction.  

As discussed before, the use of VELR is beneficial for tasks 
where soundness is valued over completeness—for pedagogical 
question generation, it is far more useful to generate a small num-
ber of pedagogically valuable questions than to generate lots of 
harmful questions. So, a further research question is: How peda-
gogically adequate are the questions generated by QUADL when 
combined with VELR? 

Quality of the generated questions. The results on the answer 
prediction model shown above promisingly suggest that VELR 
has a practical application for generating questions for existing 
online courseware. The current survey results supported this ex-
pectation. Table 1 shows the survey results.  

To see if there was a difference in ratings between questions with 
the different sources (QUADL vs. Infor-HCVAE vs. Human), a 
one-way ANOVA was applied separately to each metric. The re-
sults revealed that source is a main effect for ratings on all four 
metrics; F(2, 97) = 36.38, 24.15, 26.11, and 25.03, for answera-
bility, correctness, appropriateness, and adoptability, respectively. 
A post hoc analysis using Tukey’s test showed that there was a 
statistically significant difference between QUADL and Info-
HCVAE; t(97)=1.87, 1.50, 1.52, 1.39 for each metric, p < 0.05 
for all metrics. There was, however, no significant difference be-
tween QUADL and human-generated questions for each of the four 
metrics: t(97)=0.40, 0.25, 0.16, 0.25, p = 0.19, 0.53, 0.78, 0.45 
respectively.  

In sum, the results from the current survey data suggest that 
QUADL-generated questions were evaluated as on-par with hu-
man-generated questions when VELR is applied to the answer 
prediction model trained with an extremely small data regime. 

We further investigated how the consensus certainty of ensemble 
prediction of the answer prediction model impacted the quality of 
the generated questions. We sampled a subset of questions used 
in the survey by excluding the questions whose source target sen-
tences would have been rejected if a threshold higher than 0.4 had 
been applied. In other words, we investigated the following re-
search question: How does the rejection threshold used by VELR 
when applied to the answer prediction model impact the ratings 
of the QUADL-generated questions? We plotted how the ratings 
change if thresholds higher than 0.4 were applied (Figure 6 in 
Appendix). The figure shows a trend that the participants would 
have increased their rating when higher values for rejection 
threshold were used, though the differences were relatively small 
and not monotonic.  

Table 1. Survey results. Average rating by five participants 
(± standard deviations). The rating values range from 1 as 
strongly disagree to 5 as strongly agree. The rejection 
threshold for the answer prediction model was set to 0.4. 

 

 QUADL Human Info-
HCVAE 

Answerability 4.19 ± 0.74 3.79 ± 0.89 2.32 ±1.15 
Correctness 4.05 ± 0.72 3.80 ± 0.83 2.55±1.21 

Appropriateness 4.04 ± 0.74 3.88 ± 0.76 2.52±1.25 
Adoptability 3.79 ± 0.62 3.53 ± 0.78 2.39±1.10 

5. DISCUSSION AND LIMITATIONS 
Building a valid prediction model with extremely low data re-
gimes is an omnipresent challenge in education research and 
many other domains when human annotation is required. There-
fore, developing a data-agnostic technique to overcome this issue 
is vital to advance the pragmatic theory of learning engineering.  

We proposed a voting function based on the distribution of the 
predicted posterior probability (or “certainly”). The experiment 
with CIFAR-10 showed that both min-majority and uniform vot-
ing can achieve better accuracy than the state-of-the-art method, 
DADA [36], even without any regulation or data augmentation 
technique on the image classification task.  

Although concepts of soft-voting and classification with rejection 
have already been studied in the current literature, VELR is the 
first in the literature that combines soft-voting technique with re-
jection to carry out ensemble learning to overcome the issue of 
overfitting when a model is trained with an extremely low data 
regime.  

In this paper, we explored only the Gaussian mixture model for 
min-majority voting, there are various ways to implement a vot-
ing technique by fitting different probability distributions. We 
conjecture that using a voting technique that better estimates a 
distribution of the posterior probability will further expand the 
potential of the proposed ensemble method. 

We demonstrated that VELR is useful for a real-world applica-
tion: pedagogical question generation as a learning-engineering 
tool for online courseware creation. However, the observations 
related to the evaluation of VELR on QUADL needs some atten-
tion. Since the total number of QUADL-generated questions used 
in the survey is small (34) due to the cost of the human-evalua-
tion, the number of questions included in a subset when a higher 
threshold was applied was significantly small, too (Figure 6 in 
Appendix). The survey study should be replicated with a larger 
number of questions to further validate the current findings. 

6. CONCULSION 
We found that combining soft voting among overfitting models 
and rejection based on the distribution of the learned posterior 
probability leads to remarkable accuracy on tasks even when 
models were trained with extremely low data regimes and were 
hence severely overfit.  

While a conventional solution for overfitting due to extremely 
low data regimes is to restrict the flexibility of the model or in-
crease the amount of data using the data-augmentation 
techniques, proposed VELR (Voting-based Ensemble Learning 
with Rejection) applies to any task and any models that estimate 
predicted certainly using posterior probability. VELR combines 
multiple overfitting models to output reliable predictions rather 
than preventing a model from overfitting while training. 

The extremely low data regime is one of the most common prob-
lems in many practical tasks including educational data mining. 
Yet, building a reliable machine-learning model with a limited 
amount of data is an unavoidable demand. Further research to 
study the theoretical foundation for overcoming the overfitting 
problem under an extremely low data regime is therefore needed. 
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9. APPENDIX 
Classification model for CIFAR-10 
Each model was trained for 9000 steps. The batch size was 32. 
The learning rate was 10-3. No regularization technique was used. 

Table 2. The architecture of a model used for the image 
classification task. 

Layer [Output shape] 
5*5 Conv. 2*2 Max-pooling [32, 6, 14, 14] 
5*5 Conv. 2*2 Max-pooling [32, 16, 5, 5] 

Fully connected ReLu [32, 120] 
Fully connected ReLu [32, 84] 

Fully connected [32, 10] 
10-class Softmax [32, 10] 

 

 

 

Trade-off between Accuracy and Predicted Ratio 
The dotted line and solid line show min-majority and uniform 
voting, respectively. Each voting schema has three plots with 
100, 1000, and 5000 models as shown with different markers. 
Each line contains 20 data points (denoted as markers on the 
line). Each data point corresponds to a particular threshold rang-
ing from 0.95 to 0.0 (i.e., no rejection), decreasing by 0.5. Since 
the predicted ratio increases as the threshold is lowered, the 20 
data points on the line are coincidentally arranged in a decre-
mental manner, from left to right, for the threshold (hence the 
threshold values are not displayed on the plot for simplicity). 
For example, the second marker from the right on min-majority 
models shows that when θ = 0.90, the min-majority voting over 
1000 models yielded the accuracy of 0.49 with the predicted ra-
tio of 0.62. 

The figure shows uniform voting was clearly better than a single 
model prediction, and consistently better than or equal to min-
majority voting.  

 
(a)200 samples per class 

 
(b)1000 samples per class 

Figure 4. Trade-off between Accuracy and Predicted Ratio. 
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Overview of QUADL 
The answer prediction model identifies start/end index <Is, Ie> of 
the target token (i.e., key term) in S. When S is not suitable for 
LO, it outputs <0,0>. The question conversion model converts S 
with target token to a verbatim question. 

 
Figure 5. An overview of QUADL used for question gener-
ation task.  

 
Change of Average Rating for Questions Gener-
ated by QUADL 
Figure 6 was plotted to answer the research question: How does 
the rejection threshold used by VELR when applied to the answer 
prediction model impact the ratings of the QUADL-generated 
questions?  

Each data point includes a subset of questions used in the survey 
excluding the questions whose source target sentences would 
have been rejected if a threshold higher than 0.4 had been ap-
plied. 

The figure shows how the ratings change if thresholds higher than 
0.4 were applied. The figure shows a trend that the participants 
would have increased their rating when higher values for rejection 
threshold were used, though the differences were relatively small 
and not monotonic. Appropriateness, for example, increased from 
4.04 to 4.30 when the threshold was changed from 0.4 to 0.75. 
Accordingly, acceptability also increased from 3.53 to 4.10. 

 
Figure 6. Change of average ratings with higher threshold 
VELR. 
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ABSTRACT
The use of Bayesian Knowledge Tracing (BKT) models in
predicting student learning and mastery, especially in math-
ematics, is a well-established and proven approach in learn-
ing analytics. In this work, we report on our analysis exam-
ining the generalizability of BKT models across academic
years attributed to ”detector rot.” We compare the gen-
eralizability of Knowledge Training (KT) models by com-
paring model performance in predicting student knowledge
within the academic year and across academic years. Models
were trained on data from two popular open-source curric-
ula available through Open Educational Resources. We ob-
served that the models generally were highly performant in
predicting student learning within an academic year, whereas
certain academic years were more generalizable than other
academic years. We posit that the Knowledge Tracing mod-
els are relatively stable in terms of performance across aca-
demic years yet can still be susceptible to systemic changes
and underlying learner behavior. As indicated by the evi-
dence in this paper, we posit that learning platforms lever-
aging KT models need to be mindful of systemic changes or
drastic changes in certain user demographics.

Keywords
Bayesian Knowledge Tracing, Longitudinal Analysis, Stu-
dent Modeling, Generalizability, Detector Rot

1. INTRODUCTION
Modeling student knowledge and mastery of particular skills
is a foundational problem to the domain of learning analyt-
ics and its intersections with education and artificial intelli-
gence. The first proposed solution to the Knowledge Tracing
(KT) problem, dubbed Bayesian Knowledge Tracing (BKT)
by its creators [3], modeled knowledge as the mastery of
multiple independent knowledge concepts (KCs, or skills)
and estimated mastery through the use of a latent variable
in a Hidden Markov Model. Student mastery of a skill is

assumed to be a noisy representation of this latent variable,
moderated by four parameters: a student’s prior knowledge,
the likelihood of mastering the skill through attempting a
problem, the chance a student answers correctly by guess-
ing, and the chance a student answers incorrectly by mis-
take. Future work augmenting BKT attempted to improve
model performance by modifying the assumptions of the ini-
tial model. For example, classical BKT models assume the
acquisition of knowledge is unidirectional, from a state of
non-mastery to a state of mastery. Relaxing this assump-
tion and allowing for student knowledge to move bidirec-
tionally between mastery and non-mastery resulted in mod-
els that more accurately predict student performance, and
thus more accurately model student knowledge [14]. Fur-
ther model extensions include allowing individual students
to have personal prior knowledge rates [10] and giving indi-
vidual questions their own guess and slip rates [11]. While
other statistical models such as Performance Factors Analy-
sis [12] showed initial promise, later advances in the domain
of machine learning resulted in the creation of deep learn-
ing models to solve the problem of KT, utilizing a recurrent
neural network in Deep Knowledge Tracing (DKT) [13] and
self-attention in Self Attentive Knowledge Tracing (SAKT)
[9]. However, BKT still serves as a useful way of model-
ing student knowledge due to the model’s interpretability,
especially in comparison to larger models [6]. BKT models
require far fewer parameters to train in comparison to the
deep-learning models even when BKT models incorporate
the available extensions. If the performance of the model is
a priority and the generalizability of the model is not guar-
anteed, then training new models in response to some pop-
ulation shift is advisable. Indeed, this is a common practice
in online learning platforms when such shifts occur, such as
the beginning of a new school year or the integration of a
new curriculum. However, how do we know how often our
KT models should be retrained?

More precisely, we wish to examine the performance of BKT
models across time. Our analysis was guided by the follow-
ing research questions:

RQ1. Do BKT models lose predictive power with time?

RQ2. Does the complexity of a KT model impact its gener-
alizability through time?

RQ3. Do sudden shifts in student populations or behavior
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impact model performance?

To answer these questions, we gathered data collected through
the ASSISTments platform across four school years from
2018-2022. We then compare model performance on data
from the same year as training with model performance
across years. Additionally, we posit that the COVID-19
pandemic caused a shift in student and teacher perception of
technology for learning as there were no alternatives avail-
able to adopting technology in classrooms. As such we ex-
amine the shift in the learner behavior by examining the
generalizability KT models trained on pre-pandemic data
to predict learning during the pandemic and vice versa. We
begin by discussing the challenges to education posed by the
COVID-19 pandemic, focusing on the rapid adoption of on-
line learning tools during the pandemic. Next, we describe
the data generation and sampling process for our analysis.
The student data available from ASSISTments across the
four academic years establish a fair comparison of the KT
models that is not susceptible to the size of the dataset since
different academic years had varying number of users. We
then describe the KT models used in our analysis and the
approach we took in examining the generalizability of KT
models. We compare model performance of classical BKT
and BKT with forgetting models within the same academic
year, across different academic years, and across the begin-
ning of the pandemic, along with the impact of the forget-
ting parameter on model generalizability. We then discuss
the implications of our findings on the implementation of
KT models, and discuss the limitations of our analysis and
their implications for future research.

1.1 COVID-19 Pandemic
The COVID-19 pandemic has presented many challenges to
the delivery of education to students [4]. As many schools
closed their doors, students were required to attend classes
and complete coursework using online tools. This resulted
in the rapid adoption of online learning platforms leading
to a significant growth in the user base of platforms such as
ASSISTments. This influx of new users likely introduces a
more diverse group of students into school populations, since
schools integrated various learning tools to support their
students. Additionally, the sudden shift in the perception
of technology and its use in teaching for many schools also
present an interesting opportunity to explore the robustness
and generalizability of KT models.

Given the wide-reaching changes to education caused by
the COVID-19 pandemic, the impact these changes had on
student learning requires more investigation. For the pur-
poses of our analysis, we divided data gathered into two
meta-groups: pre-pandemic and post-pandemic, with ”post-
pandemic” data merely denoting data that was gathered af-
ter the initial transition into online learning in mid-March
2020.

2. RELATED WORK
Analysis of more complex inferential models used by MATHia
found that models intended to detect “gaming the system”
behaviors [2] trained on older data were significantly less pre-
cise on newer data [7]. It was found that more contemporary

machine learning models designed to detect gaming experi-
enced a greater performance decrease than classical, com-
putationally simpler models. This phenomenon was called
”detector rot” by its authors in reference to a similar phe-
nomenon called ”code rot” in which code performance de-
creases over time [5]. The analysis provided by [7] featured a
comparison of models trained on data collected more than a
decade apart, with models trained to solve a complex prob-
lem with a large feature space. We aim to contribute to
the understanding of detector rot by examining model per-
formance along more granular time steps, across dramatic
population shifts, and with models solving a problem with
a much smaller feature space.

3. METHODS
3.1 Data Collection
Data for each school year was gathered from problem logs
between the dates of September 1st and June 1st. Summer
months were excluded as the student population during the
summer can vary more drastically from year to year. The
student cohort during some summers primarily consists of
students requiring additional work to reach their credit re-
quirements while other summers are filled with high achiev-
ing students working on extra credit. Problem level data
from the typical academic year was then filtered based on
several criteria in order to ensure different academic years
were able to be directly compared. Comparison between
two populations with little intersection in the skills being
assessed would result in poor model generalizability based
solely on underfitting. To ensure direct comparisons were
possible and appropriate, we limited our underlying popula-
tions to problems sourced from the two most popular open-
source math curricula available through OER [8] on the AS-
SISTments platform: EngageNY/Eureka Math and Kendall
Hunt’s Illustrative Mathematics. From these two curricula,
we calculated the top five hundred most commonly assigned
problem sets across all four of our target years. The final
populations we constructed before sampling were filtered by
these top five hundred common problem sets, with the ex-
ception of the 2018-2019 school year. Data from this year
was significantly more sparse than other years due to the
introduction of a new implementation of the ASSISTments
tutor, and as such we only applied the curriculum filter to
this year. Since the introduction of the new tutor experience,
student behavior has been logged in a consistent fashion.

3.2 Student Modeling
Students in ASSISTments can make unlimited attempt when
answering a problem until they answer it correctly, with the
number of attempts a student takes to correctly answer a
problem being recorded in problem-level data. The prob-
lem level data also includes information on the number of
help requests and if the student requested for the answer
to the problem. BKT attempts to predict student perfor-
mance on attempts to apply a skill [3]. However, in the
original problem level data, each student/problem interac-
tion only has a single row. In an effort to encode informa-
tion about how many attempts a student took to complete
a problem, the original problem logs were used to create a
dataset with each row representing a student’s attempt to
apply a skill. Additionally, if a student’s final correct answer
for a question came from a bottomed-out hint, explanation,
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Table 1: Dataset Information

Year Total Rows Total Assignments Unique Students % Correct

2018-2019 291,437 31,930 4,425 0.534
2019-2020 521,781 130,173 47,595 0.526
2020-2021 8,459,566 1,310,652 190,366 0.494
2021-2022 2,645,324 361,546 58,216 0.547

Table 2: Feature List

Feature Description

user Unique student identifier
assignment Unique identifier for an assignment
correct 0 if the student incorrectly applies skill, 1 otherwise
start time Timestamp of when the problem was started by the student
problem Unique identifier for a problem
curriculum Curriculum the problem originated from
skill Skill being assessed by the current question
attempt number Counts which attempt on the problem this row represents

or simply requesting the answer, the student’s final correct
answer was treated as an incorrect application of the skill.
Information about the amount of data available for each
year at the end of the filtering and encoding process can be
found in Table 1, while a description of the available fea-
tures present in all datasets can be found in Table 2. Ten
samples of 25,000 assignment level data per year were gen-
erated for each year of the data. To investigate the effect
of additional model parameters on model generalizability,
two models were trained at each step: one with forgetting
and one without. Other than this additional parameter, all
training parameters were initialized in the same way. Models
were constructed using pyBKT, a Python library for creat-
ing BKT models described by [1]. For analysis of within-year
performance, a five-fold cross-validation was performed on
each sample from the 10 samples, resulting in fifty measure-
ments of AUC being taken for exploring model performance
within the training year. For the inter-year performance
analysis, the models were trained on one of the 10 random
samples from a target year and evaluated on the other corre-
sponding random samples from the other three years. This
resulted in the generation of thirty measurements of AUC,
since the model for each year was trained on 10 random
samples and tested on 10 random samples from other three
years resulting in 30 data points for the across year general-
izability analysis. Finally, data from the 18-19, 19-20, and
20-21 years was split around the beginning of the COVID-
19 pandemic (the precise date was March 12, 2020) and ten
samples each containing 50,000 assignment level data were
generated on each side of this split. The same process of
five-fold cross-validation followed by a cross-year train/test
analysis was performed on these pandemic samples.

4. RESULTS
4.1 Robustness Over Time (RQ1)
Data gathered from our evaluations across academic years
can be found in Tables 3 and 4, while the resulting means
from our five-fold cross-validations plotted along with their
95% confidence intervals can be found in Figure 4.2. Rather
unsurprisingly, the within year generalizability of the BKT

models was high with the BKT + forgetting model always
outperforming the classical BKT model. However the model
generalizability when trained on one year and applied to
other years varied across academic years: by comparing the
training year averages provided in Tables 3 and 4, models
trained on the 20-21 and 21-22 school years had higher av-
erage AUCs, while the 18-19 school year produced the least
generalizable models. Similarly, different years were easier
to generalize to than others, with the 18-19 school year hav-
ing a much lower testing year average for both model types.

4.2 Complexity (RQ2)
One general observation seen from each of the analyses is
that BKT+Forgets consistently outperforms classical BKT
in terms of its predictive power as measured by mean AUC.
Our findings strongly suggest the introduction of a forgetting
parameter for each skill can be done with little chance of
significantly harming a model’s later generalizability.

4.3 Sudden Shifts: Pandemic Analysis (RQ3)
Data gathered from training and evaluating models before
and after the COVID-19 pandemic can be found in Table
5, while these means and relevant confidence intervals were
plotted in Figure 4.3. Models trained on data gathered
before the pandemic had difficulties generalizing to post-
pandemic data. Consider models evaluated on the post-
pandemic dataset. The delta means between models trained
on pre-pandemic data and post-pandemic data were 0.022
for classical BKT and 0.028 for BKT + forgets. This gener-
alization problem also occurs when considering models eval-
uated on the pre-pandemic data, suggesting that KT models
are susceptible to losses in predictive power following major
shifts in underlying user populations.

As was true with the year-by-year data, the addition of a for-
getting parameter to the classical BKT model significantly
improves performance, even across the population shift. The
use of model additions may improve generalizability in a way
that can withstand significant shifts in population and user
behavior.
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Table 3: BKT cross-year analysis

18-19 Data 19-20 Data 20-21 Data 21-22 Data Training Year Avg

18-19 Model 0.669 0.672 0.678 0.673
19-20 Model 0.682 0.729 0.714 0.709
20-21 Model 0.686 0.726 0.734 0.715
21-22 Model 0.690 0.724 0.748 0.721

Testing Year Avg 0.686 0.706 0.716 0.709

Table 4: BKT+Forgets cross-year analysis

18-19 Data 19-20 Data 20-21 Data 21-22 Data Training Year Avg

18-19 Model 0.687 0.683 0.694 0.688
19-20 Model 0.686 0.740 0.730 0.719
20-21 Model 0.706 0.739 0.757 0.734
21-22 Model 0.708 0.736 0.766 0.735

Testing Year Avg 0.700 0.721 0.730 0.727

Table 5: Cross-Pandemic Analysis

Testing Period Training Period Model Type Mean AUC 95%CE

Pre-pandemic Pre-Pandemic BKT 0.732 [0.731,0.733]
BKT+Forgets 0.774 [0.772,0.776]

Post-Pandemic BKT 0.697 [0.696,0.698]
BKT+Forgets 0.717 [0.715,0.720]

Post-pandemic Pre-pandemic BKT 0.727 [0.726,0.729]
BKT+Forgets 0.742 [0.741,0.743]

Post-pandemic BKT 0.749 [0.748,0.750]
BKT+Forgets 0.770 [0.769,0.771]
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5. DISCUSSION
In this paper, we explored the generalizability of KT models
within and across academic years. The concept of ”detector
rot” [7] is a recent addition to how we understand inferential
models and their applications in online tutoring platforms.
With this analysis of how KT models perform over time,
we intend to further explore the concept as it applies to
KT models. Our exploration began by collecting data in a
way that ensured the set of skills in each year’s worth of
data were comparable and then translating the raw problem
level data into attempt-level representations of student per-
formance. Models were evaluated both on the year in which
they were trained (by a five-fold cross-validation), and on the
other available years. We trained both classical BKT mod-
els and models with a forgetting parameter to investigate
how adding model parameters impacts model generalizabil-
ity. We also divided our available data around the beginning
of the COVID-19 pandemic to investigate the impact of sud-
den shifts in population size on model generalizability. We
have a few key findings to report from these investigations.
(a) In contrast to more sophisticated models, BKT’s perfor-
mance is relatively stable from year to year, indicating that
the problem of detector rot is far less prevalent within the
domain of KT. (b) The addition of forgetting parameters
to BKT models consistently improves performance across
multiple years of student population drift, and across more
sudden changes of population. (c) Drastic changes in an on-
line tutoring system’s user base can impact BKT models’
performance.

While our results indicate KT model stability over short-
term population changes, our work is limited by several fac-
tors which future research could address. Our attempts to
ensure each dataset contained a large overlap of skills could
result in our models showing higher AUCs across time than
comparable KT models would show in a product-scale sys-
tem. Also, the 18-19 school year was particularly difficult
for other models to generalize to. This is likely due to the
sparsity of data for that year limiting our ability to filter by
commonly assigned problem sets. Future work leveraging
more data as ASSISTments continues to be used through
time may give more insight as to why some years are eas-
ier for models to generalize to than others. Our analysis of
RQ2 was also limited by only exploring how forgetting pa-
rameters impact generalizability. Future work incorporating

more extensions to BKT, such as those described by [10] and
[11], or utilizing more complex KT models like PFA [12] and
DKT [13] is required to investigate trade-offs between model
complexity and generalizability found in previous detector
rot research [7]. Finally, while our analysis of RQ3 shows
that BKT models had trouble generalizing across the begin-
ning of the COVID-19 pandemic, the reasons for this could
be numerous, including the sparsity of data pre-pandemic
compared to post-pandemic or differences in student behav-
ior after the pandemic began. Further analysis of how the
COVID-19 pandemic impacted student behavior, possibly
focusing on the transitional period from remote schooling
back to in-person learning, could provide more insight into
how student demographic changes affect KT models.
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ABSTRACT
Students who take an online course, such as a MOOC, use
the course’s discussion forum to ask questions or reach out
to instructors when encountering an issue. However, reading
and responding to students’ questions is difficult to scale
because of the time needed to consider each message. As a
result, critical issues may be left unresolved, and students
may lose the motivation to continue in the course. To help
address this problem, we build predictive models that au-
tomatically determine the urgency of each forum post, so
that these posts can be brought to instructors’ attention.
This paper goes beyond previous work by predicting not just
a binary decision cut-off but a post’s level of urgency on
a 7-point scale. First, we train and cross-validate several
models on an original data set of 3,503 posts from MOOCs
at University of Pennsylvania. Second, to determine the
generalizability of our models, we test their performance on
a separate, previously published data set of 29,604 posts
from MOOCs at Stanford University. While the previous
work on post urgency used only one data set, we evaluated
the prediction across different data sets and courses. The
best-performing model was a support vector regressor trained
on the Universal Sentence Encoder embeddings of the posts,
achieving an RMSE of 1.1 on the training set and 1.4 on the
test set. Understanding the urgency of forum posts enables
instructors to focus their time more effectively and, as a
result, better support student learning.

Keywords
educational data mining, learning analytics, text mining,
natural language processing, forum post urgency

1. INTRODUCTION
In computer-supported learning environments, students often
ask questions via email, chat, forum, or other communica-
tion media. Responding to these questions is critical for
learners’ success since students who do not receive a timely

reply may struggle to achieve their learning goals. In a
small-scale qualitative study of online learning [11], students
who received delayed responses to their questions from the
instructor reported lower satisfaction with the course. An-
other study showed that students who received instructor
support through personalized emails performed better on
both immediate quizzes and delayed assessments [15].

Massive Open Online Courses (MOOCs) are a prevalent
form of computer-supported learning. MOOCs enable many
students worldwide to learn at a low cost and in a self-
paced environment. However, many factors cause students
to drop out of MOOCs, including psychological, social, and
personal reasons, as well as time, hidden costs, and course
characteristics [22].

A MOOC’s discussion forum is central to decreasing the risk
of student drop-out since it promotes learner engagement
with the course. Students use the forum to ask questions,
initiate discussions, report problems or errors in the learning
materials, interact with peers, or otherwise communicate
with the instructor. Andres et al. [5] reviewed studies on
MOOC completion and discovered that certain behaviors,
such as spending above-average time in the forum or posting
more often than average, are associated with a higher likeli-
hood of completing the MOOC. Similarly, Crues et al. [10]
showed that students who read or write forum posts are more
likely to persist in the MOOC. At the same time, instruc-
tor participation in the forum and interaction with students
promotes engagement with the course [25].

For the reasons above, the timely response of instructors to
students’ posts is important. In a study with 89 students, 73
of them preferred if the instructor responded to discussion
forum posts within one or two days [16]. However, this is not
always feasible. Students’ posts that require an instructor’s
response may be unintentionally overlooked due to MOOCs’
scale. Instructors can feel overwhelmed by a large number
of posts and often lack time to respond quickly enough or
even at all. As a result, issues that students describe in the
forum are left unsolved [4], leaving the learners discouraged
and frustrated.

1.1 Problem Statement
Since MOOCs tend to have far more students than other
computer-supported learning environments, identifying ur-
gent student questions is crucial. We define urgency in

V. Švábenský, R. Baker, A. Zambrano, Y. Zou, and S. Slater. To-
wards generalizable detection of urgency of discussion forum posts. In
M. Feng, T. Käser, and P. Talukdar, editors, Proceedings of the 16th
International Conference on Educational Data Mining, pages 302–
309, Bengaluru, India, July 2023. International Educational Data
Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115790
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discussion forum posts as the degree of how quickly the
instructor’s response to the post is needed. Urgency is ex-
pressed on an ordinal scale from 1 (not urgent at all) to 7
(extremely urgent). This scale is adopted from the Stanford
MOOCPosts data set [2], arguably the most widely used
publicly available data set of MOOC discussion forum posts.
It contains 29,604 anonymized, pre-coded posts that have
been employed in numerous past studies (see Section 2).

Educational data mining and natural language processing
techniques may allow us to automatically categorize forum
posts based on their urgency. Our goal is to build models
that will perform such categorizations to determine whether
a timely response to a post would be valuable. Ultimately,
we aim to help instructors decide how to allocate their time
where it is needed the most.

Automatically determining the urgency of forum posts is
a challenging research problem. Since posts highly vary in
content – the students can type almost anything – the data
may contain a lot of noise that is not indicative of urgency.
In addition, it is difficult to generalize the trained models
to other contexts because of linguistic differences caused by
different variants of English or by non-native speakers of
English, as well as terms that are highly specific to a course
topic.

1.2 Contributions of This Research
We collected and labeled an original data set of 3,503 fo-
rum posts, which we used to train and cross-validate several
classification and regression models. From the technical per-
spective, we tested two different families of features and
compared the performance of the regressors, multi-class clas-
sifiers, and binary classifiers.

Subsequently, we tested the generalizability of the results by
using the independent Stanford MOOCPosts data set [2] of
29,604 forum posts as our holdout test set.

2. RELATED WORK
Almatrafi et al. [3] used the Stanford MOOCPosts data
set to extract three families of features: Linguistic Inquiry
and Word Count (LIWC) attributes, term frequency, and
post metadata. They represented the problem of urgency
prediction as binary classification, considering the post not
urgent if it had a label below 4, and urgent for 4 and above.
The study evaluated five classification approaches: Naive
Bayes, Logistic Regression, Random Forest, AdaBoost, and
Support Vector Machines. The best-performing model was
AdaBoost, able to classify the forum post urgency with the
weighted F1-score of 0.88.

Sha et al. [20] systematically surveyed approaches for clas-
sifying MOOC forum posts. They discovered that previ-
ous research used two types of features: textual and meta-
data. Textual features consist of n-grams, post length, term
frequency-inverse document frequency (TF-IDF), and others.
Metadata features include the number of views of the post,
the number of votes, and creation time. Furthermore, the
survey compared six algorithms used to construct urgency
models from these features, building on the methods by Al-
matrafi et al. [3]. Four traditional machine learning (ML)
algorithms included Naive Bayes, Logistic Regression, Ran-

dom Forest, and Support Vector Machines. The best results
were yielded by combining textual and metadata features
and training a Random Forest model (AUC = 0.89, F1 =
0.89). Two deep learning algorithms examined in the survey
were CNN-LSTM and Bi-LSTM. Using the same metrics,
these models performed even better than the traditional ones.
However, in their follow-up work, Sha et al. [21] concluded
that deep learning does not necessarily outperform tradi-
tional ML approaches overall. The best urgency classifier,
again a Random Forest model, achieved an F1-score of 0.90
(AUC was not reported).

Several studies employed the Stanford MOOCPosts data set
to train a neural network (NN) for identifying urgent posts.
Capuano and Caballé [7] created a 2-layer feed-forward NN
on the Bag of Words representation of the posts, reaching
an F1-score of 0.80. Alrajhi et al. [4] used a deep learning
model that combined text data with metadata about posts.
They reported an F1-score of 0.95 for predicting non-urgent
posts (defined by labels 1–4) and 0.74 for predicting urgent
posts (label > 4). Yu et al. [24] also transformed the problem
into binary classification. They compared three models, the
best being a recurrent NN achieving an F1-score of 0.93 on
non-urgent posts and 0.70 on urgent posts.

More advanced approaches include those by Guo et al. [12],
who proposed an attention-based character-word hybrid NN
with semantic and structural information. They achieved
much higher F1-scores overall, ranging from 0.88 to 0.92.
Khodeir [14] represented the Stanford MOOCPosts data set
using BERT embeddings and trained gated recurrent NNs to
predict the posts’ urgency. The best model achieved weighted
F1-scores from 0.90 to 0.92.

Previous work used the Stanford MOOCPosts data set to
train the models but did not evaluate them on other data.
Therefore, the models may overfit to that data set but be
ineffective in other contexts. By training models on our
own data and testing it on the Stanford MOOCPosts data
set, we provide a new perspective within the current body
of work in post urgency prediction. We aim to achieve a
more generalizable modeling of forum posts’ urgency and
provide valuable information for instructors who support
large numbers of learners.

In doing so, we also build upon work by Wise et al. [23], who
researched techniques for determining which MOOC forum
posts are related content-wise. They used the Bag of Words
representation of posts and extracted unigrams and bigrams
as features. Using a Logistic Regression model, they reached
an accuracy between 0.73 and 0.85, depending on the course
topic. We use similar methods but for a different purpose.

In designing responses to urgent posts, it is valuable to
consider the work by Ntourmas et al. [17], who analyzed how
teaching assistants respond to students’ forum posts in two
MOOCs. The researchers combined content, linguistic, and
social network analysis to discover that teaching assistants
mostly provide direct answers. The researchers suggested
that this approach does not adequately promote problem-
solving. Instead, they argued that more indirect and guiding
approaches could be helpful.
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3. RESEARCH METHODS
This section describes the data and approaches used to train
and evaluate predictive models of forum post urgency.

3.1 Data Collection and Properties
We collected posts from students who participated in nine
different MOOCs at the University of Pennsylvania (UPenn)
from the years 2012 to 2015. The nine MOOCs focused on a
broad range of domains (in alphabetical order): accounting,
calculus, design, gamification, global trends, modern poetry,
mythology, probability, and vaccines. This breadth of covered
topics enables us to prevent bias towards certain course topics
and support generalization across courses.

To construct the research data set, we started by randomly
sampling 500 forum posts for each of the nine courses. Then,
we removed posts that:

• were in a language other than English

• contained only special symbols and characters

• contained only math formulas

• contained only website links

As a result, we ended up with 3,503 forum posts from 2,882
students. This data set included a similar number of posts
from each course (between 379 and 399 per course), adding
up to the total of 3,503.

Each data point consists of three fields: a unique numerical
student ID, the timestamp of the forum post submission, and
the post text. All remaining post texts are in the English
language, though not all students who wrote them were native
speakers of English. The posts contain typos, grammatical
errors, and so on, which we did not correct.

3.2 Data Anonymization
To preserve student privacy, two human readers manually
redacted personally identifiable information in the posts. The
removed pieces of text included names of people or places,
contact details, and any other information that could be used
to determine who a specific poster was.

Each of the two readers processed roughly half of the post
texts from each of the nine courses (195 posts per course per
reader on average). The split was selected randomly.

After this anonymization procedure was completed, the data
were provided to the research team. To support the repli-
cability of our results, the full data set used in this re-
search can be found at https://github.com/pcla-code/

forum-posts-urgency.

Since we use only de-identified, retrospective data, and the
numerical student IDs cannot be traced back to the stu-
dents’ identity, this research study received a waiver from
the university’s institutional review board.

3.3 Data Labeling
Three human coders (distinct from those individuals who
anonymized the data) manually and independently labeled

the 3,503 anonymized post texts. To ensure the approach
was unified, they completed coder training and followed
a predefined protocol that specified how to assign an ur-
gency label to each post. The protocol is available along-
side our research data at https://github.com/pcla-code/

forum-posts-urgency.

The three coders initially practiced on a completely separate
data set of 500 labeled posts with the urgency label hidden.
After each coded response, they revealed the correct label
and consulted an explanation if they were off by more than
1 point on the scale.

At the end of the training, we computed the inter-rater relia-
bility of each coder within the practice set. Specifically, we
calculated continuous (i.e., weighted) Cohen’s Kappa using
linear weighting. The three coders achieved the Kappa of
0.57, 0.49, and 0.56, respectively. We note that the weighted
values are typically lower than regular Kappa. For instance,
weighted Kappa values are lower when there is a relatively
large number of categories [6], as is seen in our data sets.
They are also lower in cases where, for example, one coder
is generally stricter than another (i.e., different means by
coder) even though their ordering of cases is identical [19].

When the coders felt confident in coding accurately, the study
coordinator sent them 20 different posts from the separate
data set with the urgency label removed. If they coded them
accurately, they received a batch of 50 original posts (out of
our 3,503 collected) for actual coding. In case a coder was
unsure, discrepancies were resolved by discussion.

As stated in Section 1.1, we use the term urgency to indicate
how fast an instructor should respond to the post. For
example, if a post is very urgent, then the instructor or
teaching assistant (TA) should respond to it as soon as
possible. If a post is not urgent, then the instructor and TA
might not have to respond to the post at all. Degrees of
urgency were mapped to ordinal scores proposed by Agrawal
and Paepcke [2] (and later adopted by related work [3, 4])
as follows:

• 1: No reason to read the post

• 2: Not actionable, read if time

• 3: Not actionable, may be interesting

• 4: Neutral, respond if spare time

• 5: Somewhat urgent, good idea to reply, a teaching
assistant might suffice

• 6: Very urgent: good idea for the instructor to reply

• 7: Extremely urgent: instructor definitely needs to
reply

Example for label 1: “Hi my name is [REDACTED] and
I work in the healthcare industry, looking forward to this
course!“

Example for label 5: “When will the next quiz be released?
I’d like to get a head start on it since I’ve got some extra
time these days.”
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Table 1: Distribution of training labels in each course. The row
Train is the sum of all the label frequencies in the individual
courses. The row Test is the distribution of the labels in the
separate test set (rounded up, see Section 3.6).

Course 1 2 3 4 5 6 7

Accoun 199 63 18 53 48 6 0

Calcul 64 167 44 88 31 2 0

Design 148 114 36 31 35 15 1

Gamif 243 62 15 31 28 0 0

Global 123 197 21 16 25 5 0

Modern 131 214 30 15 7 1 0

Mythol 129 149 59 24 24 5 0

Probab 125 115 48 72 31 5 0

Vaccin 114 139 63 43 21 9 1

Train 1276 1220 334 373 250 48 2

Test 3501 14997 3308 3054 2259 2471 14

Example for label 7: “The website is down at the moment,
[link] seems down and I’m not able to submit the Midterm.
Still have the ”Final Submit” button on the page, but it doesn’t
work. Are the servers congested?”

Table 1 lists the frequencies of individual urgency labels in
the training data across each of the nine courses, as well as
their total count. We also detail the frequencies of urgency
labels in our test set (see Section 3.6). As the table shows,
the frequencies of the labels differ between the training and
test set; thus, if our models perform well in this case, they
are likely to be robust when predicting data with various
distributions.

3.4 Data Automated Pre-Processing
Before training the models, we performed automated data
cleaning and pre-processing that consisted of the following
steps in this order:

• Converting all text in the posts to lowercase.

• Replacing all characters, except the letters of the En-
glish alphabet and numbers, with spaces.

• Removing duplicate whitespace.

• Removing common stopwords in the English language,
such as articles and prepositions.

• Stemming, that is, automatically reducing different
grammatical forms of each word to its root form [13].

Each pre-processed post contained 51 words on average (stdev
76, min 1, max 1390).

3.5 Model Training and Cross-Validation
The problem of assigning a forum post into one of seven
ordered categories corresponds to multi-class ordinal classi-
fication or regression (Section 3.5.1). In addition, we also
converted the problem to binary classification (Section 3.5.2)
to provide a closer comparison with related work.

3.5.1 Multi-class Classification and Regression
We hypothesized that regression algorithms would be more
suitable for our use case because they can capture the order
on the 1–7 scale, which categorical classifiers cannot achieve.
We used a total of six classification and regression algorithms:

• Random Forest (RF) classifier,

• eXtreme Gradient Boosting (XGB),

• Linear Regression (LR),

• Ordinal Ridge Regression (ORR),

• Support Vector Regression (SVR) with a Radial Basis
Function (RBF) kernel, and

• Neural Network (NN) regressor.

We used Python 3.10 and standard implementations of the al-
gorithms in the Scikit-learn module [18], using TensorFlow [1]
and Keras [9] for the neural networks. The Python code
we wrote to train and evaluate the models is available at
https://github.com/pcla-code/forum-posts-urgency.

All algorithms had default hyperparameter values provided
by Scikit-learn. The only exception was the neural network
with the following settings discovered experimentally:

• Input layer with 128 nodes, 0.85 dropout layer, and
ReLU activation function,

• One hidden layer with 128 nodes, 0.85 dropout layer,
and ReLU activation function,

• Output layer with 1 node and ReLU activation function.

Each algorithm was evaluated on two families of features:
one based on word counts (Bag of Words or TF-IDF rep-
resentations of the forum post texts), the other based on
Universal Sentence Encoder v4 (USE) [8] numerical feature
embeddings of the forum post texts.

During model training, we used 10-fold student-level cross-
validation in each case. The metrics chosen to measure clas-
sification/regression performance were Root Mean Squared
Error (RMSE) and Spearman ρ correlation between the pre-
dicted and actual values of urgency on the validation set. We
chose Spearman instead of Pearson correlation because the
urgency labels are ordinal data. The output of the regression
algorithms was left as a decimal number, i.e., we did not
round it to the nearest whole number.

3.5.2 Binary Classification
In addition, we trained separate models for binary classifica-
tion. Following the precedent from the related work [4], the
urgency label was converted to 0 if it was originally between
1–4, and converted to 1 if it was originally larger than 4. We
did not adopt the approach of Almatrafi et al. [3], who con-
sidered a post urgent if it was labeled 4 or above, since based
on the scale description defined by Agrawal and Paepcke [2]
(see Section 3.3), we do not consider “Neutral” posts to be
urgent. (When we tried doing this, it caused only a slight
improvement in the model performance.)
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Then, we trained RF, XGB, and NN classifier models. The
performance evaluation metrics were macro-averaged AUC
ROC and weighted F1-score.

3.6 Model Generalizability Evaluation
To determine the generalizability of our models, we evaluated
them on held-out folds of the training set, then tested them
on the Stanford MOOCPosts data set. This data set is
completely separate from the training and validation sets
and should, therefore, indicate how well our models would
perform in different courses and settings.

The test set uses the 1–7 labels but with .5 steps, meaning
that some posts can be labeled as 1.5 or 6.5, for example.
We did not round these during model training to verify
generalizability across both types of labels. However, when
labeling our training set, we did not consider .5 labels since
the coders felt it added too much granularity. Earlier work
did not explicitly differentiate the .5 labels from the integers.

4. RESULTS AND DISCUSSION
This section details the results from both families of models:
one based on word counts and the other on Universal Sentence
Encoder. Then, we compare our models with those from
related literature.

4.1 Models with Word Count Features
These models used the Bag of Words or TF-IDF representa-
tions of the forum post texts.

4.1.1 Multi-class Classification and Regression
We tested the following combinations of settings and hyper-
parameters for the word count models on the training and
cross-validation set:

• Method of feature extraction. TF-IDF performed slightly
better than Bag of Words.

• Range of n-grams extracted from the data. We tried
unigrams, bigrams, and a combination of the two. The
best results were obtained when using unigrams only.
Models based on bigrams only or those that combined
unigrams and bigrams performed worse. In the 3,503
posts, we had 774 unigram and 226 bigram features.

• Minimal/maximal allowed document frequency for each
term. Here, the best-performing cut-off was to discard
the bottom/top 1% of extreme document frequencies,
so the ranges were set to 0.01 and 0.99, respectively.
Using this approach made the algorithms run substan-
tially faster, but given the extreme cut-offs, it did not
appreciably change the values. Without setting the cut-
offs, the training of some models took several hours.

• Feature unitization. It either did not impact or slightly
worsened the model performance in all cases, so we did
not use it.

Table 2 summarizes the performance of all models. Support
vector regression performed best overall on the training and
cross-validation set in terms of both metrics: RMSE and
Spearman ρ correlation. It also outperformed the other
approaches on the separate test set.

Table 2: Performance of multi-class classification/regression
models on the training set of 3,503 posts (UPenn) and the
test set of 29,604 posts (Stanford). Features: word counts.

Training and Different university
cross-validation set test set

Model RMSE ρ RMSE ρ

RF 1.3550 0.4258 1.7781 0.2676

XGB 1.3338 0.4326 1.7419 0.3086

LR 1.2385 0.4419 (large) 0.3432

ORR 1.1501 0.4750 1.4229 0.3484

NN 1.1269 0.4897 1.4395 0.3746

SVR 1.0946 0.5503 1.4138 0.3982

Figure 1: Prediction results of the best performing model
(SVR) on the separate test set using the word count features.

Figure 1 shows the predictions of the best model on the
test set. Most urgency labels are under-predicted, but they
are still predicted in the increasing order of urgency, which
demonstrates that the model is detecting the ranking.

After SVR, other regressors followed, with neural networks be-
ing the second best. Overall, the classifier models performed
more poorly than the regression models. We expected this re-
sult since the urgency classes are ordinal, and the categorical
classifiers cannot capture their ordering.

4.1.2 Binary Classification
Table 3 summarizes the performance of all models. The
NN outperformed the remaining two classifiers, though the
differences in AUC are more visible than for F1-score com-
pared to XGBoost. Although the fit of RF and NN is non-
deterministic, the results did not change substantially when
we re-ran the model training multiple times.

When considering the prediction of non-urgent posts only, all
models achieved a very high F1-score between 0.9512 (NN)
and 0.9589 (RF) on the training set, and 0.8924 (NN) to
0.8971 (XGBoost) on the test set.

For the urgent posts only, the predictive power was much
lower: between 0.1841 (RF) and 0.4168 (NN) on the training
set, and 0.0025 (RF) to 0.2761 (NN) on the test set.

Due to the imbalance in favor of the non-urgent class, exper-
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Table 3: Performance of binary classification models on the
training set of 3,503 posts (UPenn) and the test set of 29,604
posts (Stanford). Features: word counts.

Training and Different university
cross-validation set test set

Model AUC F1 AUC F1

RF 0.5522 0.8926 0.5005 0.7263

XGB 0.6178 0.9053 0.5412 0.7590

NN 0.6687 0.9055 0.5735 0.7759

imenting with decision cut-offs lower than the default 50%
visibly improved the RF and XGBoost models’ AUC (up to
0.7771) but improved the F1-score only slightly. The best
results were achieved for decision thresholds of 10 or 15%.

4.2 Models with Feature Embeddings Using
the Universal Sentence Encoder (USE)

4.2.1 Multi-class Classification and Regression
Table 4 summarizes the performance of all models. Again,
SVR performed best on the training set, followed by NN.
After that, other regressors and classifiers followed in the
same order as with the word-count-based models. However,
for the test set, while SVR still obtained the best ρ, it had
slightly worse RMSE than the other three regressors. Overall,
the model quality was better for USE than for TF-IDF.

Figure 2 shows the predictions made by the best model on
the test set, with the trend being similar to Figure 1.

Table 4: Performance of multi-class classification/regression
models on the training set of 3,503 posts (UPenn) and the test
set of 29,604 posts (Stanford). Features: USE embeddings.

Training and Different university
cross-validation set test set

Model RMSE ρ RMSE ρ

RF 1.4707 0.3452 1.8995 0.2723

XGB 1.3569 0.4418 1.7753 0.3145

LR 1.1758 0.4717 1.3953 0.3882

ORR 1.1448 0.4983 1.3723 0.3964

NN 1.1045 0.5361 1.3988 0.4202

SVR 1.0956 0.5716 1.4065 0.4283

Figure 2: Prediction results of the best performing model
(SVR) on the separate test set using the USE features.

Table 5: Performance of binary classification models on the
training set of 3,503 posts (UPenn) and the test set of 29,604
posts (Stanford). Features: USE embeddings.

Training and Different university
cross-validation set test set

Model AUC F1 AUC F1

RF 0.5094 0.8774 0.5002 0.7260

XGB 0.5863 0.9020 0.5246 0.7470

NN 0.6409 0.9054 0.5684 0.7760

4.2.2 Binary Classification
Table 5 summarizes the performance of all models. Compared
to using the TF-IDF features, the results are surprisingly
slightly worse, even though the differences are minimal in
some cases. The overall order of models is preserved – again,
the NN outperformed the other two models.

As previously, we observed similar imbalances in F1-scores
when predicting non-urgent and urgent posts separately. For
non-urgent posts, all models achieved a high F1-score between
0.9544 (NN) and 0.9597 (XGBoost) on the training set, and
0.8954 (RF) to 0.8974 (XGBoost) on the test set.

For predicting the urgent posts only, the predictive power is
much lower: between 0.0366 (RF) and 0.3799 (NN) on the
training set, and 0.0007 (RF) to 0.2563 (NN) on the test set.
Again, the respective performance of the individual classifiers
corresponds to the case with word count features.

As expected, decreasing the decision cut-off below 50% again
substantially improved the overall model performance. The
best results were again achieved for decision thresholds of 10
or 15%.

4.3 Comparison with the Results Published in
Previous Literature

We now compare our results with the binary classification
models reported in Section 2, which were trained on the
Stanford MOOCPosts data set. We cannot compare our
multi-class classification and regression analyses to past work
since it treated this problem only as binary classification.

Almatrafi et al. [3] and Sha et al. [20] slightly differed from
our approach in using the label 4 as the cut-off for post
urgency, as opposed to 4.5. The best model by Almatrafi
et al. [3], an AdaBoost classifier, achieved a weighted F1-
score of 0.88. Our binary classifiers slightly outperformed
this model, even though we used fewer types of features.
This indicates that combining features from various sources
does not necessarily improve model quality. Sha et al. [20]
reported a RF model that scored F1 = 0.89 and AUC = 0.89.
While we achieved similar F1-scores, our AUC was much
lower. This could have been caused by the smaller training
set, in which the class imbalance had a larger effect.

The NN approaches by Capuano and Caballé [7], Guo et
al. [12], and Khodeir [14] reported F1-scores ranging from
0.80 to 0.92. Even though our NN models were much simpler
and trained on a smaller data set, they achieved a similarly
high F1 of 0.91.
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Finally, Alrajhi et al. [4] and Yu et al. [24] reported the
model performance separately for non-urgent and urgent
posts. When considering non-urgent posts only, they reached
F1-scores of 0.95 and 0.93, respectively. Our best-performing
model on this task achieved F1 = 0.96 on the training set
(RF, word count features) and 0.90 on the test set (XGBoost,
USE features). When considering urgent posts only, they
reported F1-scores of 0.74 and 0.70. Here, our models scored
much worse, 0.42 on the training set and 0.28 on the test set
(both approaches used NN on the word count features). The
AUC scores were not reported in this case.

Overall, we achieved comparable or even slightly better per-
formance in most cases. In addition, we evaluated the models
for multi-class classification and regression, which the previ-
ous work did not consider.

We could not fully replicate past work because the feature
set and the code used to produce the previous results were
unavailable. This prevented us from testing the prior work
on our data set, which would have helped to establish the
generalizability of those earlier approaches.

4.4 Opportunities for Future Work
In future work, the urgency rating of forum posts can also
be treated as a ranking problem. Using an ML algorithm,
posts can be sorted from the most to the least urgent instead
of classifying them as high or low priority. Even among the
posts with the same urgency level, some messages should be
addressed first. Therefore, reframing the problem to ranking
learning would lead to a different model that suggests the
most urgent post to address instead of estimating the level
of urgency. Our current approach shows that regardless of
the regression outputs, regressor models such as the SVR
correctly estimate a higher urgency for more urgent posts.
For this reason, ML models could show promising results for
sorting the posts based on their urgency.

In addition, the post labeling scale could be improved, per-
haps by simplifying it to fewer categories. In this study, we
adopted the scale from previous work [2], used additionally
in [3, 4] in order to be able to study the generalizability of
findings across data sets. Finally, experimenting with over-
or undersampling of the training set using algorithms such
as SMOTE might improve model performance for certain
labels.

To ensure even a higher degree of generalizability, future
research could validate the models on data from different
populations than those employed in our paper.

5. CONCLUSION
Responding to students’ concerns or misunderstandings is
vital to support students’ learning in both traditional and
MOOC courses. Since instructors cannot read all forum posts
in large courses, selecting the posts that urgently require
intervention helps focus instructors’ attention where needed.

The presented research aims to automatically determine
the urgency of forum posts. We used two separate data
sets with different distributions and different approaches
to the urgency scale (using .5 values or not) to support
generalizability. Support vector regression models showed

the highest performance in almost all aspects and cases. The
best model from both categories of features (word count or
numerical embeddings) performed similarly, with Universal
Sentence Encoder embeddings being slightly better.

The results of this work can contribute to supporting learners
and improving their learning outcomes by providing feed-
back to instructors and staff managing courses with large
enrollment. The model quality has implications for practical
use. Based on the RMSE values, it is unlikely that a highly
urgent post will be labeled non-urgent and vice versa. From
a practical perspective, implementing the urgency rating into
MOOC platforms or large courses would help instructors,
for example, by providing automated notification on posts
with high urgency. In this case, however, students should
not be aware of the inner workings of such a system. This is
to prevent abuse by writing words with certain phrases to
trigger instructor notifications.
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A. Whitelock-Wainwright, D. Gašević, and G. Chen. Is
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ABSTRACT
Spatial analytics receive increased attention in educational
data mining. A critical issue in stop detection (i.e., the au-
tomatic extraction of timestamped and located stops in the
movement of individuals) is a lack of validation of stop ac-
curacy to represent phenomena of interest. Next to a radius
that an actor does not exceed for a certain duration to es-
tablish a stop, this study presents a reproducible procedure
to optimize a range parameter for K-12 classrooms where
students sitting within a certain vicinity of an inferred stop
are tagged as being visited. This extension is motivated by
adapting parameters to infer teacher visits (i.e., on-task and
off-task conversations between the teacher and one or more
students) in an intelligent tutoring system classroom with a
dense layout. We evaluate the accuracy of our algorithm and
highlight a tradeoff between precision and recall in teacher
visit detection, which favors recall. We recommend that fu-
ture research adjust their parameter search based on stop
detection precision thresholds. This adjustment led to bet-
ter cross-validation accuracy than maximizing parameters
for an average of precision and recall (F1 = 0.18 compared
to 0.09). As stop sample size shrinks with higher precision
cutoffs, thresholds can be informed by ensuring sufficient
statistical power in offline analyses. We share avenues for
future research to refine our procedure further. Detecting
teacher visits may benefit from additional spatial features
(e.g., teacher movement trajectory) and can facilitate study-
ing the interplay of teacher behavior and student learning.

Keywords
stop detection, hyperparameters, optimization, spatial ana-
lytics, position mining, classroom analytics, position sensing

1. INTRODUCTION
The increasing accessibility and affordability of position sens-
ing devices have fostered the application of position analytics

in educational data mining [4, 18, 27, 28]. Features mined
from these novel data streams have various applications, in-
cluding healthcare worker training [3], the study of teaching
strategies [15], and instructor dashboards [4, 18].

One key feature derived from position data is teacher or
student stops in the classroom, extracted via decision rules
or algorithms for stop detection [16, 25, 26]. For our pur-
poses, we define stop detection as extracting timestamped
and located stops (i.e., pauses in movement) from raw data
that captures the movement of individuals in classrooms as
a time-series of x-y coordinates. Stop detection defines a
set of parameters that determine the presence of a stop or
interaction between two individuals. Typically, a radius pa-
rameter determines a range of motion the actor does not
exceed, and a duration parameter designates the minimal
amount of time the actor is required to stay in that range
of motion.

Stop detection has various nascent applications in educa-
tional data mining. Mart́ınez-Maldonado et al. [17] used
heatmaps to infer the distribution of teacher visits at dif-
ferent groups of students and inferred teacher strategies by
investigating sequences of teacher visits targets. Similarly,
An et al. [1] used dandelion diagrams (i.e., a triangular
“spotlight” shape) to visualize teachers’ spatial trajectory
for teacher reflection tools. Other studies highlighted the im-
portance of spatial teacher attention for learning. One study
related teacher-student interactions to improved learning and
engagement in a higher education physics lab [21].

With many of these applications emerging, a critical issue in
stop detection is a lack of validation of the accuracy of stops
to represent phenomena of interest (e.g., teacher-student in-
teractions). Past studies made ad hoc choices for parameters
used in stop detection without validating their choices of ra-
dius and duration parameters [16, 25, 26]. This is important
because a lack of validation in the detection of spatial fea-
tures can result in noisy variables that either do not relate to
learning outcomes of interest (e.g., learning gain differences
based on the frequency of teacher visits of students) or, in
the worst case, lead to a biased inference. Relatedly, param-
eter choices need to generalize to diverse classroom settings
and layouts adequately, given that the spatial movement of
teachers (and the resulting distance parameters during inter-
actions) likely vary across classroom settings and pedagogies
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of the 16th International Conference on Educational Data Mining,
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[13]. For example, classrooms with technology-based learn-
ing have been reported to include spatial movements and
behaviors of teachers different from more traditional class-
room settings [11].

Taken together, applying prior stop detection procedures to
infer teacher visits at particular students in dense K-12 class-
rooms requires adjustments. The current study presents a
reproducible procedure to optimize stop detection param-
eters for K-12 classrooms. This extension is motivated by
adapting parameters to infer teacher visits to students work-
ing with an intelligent tutoring system. This study reports
initial baselines for detecting and validating inferred teacher
visits in K-12 classrooms. Our approach includes optimizing
stop detection parameters based on training data of field ob-
servations, drawing from studies outside of education that
used machine learning for stop detection from video motions
[9]. To achieve this, we extend an established stop detection
algorithm described in Mart́ınez-Maldonado et al. [16] to
account for dense classroom layouts. Finally, we contribute
guidelines regarding handling tradeoffs in teacher visit detec-
tion accuracy, namely accuracy and recall, concerning sam-
ple size. We share reproducible analysis code that includes
our stop detection algorithm and its parameter tuning, in-
cluding synthetic training data.1

2. RELATED WORK
2.1 Stop detection
One key application of stop detection in educational data
mining featured in this study is to map the stops of teachers
to visits of particular students in the classroom (referred to
as teacher visits). We survey prior research on teacher visits
and stop detection in educational data mining.

Teacher visits can relate to various constructs relevant to
teaching strategies. First, teacher visits can relate to help-
ing students. VanLehn et al. [23] developed a data-driven
classroom orchestration tool to recommend teacher visits
to students working with intelligent tutoring systems and
make visible the limited resources of teachers to visit all
students that would require help through qualitative cod-
ing of teacher-student interactions. Second, teacher visits
can also relate to teacher information seeking [22] and stu-
dent relationship building [12]. Given teachers’ time and
resource constraints to pay spatial attention to all students’
needs in the classroom, past work has argued that improved
learning through teacher-facing tools is partially due to im-
proved teacher sensing and attention allocation decisions in
the classroom [8]. In line with this reasoning, recent re-
search found student idleness decreased after teacher visits
when working with AI tutors [10].

Past methodological choices in stop detection algorithms
have been heuristic, ad hoc, and varied. This is important
as established machine learning techniques for stop detec-
tion are largely based on GPS data (cf. [19]) which do not
provide the spatial granularity necessary for stop detection
in classroom settings. Mart́ınez-Maldonado et al. [16] used a
distance from the teacher’s x-y coordinates of 1 m to detect
stops based on a heuristic of individuals’ reported personal
space during interpersonal interactions [20] and an ad hoc

1github.com/Sho-Shoo/stop-detection-optimization-edm23

duration of the proximity of 10 s. Similarly, Yan et al. [26]
classified teacher-student interactions by spatial proximity
of less than 1 m for longer than 10 s. Yan et al. [25] used
heuristics to determine distance thresholds between students
and teachers to detect social interactions based on [6]. The
distances were classified into intimate (0 – 0.46 m), personal
(0.46 – 1.22 m), social (1.22 – 2.10 m), and public (2.10 m
and above). Yan et al. [25] acknowledge that further valida-
tion work is desirable to assess social interactions through
triangulations with more data sources.

2.2 Applications of spatial analytics in educa-
tional data mining

We identify three common use cases of spatial analytics in
educational data mining. First, spatial analytics can be used
to derive features for learning outcome inference. Yan et al.
[28] used position data of healthcare students to assess tasks
and collaboration performance in simulation-based learning
and demonstrate the feasibility of using these analytics to
distinguish between different levels of student performance.
Yan et al. [26] used Markov chains of student interaction
sequences with student and teacher as well as individualized
studying primary school to model learning over eight weeks
and demonstrate the feasibility of these analytics to detect
low-progress students. Second, spatial analytics can guide
teacher reflection and strategy. Yan et al. [27] engineered
features from teacher position logs to encode proactive or
passive teacher interactions. They also demonstrate the fea-
sibility of linking these spatial analytics to different class-
room spaces relating to different pedagogies [13]. Third,
spatial analytics can inform instructor dashboards and in-
the-moment teaching support. Fernandez-Nieto et al. [4]
used epistemic network analysis to enact student movements
for instructors in nursing education. They find that these
enactments were consistently interpreted across multiple in-
structors. Similarly, Saquib et al. [18] demonstrate that
position sensors worn in students’ shoes in early-childhood
classrooms can help teachers better plan individualized cur-
riculums and identify student interaction needs.

2.3 The present study
Methodological choices in stop detection have mainly relied
on heuristics and ad hoc decisions. Given the increasing use
of stop detection and spatial analytics in educational data
mining, there is a need to adapt stop detection to differ-
ent classroom contexts concerning their size, spatial layout,
and teaching context. Addressing this gap, this study fol-
lows three steps. First, we describe an extended algorithm
for stop detection to infer teacher visits based on Mart́ınez-
Maldonado et al. [16] to account for dense classroom seating
layouts in which teacher visits can relate to multiple stu-
dents simultaneously. Second, we describe a reproducible
procedure to optimize the parameters of that stop detection
algorithm given human-coded ground-truth observations in
a K-12 classroom working with an intelligent tutoring sys-
tem. Third, we evaluate the accuracy of our algorithm given
different thresholds for the precision of stop detection and
discuss the challenges and affordances of our procedure con-
cerning research aims and future work.
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3. METHODS
3.1 Data
We collected training data for our stop detection algorithm
on eighty-five 7th graders and one teacher in a public school
in the United States, where we have obtained IRB (i.e.,
ethics board) approval for data collection. The data included
1) the teacher’s position in the classroom, 2) classroom ob-
servation in five distinct classes across three days, and 3)
student seating coordinates in the classroom, which were
constant throughout the study. Each class held one session
daily, and all sessions focused on algebraic equation solving.
Figure 1 is a visual of the data collection site.

During all classroom sessions, students worked with an AI
tutor, Lynnette [14, 24]. Lynnette is an intelligent tutoring
system specialized in equations solving practice for K-12.
During practice, the teacher moved around the classroom
to support students. According to our classroom observa-
tions, students sometimes raised their hands and proactively
asked for the teacher’s attention when Lynnette’s hints were
insufficient.

To gather teacher position data, we used Pozyx. Pozyx is
a positioning system that provides real-time location infor-
mation based on automated sensing. We placed six anchors
as a 2 x 3 matrix in the four borders of the classroom. All
timestamped position coordinates, recorded at a one-second
sampling rate, included X and Y coordinates in a 2D plane
representing the classroom. Tracking tags were used to mea-
sure the coordinates of all the major objects in the class-
room, including each student’s desk, teacher’s desk, black-
board, window, and door. These reference points were used
to track teacher positions concerning students and relevant
objects in the classroom.

Figure 1: Middle school classroom with desks and chairs

Following procedures described in Holstein et al. [7], one ob-
server took notes at the back of the classroom during data
collection. The observer recorded teacher actions, including
“monitoring class” and “helping student #1” and took notes
of students’ behaviors like “raising hand”. The observer also
noted which student a teacher interacted with. All obser-
vations were logged in real-time with time stamps using the

Table 1: Example data table for position data, observation
log, and Stop Detection Output, including timestamps (t) and
students (S).

Pozyx Observation Prediction
t X Y Visit Subject(s) Stop Inference
0 100 100 True S3 False NA
1 110 90 True S3 True S3, S1
2 200 250 False NA True S3, S1
3 1000 1000 True S1 False NA
4 1700 1500 False NA True S10

“Look Who’s Talking” software. Activities logged as on-task
and off-task conversations with students or groups of stu-
dents (referred to as teacher visits) served as training data
for stop detection.

3.2 Stop detection setup and algorithm
To generate accuracy measures for our stop detection algo-
rithm, we match human observations of the teacher visiting
particular student(s) to X-Y coordinates of teachers. These
timestamped observation logs of teacher visits to particu-
lar students(s) serve as ground-truth for algorithm train-
ing. We then create estimates of teacher visits based on
teacher X-Y coordinates and compare these to the ground-
truth stops. Notice that both observer-generated and stop
detection-generated teacher visits are accompanied by stu-
dent subject(s), which can relate to multiple students si-
multaneously. A preview of the data set for stop detection
algorithm optimization is in Table 1.

Mart́ınez-Maldonado et al. [16] proposed a stop detection
algorithm based on duration and radius. The algorithm
iterates through the teacher’s position coordinates. A stop
is established if the teacher’s X-Y coordinates are within a
circle defined by radius for a pre-defined time (duration).
Extending on this stop detection algorithm, we propose a
new method to identify the student(s) visited by the teacher
during a teacher’s stop. This extension is motivated by more
dense classroom layouts in K-12 classrooms (including the
classroom of our data collection), where students usually sit
in groups, and the teacher may stand close to and interact
with multiple students simultaneously. We define another
parameter called “range”. At the time of the stop, students
seated within a circle with radius r = range of the inferred
stop are added as subjects of that particular teacher visit.
Algorithm 1 describes the algorithm’s implementation.

Our implementation of stop detection via required proximity
over a minimal duration features a moving window bounded
by two timestamps, tl and tr. The two boundaries move
according to the following rules:

• If the coordinates within the time window are within a
certain radius distance relative to a point coordinate,
the right-side boundary tr will increase by one second;

• Otherwise, and if tr−tl ≥ duration, the interval [tl, tr]
will be denoted as a teacher visits; the visit’s corre-
sponding coordinate centroid will also be stored; and
tl will be updated to be tl ← tr;
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Data: Teacher position data: X-Y coordinates with
timestamp; given duration, radius, and range
parameters

Input: arr, result
Output: result
Result: Teacher Visit Intervals
tl ← 0;
stops← List();
while t < tfinal do

tr ← tl + 1;
while WithinRadius(position[tl,tr ], radius) do

tr + +;
end
if tr − tl < duration then

tl + +;
else

studSet = NearbyStuds((tl, tr), range);
stops.append((tl, tr, studSet));
tl ← tr;

end
return stops;
Algorithm 1: Stop detection algorithm proposed in this
study

• If tr − tl < duration, let tl increment by one second
and continue.

3.3 Cross-validation method
Cross-validation is employed to investigate the robustness
and generalizability of our stop detection algorithm. Since
the dataset contains five class periods (see Section 3.1), split-
ting the training data into five folds and by class period is
natural. There are two reasons behind this decision. First,
random student splits may cause data leakage, as the stop
detection error on students in the vicinity is expected to
be correlated. Second, creating folds based on class period
puts our algorithm to the test of accounting for differences
in teacher behavior across periods. For example, one of the
periods is an honors class, where students’ academic perfor-
mance is high.

Period-level cross-validation is conducted in five steps. First,
the dataset is split into five folds by class period. Second,
we define fold #n as including period #n’s data as test-
ing set and other periods’ data as training set. Third, a
full parameter sweep (see Section 4.1) is conducted on each
fold’s training data. Fourth, the best-performing parame-
ters is selected for each fold based on the evaluation metrics
described in the Evaluation Section. Fifth, the selected pa-
rameters are evaluated on each fold’s test set, and evaluation
metrics (precision, recall, and F1 score) are reported.

4. PROPOSED OPTIMIZATION PROCEDURE
To better quantify the values of the three parameters, duration,
radius, and range, in more diverse classroom layouts, we
present a novel parameter search algorithm based on grid
search to optimize the stop detection algorithm.

Grid search takes a pre-defined parameter search space and
evaluates each parameter candidate to find a global opti-
mum. The relatively small size of our position data (N =
19,073 recorded teacher position records) also enables us

to run a grid search within a reasonable time, not requir-
ing complex optimization procedures such as gradient de-
scent. We define the search space of the three parameters
via lower and upper bounds, including a step size. The step
size designates the value by which the lower bound is in-
cremented for trialing the next parameter value until the
upper bound is reached. The search bounds for range and
radius were based on estimations of the minimal and max-
imal distance between students observed in our classroom
layout. In addition, the minimal duration was based on the
coder’s experience of teacher movement in the classroom,
which would entail brief stops for spatial orientation of be-
low 3 s. In contrast, the maximum duration was based on
not exploring minimal durations three times as long as those
used in prior work (cf. [16]), which we deemed not mean-
ingful. Our search space was duration: [3, 30) where the
step size is three and the unit is second, radius: [200, 2000)
where the step size is 200 and the unit is millimeter, and
range: [100, 2000) where the step size is 200 and the unit is
millimeter.

To compare teacher visit detection accuracy across different
parameter combinations, we define three metrics for evalu-
ation: hits, misses, and false alarms. We further describe
these measures in the next section.

4.1 Evaluation
By treating observation logs as the ground truth, we intro-
duce a function, Evaluate, that outputs three metrics, hits,
misses, and false alarms, to describe the alignment between
these ground truth representations of teacher visits and the
inferred subjects of our stop detection algorithm.

Suppose an arbitrary teacher visit documented in the ob-
servation log is vi, and its corresponding timestamp is ti.
During vi, a set of student subjects, Si, were visited. Si is
the ground truth subject set corresponding to ground truth
visit vi. For each ground-truth observation, compute a time-
frame between time stamp [ti−5, ti+5], which is a 10-second
window. We are examining a time frame instead of a single
time point because classroom observations of teacher visits
include a natural degree of imprecision. The human coder
described their time stamp recording of teacher visits and
the time of the actual visit to differ by up to 10 s, the size
of or timeframe window. In other words, the observation
record may be entered a few seconds earlier or later than
the true starting time of an event, with ±5 seconds being a
reasonable estimate as reported by the observer. By filtering
variables posStops and inferredSubj with only entries
in time frame [ti − 5, ti + 5], we can obtain an inferred sub-
ject set Gi. We define hiti = |Si ∩ Gi|, missi = |Si \ Gi|,
and falseAlarmi = |Gi \ Si|.

A hit is an element Si and Gi have in common: a correctly
inferred student subject that was stopped at. Miss counts
the true subjects our stop detection fails to capture, while
false alarm keeps records of incorrect subjects tagged by stop
detection.

Recall all calculations are based on iterating through the
observation log while gathering algorithm-extracted teacher
visits within time frame

⋃
i[ti−5, ti+5] with i being in stop

index in the observation log. This does not account for in-

313



correctly inferred teacher visits which were never gathered
within time frames. We call this collection of unchecked de-
tected stops V . Suppose an arbitrary visit in V is vj , and
its corresponding inferred subject set Gj . We can also treat
these inferences as false alarms: falseAlarmj = |Gj |. No-
tice this subscript j is different from the previous i. We call
these false alarm counts to be “outside” since they are out-
side the unionized time frames. Conversely, falseAlarmi

represents “inside” false alarms. We evaluate all algorithms
based on false alarms inside and outside designated time
frames. Still, we note that for some applications, an eval-
uation of inside false alarms only might be more desirable.
To evaluate algorithmic accuracy, we sum the total number
of hits, misses, and false alarms for a given parameter com-
bination. We introduce measures that combine these three
metrics for optimization, namely precision and recall, which
are analogous to precision and recall in machine learning
classification tasks:

recall =
hit

hit+miss
(1)

precision =
hit

hit+ falseAlarm
(2)

While precision designates the probability of an inferred
teacher visit to be correct according to observation logs, re-
call is the probability of any given observation log teacher
visit to be detected via stop detection. We select optimal
parameter combinations for stop detection on a global max-
imization of precision and recall by evaluating all parameter
combinations in a grid search based on our search space. For
larger data, less extensive optimization algorithms, such as
gradient descent, may be preferable.

The following algorithms (Algorithm 2) demonstrate how
the grid search is carried out together with Evaluate (Al-
gorithm 3) that implements the aforementioned set calcula-
tion:

Data: Teacher Position Data and Observation Logs
Result: Hits, Misses, and False Alarms for Each

Parameter Combination
for d in durationGrid do

for r in radiusGrid do
posStops← GetStops(teacherPos) ;
obsStops← GetStops(obsLog);
for rng in rangeGrid do

inferredSubj ← GetSubj(posStops, rng);
hit,miss, FA←
Evaluate(posStops, inferredSubj, obsLog);
SaveToFile(hit, miss, FA);

end

end

end
Algorithm 2: Parameter sweep algorithm

5. RESULTS
5.1 Parameter sweep results
We tune stop detection algorithm parameters with respect
to precision and recall. As a first step, to gauge the over-
all performance of our algorithm given different parameter

seenStops← List();
for obsStop in obsLog do

t← obsStop.time;
stops← posStop[t− 5, t+ 5];
seenStops.append(stops);
S ← SubjectOf(obsStop);
G← SubjectOf(stops);
hiti, missi, FAi ← SetOps(S,G);
hit,miss, FA← hit+ hiti,miss+missi, FA+FAi;

end
for stop in posStops and stop not in seenStops do

FAj+ = |SubjectOf(stop)|;
FA+ = FAj ;

end
return hit, miss, FA;

Algorithm 3: Evaluate function body

settings, we visualize precision and recall for all of our pa-
rameter combinations in Figure 2.

Based on Figure 2, we find that recall deteriorates faster
with increasing precision than precision deteriorates with
increasing recall. This means that improving precision in
our algorithm concerning our training data comes with a
relatively high recall cost.
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Figure 2: Scatter plot of precision and recall (inside and
outside) for all parameter combinations of our stop detec-
tion algorithm evaluated against ground-truth observations
of teacher visits, including a reference line with slope -1.

Based on this finding, we identify two ways of sampling an
optimal set of parameters for precision and recall. The first
set of parameters is derived from maximizing the average
of precision and recall (referred to as “absolute maximiza-
tion”). The resulting set of parameters is duration = 6,
radius = 1800, and range = 1900. The radius and range
are close to the upper bound of our search space. This may
be due to the relatively fast deterioration of recall over pre-
cision, overemphasizing recall when averaging precision and
recall, and leading to very liberal stop detection. Therefore,
we select the second set of parameters based on a minimally
required precision cutoff (referred to as “conditional maxi-
mization”). We set this cutoff to be precision > 0.2. This
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selection strategy’s resulting parameters are duration = 21,
radius = 600, and range = 700. Notice that the higher
the precision cutoff, the lower the number of detected stops
will be. Therefore, one way of resolving the precision-recall
tradeoff is to set the precision cutoff low enough to obtain
a sample size sufficiently large for a given study design. For
example, if the study design includes a two-sided t-test of
whether teacher visits are, on average, longer for low- than
high-prior knowledge students, a sufficiently large number of
stops assuming a power of 1−β = 0.8 and effect size d = 0.3
would be around N = 175 stops.

5.2 Parameter weights
We fit an ordinary least square (OLS) regression inferring
the average of precision and recall to approximate the rela-
tive feature importance of our three parameters (i.e., dura-
tion, radius, and range) on teacher visit detection accuracy.
To compare effect sizes, we Z-standardize all three parame-
ters to a mean of 0 and a standard deviation of 1. We report
the result of the regression in Table 2.

Table 2: OLS regression results of parameter weights on the
average of precision and recall of teacher visit detection.

Predictors β CI95% p
Intercept 0.25 0.24 – 0.25 <0.001
Duration -0.02 -0.03 – -0.02 <0.001
Radius 0.01 0.00 – 0.01 .003
Range 0.06 0.05 – 0.06 <0.001

R2
adjusted 42.0%

According to Table 2, while all three parameters had a sig-
nificant association with the average of precision and recall,
range had the largest standardized effect size (β = 0.06,
p < .001).

5.3 Cross-validation
Given the tradeoff between precision and recall described
in Section 5.1, we report cross-validation results broken out
by absolute and conditional maximization. Table 3 reports
the chosen parameters by fold compared to those chosen by
running parameter sweep on all position data.

Table 3: Parameters selected per CV fold.

Fold Maximization duration radius range

1
conditional 30 600 700

absolute 6 1800 1900

2
conditional 18 600 700

absolute 6 1800 1900

3
conditional 21 1200 700

absolute 6 1800 1900

4
conditional 18 600 700

absolute 6 1800 1900

5
conditional 21 600 700

absolute 6 1800 1900

all
conditional 21 600 700

absolute 6 1800 1900

The parameters chosen for each fold are comparable to the
optimal parameters when fitting parameters to the full train-
ing data set. Table 4 displays the means and standard devi-

ations of the three performance metrics (F1, precision, and
recall) across the five folds.

Table 4: CV evaluation metrics per fold.

Maximization Metric M SD

Absolute
F1 score 0.09 0.01
Precision 0.05 0.00

Recall 0.68 0.03

Conditional
F1 score 0.18 0.02
Precision 0.21 0.07

Recall 0.17 0.05

Conditional maximization yielded an average F1 score twice
as large as absolute maximization (0.18 compared to 0.09).
Moreover, absolute maximization corresponded to liberal
teacher visit detection (i.e., low precision at high recall),
while conditional maximization led to more balance between
precision and recall.

6. DISCUSSION AND CONCLUSIONS
Stop detection and spatial analytics receive increasing at-
tention in educational data mining. Yet, with past stop de-
tection parameter settings being based on heuristics, there
is a need to evaluate and optimize stop detection in diverse
classroom settings and layouts. In this study, we extended
a popular stop detection algorithm to detect teacher visits
to particular student(s) in a K-12 math classroom working
with intelligent tutoring systems. We introduced metrics to
evaluate the algorithm’s accuracy against ground truth hu-
man observations of teacher visits. Our three main findings
are as follows:

First, we find a large variability in stop detection accuracy
given different parameter choices. This is important as past
work has primarily relied on ad hoc or heuristic parameter
settings in stop detection [16, 25, 26]. As an implication
for research, spatial features other than inferred teacher vis-
its may afford similar validation work and adaptation to
diverse classroom contexts as presented in this study. Po-
tential outcomes of interest include the total time teachers
spent attending to different students, the average visit du-
ration, and the dispersion, or entropy, of visits to students
[15]. Our proposed optimization procedure may be readily
extended to infer these spatial features.

Second, we establish a benchmark for teacher visit detection
accuracy that future research may pick up. To improve ac-
curacy, we contribute a reproducible procedure to adapt our
algorithm to diverse classroom layouts and contexts. We
described strategies to weight precision and recall to derive
meaningful sets of teacher visits for research. Importantly,
our results indicate that setting a precision threshold during
parameter fitting yields superior cross-validation accuracy.
More generally, we find a precision-recall tradeoff in detect-
ing teacher visits that favors recall over precision, as pre-
cision came with a higher cost in the tradeoff. This might
be due to the nature of our data set, as our classroom lay-
out included dense groups of students compared to previous
studies using open learner spaces [16]. Teachers may have
interacted only with a subset of students sitting in a group,
leading to larger ranges for satisfactory recall at an excess
of false positives and diminishing precision. Coding teach-
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ers’ proximity to groups rather than teacher-student inter-
actions might be a more tractable prediction task based on
position coordinates alone in dense classroom layouts. For
the detection of teacher visits, the high cost of precision
in dense classrooms may result in lower statistical power
through smaller sample sizes of resulting visits as the number
of detected visits diminishes with increasing precision. Re-
searchers may adjust precision thresholds accordingly. We
note, however, that with lower precision, statistical associa-
tions might be less likely to be detected as the false positive
teacher visits introduce noise to features. Therefore, we rec-
ommend future research to estimate the expected number of
stops during classroom sessions ahead of the data collection
to plan sample sizes accordingly. Multiplying estimates of
the number of expected stops with stop detection precision
could yield an estimate for the number of detected stops for
power analyses.

Third, we find that range (i.e., the minimally required dis-
tance of students to the teacher during visits) had the largest
association with teacher visit detection accuracy. Notice
that range was the new parameter we defined to detect mul-
tiple students in proximity to the teacher during stops to
account for dense classroom layouts. This suggests that
the largest improvement to our algorithm might be achieved
through optimizing the decision rules for tagging groups of
students in proximity to the teacher. One such improvement
might be approximating the teacher’s orientation during the
visit based on past movement trajectory. Future work may
test whether excluding students not faced by the teacher
(e.g., seated behind their back) from stop detection improves
accuracy. Finally, further improvements of the range pa-
rameter appear desirable, particularly for dense classroom
layouts with groups of students, such as K-12 classrooms.

6.1 Limitations and future work
We acknowledge limitations to our current methodology that
future research may improve upon. First, limitations may
emerge from how our ground truth observation data of teacher
visits were coded. In particular, manual coders could only
code visits to an accuracy level of a time frame of 10 s.
Future work may improve training data quality by using
more coders and establishing inter-rater reliability for the
coding of visits or other means of automatically generating
observation logs during classroom sessions, for example, by
recording observations verbally with a microphone rather
than typing them into a laptop. More accessible tools for
coding may reduce the time lag in human coding during
model optimization and improve overall stop detection ac-
curacy. We note that the quantitative definition of stops
may differ based on the research context. Hence, future
work may refine coding schemes for coders to capture spa-
tial attributes of different research contexts (e.g., coding 1-
to-1 interactions between teachers and students compared
to group visits). In both cases, our optimization procedure
allows for adapting stop detection to such complexities for
more nuanced explorations in offline analyses.

Second, our algorithm may require more sophisticated deci-
sion rules to achieve better accuracy. Based on our evalua-
tion, inferring teacher visits may benefit from additional spa-
tial features for algorithm training other than the teacher’s
spatial position only (e.g., information about the teacher’s

movement trajectory before a visit). Our relatively low
cross-validation F1 score of 0.18 may relate to the challenge
of inferring teacher visits to particular students when the
students of interest sit close to others not visited. Next to
teacher visits, teacher proximity may also encode teacher at-
tention effects on student learning, such as motivational and
performance differences through mere presence [2, 5]. Fu-
ture extensions of our algorithm could also consider specific
teacher movement strategies. For example, models could
calibrate to the usual distance of teachers when interact-
ing with students. Teachers may have different distances
from different students (e.g., due to some students sitting in
the back of the classroom). Fitting a parameter to student
characteristics to adjust the distance in stop detection may
improve accuracy while being sufficiently generalizable to
new students. Similarly, future research may also consider
fitting the stop detection parameters as a function of spa-
tial attributes instead of being static. Under a dynamic set
of parameters, the detection algorithm may be better able
to differentiate between teacher standing at the periphery
of the classroom observing and actually visiting students in
the middle of the classroom.

Third, the cross-validation indicates that our stop detec-
tion algorithm and optimization procedure are generalizable
across different class periods. However, this study only ex-
plored one classroom layout setting: a dense layout with
grouped seating typically found in US K-12 classrooms. More
research is needed to gauge the performance of our algorithm
and optimization procedure for other seating arrangements.

We see two central use cases of our proposed stop detec-
tion algorithm and optimization procedure. First, future re-
search could use our adaptive algorithm to more accurately
mine stops and investigate teachers’ attention distribution
at a lower cost. Our algorithm can learn relevant stop de-
tection parameters from human-coded examples of teacher
visits and automatically generate a teacher visit distribution
from optimized parameters, facilitating data collection. Sec-
ond, our stop detection algorithm can be incorporated into
teacher-facing reflection and orchestration tools, where stop
detection can serve as a feature for teacher-facing analyt-
ics. These applications can help facilitate the study of the
interplay of teacher behavior and student learning.
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from proximity traces to socio-spatial behaviours and
student progression at the school. British Journal of
Educational Technology, 2022.

[27] L. Yan, R. Martinez-Maldonado, L. Zhao, J. Deppeler,
D. Corrigan, and D. Gasevic. How do teachers use
open learning spaces? mapping from teachers’
socio-spatial data to spatial pedagogy. In LAK22:
12th International Learning Analytics and Knowledge
Conference, pages 87–97, 2022.

[28] L. Yan, R. Martinez-Maldonado, L. Zhao, S. Dix,
H. Jaggard, R. Wotherspoon, X. Li, and D. Gašević.
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ABSTRACT
There is a growing need to empirically evaluate the quality
of online instructional interventions at scale. In response,
some online learning platforms have begun to implement
rapid A/B testing of instructional interventions. In these
scenarios, students participate in series of randomized ex-
periments that evaluate problem-level interventions in quick
succession, which makes it difficult to discern the effect of
any particular intervention on their learning. Therefore, dis-
tal measures of learning such as posttests may not provide
a clear understanding of which interventions are effective,
which can lead to slow adoption of new instructional meth-
ods. To help discern the effectiveness of instructional in-
terventions, this work uses data from 26,060 clickstream se-
quences of students across 31 different online educational
experiments exploring 51 different research questions and
the students’ posttest scores to create and analyze different
proximal surrogate measures of learning that can be used at
the problem level. Through feature engineering and deep
learning approaches, next-problem correctness was deter-
mined to be the best surrogate measure. As more data
from online educational experiments are collected, model
based surrogate measures can be improved, but for now,
next-problem correctness is an empirically effective proximal
surrogate measure of learning for analyzing rapid problem-
level experiments. The data and code used in this work can
be found at https://osf.io/uj48v/.

Keywords
Surrogate Measures, Measures of Learning, A/B Testing,
Educational Experiments

1. INTRODUCTION

There is a growing need to empirically evaluate the quality
of online instructional interventions at scale. This is in part
motivated by the lack of empirical evidence for many ex-
isting interventions, especially in mathematics. According
to Evidence for ESSA, a website that tracks empirical re-
search on educational practices created by the Center for Re-
search and Reform in Education at Johns Hopkins Univer-
sity School of Education, only four technology based inter-
ventions have strong evidence for improving students’ math-
ematics skills [4]. In response, more and more online learn-
ing platforms are creating infrastructure to run randomized
controlled experiments within their platforms [19, 11, 18] in
order to increase the impact of the their programs on student
learning and facilitate research in the field. This infrastruc-
ture allows for rapid A/B testing of different instructional
interventions. In an A/B testing scenario, students assigned
to particular assignments or problems within these online
learning platforms will be automatically randomized to one
of multiple experimental conditions in which different in-
structional interventions will be provided to them. While
this paradigm allows for rapid testing of many hypotheses,
this rapid testing environment makes statistical analysis dif-
ficult. In some cases, students participate in many random-
ized controlled experiments in parallel or in quick succession.
For example, in ASSISTments, an online learning platform
in which students complete pre-college level mathematics as-
signments [8], students can be randomized between different
instructional interventions for each mathematics problem in
their assignment. In these scenarios, it is important to eval-
uate the effect of the interventions as quickly as possible.
If one were to wait until the end of a section of the cur-
riculum, or even the end of the current assignment before
evaluating students’ mastery of the subject matter, then the
effect of an intervention for a single problem near the begin-
ning of the assignment would be obfuscated by the effects of
all the following interventions. For this reason, prior work
has only used students’ behavior on the problem they at-
tempted after receiving an intervention but before receiving
another intervention to evaluate the effectiveness of the first
intervention [12, 16]. However, the measures used in prior
work were chosen based on theory, without any empirical
evidence that they are in fact an effective surrogate measure
of learning.
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To address the lack of empirical evidence for these proximal
surrogate measures of learning, the first goal of this work
was to create a variety of surrogate measures from students’
clickstream data on the problem they attempted after re-
ceiving an experimental intervention. These measures were
created through feature engineering, discussed in Section 3,
and model fitting, discussed in Sections 4.1 and 4.2.

After creating surrogate measures, The second goal of this
work was to evaluate how effective these measures were at
estimating the treatment effects between pairs of conditions
in online experiments. To achieve this goal, data was col-
lected to compare 51 different pairs of conditions from 31
assignment-level online experiments with posttests in which
students were exposed to the same intervention multiple
times within the same assignment, but were not exposed
to any other interventions. By determining the extent to
which each measure was a surrogate for students’ posttest
scores, discussed more in Sections 2.3 and 4.4, the surrogate
measures could be compared to each other.

To summarise, this work strives to answer the following two
research questions:

1. What surrogate measures can be created from short
sequences of students’ clickstream data?

2. Which of these surrogate measures is the best surro-
gate for posttest score?

2. BACKGROUND
2.1 Rapid Online Educational Experimenta-

tion
Experimentation is a cornerstone of formative improvement
of online instructional interventions [18, 1]. Systems like AS-
SISTments E-TRIALS were established to allow researchers
to test learning theories and feature ideas through exper-
iments within online mathematics assignments [11]. Us-
ing systems like E-TRIALS, students are randomized be-
tween different assignment-level interventions and complete
a posttest at the end of their assignment to evaluate their
learning.

Although assignment-level experiments provide some rele-
vant information to online program designers, these design-
ers are faced with a nearly infinite number of decisions about
what features to build and how to build them. Since only
one causal inference can be estimated from each manipu-
lation [9], designing assignment-level experiments for each
potentially impactful variant of a feature is often infeasible.
Rapid online educational experimentation provides a more
efficient alternative to more traditional assignment-level ex-
periments by assigning students to a condition at each prob-
lem and instead of requiring students to complete a posttest,
using the student’s performance on the subsequent problem
as the outcome.

One example of rapid online educational experimentation
is the TeacherASSIST system, which randomizes students
between crowdsourced hints and explanations [12]. In this
system, there were over 7,000 support messages produced by
11 educators [16]. Each time a student attempted a problem

for which they were provided with a randomly selected sup-
port message, their subsequent problem was used to evaluate
the quality of the support. This system allowed for a much
more efficient deployment of experiments and evaluation of
feature nuances.

2.2 Unconfounded Outcomes For Rapid On-
line Experiments

In order for rapid online experimentation to lead to causal
inference, we must identify outcomes that are unconfounded
by the other experimental manipulations to which a stu-
dent was exposed. Distal outcomes, such as end-of-unit or
assignment-level posttest scores, do not allow a researcher to
determine which of the treatments the student was exposed
to during the experiment produced the effect. An alterna-
tive, used by [12, 16] to evaluate TeacherASSIST, is to use
data from the problem students completed directly after the
experimental condition, i.e., next-problem measures.

Although individual students’ behaviors and performance
may be influenced by the aggregate of experimental ma-
nipulations within an assignment, the average difference in
next-problem measures is unconfounded due to the random
assignment at the problem level. Next-problem measures
are unconfounded by either the prior experimental condi-
tions or next-problem experimental conditions because the
assignment to each condition is independently random and
therefore the effects of the prior and post-conditions are zero.
Therefore, the remaining difference in the next-problem mea-
sures between treatment and control is an unconfounded
measure of the treatment effect.

2.3 Surrogate Measures
Although measures taken during the next problem after the
experiment, such as next-problem correctness, are uncon-
founded by other experiments within the problem set, it is
not yet known whether these measure are good estimates
of distal outcomes. In assignment-level A/B testing, a re-
searcher creates a posttest designed to measure the expected
effect of the treatment condition compared to the control
condition, but within online instructional interventions, the
next problem was designed for pedagogical purposes, not
to evaluate the effects of the intervention. Therefore, to use
next-problem measures to validate the impact of a condition,
we must validate whether these measures assess researchers’
outcomes of concern.

One way to think about these next-problem measures is as
surrogate measures. Surrogate measures are used in medical
experiments when the outcome is either difficult to assess or
distal [17]. Surrogates can either have causal or correlation
relations to the outcome [10]. Validating causal surrogates
requires a causal path from the treatment to the surrogate
and subsequently to the outcome, such that the indirect path
through the surrogate has a larger effect than the direct path
through from the treatment to the outcome. Alternatively,
an associative surrogate is valid when the following three
criteria are met [10]:

1. There is a monotonic relationship between the treat-
ment effect on the surrogate and the treatment effect
on the outcome across experiments.
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2. When the treatment effect on the surrogate is zero, the
treatment effect on the outcome is also zero.

3. The treatment effect on the surrogate predicts the trea-
tment effect on the outcome.

In this work, various next-problem measures are evaluated
for their effectiveness as an associative surrogate measure of
posttest scores.

3. DATA AGGREGATION
3.1 Data Source
The data used in this work comes from ASSISTments, an
online learning platform that focuses on pre-college math-
ematics curricula. In July, 2022 ASSISTments released a
dataset of 88 randomized controlled experiments that were
conducted within the platform since 2018 [?]. These experi-
ments compared various assignment-level and problem-level
interventions. For example, in one experiment, students
were randomized between receiving either open response
problems, or multiple choice problems during and assign-
ment, then their learning was measured using a posttest.

In this work, the experimental assignments from ASSIST-
ments that had posttests were used in order to compare
learning measures derived from a student’s clickstream data
on the problem immediately after receiving an intervention
for the first time to their posttest score. To avoid bias
from missing posttest scores, only data from experiments
in which there was no statistically significant difference in
students’ completion rates between conditions were used,
and students that did not complete the posttest were ex-
cluded from the analysis. In some contexts it would be
better to impute missing posttest scores as the minimum
score. However, the purpose of this work was to create
a surrogate measure for posttest score in situations where
it is infeasible to require students to complete a posttest,
and therefore it seems more appropriate to remove missing
posttest scores to ensure that the surrogate measures stu-
dents’ posttest scores, not their propensity to complete an
assignment. This additional filtering step removed only one
of the ASSISTments experiments from the analysis. Addi-
tionally, the data used in this work is limited to students who
participated in the experiments prior to July 23rd, 2021. On
July 23rd, 2021 all unlisted YouTube videos created prior to
2017 were made private [6]. Many of the experiments in-
cluded YouTube videos uploaded prior to 2017, which were
made private, ruining the experiments that contained them.
In total, 26,060 clickstream sequences of a student complet-
ing a problem and their corresponding posttest score were
collected for model training and analysis across 51 differ-
ent research questions within 31 different experimental as-
signments. These sequences and the code used to evaluate
them has been made publicly available and can be found at
https://osf.io/uj48v/.

3.2 Expert Features
As established by prior work, i.e. ([12, 16, 14]), collecting
data to evaluate the effectiveness of an intervention is often
limited to data from the next problem in a student’s assign-
ment before they receive another intervention. This work ex-
tracted five expert features from students’ clickstream data

on their next problem that have been useful predictors of
student behavior in prior work [20, 21]. Table 1 describes
the expert features evaluated for their effectiveness as a sur-
rogate measure of posttest score.

3.3 Clickstream Data
In addition to expert features, this work used deep learning
to create surrogate measures of learning from students’ click-
stream data. The clickstream data consisted of the action
sequences of students within the ASSISTments tutor from
the time they start the problem after they received an exper-
imental intervention to the time they either receive another
intervention or complete the problem. This short window of
time is not confounded by other experimental interventions
and is likely to give the clearest insight into the impact of
experimental interventions being tested in quick succession.

The students’ clickstream data was broken down into a se-
ries of one-hot encoded actions followed by the time since
taking the last action. The first action was always ”prob-
lem started”, therefore this action was dropped from stu-
dents’ clickstreams prior to being given to a deep learn-
ing model. The time since taking the last action was log-
transformed in order to weight the difference between short
time periods more than long time periods and to reduce the
impact of large outliers, which are due to students walking
away from their computers during assignments and return-
ing later. Additionally, the log-transformed times are scaled
within the range [0, 1]. Scaling the time within the same
range as the one-hot encoded actions helps the model bal-
ance the importance of the different features. Each action
sequence was equal in length to the longest action sequence,
which was 12 actions. When students took less than the
maximum number of actions, their action sequences were
zero padded from the start of the sequence. Table 2 pro-
vides an example sequence of a student’s clickstream data
in which a student unsuccessfully attempted to get a prob-
lem correct twice, then took a break, then returned to their
assignment, got the problem incorrect again, and then on
their fourth attempt, got the problem correct. The first six
columns contain all zeros because the student only took a
total of six actions. This representation of students’ click-
stream action sequences was chosen because of its success in
previous work for various prediction tasks [20, 15, 21].

4. METHODOLOGY
4.1 Expert Feature-Based Models
To derive a surrogate measure of learning from the expert
features, three approaches were taken. The first approach
was to simply use each expert feature as a surrogate measure
of learning, the second approach was to fit a linear regression
on posttest score using the expert features as input, and the
third approach was to fit a linear regression on the treatment
effect on posttest score using the treatment effects on each
expert feature as input. The third was included because if
the goal is to predict the treatment effect on posttest score,
than it might be more effective to fit a model that combines
the treatment effects on different expert features into the
treatment effect on posttest score than to simply predict
posttest score. This would be advantageous in a scenario
where there was information in the expert features that was
predictive of a student’s propensity to learn independent of
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Table 1: Expert Features

Feature Name Description
Correctness A binary indicator of whether or not the student answered the problem correctly

on their first try without tutoring of any kind.
Tutoring Requested A binary indicator of whether or not the student requested tutoring of any kind.
No Attempts Taken A binary indicator of whether or not the student did not make any attempts to

answer the problem.
Attempt Count The number of attempts made by the student to answer the problem.

First Response Time The natural log of the total seconds from when the problem was started to when
the student submitted an answer or requested tutoring of any kind for the first
time.

Table 2: A Student’s Clickstream Data Sequence After Processing

Feature Name Clickstream Data Sequence
problem resumed 0 0 0 0 0 0 0 0 1 0 0 0

tutoring requested 0 0 0 0 0 0 0 0 0 0 0 0
wrong response 0 0 0 0 0 0 1 1 0 1 0 0

correct response 0 0 0 0 0 0 0 0 0 0 1 0
problem finished 0 0 0 0 0 0 0 0 0 0 0 1

time since last action 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.51 6.39 0.12 0.38 0.01

the intervention they were given. In that scenario, a model
trained to predict posttest score might learn to rely on that
information, which would lead the model to predict more
similar posttest scores between different experimental con-
ditions than were actually observed. By directly predicting
the treatment effect on posttest score, the model must learn
to use the features that are predictive of the effect of the
experimental conditions. The downside of this approach is
that each research question’s data was reduced to a single
sample in the regression. Therefore, while the second ap-
proach had the full 26,060 samples of student data to fit on,
the third approach only had 51 samples to fit on; one for
each research question.

4.2 Deep Learning Models
Two deep learning approaches were used to create a surro-
gate measure of learning from students’ clickstream data.
Both approaches trained a recurrent neural network to pre-
dict students’ posttest scores given their clickstream data
using Bidirectional LSTM layers [22, 5], which read the click-
stream data both forward and backward to learn the rela-
tionship between students’ actions and their posttest scores.
Following the same intuition as Section 4.1, the first model
used the mean squared error of its posttest score predictions
as its loss function, the second model used the squared error
of the treatment effect calculated from its posttest score pre-
dictions as its loss function. Essentially, the first model was
trained to predict accurate posttest scores, and the second
model was trained to predict posttest scores that would lead
to the same treatment effect estimates as the actual posttest
scores.

4.3 Model Training
To fairly evaluate the surrogate measures of learning, each
model was trained and evaluated using a leave-one-out cross-
validation approach partitioned by the experimental assign-
ment. Many of the experimental assignments evaluated mul-
tiple research questions using the same control. Therefore,

all the research questions in the held-out experimental as-
signment were evaluated using the model trained on all the
other experimental assignments, as opposed to performing
leave-one-out cross-validation partitioned by research ques-
tion. This ensured that no data was shared between the
training data and the held-out data.

For the expert feature-based models, an ablation study was
performed to identify which combination of features, when
used as input, led to the highest correlation between surro-
gate measure and posttest treatment effects. In this ablation
study, the models were trained first using all of the expert
features as input, and then models were trained using all
but one of the features. If any of the all-but-one-feature
models out-performed the model with all the features, then
that model became the best model so far, and more models
were trained using all but one of the features in the new best
model. Eventually, the best model will not have improved
from removing any of its features, denoting that this model
has the optimal set of features as input.

For the deep learning models, the models were initialized,
trained, and evaluated ten times, averaging the results of
each evaluation. Neural networks cannot be solved for the
optimal value of their weights; gradient descent is instead
used to optimize them starting from random initializations.
These random initializations can lead to more or less optimal
weights at the end of training. Therefore, by training the
model multiple times starting from different random initial-
izations and then averaging the results, the evaluation of the
model’s surrogate measure is more reliable. During training,
over-fitting was prevented for the first model by using half
the data as a validation set and ending training when the
prediction error on the validation set increased. A validation
set was not used for the second model because of the lack of
training data (only one sample per research question). In-
stead, over-fitting was prevented for the second model by
tracking the loss and ending training when the loss began to
settle.
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4.4 Evaluation of Surrogate Measures
As discussed in Section 2.3, a surrogate measure must meet
three criteria (see Section 2.3 for their descriptions). Criteria
1 and 3 can be simultaneously evaluated by looking at the
Pearson correlation between the treatment effect on the sur-
rogate measures and the treatment effect on posttest score
because a high Pearson correlation between two measures in-
dicates that there is a monotonic linear relationship between
them [2], and the linearity implies predictability. The higher
the Pearson correlation between treatment effects across all
research questions, the more effective the surrogate measure
is.

To evaluate Criteria 2, after the surrogate measures were
used to determine the treatment effects for the different re-
search questions, a linear regression was fit to predict the
treatment effect on posttest given the treatment effect on
one of the surrogate measures and an intercept. If the co-
efficient of the intercept is small and statistically insignifi-
cant, then there is no evidence that Criteria 2 was violated.
Therefore, the best surrogate measure was determined to be
the measure with the highest Pearson correlation between its
treatment effects and the posttest treatment effects across all
the research questions (Criteria 1 and 3), as long as the mea-
sure did not have a significant intercept when its treatment
effects were used to predict the posttest treatment effects
(Criteria 2).

5. RESULTS
5.1 Evaluation of Surrogate Measures
The treatment effect of each research question was calcu-
lated using each surrogate measure described in Sections 4.1
and 4.2. To evaluate whether the surrogate measures met
Criteria 1 and 3 from Section 2.3, the treatment effects on
each surrogate measure across all the research questions were
correlated with the treatment effects on posttest score. Ta-
ble 3 reports the different surrogate measures, the Pearson
correlation [2] of their treatment effects, and the statistical
significance of these correlations.

Of all the expert features, correctness and tutoring requested
were the only two features whose treatment effects were sta-
tistically significantly correlated with the treatment effect on
students’ posttest scores. Correctness had a positive corre-
lation with posttest score, indicating that students that got
the next problem correct on their first try without any sup-
port tended to have higher posttest scores than those who
did not, and tutoring requested had a negative correlation
with posttest score, indicating that students that requested
tutoring on the next problem tended to have lower posttest
scores than those who did not.

When performing the ablation study to identify the optimal
set of expert features for the linear regression used to predict
posttest score (Section 4.1, Approach 2), no other feature
could be used in combination with correctness to improve
the model’s predictions. Therefore, using this linear regres-
sion to predict posttest was an equivalent surrogate measure
to just using correctness as a surrogate measure itself.

When performing the ablation study to identify the opti-
mal set of expert features for the linear regression used to
predict treatment effect on posttest (Section 4.1, Approach

3), the highest performing model used tutoring requested
and attempt count. Ultimately, this approach was inferior
to the other approaches at identifying surrogate measures
using expert features.

To evaluate Criteria 2 from Section 2.3, a linear regression
was fit for each surrogate measure using data from all the
research questions to predict the treatment effect on posttest
given the treatment effect on the surrogate measure and an
intercept. None of the models had a large or statistically
significant intercept. Therefore, the best surrogate measure
was simply next-problem correctness.

6. DISCUSSION
Ultimately, next-problem correctness was the best surrogate
measure of learning. The treatment effect on next-problem
correctness had the highest Pearson correlation with the
treatment effect on posttest, and there was no evidence that
the treatment effect on next-problem correctness was not
zero when the treatment effect on posttest was zero, which
satisfies all three criteria discussed in Section 2.3. It was not
expected that one of the simplest surrogate measures, which
had been used previously despite no empirical evidence to
support that choice, would be the best surrogate. One possi-
ble reason for why the predictive models did not perform well
is that the behavior of students within an experiment could
be highly dependent on the material in the assignment. For
example, geometry problems might on average take more
time to answer than algebra problems, which would make
students first response time less informative of their learn-
ing because it is in part dependent on the subject matter.
Methods like Knowledge Tracing and Performance Factor
Analysis, which measure students’ mastery of mathematics
concepts, take into account the knowledge components of the
students’ assignments when predicting student performance
to compensate for this dependence [3, 13]. By providing
the models with more nuanced information about student
behavior, it is possible they were picking up on behavioral
trends that were not generalizable across experiments. Ad-
ditionally, the sample size of the data was fairly low. Only 51
research questions were used in this analysis, and it is likely
that data from more experiments testing a greater variety
of interventions would help the models learn to differentiate
between generalizable trends and trends specific to subsets
of experiments.

These reasons help to explain what may have caused the
models to underperform, but from a different perspective,
what caused next-problem correctness to perform so well? It
seems likely that next-problem correctness was a strong sur-
rogate because posttest score is simply a different measure
of problem correctness. In other words, next-problem cor-
rectness is a measure of whether the student got the problem
immediately following the intervention correct, and posttest
score is a measure of whether the student got a few prob-
lems ahead of the intervention correct. It makes sense that
two measures that revolve around a student’s propensity to
answer problems correctly would correlate. This leads to
the question: is correctness what matters? If the goal of
education is ultimately to give students better, more ful-
filling lives, then perhaps test scores are not what a sur-
rogate should measure. There is plenty of evidence of test
scores falling short when attempting to correlate them with
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Table 3: The Correlations between Surrogate Measure and Posttest Score Treatment Effects

Surrogate Measure Treatment Effect Correlation with Posttest Score Correlation p-value

Expert Features as a Surrogate Measure (Section 4.1, Approach 1)
Correctness 0.62 <0.001

Tutoring Requested -0.59 <0.001
No Attempts Taken -0.01 0.935

Attempt Count -0.16 0.264
First Response Time 0.04 0.784

Expert Features Used to Predict Posttest Score (Section 4.1, Approach 2)
Posttest Prediction 0.62 <0.001

Expert Feature Treatment Effects Used to Predict Treatment Effect on Posttest (Section 4.1, Approach 3)
Treatment Effect Prediction 0.50 <0.001

Deep Learning Posttest Prediction with Mean Squared Error Loss (Section 4.2, Approach 1)
Posttest Prediction 0.60 <0.001

Deep Learning Posttest Prediction with Treatment Effect Squared Error Loss (Section 4.2, Approach 2)
Posttest Prediction 0.49 <0.001

things like college and career success. For example, stud-
ies have found that SAT scores do not explain any addi-
tional variance in college GPA for non-freshman college stu-
dents after taking into account social/personality and cog-
nitive/learning factors [7].

Perhaps next-problem correctness being the best surrogate
measure is an indication that the experiments in ASSIST-
ments are not properly evaluating students’ learning. The
process of giving students an assignment and then immedi-
ately following it with a posttest is likely more a measure of
performance rather than learning, which requires long term
retention and transfer [23]. The use of posttests immediately
following these experimental assignments could be particu-
larly problematic in cases where the assignments themselves
require students get three problems correct in a row before
completing the assignment. These cases essentially require
that students reach similar levels of mastery before evaluat-
ing their learning, which likely removes large portions of the
effects of the experimental conditions.

6.1 Limitations and Future Work
While in this work next-problem correctness was found the
be the best proximal surrogate measure for posttest score,
there are some factors that could limit the generalizability of
these findings. Firstly, this work uses data entirely from AS-
SISTments Skill Builder assignments. In these assignments,
students are given a series of mathematics problems on the
same skill, and are given immediate feedback on each prob-
lem as they complete it. next-problem correctness could be
especially relevant in this context because the next problem
is guaranteed to evaluate the same knowledge components
as the previous problem. In assignments where problems re-
quire different skills, the problem following an intervention
could be only tangentially related to the problem for which
the intervention was provided, and thus a student’s perfor-
mance on the next problem would not be a good measure
of the effectiveness of the intervention. In the future, us-
ing next-problem correctness as a surrogate measure should
be evaluated in other kinds of online learning environments,
perhaps in contexts where the content students see is cho-
sen adaptively. In this scenario, students will see different

problems following an intervention, and combining the next-
problem correctness of multiple problems could have positive
or negative effects on next-problem correctness’s value as a
surrogate measure of learning.

Additionally, in this work, only 51 different research ques-
tions were used to evaluate the quality of different measures,
with a total of 26,060 samples. It is possible that some of
the model based attempts at creating a surrogate measure
of learning would be more successful if given more data from
a wider variety of situations in which A/B testing was per-
formed. Having a larger and more diverse dataset to train
the models from also opens up the possibility to train multi-
ple specific models for different subgroups of users or exper-
iments. With the limited data in this work, it was unlikely
that splitting the data into subgroups would have helped any
of the models. However, with more data it could be the case
that a model trained on students with similar backgrounds
would be more effective at interpreting behaviors specific to
those students. It could also be the case that training a
model for a specific type of experiment, for example, exper-
iments that alter the way in which students must answer
the question as opposed to experiments that alter the sup-
port messages students receive, could improve the model’s
ability to pick up on different student behaviors associated
with these different experiments. In the future, if more data
becomes available, models trained on subgroups should be
explored.

7. CONCLUSION
In this work, we attempted to derive and validate an effec-
tive surrogate measure of learning for use in online learn-
ing platforms where rapid A/B testing is used to compare
problem-level instructional interventions at scale. To ac-
complish this, a variety of proximal surrogate measures for
posttest score were created through feature engineering, re-
gression, and deep learning. After evaluating each surrogate
measure by ensuring it met the criteria for an associative
surrogate as described in [10], students’ next-problem cor-
rectness was determined to be the best surrogate. However,
these results could be an indication that the ASSISTments
experiments focus on performance rather than learning, and

323



that they should be restructured to measure a more nuanced
interpretation of learning.

Follow-up work should be done to validate next-problem cor-
rectness as a measure of learning for different types of ex-
periments in different domains and learning environments.
Moving forward, using next-problem correctness as a mea-
sure of learning within online learning platforms could be
an effective way to evaluate students’ progress and com-
pare problem-level interventions to each other. We hope this
work can help support the educational data mining commu-
nity by providing methods to create and validate surrogate
measures.
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ABSTRACT
Massive Open Online Courses (MOOCs) make high-quality
learning accessible to students from all over the world. On
the other hand, they are known to exhibit low student per-
formance and high dropout rates. Early prediction of stu-
dent performance in MOOCs can help teachers intervene in
time in order to improve learners’ future performance. This
is particularly important in healthcare courses, given the
acute shortages of healthcare staff and the urgent need to
train data-literate experts in the healthcare field. In this pa-
per, we analysed a health data science MOOC taken by over
3,000 students. We developed a novel three-step pipeline to
predict student performance in the early stages of the course.
In the first step, we inferred the transitions between stu-
dents’ low-level actions from their clickstream interactions.
In the second step, the transitions were fed into Artificial
Neural Network (ANN) that predicted student performance.
In the final step, we used two explanation methods to inter-
pret the ANN result. Using this approach, we were able
to predict learners’ final performance in the course with an
AUC ranging from 83% to 91%. We found that students who
interacted predominately with lab, project, and discussion
materials outperformed students who interacted predomi-
nately with lectures and quizzes. We used the DiCE coun-
terfactual method to automatically suggest simple changes
to the learning behaviour of low- and moderate-performance
students in the course that could potentially improve their
performance. Our method can be used by instructors to help
identify and support struggling students during the course.

Keywords
Student performance, Neural networks, MOOCs, Explain-
ability, Health data science

1. INTRODUCTION
Today, online learning has greatly changed how people learn.
Especially after the Covid-19 pandemic, traditional class-
rooms are augmented with online activities. In addition,
Massive Open Online Courses (MOOCs) have recently made
learning more accessible globally to millions of people. De-
spite the great interest in MOOCs, there are many challenges
to their adoption, such as high dropout rates and low learn-
ing performance. This is primarily because students need
to plan and regulate their learning activities, which can be
challenging [20, 24, 11, 23]. Therefore, predicting student
performance as early as possible can help teachers provide
timely feedback and support to students and inform them
of strategies to improve their performance [2].

Although there are many studies on predicting student per-
formance in MOOCs, several important limitations have not
yet been addressed [2]. First, most of the previously pro-
posed methods require learner-interaction data of an entire
course (from the first to the last day) for prediction. These
studies are useful for analysing student performance and be-
haviour after the course has ended [7, 2]. Conversely, a
method with the ability of early prediction of student learn-
ing outcomes can help improve student performance [2]. Sec-
ond, previous work focused only on whether students passed
or failed the course [4, 10, 2, 26], while it is also important
to identify students with moderate performance. Teach-
ers can potentially help such learners perform better than
simply passing the course. Third, most studies on predict-
ing student performance with the use of black-box machine
learning models, are difficult to interpret. Therefore, it is
hard for teachers to make sense of the predictions and act
upon them. As machine learning has been rapidly used in
various applications, it has become increasingly important
to explain the process that leads to a particular decision
[9]. Explanation algorithms can make it easier for teach-
ers to provide personalised feedback to learners. Finally, an
important area of education that needs more attention is
health data science. According to the National Academy of
Medicine, training healthcare professionals who are knowl-
edgeable in both health and data science is highly required,
urgent, and challenging [18]. The complexity of teaching in-
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terdisciplinary topics to students from diverse backgrounds
adds to this difficulty [17]. Therefore, the application of an
early student performance predictor to health data science
courses can facilitate the much-needed training from which
data-literate healthcare experts can emerge.

To address these issues, we propose a three-step pipeline for
early prediction of student performance. First, we calculated
a transition matrix between different learning actions using
a first-order Markov chain representing students’ learning
processes. Then, the calculated transition matrix was used
to classify learners into high- (HP), moderate- (MP), and
low-performance (LP) groups using an ANN. Finally, two
explanation methods were utilised so as to make the model
output more actionable for teachers. The SHAP explanation
approach was used to find out which features are important
for prediction. Then, we also applied the DiCE method to
calculate counterfactual values for LP and MP students, so
as to find out how they can improve their learning outcomes.

The proposed pipeline was applied to the Data Science in
Stratified Healthcare and Precision Medicine MOOC on Cours-
era, which includes more than 3000 enrolled students [6].
The results show that students who interacted more with
the project, discussion, and lab materials achieved higher fi-
nal grades. In addition, HP students actively interacted with
the video lectures by pausing and replaying the videos. This
may indicate that HP students not only watched videos until
the end but they also paused, replayed, and sought the video
lectures to contemplate the video materials, take notes, or
re-watch certain parts of the videos.

The achieved AUC values ranging from 83% to 91% indi-
cate that the method was successful in predicting the perfor-
mance of health data science students after one week or more
of interaction with the course. We also discussed changes
suggested by the explanatory method for two students (one
LP and one MP) with the help of the course instructor.
According to the course instructor, some of the suggested
changes are useful for providing personalised feedback to
students. The contributions of this study are: i) developing
a novel ANN approach for early (after seven calendar days)
student performance prediction, ii) employing explanation
methods, which may help teachers to provide students with
personalised feedback, and iii) applying our approach to an
interdisciplinary MOOC in the field of health data science
with a high number of enrolled students.

2. RELATED WORK
Prior work for predicting student performance in MOOCs
used a variety of different methods. These methods can be
classified into tree-based models, linear models, probabilis-
tic models, and Neural Network (NN) approaches. Notable
examples include Mbouzao et al. [19] who used a tree-based
method to predict student success in a MOOC using video
interaction data. They analysed data from a McGill Univer-
sity online course on edX over a period of 13 weeks. They
defined three metrics based on video interaction data and
predicted whether students would pass or fail. The method
uses the students’ video interaction data after the first and
sixth weeks as input. The accuracy of the early prediction
was rather low (≈ 60%), while the prediction after the sixth
week was more accurate. This result echoes the need to im-

prove the early student performance prediction on MOOCs.

Another example of the application of tree-based methods
is the work of Al-Shabandar et al. [1]. They analysed be-
havioural and demographic features of more than 590,000
students from 15 MOOCs in Harvard University’s HMedx
dataset to predict pass/fail status. They applied several tra-
ditional machine learning methods, such as Random Forest
(RF), Support Vector Machine (SVM), Naive Bayes (NB),
Decision Tree (DT), Logistic Regression (LR), and NN, and
showed that RF produces the best performance.

Some papers used linear models to predict student perfor-
mance. For example, Liang et al. [14] applied three linear
methods: linear discriminant analysis, LR and Lagrangian
SVM (LSVM) to the behavioural data of students in a Data
Structures and Algorithms MOOC to predict pass/fail sta-
tus. They showed LSVM achieved the highest accuracy.

Another group of papers has used probabilistic methods
such as NB, Bayes network and Bayesian generalised lin-
ear (BGL) models for performance prediction. For example,
Cobos et al. [5] developed an online tool using various ma-
chine learning algorithms such as Boosted LR, RF, NB, NN,
SVM and BGL to predict pass/fail status. The tool works
based on analysing behavioural and video interaction data
of students collected from 15 different MOOCs in social sci-
ence and science fields. It was found that BGL is the best
model as it can be trained quickly and gives stable results
(AUC between 60% and 80%).

Numerous works have used NN such as MultiLayer Percep-
tron (MLP) or ANN, Recurrent Neural Networks (RNN)
and Long Short-Term Memory (LSTM) to predict student
performance. For example, Kőroesi and Farkas [13] devel-
oped an RNN model based on raw clickstream data that is
suitable for both regression and multiclass classification of
weekly student performance. They used the Stanford La-
gunita dataset, which consists of log data from 130,000 stu-
dents, and took the final quiz score as the output for the
regression problem, while the students were divided into 10
levels based on their final scores for the classification prob-
lem. Although their model does not require a feature engi-
neering step, the classification accuracy of the best model
(using features of all weeks) is low (around 55%).

Qu et al [22] analysed a C programming MOOC with 1525
learners. They focused only on the log data of the program-
ming tasks. Features such as submission times and order of
submissions were used to predict student performance us-
ing an MLP. The results show that failing students have
an obvious sequence pattern when trying to solve program-
ming tasks, while the behaviour of passing students is less
straightforward. The authors also developed an MLP with
LSTM and discriminative sequential pattern mining to cap-
ture learners’ behavioural patterns and predict their perfor-
mance. These NN-based models are black-box and would
require an additional explanatory step to help teachers un-
derstand the results of these models [25].

The current approaches do not provide satisfactory perfor-
mance in early student performance prediction [2]. Also,
teachers need to identify LP students as soon as possible
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Figure 1: Schema of our approach

to help them adopt effective learning strategies. Moreover,
none of the previous NN-based studies used explanatory
methods to make the result more actionable and interpretable
for teachers. The interpretation of the prediction is key
for teachers since they need to understand the learning be-
haviour of students to write personalised feedback.

3. METHODOLOGY
Figure 1 shows the schema of our approach for early student
performance prediction. First, for each learner, a sequence
of learning actions during a set time window (e.g. one cal-
endar week) was extracted. These represent the lowest level
actions carried out by the student (e.g., playing a video lec-
ture, submitting an assignment, and so on). The set of possi-
ble learning actions can be defined based on clickstream data
and the course design (See Section 4). Second, the transition
probability between each pair of actions was computed us-
ing a first-order Markov chain. Third, an ANN was trained
to predict students’ performance levels (LP, MP, and HP)
given a student’s transition matrix. Finally, the DiCE and
SHAP methods were employed to explain the model decision
in order to help teachers write personalised feedback.

Let A = {a0, a1, a2, ..., aN , aN+1} denote Markov states,
where a0 = start, aN+1 = end, each ai is a learning action,
and N is the number of all learning actions. Assume Sk =

(s
(0)
k , s

(1)
k , ..., s

(n)
k ) be the sequence of actions for kth student

in a time frame, in which s
(0)
k = start, s

(n)
k = end and s

(t)
k ∈

A be the action that the kth student has done in the tth
time of the sequence of actions. The sequence of actions can
be seen as a trajectory between states in the Markov chain
and is used to estimate the transition probability between
Markov states. Based on the Markov chain, the transition
probability matrix for the learning process for kth student

is Pk = [pk(i, j)]i,j∈{0,...,N+1} calculated by Formula (1).

pk(i, j) =
|s(t)k = ai and s

(t+1)
k = aj |∑

l̸=i |s
(t)
k = ai and s

(t+1)
k = al|

, (1)

where |.| is the count function. In Formula (1), the number
of transitions from ai to aj is divided by the number of all
transitions emanating from ai. The transition probability
matrix is calculated for each student separately. Although
the action sequences for each student can change, the tran-
sition probability matrix for all students has the same di-
mension of (N + 2) × (N + 2). Note that if kth student
never commits the transition from action ai to action aj ,
pk(i, j) = 0.

For each student, the transition probability matrix of all ac-
tions in the time frame served as input to the ANN. We
employed ANN as the state of the art in predicting student
performance; they have been shown to outperform tradi-
tional methods [3]. The ANN model includes input, hidden,
and output layers. The hidden layer computes the latent
features extracted from the input layer using ReLU(x) as
the activation function. The output layer has three neurons
to compute the probability of the input belonging to each
of the three classes (LP, MP, and HP) using Sigmoid(x) as
the activation function. The final grade can be mapped to
LP, MP, or HP categories, or more finer-grained categories,
based on instructors’ preferences. A set of hyperparameters
were used for finding the best ANN architecture. The values
tested for the number of hidden neurons were 5, 10, 15, 20,
50, 100, and 200. The batch size values tested were 4, 8,
16, 32, 64, and 128. The number of epochs tested was 5,
10, 15, and 20. To train the model, the categorical cross-
entropy loss (CCE) was computed on each batch of data and
the weight values were updated based on ADAM optimizer
[12] after feeding each batch. The model performance was
evaluated on the test data using the Area Under ROC Curve
(AUC). To evaluate the performance of the predictive model
objectively, we used 5-fold stratified Cross-Validation (CV)
and 20% of the training data were considered as validation
data (changed in each fold) for tuning the hyperparameters.

3.1 Interpretability
We used the SHAP (SHapley Additive exPlanations) method
[16] to select the most important features in predicting stu-
dent performance. In the SHAP method, Shapley values are
calculated for each transition probability (features) and the
transitions with the highest Shapley values were considered
the most important features that contribute the most to the
model prediction. The Shapley value for a transition from
action ai to action aj is ϕai→aj and is defined in Formula
(2). Based on formula (2), ϕai→aj is the average improve-
ment of the model by adding this feature (transition from
action ai to aj) to all models considering different possible
features. Herein, a feature is a transition from one action to
another.

ϕai→aj =
∑

S⊂M−{i}

|S|!(|M | − |S| − 1)!

M !
(f(S ∪ i)− f(S)),

(2)
where M is the set of all features and f(S) is the perfor-
mance of model based on subset S of features. Since the fea-
tures are the set of all possible transitions between Markov
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states, |M | = (N+2)×(N+2). After calculating ϕai→aj for
all ai, aj ∈ A, we ranked them based on their importance
and selected the most important features.

In order to make the model more actionable for teachers, we
used the DiCE [21] method for calculating counterfactual
examples (CFs) to explain the conditions that can poten-
tially change the students’ performance. Each CF is a set of
changes (increase or decrease) in some transitions between
learning actions. An example of a set of CFs is increasing
the transition from Lecture A to Quiz B and decreasing the
transition from Video pause to Video end. A good set of CFs
should be efficient, proximal, and diverse. The efficiency
of CF means that applying those changes in the students’
learning process may lead to higher performance. Proximity
means that the suggested changes should be close to the cur-
rent learning process of the student; i.e. the CFs suggesting
huge changes in students’ current learning process are not
practical. Finally, the diversity of the CFs denotes that the
set of proposed changes in CFs should have the highest va-
riety, so that the student can have different options.

Consider an LP student with a transition matrix of P . A
reasonable CF can be the transition matrix P ′ that has the
same dimension and values as P , but with subtle changes in
some of the elements. Assume this student has a high tran-
sition probability from Video end to Quiz A, but a lower
transition from Video end to Quiz B. Suppose that HP stu-
dents proceed to Quiz B after the VideoEnd action with
a high probability. In this case, recommending this student
visit Quiz B after the VideoEnd action may increase the per-
formance of the student. To this aim, for each LP or MP stu-
dent with a transition matrix of P , the set of P ′

1, P
′
2, ..., P

′
m

counterfactual transition matrices are selected such that the
following loss function is minimised.

CF (P ) = argminP ′
1,P

′
2,...,P

′
m

m∑

i=1

L(f(P ′
i ), y

∗) (3)

+
λ1

m

m∑

i=1

dist(P ′
i , P )− λ2dppDiversity(P ′

1, P
′
2, ..., P

′
m)

In Formula (3), f(P ′
i ) is the predicted performance of the

student considering P ′
i as his/her transition matrix, y∗ is

the ideal performance, L is the distance between predic-
tion for P ′

i and the ideal performance. dist is the Manhat-
tan distance of two transition matrices, dppDiversity is the
diversity of counterfactual transition matrices which is de-
fined based on Formula (4), and λ1, λ2 are the regularization
terms to balance three terms of loss functions.

dppDiversity(P ′
1, P

′
2, ..., P

′
m) = det(K) (4)

k(i, j) =
1

dist(P ′
i , P

′
j)

(5)

where i, j is any two CFs, and det(K) is the determinant of
the matrix K which its elements are defined based on For-
mula (5). Consequently, three terms in calculating CF (P )
represent the constraints for selecting good CFs. To be
specific, minimising

∑m
i=1 L(f(P ′

i ), y
∗) guarantees the ef-

ficiency of CF to be chosen in a way that may lead to
high performance. Also, minimising λ1

m

∑m
i=1 dist(P

′
i , P )

narrows down the CFs to the set of transition probabili-
ties that are close to the current learning process. Finally,

dppDiversity(P ′
1, P

′
2, ..., P

′
m) ensures the diversity of CFs.

For example, for each LP or MP student with a transition
matrix of P , various random proximal transition matrices
P ′ with some changes in some of the elements are consid-
ered. Among different possible CFs, the set of m transition
matrices which is highly probable in high-performance stu-
dents and leads to the minimum CF (P ) are selected. The
selected CFs such as an increase or decrease in some tran-
sition values, can potentially be used to guide students to-
wards improving their performance.

4. APPLICATION TO HEALTH DATA SCI-
ENCE MOOC

We applied our approach to data from the Data Science in
Stratified Healthcare and Precision Medicine (DSM) MOOC
on Coursera, for the period between April 2018 and April
2022 [6]. Over this period, 3,527 learners were enrolled
(38% male, 28% female, and 34% unknown) with at least
one learning action. The course completion rate for these
students is 38%. DSM is a self-paced 5-topic MOOC with
a total of 43 videos, 13 reading materials, five quizzes, one
programming assignment and one peer-review/project as-
signment. The course assessment includes a quiz for each
topic, as well as a programming assignment for the third
topic and a peer-reviewed assignment for the last topic. The
final grades were calculated (out of 100) by the weighted av-
erage of all quiz and assignment scores (each quiz weight
= 10%, programming assignment weight = 20%, and peer-
reviewed assignment weight = 30%). Upon the course in-
structor’s request, we grouped students into three perfor-
mance groups. An LP group (final grade < 50; i.e. student
failed the course), which included 62% of students; an MP
group (50 ≤ final grade < 80), which included 21% of stu-
dents; and an HP group (final grade ≥ 80), which included
16% of students.

We used anonymised data and have received institutional
ethics approval for this research. All 3,527 enrolled learners
with at least one action were used for the analysis. The
considered actions include starting to watch a video lec-
ture (Video-Start), playing a video lecture (Play), watch-
ing a video lecture until the end (Video-End), skipping
forward or backwards throughout a video lecture (Seek),
pausing a video lecture (Pause), changing the volume of
a video lecture (Volume-Change), changing the subtitle of
a video lecture (Subtitle-Change), downloading a video
lecture (Download-Video), downloading video lecture sub-
title (Download-Subtitle), changing the play rate of a
video lecture (Playback-Rate-Change), visiting the main
page of the video lecture i (Lecture-Topici), engaging
with discussion forum i or posting a question on the fo-
rum (Discussion-Topici), engaging with general discussion
forums (Discussion-General), engaging with reading ma-
terial i (Reading-Topici), engaging with quiz i such as vis-
iting the quiz page or submitting the quiz (Quiz-Topici),
engaging with lab materials of topic i (Lab-Topici), and en-
gaging with the peer-reviewed assignment such as visiting
the project or project submission (Project-Topici). The i
is a topic number ranging from 1 to 5.

For all performance groups, we computed the percentage of
students in each group that carried out each learning ac-
tion, denoted RAP (Relative Action Presence). Interest-
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ingly, more than 80% of the LP students interacted with
the first topics more than the topics towards the end of the
course. The RAP score for LP students’ learning actions de-
creases as the course advances. On the other hand, almost
all HP students were involved in assessment-related actions,
such as projects, lab work and quizzes. MP students have
similar RAP scores to HP students, although the order of
frequent actions is slightly changed.

For example, the project topic5, which accounts for 30%
of the total score, has the highest RAP (almost 100%) for
the HP students, a low RAP (about 10%) for LP and a
relatively high RAP (about 80%) in the MP students. Also,
RAP for Discussion-General is relatively high (about 75%)
in the HP, medium (about 55%) in the MP and low (0.25%)
in the LP group. In general, the majority (about 80%) of
HP students were involved in two-thirds of the activities,
while the majority (about 80%) of the LP students were
involved in one-third of the actions, highlighting the fact
that the HP students were involved in more actions than
the LP. Furthermore, since the RAP of lab work, projects,
and quizzes are much larger among HP students compared to
the LP group, it can be concluded that HP students focused
on assessment-related actions. It should be noted that the
low RAP of action in a group could be caused by a high
dropout of students (fewer students continued the course)
or low engagement of students that continued the course.

Even for the actions of the first topic, the RAP of HP is
greater than MP students, and the RAP of the MP is greater
than the LP group. These differences show that students’
performance can be predicted based on their level of inter-
action with the first topic. As the course progresses, the
difference in RAP increases between the HP and the MP,
and between the MP and the LP; i.e. the differences be-
tween the groups become more pronounced as the course
progresses.

4.1 Learning Processes
To shed more light on the differences in the learning pro-
cess between the HP, MP, and LP groups, the transition
probability matrices for each of the groups of students were
calculated using First-order Markov models [8]. The differ-
ence between the transition probability matrices of each pair
of groups is shown in Figure 2.

One difference between the students of the HP and LP
groups is how students interacted with videos. The red
colours in the pause and seek columns show that the HP
students are more inclined to use the pause and seek ac-
tions than the LP ones (Figure 2 a). Consequently, seeking
and pausing videos, which may involve contemplating the
video material, making notes, or re-watching certain parts
of the lecture, is a helpful action that may lead to better per-
formance. Conversely, it can be concluded that finishing a
video on its own is not an indicator of a good comprehension
of the concepts presented in the video.

Another difference between the HP and LP groups is how
students transitioned from the video-download action. Af-
ter doing this action, students in the HP group proceeded
mainly to the main page of lecture topics 5 and 4, while stu-
dents in the LP group proceeded to the main page of lecture

topics 1 and 2 (Figure 2 a). A similar trend appears when
comparing the matrices of the MP and LP groups (Figure
2 b). The transitions from VideoEnd to lecture topics show
that HP students are more likely to go to lecture topics 5
and 4, while LP ones prefer to move to lecture topic 1 (Fig-
ure 2 a). LP students engage more with actions in the first
topics, while HP and MP students focus more on the last
topics, which contribute more to the overall score.

Interestingly, after visiting the general discussion forum, HP
students mostly move to discussion topic 5, while the LP
students mainly moved to discussion topic 1 (Figure 2 a).
Also, the high probability of transition from discussion topic
5 to itself, and project topic 5 to itself, for the HP and MP
students when compared to the LP students, support that
the HP and MP were engaged with and discussed project
topic 5 more than the LP students.

There are a few differences between the HP and MP groups.
The most obvious difference is the higher likelihood of us-
ing seek and pause actions among the HP compared to the
MP students (Figure 2 b), which supports the hypothesis
that seek and pause can lead not only to an acceptable but
also to a high final grade. Another difference is that the HP
students are more likely to select discussion topic 5 after
going to the discussion area, while students from the MP
group are more likely to stay in the general discussion fo-
rum, which includes discussion related to the course but not
strictly related to a particular weekly topic (Figure 2 b).

4.2 Early Prediction of Student Performance
In this study, we set week as the time window; therefore,
the model is able to predict students’ final performance af-
ter seven calendar days or more. Five prediction models
were built and trained using clickstream data available up
to each calendar week. The best values of the hyperpa-

Table 1: AUC of the model to predict HP, MP and LP after
each calendar week (7 days).

AUC
Time window LP MP HP Micro Macro

First week 0.78 0.65 0.74 0.83 0.72
First two weeks 0.89 0.76 0.84 0.89 0.83
First three weeks 0.91 0.70 0.83 0.87 0.81
First four weeks 0.93 0.74 0.87 0.90 0.85
First five weeks 0.94 0.80 0.88 0.91 0.87

rameters were determined based on the performance of the
models on the validation data. Accordingly, the number of
hidden neurons, epoch size, and batch size were set to 200,
10, and 128, respectively. Mean AUC values were averaged
over 10 replications of the 5-fold CV.

Table 1 shows the AUC of each model for predicting stu-
dents performance. It is obvious that the AUC increases
over time for the prediction of the LP and HP students.
Based on Table 1, the AUC for the prediction of the MP
students decreases slightly in the first three weeks’ analysis
in comparison with the first two weeks’ analysis. This could
be due to the different behaviour of MP students in the
third week compared to their behaviour in the other weeks.
A possible explanation for this difference may be the pro-
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Figure 2: The y-axis and x-axis represent the source and destination of the transitions, respectively. The values range from -1
(blue) to 1 (red), centred at zero (grey), and the intensity of colour shows the magnitude of the difference. The red elements
in (a) represent that the probability of a transition between a pair of actions is higher in HP students than LP students, while
blue elements show a lower probability of the transition in HP than in LP students. (b) Red cells indicate a higher probability
of a transition in HP than MP students, while blue elements are the reverse.

gramming assignment as an assessment for the third week,
which might have an impact on the MP students’ behaviour.
This decrease in the AUC of the prediction of MP based on
the first three weeks affects the overall AUC value.

Although the model based on the first five weeks achieved
excellent AUC value (91%), indicating its great potential in
stratifying students, the model based on the first calendar
week also succeeded to classify students with a good AUC
(83%), showing that students’ performance can be predicted
with good accuracy from their actions in the first seven days
(See Table 1). Moreover, the performance of each model in
predicting the LP students is better than that of the MP or
HP students. This could be due to the larger group size, and
thus more training data from the LP students, or the better
discrimination of the definition of the LP students (score
from 0 to 50) compared to the two other groups. We used
the zeroR model as a baseline similar to the related work
[27, 15]. The proposed method significantly outperforms
the zeroR model baseline (AUC = 0.5, accuracy = 0.62).

4.3 Explanation and Important Features
The SHAP method was applied to estimate the importance
of features based on their influence on the predictive model
of the first week. The most important feature is the tran-
sition from video pause to play, which has a large, medium
and small impact on the prediction of the HP, MP, and
LP students, respectively. The top 10 important features
include transitions between play, pause, seek, videoStart,
and videoEnd, indicating the high impact that interaction
with videos has on their performance. Both transitions from
pause to play and from play to pause are highly important,

with a relatively even impact of play → pause in the predic-
tion of each group and a greater impact of pause→ play in
predicting the HP students, highlighting that even if all stu-
dents paused videos at the same rate, HP students resumed
videos much more frequently than others. The same is true
for the transitions seek → pause and pause → seek; thus,
resuming videos after a pause or seek is a better indicator
of the HP students than pausing or seeking itself. To assess
the values of the most important features in each group,
their relative occurrence was calculated for each group of
students. All the top features have high, medium and low
relative occurrence among HP, MP, and LP students, respec-
tively. Although there are many more students in the LP
group and only a few students in the HP group, the relative
frequency of the HP students is much higher for the top fea-
tures, which shows that the total number of actions (transi-
tions) for this small number of HP students was greater than
the total number of actions for the large population of LP
students. Consequently, this can be considered as an indica-
tor of the diligence of the HP students, the mediocre effort
of the MP students, and the minimum number of actions of
the LP students.

We also tried to select the top 300 important features us-
ing the SHAP method to train the models. This resulted
in micro-average AUC values of 84%, 88%, 88%, 91%, and
91% for the predictive models in weeks 1 to 5. However, the
improvement in model performance was insignificant, which
suggests that our method was able to extract important in-
formation from the sparse input features.

In the final analysis, we employed the DiCE method to sug-
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Table 2: Suggested changes that can lead to increasing the performance of students with low and moderate performance. As an
example, increasing Lab− Topic1→ Quiz − Topic5 means increasing the transition from lab material topic 1 to quiz topic 5.

Student Suggested changes
Student1 (Current group: LP) Increase Lab− Topic1→ Quiz − Topic5 Lecture− Topic1→ V ideoseek

videoStart→ Discussion− Topic5 V ideopause→ Discussion− Topic3
Lab− Topic3→ Project− Topic5 Lecture− Topic4→ Lecture− Topic1
Lecture− Topic5→ Lab− Topic5 Quiz − Topic5→ V ideoplay
Quiz − Topic5→ Lecture− Topic3

Student2 (Current group: MP) Increase Lecture− T3→ Lab− Topic5 Discussion− Topic3→ Discussion− Topic5

gest potential changes for LP and MP students that could
improve their performance. Table 2 shows example results
of the method for two students, one in the LP group and one
in the MP group. Below are some interpretations based on
the suggested changes in addition to the course instructor’s
discussion around the suggested changes.

Student 1 (an LP student): It seems that this student
had more trouble with the theoretical questions than with
the programming questions in the quizzes. Therefore, they
should watch video lectures and take notes before taking the
quizzes. Also, this student is advised to focus more on the
programming lab in Topic 1, before taking Quiz 5. Accord-
ing to the course instructor, this is a meaningful recommen-
dation, as this lab can support refreshing fundamental pro-
gramming knowledge, which aids in answering programming
questions. Another recommendation that is meaningful ac-
cording to the course instructor is around using discussion
forums more. In particular, the algorithm highlights en-
gaging with the discussion forums for Topics 3 and 5 upon
watching lecture videos. In online education, posting ques-
tions in the forums and reading existing discussions is a good
strategy for clarifying questions that may arise when watch-
ing videos. Some suggestions, however, are harder to deci-
pher, according to the course instructor. In particular, it is
unclear why it is recommended to engage with the program-
ming lab in Topic 3 before attempting the peer-reviewed
assessment, given that they cover very different concepts.

Student 2 (an MP student): By increasing only two transi-
tions, he/she can become an HP student. It can be deduced
that the student needs to work more on the topic of lecture 3
and then on topic 5. This student can improve his/her per-
formance if he/she spends more time on lab material and
discussions 3 and 5. According to the course instructor, it
is not a surprise that topics 3 and 5 are highlighted here, as
these two topics are strongly related to the programming and
the peer-reviewed assignment. The recommendation, how-
ever, to increase the transition from the lecture in topic 3 to
the programming lab in topic 5 is somewhat unexpected, as
the two topics cover rather different content. The instructor
has speculated that students might benefit from refreshing
knowledge related to network analysis in topic 3 when learn-
ing new concepts around graph data in topic 5, even though
this link is not made evident in the course design. This is
an interesting hypothesis to investigate in the future.

5. DISCUSSION
We proposed a novel approach for early predicting student
performance based on their learning process. Our method,
a combination of ANN and Markov chain, classified learn-

ers into three performance groups with AUC ranging from
83-91%. The results showed that even after only one week
of interaction with the course, our method can predict final
performance with reasonable accuracy. We also used SHAP
and DiCE explanation methods to identify important fea-
tures and suggest changes for LP and MP students to po-
tentially improve their performance. The proposed pipeline
can be used for different courses towards providing early and
personalised interventions to students. Since artificial intel-
ligence methods are not error-free, they are only an assistant
for teachers to provide them with processed information. Ul-
timately, it is teachers who write personalised feedback for
students by analysing the method results.

Learner behaviour in the health data science MOOC shows
that interacting with video lectures, such as pausing or re-
playing a video, which may be related to contemplating on
the material, taking notes, or re-watching certain parts re-
sult in a higher final grade. Investing more time in learning
materials related to key assessments (i.e. lab materials and
content from topics 3 and 5) also leads to higher grades.
Our analysis indicates that LP students lose motivation af-
ter attending Topic 3, while their engagement with Topic 1
materials is high. Our recommendation is to divide large as-
sessments into small tasks that a student can work on each
week, so as to motivate them and improve their performance.

A limitation of this work is that enrolled learners in MOOCs
have different motivations; therefore, the definition of per-
formance criteria is conceptually controversial. We focused
on the final grade as an indicator of learning performance.
Further research is needed to define a new performance cri-
terion that considers learner motivation as well as the final
grade. Since the method does not depend on course design
and can be used for MOOCs with a different number of top-
ics and learning materials, it needs to be applied to multiple
courses with different designs, contexts, and sample sizes
to assess its generalisability. The explanation step of the
pipeline can be improved with textual and visual explana-
tions based on educational learning theories. We have shown
that some of the suggestions by explanation methods make
sense for instructors but there are several recommendations
which are not clear enough. Further studies are needed to
process the output of the explanation step for making them
more consistent with learning theories and teachers’ prior
knowledge about the course.
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ABSTRACT  
Improving competence requires practicing, e.g. by solving tasks. 
The Self-Assessment task type is a new form of scalable online task 
providing immediate feedback, sample solution and iterative im-
provement within the newly developed SAFRAN plugin. Effective 
learning not only requires suitable tasks but also their meaningful 
usage within the student’s learning process. So far, learning pro-
cesses of students working on such Self-Assessment tasks have not 
been studied. Thus, SAFRAN was extended with activity logging 
allowing process mining. SAFRAN was used in a first-year com-
puter science university course. Students' behavior was clustered 
and analyzed using log data. 3 task completion behavior patterns 
were identified indicating positive, neutral or negative impact on 
task processing. Differences in the use of feedback and sample so-
lutions were also identified. The results are particularly relevant for 
instructors who can tailor adaptive feedback content better to its 
target group. The analytics approach described may be useful for 
researchers who want to implement and study adaptive and person-
alized task processing support. 

Keywords 
Sequence pattern analysis, Self-Assessment tasks, students task 
processing behavior, distance learning. 

 

1. INTRODUCTION 
Teaching can be described as a sequence of teaching-learning pro-
cesses planned and designed by teachers [31]. As a central 
instrument for planning, controlling, and evaluating these pro-
cesses, exercises in the form of tasks have long played a significant 
role in the learning context [24]. They serve to promote learning 
effectiveness by helping to apply and consolidate knowledge 
learned. This applies to both traditional and multimedia learning 
opportunities. Online tasks in particular offer many advantages. 
Students are able to work on them independent of location and time 
and receive immediate feedback on their performance. Students are 

able to learn and test their knowledge independently and, in some 
cases, self-directed, without the direct instruction and support of 
teachers as well as other students. However, there are also limita-
tions. Learning in a virtual environment is, for example, apart from 
live sessions with teachers, predominantly an asynchronous learn-
ing process. When working on tasks students are left to their own 
devices and must show initiative if they do not understand some-
thing. This is a hurdle that not every student can overcome, which 
often leads to incorrect understanding or even abandonment of the 
task [16, 7]. Students can often receive feedback after completing 
a task, but this may not be helpful for or used by every student [15].  

1.1 Self-Assessments as a competency-enhanc-
ing task type  
The use of competency-enhancing (complex and problem-oriented) 
tasks that students can complete independently is intensively dis-
cussed by researchers and teachers [18, 22]. But not all traditional 
assessment strategies can be applied to online courses. For exam-
ple, there are differences in the way a task is presented, the type of 
task, the complexity of the task, and appropriate support during the 
task. However, most tasks are at the lower two levels of Bloom's 
taxonomy [4] and are thus of lower complexity. 

Recent developments enable scalable competency-enhancing tasks 
in online environments [12, 30, 8, 27, 29]. Self-Assessments can be 
used to set complex tasks; thus, they belong to the competency-
enhancing task types. They are a special type of tasks with which 
students are able to evaluate their own solution based on assessment 
criteria and thus assess their own performance without third parties 
having to act as mediators. Students shall become a feedback pro-
vider themselves and gain an understanding of what a good work 
in the subject looks like, assuming they can accurately evaluate 
their own solution [2, 5]. But Self-Assessment tasks alone are not 
self-explanatory in case of an error in one's own solution. They are 
difficult to scale up in a virtual learning environment. Therefore, 
additional feedback is needed, which helps students to correct their 
own solution. This problem was identified and solved by [12] and 
implemented in a Moodle virtual learning environment [30]. In this 
approach, students begin the Self-Assessment process by selecting 
a relevant learning task to complete. Then the task, including in-
structions, is displayed and students are asked to create and submit 
a solution. After that, a list of assessment criteria set by the instruc-
tor is presented, a sample solution is provided on demand, and 
students are asked to evaluate the submitted solution. After the stu-
dents have evaluated the solution using the provided assessment 
criteria, feedback based on their Self-Assessment is automatically 
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selected from a feedback database defined by the trainer and pre-
sented to the students. Using the feedback, students can then reflect 
on the quality of their learning products and improve their solution 
in a new iteration (create, upload, self-assess the improved solution 
again, receive feedback, and accept or reject another iteration) until 
they self-assess their solution as correct or good enough or decide 
to complete the exercise [12, 13].  

This type of online task is well suited to examine the task pro-
cessing behavior patterns of students and their handling of feedback 
and sample solutions because, on the one hand, it consists of a rea-
sonable set of possible task processing steps. On the other hand, it 
can be used to set and solve complex tasks of varying difficulty. 
For this reason, the process was adopted for use in a LMS.  

1.2 Self-Assessment plugin: Improvement and 
Implementation 
The prototypical implementation from [30] is a Moodle quiz type 
plugin. Since this form of quizzes was somewhat cumbersome in 
the implementation of the intended iterative process of working on 
Self-Assessment tasks and slowed it down, the support of the pro-
cess was re-implemented as a Moodle activity plugin named 
SAFRAN (Self-Assessment with Feedback RecommendAtioNs), 
and thereby a simpler and faster editing process enabled. In addi-
tion, students were able to write their solution directly into an editor 
field, which was previously only possible by uploading .pdf, .png 
and .jpg files. Furthermore, additional information, such as process 
steps, clicks on feedback links, clicks on sample solutions and rat-
ings of feedbacks with additional reasons for negative feedback, 
were saved in a log.  

Figure 1 shows the user interface as well as the process of working 
on a Self-Assessment task in the enhanced SAFRAN plugin. In the 
first step, a student works on the task and submits his solution. In a 
second step, the student evaluates his solution by rating whether 
each indicated criterion is fulfilled by the submitted solution 
(checked) or not (unchecked). In the final step, the student receives 
feedback appropriate to his or her Self-Assessment of his or her 
solution. Here, the student has also the possibility to get access to 
the sample solution. Now, the editing process of the task can either 
be repeated to improve the solution based on the feedback or the 
provided sample solution, or the student may switch to another task, 
perform other activities within the course, or finish the task.   

However, it is not yet sufficiently known how students actually pro-
cess tasks of such type during the learning process. In order to 
provide students with usable and beneficial Self-Assessment tasks 
in a virtual learning environment, it is necessary to study how stu-
dents deal with solving such tasks during their learning process. In 
this context, a closer look at the use of feedback and sample solu-
tions is also relevant, as these are among the most important 
building blocks of the task-solving process. 

To address these gaps, this study will answer the following two re-
search questions: 

RQ 1: How do students work with Self-Assessment Tasks in SAF-
RAN and what differences can be observed in the way they process 
them? 

RQ 2: What behavioral patterns can be observed in the use of feed-
back and sample solutions by students when processing Self-
Assessment tasks in SAFRAN? 

 
Figure 1. Example of a student’s interaction with the SAFRAN 
plugin 
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2. RELATED WORK 
Since the start of digitalization in the educational environment and 
especially later on due to the transfer of traditional face-to-face 
teaching to technologically supported distance teaching accelerated 
by the COVID-19 pandemic [1], recent research has been con-
cerned with the learning behavior of students in virtual learning 
environments. Research into this area provides information about 
the learning processes of different students. This knowledge is im-
portant to enable and support the successful acquisition of 
knowledge by students as much as possible [33]. An important 
point here is that knowledge acquisition, development and use can 
be identified through the observation and analysis of the handling 
of tasks [21]. Many studies use good grades as an indication of 
knowledge acquisition and use [19, 17, 34, 23, 9, 6, 3].  

For example, in analyzing the activity logs of 124 participants from 
three Moodle courses at three different universities, [34] found a 
significant positive correlation between task completion and final 
grade. Their study also showed that students, who were very active 
within the course and had many logged events, received the highest 
grades. [17] found a similar result when analyzing the handling of 
Self-Assessment tasks. They found a positive correlation between 
engagement in the tasks and good performance in the final exam. 
For this purpose, they examined log data as well as the self-reports 
of 159 students of an Economic and Business Education university 
course.  

In general, one could assume from this that students, who actively 
engage with the course and complete assignments, perform well. 
However, it remains unknown how these tasks were used for learn-
ing. For example, if the tasks were mandatory tasks that possessed 
a deadline. Thus, the completion of tasks was bound to obligatory 
aspects, such as time, correctness, and quantity. This could distort 
the picture of how tasks were handled. Thus, in most studies, a 
strong increase in activity was always observed during or shortly 
before a deadline [34, 9].   

[25] recognized this lack of interpretability and limited their study 
to pure practice tasks without evaluation. They analyzed the poten-
tial relevance and impact of conducting non-evaluative assessments 
before rated assessments in an online mathematics course at a uni-
versity. They found that the performance of practice tasks had a 
positive impact on the chances of passing the subject. However, as 
the complexity of the tasks increases, the relevance of participation 
in non-assessment practice tasks also increases. This result is con-
sistent with standard learning theory [21]. [19] also investigated 
quiz-taking behavior. They analyzed students' interactions in sev-
eral online quizzes from different courses and with different 
settings using process mining. Four different behaviors were iden-
tified, a standard quiz-taking behavior, a feedback-using behavior 
(students using feedback from previous attempts), the use of learn-
ing materials during the task, and multitasking behavior 
(performing other learning activities in the course while working 
on a task). 

Thus, it is known that such behavior patterns exist, but little infor-
mation is available on how students engage with tasks and whether 
there are differences in usage. Behavioral patterns of feedback and 
sample solutions use related to task completion are also not consid-
ered. However, this is important in order to gain a better 
understanding of how tasks are used and to provide appropriate 
learning opportunities for diverse students. Therefore, with this 
study we try to gain insight into the behavior of students in dealing 
with tasks and the corresponding feedback as well as sample solu-
tions. 

3. METHODS 
To identify task processing behavior patterns of students in a real 
learning environment with Self-Assessment tasks and correspond-
ing feedback as well as sample solutions, the task processing 
behavior of students will be investigated by means of learning ana-
lytics.  For this purpose, a time period within the course is chosen 
where it can be assumed that students are not engaged in exam 
preparations or settling in within the course. First, the study design 
as well as the used dataset will be explained, followed by data col-
lection and analysis methods used. 

3.1 Study Design and Dataset 
For the study, 254 students of a computer science course on oper-
ating systems and computer networks were selected who 
volunteered to use an adaptive Moodle learning environment in 
winter term (WT) 2022 and agreed to the study by signing the con-
sent form, which was approved in advance by the university's data 
protection officer. Students were informed about the use and han-
dling of their data. Only anonymized data was used for analysis. 
Alternative printed and digital learning material was offered to non-
participating students. 

The course was divided into four course units. In each of these 
units, course material and exercises, such as multiple choice (23 
occurrences), assignments corrected by tutor (30 occurrences) and 
Self-Assessments (41 occurrences), were provided. Assignments 
had a deadline and had to be submitted on time, all other exercises 
could be completed voluntarily and had no restrictions regarding 
deadline and repeatability. In addition, a usenet forum, recordings 
of live sessions, and questions for exam preparation were offered. 

The Self-Assessment tasks [14] used in the study were evenly dis-
tributed over the individual learning units of the course. The level 
of difficulty of the tasks was determined by the teacher and was on 
average in the medium range. The number of Self-Assessment cri-
teria ranged from 2 to 7. 

The course started on October 1st, 2022 and ended on February 3rd, 
2023. The course was completed with a final exam at the end of 
semester. In order to get an insight into the learning process, a pe-
riod of eight weeks was chosen in the middle of the course from 17. 
October 17, 2022 to December 11, 2022. During this period, it was 
expected that students …: 

• have already completed the introduction of the learning 
environment. 

• are aware of the materials and exercises offered in the 
course.  

• are not yet in the exam preparation phase. 

 

Table 1 lists all possible activities that are distinguished during task 
processing by the SAFRAN plugin and stored in the log database. 
Thus, the task ID, the number of attempts, the selected criteria with 
which the student has evaluated his solution, the activity in which 
the student is, the timestamp, the user ID and the percentage of 
points achieved are stored. The activities that a student can perform 
while working on a task are limited by the plugin. Students are gen-
erally able to select a task from a list of tasks and thus open it 
(open_task_from_list). They can write a solution to the task in the 
editor and submit this solution for Self-Assessment (request_eval-
uation). They can evaluate their own solution based on criteria and 
get feedback for this self-evaluation (request_feedback). After-
wards, students can follow feedback links (clicked_on_link), view 
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the sample solution (request_sample_solution), repeat the task (re-
peat_same_task), call up the next task in the list (open_next_task), 
or again select a task from the list (open_task_from_list). In addi-
tion, data on the feedback rating, a reason for each negative rating 
and the kind of feedback, were also collected. 

Table 1. An overview of stored task-based properties 

pre-processed task 
activities meaning 

questionid ID of the task 

attempt number of attempts by student for each 
task 

user_error_situation number and order of selected criteria 
of a task iteration 

state 

activities of students within a task in-
cluding: 
- cancle_task (go back to course page) 
- clicked_on_link (clicked on a link in 
the feedback) 
- open_next_task (used button to the 
next task) 
- open_task_from_list (used task list to 
choose a task)  
- repeat_same_task (repeaded the same 
task) 
- request_evaluation (handed in solu-
tion and started rating) 
- request_feedback (rated the solution 
and got feedback) 
- request_sample_solution (opend the 
sample solution) 
- viewed_task_history (looked at their 
prior solution and solution rating) 

datetime time the activity is called 
userid ID of the user 

achived_points_per-
centage 

result of student's last Self-Assessment 
attempt, compared to the maximum 
achievable assessment result 

feedbackid ID of feedback 

feedback_rating positive (1) and negative (0) rating of 
feedback by user 

feedback_reason reason for negative feedback given by 
students 

 

From these traces of the participants' interaction with the Self-As-
sessment plugin, the following indicators were created and used: 

• Number of attempts by students for each Self-Assess-
ment. 

• Number of sessions students have spent in SAFRAN. 
• Number of Self-Assessment sessions per user 
• Students' processing time for each Self-Assessment ses-

sion. 
• Number of task changes inside a session 
• Number of completed tasks 
• Number of sample solution calls per Self-Assessment 

task by students 
• Time needed for students to view the sample solution af-

ter requesting feedback. 
• Average percentage of points achieved on student Self-

Assessment attempts 
• Sequences of the different states and questions. 

3.2 Data Collection & Analysis 
Considering the objective of this study, it is an exploratory study 
using k-means clustering [26] and process mining methods [28] to 
identify and map students' behavioral patterns when completing 
Self-Assessment tasks, as well as to identify how they deal with 
feedback and sample solutions.  

The trace data logged by the SAFRAN plugin were extracted from 
the database, cleaned, and processed for analysis. To determine the 
optimal number of clusters (groups of students), the with-cluster 
sum of squares WCSS [32] and the average silhouette measure [20] 
were used as clustering quality measures (Appendix 1 Fig 6, 7, 8). 
Process mining is used to identify processes based on the trace data 
(Leno et al., 2018). This data is thereby analyzed and mapped into 
a process model by using the sequence of events to construct the 
graph. Here, nodes correspond to activities, arcs represent relation-
ships, and each node and arc is annotated with the corresponding 
frequency. The pm4py [10] Python process mining library was used 
to construct the process map.  

In addition, to understand the relationship and significance of the 
use of sample solutions during task processing, the Pearson corre-
lation was applied [11]. The Pearson correlation coefficient 
indicates a linear relation between two indicators and denotes the 
confidence interval at which the coefficient is significant. It ranges 
between −1 to +1 and values closer to −1 and +1 imply a strong 
correlation. A negative correlation coefficient implies a decrease in 
one indicator would result in an increase in another indicator, and 
vice versa. 

 

4. RESULTS AND DISCUSSION 
4.1 General results on task processing, use of 
feedback and sample solutions by students 
From a total of 254 observed participants, 144 dealt with Self-As-
sessment tasks at least once during the selected period. Thereby, 
the 41 available Self-Assessments were processed 1496 times.  

During the study period, a student worked on an average of 11 tasks 
(SD=8.8). The average time needed to complete one task was 3.3 
minutes (SD=3.2). Based on their own assessment, students 
achieved an average correctness of 80% (SD=24.2) of their solu-
tion. The tasks were completed in an average of four (SD=3.9) 
independent activity periods (sessions). A session lasted an average 
of 34 minutes (SD=34). Within a session, students switched tasks 
an average of 9.5 times (SD=9).  

Tasks were repeated an average of 1.3 times independent of ses-
sions (SD=2.2). The average time from requesting feedback to 
check one’s own solution to requesting the sample solution was 15 
seconds (SD=4). 

The sample solution was viewed a total of 570 times by students, 
whereas the percentage distribution of views for sample solutions 
to completed tasks was M=38%. To understand the relationship and 
significance of the use of sample solutions during task processing 
(Fig. 2), a correlation between the achieved relative score and the 
sample solution calls per task was found to have a strong significant 
negative correlation (-0.70, p<0.0001%). Thus, it could be assumed 
that a student with a low achieved task score is more likely to re-
quest the sample solution than a student with a high score. 

337



 

 
Figure 2. Students call of sample solution 

 

4.2 Differences in students' Self-Assessment 
task processing 
In general, three process clusters could be identified from the data. 
These clusters show respective process flows that the students per-
formed during their Self-Assessment task processing sessions.  

 
Figure 3. Process tree of the first cluster 

Cluster 1 (N=47) shows an intensive processing of tasks (Fig.3). 
Students in this cluster worked on the tasks for a longer period of 
time (M=43 min., SD= 26.1). Thereby, students in this cluster have 
worked on 11 tasks on average (SD 7.1), where solutions were par-
tially or completely correct. Time on task is approximately 3.9 
minutes. Based on their own assessment, students in this cluster 
achieved an average correctness of 81.5% (SD=23) of their solution 

and repeated a task an average of 2.5 times (SD=2.9). The sample 
solution was accessed 503 times by these students (50.1%). Stu-
dents in this cluster seem interested in constructing their own 
correct solution (mastery of task) as evidenced by on average 2.5 
repetitions leading to a relatively high correctness level. Students 
employed multiple pathways (i.e. activity sequences) mirroring dif-
ferent learning strategies, e.g., using feedback for improvement or 
using sample solution to identify and to correct deficits. Most fre-
quently, students open a task, request a self-evaluation, request 
feedback, request sample solution, and repeat the task. The less fre-
quently used pathway is students open a task, request a self-
evaluation, request feedback, and repeat the task. As indicated by 
the relatively high correctness level, the Self-Assessment task type 
supports students with different learning strategies. 

 

 
Figure 4. Process tree of the second cluster 

The second cluster (N=83) shows a less intensive task processing 
(Fig.4). Students in cluster 2 worked on average about M=17.6 
minutes (SD=7.9) in one session. Thereby, students in this cluster 
worked on 8 tasks partially to completely on average (SD=8.4). 
Time on task is approximately 2.2 minutes. According to their own 
assessment, students in this cluster achieved an average correctness 
of 80.2% (SD=25.3) of their solution and repeated a task an average 
of 0.8 times (SD=1.6). The sample solution was accessed 67 times 
by these students (13.2%). 

Students typically opened a task, request evaluation, request feed-
back, request sample solution, followed by a repeat same task or 
quit or open next task. The less frequently pathway is open task and 
next task/quit. Students in this cluster could either be successful 
learners who reached a high enough score with, at maximum, one 
iteration in shorter time than students in cluster 1. Or they could 
exhibit superficial self-evaluation behavior by selecting all criteria 
as fulfilled and thereby reaching an inappropriate high score.  

Similar results can be observed in the log data of mandatory assign-
ments (reviewed by correctors). This suggests that the probability 
that students exhibit superficial self-evaluation behavior is rather 
low, but cannot be excluded (cluster 1 (N=28) = 76% assignment 

y = -0,6916x + 90,38
R² = 0,4941

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

re
la

8v
e 

sc
or

e 

sample solu8on calls

rela8ve score Linear (rela8ve score)

338



correctness, cluster 2 (N=41) = 72% assignment correctness, clus-
ter 3 (N=4) = 73% assignment correctness). 

 
Figure 5. Process tree of the third cluster 

The third cluster (N=14) exhibits an incomplete task completion 
process (Fig.5). Students in this cluster never finished tasks and 
were limited to just opening different tasks. In doing so, they were 
active in a session for about M=8 seconds on average, SD=0.2,  and 
switched between tasks about 2 times (SD=16). 

Students in this cluster typically opened a task and then opened an-
other task or quitted. Thus, students seem to be interested in getting 
a quick impression of the task, and may not be interested of work-
ing on the task. Students in this cluster often disappear from the 
course without further activity in the LMS. 

 

5. CONCLUSION 
In this study, a process-oriented approach was used to analyze the 
behavior of the students when dealing with Self-Assessment tasks 
and to identify differences (RQ1). In addition, the handling of feed-
back and sample solutions during the processing of Self-
Assessment tasks should be considered more closely (RQ2). For 
this purpose, the process model from [12] was adopted and the pro-
totypical implementation from [30] was adapted and further 
developed. The newly created Moodle Activity Plugin SAFRAN 
was able to offer students a simpler iteration of Self-Assessment 
task and could also provide additional information about the activ-
ities carried out in connection with students’ task processing. 

In general, three different ways of processing the Self-Assessment 
tasks in the SAFRAN plugin could be observed. These would be an 
intensive Self-Assessment task processing, as seen in cluster 1 
(Fig.3), as well as a moderate task processing of Self-Assessment 
tasks as seen in cluster 2 (Fig. 4). The process flows in clusters 1 
and 2 differ only minimally, since the process steps for solving a 
task are largely specified by the SAFRAN plugin. They differ only 
in the proportionality of the activities (pathways). Thus, in cluster 
1 the proportionality is approximately uniformly distributed across 
all activity options, whereas students of cluster 2 predominantly 
choose one specific process per session and keep it. Students in 
clusters 1 and 2 differ significantly in the average time required per 
session and task, in the number of times a sample solution is re-
quested, and in the average number of repetitions per task. All these 
values are higher in cluster 1 than in cluster 2. Cluster 3, however, 
is very different from the other two in that it shows only a minimal 
task process. This mostly consists of just opening the task. Students 
in this cluster could be classified as task browsers. Similar behav-
ioral patterns could be detected by [12, 19].  

Based on the average Self-Assessment scores achieved, both Clus-
ter 1 and Cluster 2 appear to be beneficial behaviors. However, this 
is not true for Cluster 3, which has an unfavorable task processing 

pattern. Here, the system would have to adaptively respond to stu-
dents with such task processing patterns and motivate them to 
perform tasks in a favorable manner. 

Regarding the use of feedback and sample solutions while pro-
cessing Self-Assessment tasks, it could be observed that students 
use both feedback and sample solutions. Sample solutions are gen-
erally accessed relatively often, but this can strongly vary per task. 
It seems that the achieved score has an influence on the use and the 
necessity of a sample solution. The lower the achieved score, the 
more often students request a sample solution. Based on the aver-
age size of the feedback texts (approx. 33 words) and the amount 
of time students spend on the evaluation page (approx. 15 seconds) 
that provides feedback, it can be assumed that the feedback has 
been fully read and taken into account. The fact that students still 
call up the sample solution despite having received feedback could 
be due to the fact that for some students the feedback does not seem 
to be sufficient, so that efforts are apparently made to obtain the 
information that is still missing with the help of the sample solution. 
Such behavior indicates that the information content of existing 
feedback is not always sufficient and should be enriched with addi-
tional information. However, this should be adaptively adjusted to 
the specific needs of students according to their diversity-related 
characteristics. 

5.1 Limitations 
The study was only conducted for one course and one subject area, 
limiting the generalizability of the results. Further studies should 
therefore also include other subject areas. Since the study period is 
relatively small compared to the entire semester, no change in 
learning behavior over time was examined. Also, beneficial task 
processing patterns were be determined based on Self-Assessment 
results and the intended Self-Assessment task processing only. 
However, since we do not yet have results from the final exam, the 
benefits of the identified task processing patterns cannot be con-
firmed yet.  

In addition, there were also students who did not show any activi-
ties of Self-Assessment task processing. However, this does not 
necessarily imply drop-out, since they could have done other activ-
ities in the course, such as reading or mandatory assignments.  
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8. APPENDIX

 
Figure 2. The with-cluster sum of squares (WCSS) result 

 

 
Figure 7. The average silhouette measurement result 

 

  
Figure 8. The distortion score elbow result 

341



Using Markov Matrix to Analyze Students’ Strategies for 
Solving Parsons Puzzles 

Amruth N. Kumar 
Ramapo College of New Jersey 

amruth@ramapo.edu 

 

 

ABSTRACT 
Is there a pattern in how students solve Parsons puzzles? Is there a 
difference between the puzzle-solving strategies of C++ and Java 
students? We used Markov transition matrix to answer these ques-
tions. We analyzed the solutions of introductory programming 
students solving Parsons puzzles involving if-else statements 
and while loops in C++ and Java from fall 2016 to fall 2020. We 
present the results of our analysis qualitatively as heat maps and 
quantitatively using descriptive statistics.   

We found that most students solved the puzzles in the order in 
which lines appeared in the correct solution. Counter-intuitively, 
we found this pattern even in the solutions of the puzzles involving 
nested if-else statements, multiple while loops and nested 
while loops. Students who solved the puzzles with the fewest ac-
tions acted upon fewer lines out of order, i.e., not in the order in 
which they appear in the final solution. Whenever we found a sta-
tistically significant difference between C++ and Java solutions, 
C++ solutions involved fewer out-of-order and redundant actions 
than Java solutions. We discuss the implications of these results for 
the use of Parsons puzzles as a tool for teaching introductory pro-
gramming. 

Keywords 
Parsons puzzles, Puzzle-Solving Strategy, C++, Java, Markov ma-
trix. 

1. INTRODUCTION 
In a Parsons puzzle [21], first proposed as an engaging way to learn 
programming, the student is given a program in scrambled order 
and asked to reassemble it in its correct order. The puzzle may also 
contain distracters, which are incorrect variants of lines in the puz-
zle that are meant to be discarded. Parsons puzzles have gained 
popularity - scores on Parsons puzzles were found to correlate with 
scores on code-writing exercises [2]. Solving Parsons puzzles was 
found to take significantly less time than fixing errors in code or 
writing equivalent code, but resulted in the same learning perfor-
mance and retention [6]. In electronic books, students preferred 
solving Parsons puzzles to answering multiple choice questions or 
writing code [5]. Researchers have placed Parsons puzzles in a hi-
erarchy of programming skills alongside code-tracing [19], and 

have proposed using it to scaffold software design process [9]. Soft-
ware to administer Parsons puzzles have been developed for Turbo 
Pascal [21], Python (e.g., [1,11,12]) and C++/Java/C# [15].   

The focus in Parsons puzzles research lately has been on how stu-
dents solve them and what does/does not help students solve them 
better, e.g., the patterns in how students solve the puzzles [10,14]; 
that subgoal labels help students solve puzzles better [20]; that 
adaptive practice of Parsons puzzles is just as effective as writing 
code [4, 7]; that students are twice as likely to complete adaptive 
puzzles than non-adaptive ones [4]; but, motivational supports [16] 
and the use of mnemonic variable names [13] do not help students 
solve puzzles more efficiently. Yet, the effectiveness of Parsons 
puzzles as a tool for learning programming remains unresolved due 
to lack of replicated research [3] or contradictory results that found 
no correlation between Parsons puzzles and code-tracing / code-
writing exercises [18]. 

Another focus of research has been on the strategies used by stu-
dents to solve Parsons puzzles. Each Parsons puzzle typically has 
only one correct solution. So, the correct solution, i.e., the final re-
assembled program will be the same for all the students. But, the 
order in which students go about assembling the lines of code will 
vary among students. This order reflects their puzzle-solving strat-
egy.   

One study found that novice students solved puzzles by focusing 
on indentation of individual lines or their syntax [8] when lines 
were presented with indentation. Another study [10] found that 
some students used “linear” order, i.e., the order in which scram-
bled lines were provided. But, the study also observed backtracking 
and looping behavior, which were unproductive. Experts were 
found to use top-down strategy to solve Parsons puzzles in a study 
[11]. Students were found to use statement-level semantics more 
than control-flow semantics to solve puzzles in a recent study [22]. 
Another study reports that students found the final few steps of the 
solution to be more challenging [24].  

These studies have used various techniques to identify the puzzle-
solving strategy of students: think-aloud protocol [8, 11], a state-
transition diagram of puzzle-solving states and student transitions 
[10], edit distance trails and k-means clustering [24] and applica-
tion of BNF grammar rules to student logs [17]. Think-aloud 
protocols are gold standard for qualitative research, but they do not 
scale with the number of participants. State transition diagrams can 
grow intractable in size with combinatorially explosive number of 
states in all but very small puzzles, making it hard to find puzzle-
solving patterns with the approach. Edit-distance trails [24] lose 
line-specific information in the puzzles and are better suited for re-
vealing the rate at which students make progress towards the final 
solution. BNF grammars are suitable for verifying whether a stu-
dent used a specific puzzle-solving strategy, not for finding the 
student’s strategy. 
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In contrast, a first order Markov transition matrix (not to be mis-
taken for Hidden Markov Models) can be used to find patterns in 
time-series data. The matrix has dimensions determined by the 
number of lines in a puzzle, and not the number of states or stu-
dents. So, it is scalable with the number of students. We used it to 
analyze the data collected from the puzzle-solving sessions of stu-
dents to find patterns or strategies. The research questions for our 
analysis were: 

1. RQ1: Is there a pattern in how students solve the puzzles? An-
swer to this question may help shed light on how to improve 
them to promote learning.   

2. RQ2: Is there a difference between the puzzle-solving strate-
gies of C++ and Java students? This question is of interest 
because of the difference in the programming paradigm typi-
cally used in the two languages: imperative-first in C++ versus 
objects-first in Java, even though both the languages support 
object-oriented programming. 

2. PARSONS PUZZLE INTERFACE 
For this study, we used the data collected by epplets (epplets.org) 
[15], a suite of tutors on Parsons puzzles. The user interface of the 
tutors is shown in Figure 1. The problem statement is displayed in 
the instruction panel (I). The code for the problem is presented in 
the problem panel (P), both scrambled and unindented. The solu-
tion is assembled in the Solution panel (S). Distracters are deleted 
when dragged into the Trash panel (T). Feedback is provided for 
incorrect actions in the Feedback panel (F). The student has the fol-
lowing actions available for solving the puzzle: 

 Insert: Drag a line of code from the Problem panel (P) or the 
Trash panel (T) to the Solution panel (S) and drop it anywhere 
in S;  

 Delete: Drag a line of code from the Problem panel (P) or the 
Solution panel (S) to the Trash panel (T); 

 Reorder a line of code in the Solution panel (S) by moving it 
up or down by one or more lines; 

 Undo: Return a line from either the Solution panel (S) or the 
Trash panel (T) back to the Problem panel (P) - the line is 
placed back in its original scrambled order in the Problem 
panel (P); 

 

Figure 1. User Interface of Epplets [15] 

In addition, students could indent/outdent lines of code in the Solu-
tion panel (S) to improve the readability of the program. But, these 

actions were not counted in our analysis since indentation does not 
affect the semantics of C++ and Java programs.   

The tutors do not provide any feedback while the student is solving 
the puzzle. If the student attempts to submit an incomplete solution 
before moving all the lines out of the panel P, the tutors direct the 
student to properly place all the lines before submitting their solu-
tion. Once a complete solution is submitted, the tutors repeatedly 
highlight the next line in the solution that is not in its correct loca-
tion. The tutors either suggest how the line should be moved or 
point out the line of code that should replace it. The tutors provide 
such feedback until the solution is correct. The actions taken by the 
student in response to the feedback become part of the student’s 
solution sequence.  

3. MARKOV TRANSITION MATRIX 
The tutors report the order in which students solve a Parsons puzzle 
as a sequence of <line, action> pairs, line referring to line 
number in the correct solution of the code and action referring 
to the action applied to that line of code. We will refer to this se-
quence of pairs as action sequence. From a student’s action 
sequence, we can extract the order in which the student acted upon 
the lines of the puzzle by considering only the first tuple in each 
pair.  

For example, consider a four-line Parsons puzzle with no distract-
ers. The four lines are provided scrambled in panel P (Figure 1). 
We will refer to these lines by their location in the correct solution, 
e.g., line 3 is the line that should appear third in the correct solution, 
although it may be in any order in panel P. Suppose a student solves 
the puzzle using the following actions: 

1. Drags line 3 from panel P to S; 
2. Drags line 1 from P to S and drops it after line 3; 
3. Moves line 3 after line 1 in S; 
4. Drags line 2 from P to S and drops it after line 3; 
5. Drags line 4 from P to S and drops it after line 2; and  
6. Moves line 2 up so that it appears between lines 1 and 2.  

The corresponding action sequence is  

1. <3, Insert> 
2. <1, Insert> 
3. <3, Reorder> 
4. <2, Insert> 
5. <4, Insert> 
6. <2, Reorder>.  

From this action sequence, we extract the order in which the student 
acted upon the lines of the puzzle as 3-1-3-2-4-2. Finally, we use 
this order of lines to build a Markov transition matrix [25]. 

In a Markov transition matrix, the rows and columns are line num-
bers in the program, followed by distracters in the puzzle. In 
addition, the matrix contains a first row for the start state S before 
attempting the puzzle and a last column for the end state E after 
completely solving the puzzle. So, Markov matrix is an n X n ma-
trix where n = number of lines + number of distracters + 1. 

We will use M as the abbreviation for Markov transition matrix and 
Mi,j to denote the element of the matrix on row i and column j. Ini-
tially, all the elements Mi,j = 0. If a student applies an action to line 
j after applying an action to line i, Mi,j is incremented by 1. 

As an illustration, consider a puzzle containing 4 lines of code that 
are provided to the student scrambled. The left side of Figure 2 
shows the Markov transition matrix of a student who applies ac-
tions to lines in the following order: 4-1-2-1-3-4. Since the first line 
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acted on by the student is 4, MS,4 = 1. Thereafter, the matrix entries 
that are set to 1 are M4,1, M1,2, M2,1, M1,3, M3,4 and finally, M4,E 
since 4 is the last line to be acted upon. The right side of the figure 
shows the matrix for a student who applies actions to lines in the 
following order: 1-3-2-2-3-2-4-1. In particular, note that the student 
acts upon line 2 after line 3 twice – hence, M3,2 = 2. The student 
applies back-to-back actions to line 2, e.g., inserts line 2 into the 
solution, and immediately reorders it in the solution – hence, M2,2 
= 1. The last line acted upon is line 1 – hence, M1,E = 1. 

For our analysis, we combined the Markov matrices of all the stu-
dent solutions into a single transition matrix, such that:  

Mi,j = ∑ ai,j / s 

∑ ai,j is the sum of all the actions on line j after line i in all the 
student solutions;  

s is the number of student solutions, i.e., the number of times stu-
dents solved the puzzle.   

 1 2 3 4 E   1 2 3 4 E 

S    1  S 1     

1  1 1   1   1  1 

2 1     2  1 1 1  

3    1  3  2    

4 1    1 4 1     

Figure 2. Markov Transition Matrices for solution sequences 4-
1-2-1-3-4 and 1-3-2-2-3-2-4-1 for a puzzle containing 4 lines of 
code 

So, Mi,j is the number of actions on line j after line i per student 
solution. If all the students applied exactly one action to each line 
in each solution, 0 ≤ Mi,j ≤ 1.   

Since the puzzles also included two distracters D1 and D2, we 
added rows and columns in the matrix for D1 and D2 after those 
for all the lines in the puzzle. Mi,D1 refers to students acting on the 
first distracter D1 after line i. In the matrix: 

 If each student applies exactly one action to each line of code, 
the sum of all the entries in a row / column is 1. But, since a 
student may apply more than one action to a line of code (e.g., 
insert into the solution, reorder within the solution), the sum 
of each row / column is at least 1.   

 The larger the value of Mi,j, the larger the number of times 
students applied an action to line j after line i.   

 A puzzle assembled in the correct order of lines, i.e., line 1 in 
the solution is inserted first (MS,1), line 2 in the solution is in-
serted next (M1,2), and so on, will appear as entries in all the 
diagonal elements of the matrix from top left to bottom right. 

 When the solutions of all the students are combined in a ma-
trix, each widely used puzzle-solving strategy produces a 
distinct pattern in the matrix: entries between frame elements 
are large in frame-first strategy and most of the elements are 
non-zero and small in a random strategy.  

4. DATA COLLECTION AND ANALYSIS 
For this study, we analyzed the data collected online by two Parsons 
puzzle tutors called epplets (epplets.org) [15] on if-else state-
ments and while loops. The tutors were used by introductory 
programming students as after-class assignments in high schools, 
community colleges and baccalaureate institutions during fall 2016 

– fall 2020 as shown in Table 1. Some schools used the tutors for 
C++ and others for Java – so, the two sets of users were mutually 
exclusive. C++ and Java versions of each puzzle were of exactly 
the same size. This made it possible to compare the solutions in the 
two languages. Since the tutor users were introductory program-
ming students, they had little prior programming experience. The 
demographics of the students using the two tutors are shown in Ta-
ble 2. Not everyone reported their gender/race/major. 

The tutors were set up to randomize the variable names and data 
types used in the puzzles. They also randomly scrambled code in 
the problem panel P. Research shows that novice programming stu-
dents are unduly influenced by the superficial differences resulting 
from such randomization [31, 32, 33]. This randomization deterred 
plagiarism since no student saw the same puzzle verbatim more 
than once and no two students saw the same puzzle verbatim. It also 
deterred solution-sharing plagiarism schemes that afflict program-
ming tutors [27]. 

Table 1. Usage of the tutors in fall 2016 – fall 2020   

Fall 2016 – Fall 2020 if-else while loop 
Type of Institution C++ Java C++ Java 

High Schools 2 11 1 5 
Community Colleges 3 1 2 2 

Baccalaureate Institutions 4 13 3 11 

For our analysis, we considered only those students who solved a 
puzzle completely and correctly so that we could find patterns 
among those who successfully solved the puzzle. Only students 
who consented to their data being used for research purposes were 
included in the study. Because of these two factors, the N reported 
in Table 2 is not the same as those reported in subsequent tables. 
Since the tutors were accessible over the web, students could use 
the tutors as often as they pleased. If a student used a tutor more 
than once, we picked the session in which the student had solved 
the most number of puzzles. In case of a tie between two sessions, 
we used the data from only the first session. 

Table 2. Demographics of the users of the tutors   

Fall 2016 – Fall 2020 if-else while loop 
N 431 203 

Gender Male 264 102 
Female 100 38 

Race Caucasian 194 78 
Asian 91 33 
Other 70 25 

Major Computer Science 170 76 
Engineering 77 25 

Sciences 22 7 
We analyzed the data of each puzzle using three-color heat maps 
and descriptive statistics. A three-color heat map shows zero values 
in red, maximal values (0.2 and up) in shades of green and interme-
diate values (0.1 – 0.2) in yellow. For the calculation of descriptive 
statistics, we eliminated the last two rows and the penultimate two 
columns in the matrix corresponding to the two distracters – they 
were not part of the correct solution. The descriptive statistics in-
cluded: 

1. the number of different lines acted upon first (F) by students, 
i.e., the number of non-zero cells in the first row of the matrix;  

2. the number of different lines acted upon last (L) by students, 
i.e., the number of non-zero cells in the last column of the ma-
trix;  
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3. the percentage of matrix cells (C) that are non-diagonal and 
non-zero; and  

4. the sum of the values (V) of non-diagonal non-zero matrix 
cells expressed as a percentage of the sum of the values of all 
non-zero cells.   

5. The mean of diagonal elements (µd). 

Note that the greater the values of F and L, the more varied the 
solutions. The larger the value of C, the more the lines that were 
acted upon out of order, i.e., not in the order in which they appear 
in the final solution. The larger the value V, the more the redundant 
actions and hence, the less efficient the solutions.  

A puzzle with n lines can be solved with n actions. For the purposes 
of analysis, we considered as minimal solvers, students who solved 
a puzzle with no more than 1.1n actions, i.e., with no more than 
10% redundant actions. Minimal solvers were a subset of all the 
solvers of a puzzle. We analyzed the data of each puzzle, both for 
non-minimal and minimal solvers. We computed the statistical sig-
nificance of the difference between two groups (e.g., non-minimal 
versus minimal solvers) by using paired sample t-test in which the 
corresponding values Mi,j (the element of the Markov matrix on 
row i and column j) of the two groups were paired.  

5. RESULTS 
5.1 if-else puzzles 
The first puzzle solved by the students was on a program that read 
two numbers and printed the smaller of the two numbers. The puz-
zle contained 14 lines of code and 2 distracters.   

Figure 3 shows the heat map of C++ solutions: for non-minimal 
solutions on the left and minimal solutions on the right. In the heat 
maps, the last two rows and the penultimate two columns corre-
spond to distracters. Note the following in Figure 3: 

1. A majority of both non-minimal and minimal solvers assem-
bled the puzzle in the order in which the lines appeared in the 
correct program. So, the largest values are all along the diag-
onal – µd, the mean of diagonal elements, is 0.61 for non-
minimal and 0.81 for minimal solvers. This behavior was 
much more pronounced among minimal solvers: the diagonal 
is brighter green and far more non-diagonal cells are red 
(zero). Paired sample t-test yielded a statistically significant 
difference between the two groups (p < 0.001). 

2. Students discarded distracters more often than not at the end 
of the session – the cells in the last column for the last two 
rows are green.   

Minimal solvers solved the puzzles with no more than 10% unnec-
essary actions. But, this did not mean, they had to assemble the 
puzzle in the order in which the lines appeared in the correct pro-
gram (corresponding to the diagonal from top left to bottom right 
being green): they could have assembled the program in reverse or-
der, i.e., the last line first and the first line last (corresponding to the 
diagonal elements from the bottom left to the top right being green) 
or in random order (non-diagonal elements just as likely to be green 
as diagonal elements). That a majority of both non-minimal and 
minimal solvers solved the puzzles in the correct order of the lines 
in the puzzle is a novel and interesting finding of this study.  

Figure 4 shows the heat map of Java solutions: for non-minimal 
solutions on the left and minimal solutions on the right. We observe 
the same two patterns in Java as in C++. The difference between 
non-minimal and minimal Java solutions was again statistically sig-
nificant (p < 0.001). 

  

Figure 3. Heat Map of C++ solutions: non-minimal (N=118) on 
the left and minimal (N=57) on the right   

  

Figure 4. Heat Map of Java solutions: non-minimal (N=237) on 
the left and minimal (N=66) on the right   

Table 3 lists the descriptive statistics for C++ and Java solutions. 
The table numerically confirms what is hinted at in the heat maps: 
minimal solutions were less varied, with fewer first lines (F) and 
last lines (L). In minimal solutions, students acted on fewer lines 
out of order, e.g., among C++ solvers, non-zero non-diagonal cells 
(C) were fewer - 24.3% for minimal versus 88.1% for non-minimal 
C++ solutions. As could be expected, minimal solutions were more 
efficient with fewer redundant actions, e.g., among Java solvers, 
the sum of non-zero non-diagonal cells as a percentage of all the 
non-zero cells (V) was smaller too - 26% for minimal versus 68.8% 
for non-minimal Java solutions.  

Table 3. Descriptive statistics for if-else puzzle 1    

if-else  
puzzle 1 

C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 118 57 237 66 
First line (F) 10 2 12 6 
Last line (L) 13 4 14 7 

Cells (C)  88.1% 24.3% 96.7% 35.2% 
Value (V) 64.4% 15.4% 68.8% 26.0% 

Diagonal (µd)     0.61 0.81 0.63 0.7 
In addition, it is evident from Table 3 that C++ solutions were less 
varied, had fewer lines assembled out of order and were more effi-
cient than Java solutions. Paired samples t-test yielded a 
statistically significant difference between non-minimal C++ and 
Java solutions (p < 0.001), but not between minimal C++ and Java 
solutions.  

The second puzzle solved by students was on a program to read 
numerical grade and print the corresponding letter grade. The pro-
gram contained four levels of nesting of if-else statements. The 
puzzle contained 34 lines of code and 2 distracters.  
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The heat maps of C++ solutions are shown in Figure 5 – for non-
minimal solutions on the left and minimal solutions on the right. 
Once again, note that a majority of the students solved the puzzle 
in the order of the lines in the correct solution. This result is partic-
ularly counter-intuitive since the solution contained four levels of 
nesting of if-else statements. Multiple copies of the same line 
of code (e.g., else or braces) were treated as interchangeable by 
the tutor. Yet, assembling nested if-else statements in the order 
of the lines is no small feat. Balancing the braces of if-clause and 
else-clause is in itself a difficult task for novice programmers. Yet, 
a majority of the students chose to reassemble the program in the 
order in which the lines appear in the correct solution. The differ-
ence between non-minimal and minimal C++ solutions was 
statistically significant (p < 0.001). 

  

Figure 5. Heat Map of C++ solutions: non-minimal (N=89) on 
the left and minimal (N=42) on the right   

  

Figure 6. Heat Map of Java solutions: non-minimal (N=154) on 
the left and minimal (N=28) on the right   

Table 4. Descriptive statistics for if-else puzzle 2   

if-else 
puzzle 2 

C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 89 42 154 28 
First line (F) 9 2 9 4 
Last line (L) 18 12 29 10 

Cells (C)  67.4 19.0 78.2 17.4 
Value (V) 64.3 38.5 70.4 37.5 

Diagonal (µd) 0.57 0.62 0.46 0.62 
Similarly, the heat maps of Java solutions are shown in Figure 6. 
Once again, students attempted to solve the puzzle in the order of 
the lines in the correct solution, minimal solvers much more so. The 
difference between non-minimal and minimal Java solutions was 
statistically significant (p < 0.001).  

The descriptive statistics are shown in Table 4. The difference be-
tween C++ and Java was not statistically significant for non-
minimal or minimal solutions. 

5.2 while loop puzzles 
The first puzzle solved by students was on a program to read num-
bers till the same number appeared back to back. The program 
printed the first number to appear twice back to back. The puzzle 
contained 13 lines of code and 2 distracters.   

  

Figure 7. Heat Map of C++ solutions: non-minimal (N=48) on 
the left and minimal (N=44) on the right   

  

Figure 8. Heat Map of Java solutions: non-minimal (N=78) on 
the left and minimal (N=42) on the right   

Table 5. Descriptive Statistics for while puzzle 1   

while puzzle 1 C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 48 44 78 42 
First line (F) 5 2 5 2 
Last line (L) 8 5 6 6 

Cells (C) 73.1 32.4 80.8 29.1 
Value (V) 62.5 33.1 62.9 23.0 

Diagonal (µd) 0.56 0.6 0.62 0.7 
The heat maps of C++ and Java solutions are shown in Figures 7 
and 8 respectively. In both of the languages, students solved the 
puzzle in the correct order of lines, minimal solvers much more so. 
The difference between non-minimal and minimal solutions was 
statistically significant for both C++ (p < 0.001) and Java (p < 
0.001). The difference between non-minimal C++ and Java solu-
tions was statistically significant at p = 0.1 level, but not the 
difference between minimal C++ and Java solutions. Table 5 lists 
the descriptive statistics for all four cases.   

The second puzzle solved by the students was on a program to input 
the face of a card followed by cards in a deck. It prints the number 
of cards into the deck where it finds the first card, and prints the 
face of the subsequent card in the deck. The program contained two 
back-to-back while loops. The puzzle contained 22 lines of code 
and 2 distracters. 
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The tutors were set up to conduct a controlled experiment on 
whether using mnemonic variable names affected how efficiently 
students solved the puzzles [13]. Some schools received a version 
of the puzzle with mnemonic variable names whereas others re-
ceived a version with single-character variable names. Since the 
C++ sample size was larger for the single-character version of the 
puzzle and Java sample size was larger for the mnemonic version 
of the puzzle, we used data from those respective versions for com-
parison.  

  

Figure 9. Heat Map of C++ solutions of the single-character 
version of the puzzle: non-minimal (N=27) on the left and min-
imal (N=14) on the right   

The pattern of students solving puzzles in the correct order of lines 
is again evident from Figures 9 (of C++ solutions of single-charac-
ter version of the puzzle) and 10 (of Java solutions of mnemonic 
version of the puzzle). Quite counter-intuitively, minimal solvers 
rarely straggled back and forth between the two while loops, i.e., 
picked a line in the first loop followed by a line in the second loop 
or vice versa. Descriptive statistics are listed in Table 6. The differ-
ence between non-minimal and minimal solutions was statistically 
significant for both of the languages (p < 0.001).   

  

Figure 10. Heat Map of Java solutions of the mnemonic version 
of the puzzle: non-minimal (N=50) on the left and minimal 
(N=12) on the right   

The third puzzle solved by the students was on a program to repeat-
edly read a positive number, read additional numbers till its 
multiple is found, and print the number and its multiple. It did this 
until 0 or a negative value was input for the first number. The pro-
gram contained nested while loops. The puzzle contained 17 lines 
of code and 2 distracters. 

Figures 11 (C++) and 12 (Java) once again show that a majority of 
the students solved the puzzles in the correct order of the lines in 
the solution, even though the puzzle involved nested while loops. 
Nested while loops are particularly hard for novice programmers 

to read or write. So, it is counter-intuitive that students would as-
semble the lines in the order in which they appear in the correct 
solution. 

Table 6. Descriptive statistics for while puzzle 2   

while  
puzzle 2 

C++ - single-char 
(Minimal?) 

Java – mnemonic 
(Minimal?) 

No Yes No Yes 
Sample (N) 27 14 50 12 
First line (F) 5 3 7 2 
Last line (L) 5 5 7 3 

Cells (C)  55.9 11.3 66.4 9.9 
Value (V) 68.1 26.3 69.4 25.4 

Diagonal (µd) 0.58 0.7 0.55 0.71 
 

  

Figure 11. Heat Map of C++ solutions: non-minimal (N=44) on 
the left and minimal (N=12) on the right   

  

Figure 12. Heat Map of Java solutions: non-minimal (N=48) on 
the left and minimal (N=11) on the right   

The descriptive statistics are shown in Table 7. The difference be-
tween non-minimal and minimal solutions was statistically 
significant for both C++ and Java (p < 0.001). The difference be-
tween C++ and Java was not statistically significant in either case: 
non-minimal or minimal solutions. A confounding factor of this 
comparison is that the number of minimal solvers is small for both 
C++ and Java. 

Table 7. Descriptive statistics for while puzzle 3   

while puzzle 3 C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Sample (N) 44 12 48 11 
First line (F) 8 2 2 1 
Last line (L) 6 4 6 2 

Cells (C)  67.0 11.4 71.6 4.3 
Value (V) 67.8 27.9 66.7 7.7 
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while puzzle 3 C++ (Minimal?) Java (Minimal?) 
No Yes No Yes 

Diagonal (µd) 0.58 0.66 0.57 0.85 

6. DISCUSSION 
We presented the results of analyzing the data of five different puz-
zles – involving a single if-else statement, nested if-else 
statements, a single while loop, multiple while loops and nested 
while loops. The answer to our research question RQ1 is that in 
every case, a majority of the students solved the puzzle in the order 
of the lines of code in the correct solution, as illustrated by the di-
agonals in heat maps. Students who solved the puzzles with the 
fewest actions did so by acting upon fewer lines out of order and 
less often.  

An earlier study had used think-aloud protocols to find that experts 
solved Parsons puzzles [11] by first assembling the majority of the 
control flow, followed by initialization of variables and handling of 
corner cases. This was referred to as top-down strategy. In a similar 
vein, when writing control statements, novices are advised to write 
the frame of the control statement first and then, proceed to fill in 
the details [26]. We had hoped to find that at least minimal solvers 
used such strategies.  

Instead, at each step, students seem to have asked themselves 
“where in the scrambled code can I find the next line of the solu-
tion?” instead of “where should the next scrambled line be placed 
in the solution?” or “how would I write this solution based on top-
down thinking and frame-first coding?” They assembled code in 
the order in which it appears in the program, not the order in which 
it is written by a programmer who follows top-down decomposition 
of the problem. This is the difference between the product and the 
process. The order in which code segments are written in a program 
is dictated by the process of programming and is not necessarily the 
order in which the code segments eventually appear in the program, 
i.e., the product of programming. The process is influenced by both 
semantics (top-down design [11]) and syntax (frame-first program-
ming [26]). Educators want novices to learn the process of 
programming, not the product, since the product, i.e., the program 
for a given problem is not unique. Researchers have found that the 
process used by novices for programming is a better predictor of 
their course grade than the actual programs written by them [29]. 
Besides, product follows process – the more disciplined the pro-
cess, the better the programming product. So, for a novice learning 
to write programs, the focus should be on the process of program-
ming and not the product. Unfortunately, in programming, one 
cannot learn the process by looking at the product – all the process 
information is lost by the time a program is completed [30]. So, the 
fact that a majority of the students solve Parsons puzzles by focus-
ing on the product rather than reconstructing the process of 
programming does not bode well for Parsons puzzles as a tool for 
learning programming. Parsons puzzle tutors designed to help stu-
dents learn programming must actively prompt and scaffold 
novices to reconstruct the process of programming when solving 
the puzzles.  

Yet, scores on Parsons puzzles were found to correlate with scores 
on code-writing exercises [2]. An explanation for this correlation is 
that just as they assemble Parsons puzzles, students write programs 
line by line in the order in which the lines appear in the program, 
i.e., their process mirrors the product. Writing a program line by 
line in this manner is difficult because it entails significant cogni-
tive load, e.g., when writing the statements in a nested loop, the 
programmer must actively keep track of the nested loop, the nesting 
loop and any variables previously declared in the program. Experts 

seldom write code in this manner, instead resorting to top-down and 
frame-first strategies. This naïve approach to writing code may ex-
plain why attrition in introductory programming courses remains 
unacceptably high [34, 35]. Configuring Parsons puzzle tutors to 
proactively enforce top-down and frame-first coding maybe one 
way to use Parsons puzzles to help students learn effective pro-
cesses of programming rather than developing their own ineffective 
processes. 

Earlier researchers have reported that C++ students used semantics 
more than Java students while solving Parsons puzzles [23] and that 
the learning curve associated with learning object-oriented pro-
graming in Java is steeper compared to learning imperative 
programming in C++ [22]. This may be why we found significant 
difference between non-minimal C++ and Java solutions on the 
first problems in both the tutors (our research question RQ2), In 
both the cases, Java students used more out-of-order and redundant 
actions to solve Parsons puzzles than C++ students. This finding 
would benefit from replication in a more controlled environment.   

One confounding factor of our study is that the algorithm was pro-
vided as comments in the solution panel S (Figure 1) for each 
program. Students may have followed these comments from top 
down to assemble the program from the first to the last line. Then 
again, the presence of comments should have freed students to as-
semble the different commented sections of the program in an 
opportunistic manner, not necessarily from the first to the last sec-
tion. Other researchers have noted that such subgoal labels make it 
easier for students to solve Parsons puzzles [20], but do not address 
the influence of comments on how students go about solving Par-
sons puzzles.  

In our analysis, we considered only line numbers in action se-
quence, the sequence of <line, action> pairs. We ignored the 
information about the action applied to each line, thereby losing 
some richness of data. For example, Mi,i represents back-to-back 
actions applied to line i. These could be actions that cancel each 
other out, such as deleting a line followed by undeleting it.  In such 
a case, the two actions could be ignored. Considering the nature of 
action while creating Markov transition matrix may lead to better 
results. 

In our analysis, we considered only complete and correct solutions. 
Analyzing incomplete and incorrect solutions may yield patterns in 
puzzle-solving behavior that unearth common misconceptions 
among programming students. 

We presented Markov matrices as a technique for finding patterns 
in Parsons puzzle solutions and used heat maps to visualize the re-
sults. An added benefit of using Markov matrix is that we can use 
higher order matrices (obtained by multiplying a Markov matrix by 
itself) to answer questions such as how quickly after assembling an 
open brace do students get around to assembling its matching clos-
ing brace in a program, a question of interest in frame-first [26] 
coding. 

Knowing how students solve Parsons puzzles can help us under-
stand how they can be improved for that purpose. We hope our 
discussion in this section contributes towards these efforts. We plan 
to continue to collect data from additional tutors and analyze the 
problem-solving patterns used by students in those tutors to see if 
the same patterns are repeated.  
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ABSTRACT
Adaptive learning is an area of educational technology that
consists in delivering personalized learning experiences to
address the unique needs of each learner. An important sub-
field of adaptive learning is learning path personalization:
it aims at designing systems that recommend sequences of
educational activities to maximize students’ learning out-
comes. Many machine learning approaches have already
demonstrated significant results in a variety of contexts re-
lated to learning path personalization. However, most of
them were designed for very specific settings and are not
very reusable. This is accentuated by the fact that they
often rely on non-scalable models, which are unable to in-
tegrate new elements after being trained on a specific set of
educational resources. In this paper, we introduce a flexi-
ble and scalable approach towards the problem of learning
path personalization, which we formalize as a reinforcement
learning problem. Our model is a sequential recommender
system based on a graph neural network, which we evaluate
on a population of simulated learners. Our results demon-
strate that it can learn to make good recommendations in
the small-data regime.

Keywords
adaptive learning, learning path personalization, graph neu-
ral networks, reinforcement learning, recommender system

1. INTRODUCTION
Adaptive learning is an area of educational technology that
focuses on addressing the unique needs, abilities, and inte-
rests of each individual student. This field emerged in the
1980s with the introduction of the first Intelligent Tutor-
ing Systems (ITS) and experienced major expansion in the
1990s. As described by T. Murray in [20], an ITS usually

consists of four components: a domain model, a student
model, an instructional model and a user interface model.
As we address the problem from an algorithmic point of
view, we only focus on the first three models. The domain
model is a representation of the knowledge to be taught; it
often serves as a basis for the student model. The student
model provides a characterization of each learner that allows
to assess their knowledge and skills and anticipate their be-
havior. The instructional model takes the domain and stu-
dent models as input to select strategies that will help each
user achieve their learning objectives. This general structure
allows ITSs to achieve many purposes (recommending ex-
ercises, providing feedback, facilitating memorization, etc.)
while optimizing a variety of metrics (learning gains, engage-
ment, speed of learning, etc.).

In this paper, we address the problem of learning path per-
sonalization with optimization of learning gains. This means
that we look for a sequential recommender system that can
provide each student with the right content at the right time
(according to their past activity), in order to maximize their
overall learning gains.

Towards this goal, “standard” approaches often require sig-
nificant structuring of the domain model. This step is usu-
ally assisted by experts: they may be mobilized to tag ed-
ucational resources, set up prerequisite relationships, draw
up skill tables, etc. One example of such structuring is the
Q-matrix [2] which maps knowledge components (KC) to ex-
ercises. These expert-based approaches present some serious
practical limitations. First, they make it quite cumbersome
to create resource sets, since each resource has to be properly
tagged (sometimes with an extensive set of metadata). They
also lead to poorly reusable recommender systems, since pre-
requisite relationships and skills maps are usually tailored to
specific resource sets. This low reusability problem is often
exacerbated by the modeling of resources/skills/KC as one-
hot encodings [3, 21] which tie the model to a maximum
number of resources/skills/KC it can handle. As a result,
these approaches produce models that are not suitable for
transfer learning. Our approach, on the other hand, is based
on a graph neural network, which structure makes it possible
to process data in a much more flexible way.
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learning with graph neural networks and reinforcement learning. In
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Our contributions in this paper are threefold. First, we
introduce a new setting for learning path personalization
and formalize it as a model-free reinforcement learning (RL)
problem. Second, we present a novel RL policy that can
leverage educational resource content and users’ feedback to
make recommendations that improve learning gains. The
proposed model has the advantage of being inherently scal-
able, reusable, and independent of any expert tagging. Third
we evaluate our model on 6 semi-synthetic environments
composed of real-world educational resources and simulated
learners. The results demonstrate that it can learn to make
good recommendations from few interactions with learners,
thereby significantly outperforming the uniform random pol-
icy.

The rest of the paper is organized as follows. In Section 2,
we relate our paper to prior research. In Section 3, we de-
scribe our setting, the assumptions we make and the problem
we attempt to solve, which we formalize as a reinforcement
learning problem. In Section 4, we present our novel RL
policy. In Section 5, we describe our experimental setting
and discuss our results. In Section 6 we address some limi-
tations of our model and propose a few directions for future
work. We finally conclude in Section 7.

2. RELATED WORK
In recent years, several works have used reinforcement learn-
ing to address the problem of learning path personalization.
Most of these RL approaches are model-based, as they rely
on a predefined student model to simulate student trajecto-
ries. However, no student model is completely accurate, and
the learned instructional policies may overfit to the student
model. Doroudi et al. [7] have attempted to learn policies
that provide a better reward no matter the student model
chosen (i.e. robust policies). Azhar et al. [1] proposed
a method to gradually refine the student model by adding
features that maximize the reward.

Reward functions usually involve learning gains. Subrama-
nian and Mostow [29] defined learning gains as average dif-
ference between posterior and prior latent knowledge. Lan
and Baraniuk [15] proposed to learn a policy for selecting
learning actions so that the grade on the next exam is maxi-
mized. Clement et al. [5] attempted to optimize an increase
in success rate in recent time steps, they used an ε-greedy
approach. Doroudi et al. [8] conducted a thorough review of
the different reward functions used in instructional policies.

The closest to our setting is probably the approach proposed
by Bassen et al. [3] which, like ours, does not rely on ex-
pert pre-labeling of educational resources. However, in the
absence of compensation for this lack of information, their
reinforcement learning algorithm requires a substantial num-
ber of learners to converge to an effective policy: about 1000
learners for a corpus of 12 educational resources. Moreover,
in their framework, educational activities were represented
as one-hot encodings and passed to the policy via a fixed-size
vector. Therefore, this approach does not allow to work with
an evolving corpus of educational resources (which is the
case for most e-learning platforms) nor to reuse the model
on another set, unless it is completely re-trained.

In contrast, our approach leverages information from re-

source keywords which allows to achieve convergence in a
relatively small number of episodes, while maintaining a
high level of flexibility. This keyword-based approach was
inspired by the work of Gasparetti et al. [12, 11]. Although
the authors did not directly address the problem of learn-
ing path personalization, they outlined a method of feature
extraction from textual resources that proved to be very
successful in predicting prerequisite relationships.

3. PROBLEM FORMULATION
3.1 Description of the setting
Consider an e-learning platform with a collection of educa-
tional resources which have been designed to cover a spe-
cific topic, for example “an introduction to machine learn-
ing”. Consider a population P of learners to be trained on
this topic. The goal of learning path personalization is to
be able to recommend a sequence of educational resources
to each learner so as to maximize his overall learning gains.
Therefore the resulting machine learning problem can be ex-
pressed in the following terms: given a large enough sample
U of users from P, how can we train a machine learning
model to make recommendations to users from U so as to
generalize to the whole population?

In this paper, we work at the scale of short learning paths
(∼ 1 hour), which means that each learning session only
consists of a few interactions between the learner and the
ITS. One advantage of this setting is that it reduces the
effects of memory loss: we assume that when a learner visits
a new resource, what he learned from the previous ones is
still in his working memory.

We first make a few assumptions about the learning sessions:

(a1) Each learner follows one learning path of equal length
(i.e. same number of resources). The purpose of this
assumption is primarily to simplify the notations as it
can be easily relaxed without making major modifica-
tions to the model.

(a2) There is no interaction between the learner and the
external world (no communication, no access to ex-
ternal resources). This makes it possible to work in
the closed system {learner + ITS}. While incorrect in
most cases, this assumption may be more reasonable
in our setting than in a multi-day learning context.

(a3) We assume the existence of a feedback signal that pro-
vides information about user understanding of each
resource. This signal can take three values:

– (f<): the user did not understand the resource

– (f>): the user understood, but found it too easy

– (f◦): the resource was at the right level.

In practice, such feedback can be obtained from self-
assessment or more sophisticated test, and should be
associated with an error margin to account for its im-
precision. Nevertheless, in this study, we assume that
each feedback is perfectly accurate.

A view of such a learning session is provided in Figure 1.
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Figure 1: A view of a learning session. In this example, the
session length is T = 4. Actions a1,a2,a3,a4 are the recom-
mendations of the ITS. f1, f2, f3, f4 are the feedback signals
returned by the user.

To further simplify the problem, we also adopt a few simpli-
fying assumptions about the educational resources:

(a4) They are purely textual resources, written in natural
language. We indeed consider that most educational
formats can be easily transcribed into text (transcript
of a video, legend of a diagram, caption of an image
etc.).

(a5) They are self-contained, which means that they can
be considered independently. This implies for example
that they do not explicitly refer to each other. Al-
though quite strong, this assumption is essential to
prevent mandatory dependencies and foster diversity
of learning paths.

(a6) Each resource explains one or few concepts and has
equivalent“educational value”. This involves that each
resource carries the same “amount” of knowledge.

Some examples of educational resources that satisfy these
requirements are provided in Figure 4 of the Appendix.

Our goal with this work is to design a machine learning algo-
rithm that can leverage learners’ feedback to text-based edu-
cational resources to model their understanding of each con-
cept, anticipate their reactions, and recommend resources
that maximize their overall learning gains.

Since most e-learning platforms are in constant evolution,
our goal is not only to solve this problem but to do it in a
flexible and scalable way. This means that the model should
not require full retraining when new resources are added to
(or removed from) the platform. Actually, it should be able
to extrapolate to new resources what it learned from pre-
vious interactions. This suggests that the number of pa-
rameters of our model should not depend on the size of the
corpus.

3.2 Formalization
In this section, we formalize the problem described above as
a reinforcement learning problem. We use the terms “user”
and“learner” interchangeably to refer to any individual from
the sample U . Similarly, we refer to an educational resource
with the terms “document” or “resource”.

In the following, we denote: T the length of each learning
session (identical for each user), D the corpus of documents,

d a document from D, u a user (or learner) from the sample
U , fd the feedback given by a learner on document d.

The sequential recommendation problem defined above can
be easily expressed as a reinforcement learning problem
where: the agent is the recommender system, the environ-
ment is the population P of students and each episode is a
learning path. This problem can be formulated as a partial-
ly observable Markov decision process (S, A, O, T , R, Z)
where S is the state space, A is the action space, O is the
observation space, T : S ×A× S → [0, 1] defines the condi-
tional transition probabilities, R : S ×A → R is the reward
function and Z : S × A × O → [0, 1] is the observation
function. More precisely, in our setting:

• st ∈ S is the (unknown) knowledge state of the learner
at step t;

• at ∈ A is the document selected by the recommender
system at step t; we can write at = dt;

• ot ∈ O is the observation made at step t, which is a
tuple of the selected document and the returned feed-
back: ot = (dt, ft);

• T (s,a, s′) = P(st+1 = s′ | st = s,at = a) is unknown,
as it represents the impact of selecting document a on
learner’s state st;

• Z(s,a,o) = P(ot+1 = o | st+1 = s,at = a) is also
unknown and represents the probability of observing
o in state s after choosing document a;

• R(st,at) is the learning gain of the user at step t, which
we define as follows:

R(st,at) = 1{ft=f◦}. (1)

We indeed consider that only feedback f◦ corresponds
to an effective learning gain. We denote R(st,at) = rt
in the following.

To solve this problem, we need to find a policy π : O → A
that maximizes the expected return over each episode η:

π∗ = arg max
π

Eη∼π

[
T∑

t=1

rt

]
. (2)

4. OUR RL MODEL
A common approach to solve partially observable Markov
decision processes (POMDP) is to leverage information from
past observations o1, . . . ,ot to build an estimation of st
which is then used to select the next action (illustrated in
Figure 2). This boils down to encoding these observations
into a latent space S. In our setting, this latent space con-
tains all possible knowledge states for the learner, which is
why we call it knowledge space in the following.

4.1 Knowledge space
While more compact than the observation space, the knowl-
edge space should be informative enough to convey a rele-
vant approximation of learner’s knowledge.

We decided to structure this representation with the key-
words of the corpus, denoted (w1, . . . , wM ). We define a
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Figure 2: Up, a view of common policy architecture to solve
POMDP. Down, this architecture applied to our setting.

keyword as a word or group of words that refers to a techni-
cal concept closely related to the subject of the corpus. Some
examples of keywords extracted from educational resources
are provided in the Appendix. The keywords carry informa-
tion about the concepts addressed by the documents and are
therefore a good approximation of their pedagogical content.
That is why we modeled the knowledge state of each learner
as a collection of vectors (w1, . . . ,wM ) which represents his
“understanding” of each keyword. We indeed consider that
a keyword can be understood in multiple ways depending
on the context in which it occurs, and a multidimensional
vector can be a convenient way to capture this plurality.
This is illustrated in Figure 2. From this perspective, the
knowledge space S can be defined as S := RK × · · · × RK︸ ︷︷ ︸

M

.

Note that we do not consider keyword extraction as a task
requiring expert knowledge since it can be done by any cre-
ator of educational content and involves fewer skills than
defining the knowledge components of a course. Moreover,
it is mainly a pattern-matching task that can be automated
through a keyword extraction algorithm [9, 22, 4].

4.2 Policy
Following the previous considerations, the policy πθ should
take a collection of observations o1, . . . ,ot as input, encode
it into the latent space S and return a recommendation for
the next document dt. We emphasize that this function
should also meet the aforementioned flexibility and scalabil-
ity requirements.

A natural way to model the relationship between documents
and keywords is to build a bipartite graph G = (VD,VW , E),
where VD is the set of document nodes, VW is the set of
keyword nodes and E is the set of edges, with (vd, vw) ∈ E if
the document d contains the word w.

We chose to use a graph neural network (GNN) as a policy.
GNNs are quite convenient for this task as they allow to
enrich node features with information about their extensive
neighborhood, through message-passing. Therefore, docu-
ments (respectively keywords) that share a large number
of keywords (respectively documents) will also have similar
embeddings. This allows to build keyword embeddings that
contain information about feedback from neighboring docu-

ments (o1, . . . ,ot → ŝt). Message-passing can also be used
the other way around, from keywords to documents, to build
embeddings that inform about the relevance of each docu-
ment according to the estimated knowledge state (ŝt → at).
Another significant advantage of GNNs is that their number
of parameters does not depend on the size and structure of
the graph, which makes them highly flexible and scalable.

Multiple options are possible for the initial node features.
For keyword nodes, pre-trained word embeddings are a nat-
ural choice. As for the document nodes, a simple null vector
is sufficient. However one may choose to include extra infor-
mation about the documents if it is available (type of doc-
ument, format, length etc.). We denote as (xw)w∈VW

and

(xd)d∈VD the initial feature vectors of keyword and docu-
ment nodes.

In our model, we adapted a version of GAT (graph attention
networks) [32] to the heterogeneity of our bipartite graph:

∀d ∈ VD, h
(ℓ+1)
d = σ


 ∑

w∈N (d)

α
(ℓ)
dwW

(ℓ)
D h(ℓ)

w +B
(ℓ)
D


 (3)

∀w ∈ VW ,h
(ℓ+1)
w = σ


 ∑

d∈N (w)

α
(ℓ)
wdW

(ℓ)
W h

(ℓ+1)
d +B

(ℓ)
W


 (4)

h
(ℓ)
d ∈ RK is the embedding of node d at ℓth layer, with

h
(0)
d = xd. N (d) is the set of neighbors of node d in the

graph. α
(ℓ)
dw is a self-attention coefficient, detailed in the

Appendix. σ(·) is the ReLU activation function (rectified

linear unit). W
(ℓ)
W , W

(ℓ)
D , B

(ℓ)
W and B

(ℓ)
D are trainable pa-

rameters. This back-and-forth mechanism between docu-
ments and keywords allows to learn distinct filters for each
node type (document or keyword), effectively addressing the
graph’s heterogeneity. In the following, we refer to equa-
tions (3) and (4) as bipartite GAT layers and denote them

(KW
(3)−→ DOC) and (DOC

(4)−→ KW). Note that they can
be chained one after the other.

We define our first block of bipartite GAT layers as follows:

BLOCK1 = KW
(3)−→ DOC

(4)−→ KW
(3)−→ DOC. (5)

After this block, document embeddings (h
(2)
d )d∈VD contain

information about keywords from their extended neighbor-
hood. Using a Hadamard product, we enrich these embed-
dings with user feedback:

h
(φ)
d = h

(2)
d ⊙MLPKd→K(fd) (6)

h
(2)
d and h

(φ)
d are the embeddings of document d before and

after adding the feedback. fd is an encoding of user’s feed-
back on document d, which is passed through a multilayer
perceptron (MLP). We use a “not visited” feedback for the
documents that the learner has not yet visited.

After doing this operation on each document node, we apply
another block of bipartite GAT layers:

BLOCK2 = DOC
(4)−→ KW

(3)−→ DOC. (7)

Operation (4) allows to enrich keyword embeddings with
feedback from neighboring documents, which carry informa-
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Figure 3: The architecture of our policy network on a 3-document corpus

tion about user’s understanding. We consider these embed-
dings as a good approximation of learner’s knowledge state,

which is why we define ŝt := (h
(2)
w )w∈VW . The final GAT

layer (3) maps ŝt to documents for the next recommenda-
tion.

Before assigning probabilities to each document in the final
step, we enrich document embeddings by incorporating in-
formation about the remaining time in the session, which,
as we observed, slightly improved the performance of the
model:

h
(τ)
d = h

(3)
d ⊙MLPKτ→K(∆t) (8)

h
(3)
d and h

(τ)
d are the embeddings of document d before and

after adding the remaining time. ∆t = T − t is an encoding
of the remaining time (or remaining steps) at step t.

Eventually, the embeddings h
(τ)
d are passed through an MLP

to assign a score to each document. These scores are con-
verted into probabilities via a softmax over all document
nodes (further details in the Appendix):

πθ (d | o1, . . . ,ot) = softmax
VD

(
MLPK→1(h

(τ)
d )
)
. (9)

The full architecture of the policy is illustrated in Figure 3.

4.3 RL Algorithm
As our policy selects the next action directly from observa-
tions, it belongs to the policy-based reinforcement learning
paradigm, especially the policy gradient methods. The lat-
ter make it possible to maximize the expected return by
optimizing directly the parameters of πθ through gradient
descent. We chose the REINFORCE algorithm [31] for its sim-
plicity. At the end of each episode, πθ is updated as follows:

∀t ∈ [1, T ], θ ← θ + λ∇θ log πθ (st, at) vt (10)

with λ the learning rate and vt =
∑T
t′=t γ

t′−trt′ the return
of the episode from step t.

Note that we could learn our policy using more sophisticated
RL algorithms like actor-critic, which usually has lower vari-
ance. However, it is likely that the current architecture
would provide a poor state value function as it only op-
erates at the scale of node neighborhoods and does not have
a “global” view of the graph. Some changes in this architec-
ture might nevertheless be done to process information at a
larger scale, as discussed in Section 6.

Table 1: Key statistics of each corpus

corpus # doc # kw # edges diameter

Corpus 1 33 68 154 10
Corpus 2 11 31 62 6
Corpus 3 19 39 83 8
Corpus 4 28 55 113 8
Corpus 5 18 41 66 ∞
Corpus 6 20 45 143 6

5. EXPERIMENTS
Given the complexity of conducting mass experiments on
real learners, we chose to evaluate our model in an environ-
ment made up of semi-synthetic data. Our implementation
is written in Python and is available on GitHub1. We also
provided the hyperparameters of our model in Table 4 of the
Appendix.

5.1 Experimental setting
Linear corpus
We introduce what we call a “linear” corpus. Starting from
a regular course divided into sections and subsections, we
treat each subsection as one document. The corpus resulting
from this decomposition is “linear”, in the sense that it was
designed to be followed in a single, pre-defined order, which
is identical for each learner. Therefore, it leaves practically
no room for personalization. Six corpora were constructed
this way: three about data science (1-3) and three about
programming (4-6). They were all built from courses taken
from a popular e-learning platform.

For the purpose of our experiments, we have chosen to tag
keywords “by hand” to avoid introducing any noise in the
results. Our methodology was quite simple: for each docu-
ment, we collected keywords referring to technical concepts
related to the topic of the course. Table 1 presents some key
statistics about each corpus and their associated bipartite
graphs. Note that the graph of corpus 5 is disconnected:
indeed, one of its documents only contains keywords that
do not appear in any other document. Despite significantly
complicating the task for a diffusion model like ours, we have
chosen to keep this corpus for our experiments.

1https://github.com/jvasso/graph-rl4adaptive-learning
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Simulated learners
Since each corpus has been designed to be explored in a
single pre-defined order, we assume that the only way to
understand it is to follow this order scrupulously. There-
fore we have decided to simulate the behavior of learners
in this very simple way: as long as the policy recommends
documents in the right order, the learner returns the feed-
back (f◦). Conversely, each time the algorithm recommends
a document too early or too late, the learner returns the
feedback (f<) or (f>). A detailed example is given in the
Appendix.

Since our simulated learners have a straightforward behav-
ior, the purpose of this experiment is not to evaluate the
personalization or generalization capabilities of our model,
but to assess its ability to grasp the structure of a corpus, by
finding its original order in a reasonable number of episodes
(i.e. a few learners). While trivial at first glance, this task
can be quite difficult for an RL agent in the small-data
regime. Besides, each corpus contains some parts that are
independent of each other which suggests that in practice,
multiple learning trajectories might be understandable to
real learners. From this perspective, the “strict” feedback of
our simulated learners can distort the real nature of the rela-
tionships between resources and make the task more difficult
for our recommender system.

Policy
In our experiments, we compared 3 different policies. The
first one is the uniform random policy. The second one is
our policy with one-hot-encodings as keyword features. The
third one is our policy with Wikipedia2Vec embeddings [34]
as keyword features. Wikipedia2Vec embeddings are quite
suitable for our task as they contain encyclopedic infor-
mation about the relationship between words and entities.
They were derived from a skip-gram model trained on a
triple objective, which is detailed in the Appendix. We used
null vectors as document features for each policy.

Training
In each experiment, the maximum achievable return is equal
to the size of the corpus. We set the horizon T to the size
of the corpus to make sure that only an optimal policy (i.e.
one that makes no “mistake”) can reach this return. In this
setting, the return of the random policy follows a binomial
distribution with parameters (T , 1

T
). Therefore its expected

return is 1 for each episode. We also set the discount factor
γ = 0 during training because in this very specific setting,
the best action at each step t can be learned from immediate
reward. We trained our model from scratch over 50 episodes
(∼ 50 students) for each corpus, with a constant learning
rate.

5.2 Results
Since the REINFORCE algorithm has quite a high variance,
we averaged each episodic return over 25 random seeds.
The resulting learning curves are shown in Figure 6 of the
Appendix and the last episodic returns (measured at 50th

episode) are reported in Table 2.

From these curves, one can notice that despite the small-
data regime and the choice of a sub-optimal RL algorithm

(the REINFORCE algorithm is known to be quite unstable and
sample-inefficient), our agent succeeded in recovering a sig-
nificant part of the original order of each corpus. Most of the
time, it achieved average return over 10 whereas the random
policy was stuck in an expected return of 1.

Best performance was achieved on Corpus 2. Indeed, it is
the only one for which our model managed to reach the
maximum achievable return most of the time. This may be
partly due to the small number of documents in this corpus.
However, we stress that the number of documents alone is
not a sufficient feature to account for the variability of the
results. For instance, corpora 3 and 6 have a nearly similar
number of documents, but our model performed very dif-
ferently on these two corpora. Moreover, in the case of the
Wikipedia2Vec approach, it is not guaranteed that a large
corpus should be more difficult than a small one, since the
episodes are shorter for small corpora and therefore the al-
gorithm has fewer steps to grasp the geometrical structures
in the distribution of Wikipedia2Vec embeddings.

The diameter of the graph may also impact the performance
of the model. Indeed, Corpus 2 is again the one with the
smallest diameter, which may have helped the model to de-
termine the relationships between documents and keywords
more quickly. However, this must be balanced with the re-
sults on Corpus 6, on which our model performed far worse
(in terms of normalized return) despite equal diameter.

Another noticeable result is the one of Corpus 5. We re-
mind that this corpus was the only one to be disconnected.
Actually, it was disconnected at the 11th document, which
is consistent with the performance of the model: indeed,
episodic return lower than 10 indicates that it failed to make
recommendations beyond the 10th document. This can be
explained quite simply: since this document is disconnected
from the rest of the graph, it does not benefit from message-
passing and therefore receives no information about other
documents feedback.

Eventually, one cannot ignore the extremely high variance
of the episodic return for almost all corpora (except for Cor-
pus 2). This is partly due to the choice of the REINFORCE

algorithm, which is known for its high instability.

Ablation study
We conducted an ablation study to analyse the contribu-
tion of Wikipedia2Vec embeddings compared to simple one-
hot encodings. Even though the approach with embeddings

Table 2: Comparison between episodic returns when using
Wikipedia2Vec and one-hot encodings as keyword features

Corpus Wikipedia2Vec One-hot encodings

Corpus 1 16.48± 2.66 13.36± 1.74
Corpus 2 10.84± 0.14 10.28± 0.37
Corpus 3 14.40± 1.31 11.68± 1.13
Corpus 4 15.16± 0.90 12.52± 0.98
Corpus 5 9.80± 2.13 7.56± 1.83
Corpus 6 11.24± 1.52 8.24± 0.84
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performed significantly better on each corpus, the high error
margins and the similarity between trends suggest that our
model was not truly able to leverage high level information
about the relationships between Wikipedia entities. Instead,
it is more likely that it simply “overfit” to each corpus. This
lack of generalization is not a problem in the setting of our
experiment but can be a serious issue in transfer learning
scenarios and therefore needs to be addressed.

6. LIMITATIONS AND FUTURE WORK
6.1 Size and structure of the graph
All of our experiments have been conducted on small graphs
(less than ∼ 100 nodes). However, it is likely that our model
would struggle a little more on larger graphs as the recep-
tive field of each node accounts for a smaller fraction of the
graph in such case. Besides, it is not possible to increase the
depth of a GNN indefinitely because of the over-smoothing
problem [14, 33, 16]. Therefore, it is likely that these em-
beddings alone would not be sufficiently informative to allow
for long-term planning. This limitation can be addressed
with down- and upsampling methods such as pooling and
unpooling operations on graphs, which make it possible to
process information at multiple scales [6, 28, 35]. It can also
be addressed with planning techniques such as Monte Carlo
Tree Search, which has demonstrated great performance in
combination with deep RL techniques [23, 26, 27].

As we saw in subsection 5.2, there is also an issue with dis-
connected graphs since our model failed to make predictions
beyond the disconnected document node in Corpus 5. One
possible solution could be to slightly modify the structure
of the graph, for example through link prediction based on
keyword embeddings.

Eventually, it is important to note that we tested our ap-
proach on corpora related to engineering topics — machine
learning and programming — which keyword distributions
might be quite similar (cf. Figure 5 in the Appendix). Yet,
corpora related to different topics may have completely dif-
ferent keyword distributions. Therefore, it would be worth
comparing the performance of the model on a wider range
of subjects in the future.

6.2 Variance and sample efficiency
As stated in Section 5, our approach suffers from high vari-
ance, partly due to the choice of the REINFORCE algorithm.
Some other on-policy methods have demonstrated great suc-
cess in reducing variance [24, 25, 18]. Nevertheless, these
approaches remain generally not very sample-efficient. To
improve sample-efficiency, it is quite common to use off-
policy algorithms as they allow to reuse past experience [19,
17, 13]. However, as stated in Section 4, the implementa-
tion of an approximate Q-value function with a GNN is not
trivial as it requires to leverage information at the scale of
the entire graph, which involves modifications in the model.
Another alternative is to use a model-based reinforcement
learning algorithm (MBRL) [30, 23]. As they allow to learn
a model of the environment (i.e. a model that predicts the
next observations and rewards), MBRL techniques enable
to reuse past experience and learn from a richer signal than
the reward signal alone. Therefore, they are usually much
more sample-efficient than model-free RL techniques. These

approaches might be more appropriate in our case, as a lo-
cal model like a GNN may more easily predict immediate
feedback than the (long-term) value of a state-action pair.

6.3 Interpretability
One of the main limitations of our approach is its lack of
interpretability. Ideally, an ITS would not only provide a
personalized learning experience but also inform the learner
about their progress and level of understanding, in order to
encourage self-awareness and self-regulation. This is usually
done with an open learner model. However, like most deep
learning approaches, our recommender system is a black-box
model and does not allow for easy interpretation. Yet, we
hypothesize that the estimated knowledge state ŝt does not
only contain semantic information about keywords but also
about the way they were understood by the learner. There-
fore, future work may consist in projecting these keyword
embeddings into lower dimensional space to visualize their
evolution throughout learning sessions.

6.4 Reusability
We designed a model that is flexible enough to be theoreti-
cally capable of transferring its knowledge from one corpus
to another. However, this is only possible if the model has
managed to capture high-level information that is common
to all corpora. Unfortunately, our experiments do not allow
to truly evaluate the transfer learning capabilities of our
model. However, since it seems to overfit to the structure of
each corpus, it might not have learned that much about the
high-level relationships in the distribution of Wikipedia2Vec
embeddings. Therefore, transfer learning might not be very
effective in this case. Future directions to reduce overfit-
ting may consist in applying regularization techniques to
GNN (such as node dropout), or using training techniques
that push the model to learn higher-level knowledge, such
as meta-learning for RL [10].

7. CONCLUSION
In this paper, we presented a new model for learning path
personalization, designed to be reusable and independent of
any expert labeling. We demonstrated its ability to learn
to make recommendations in 6 semi-synthetic environments
made-up of real-world educational resources and simulated
learners. Since this model is theoretically capable of trans-
ferring its knowledge from one corpus to another, it is a first
step towards an approach that could considerably reduce
the cold-start problem. Future work will investigate its per-
formance in the context of transfer learning and with real
students.
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APPENDIX

Corpus and keywords. Some examples of educational re-
sources that satisfy the assumptions (a4), (a5) and (a6) de-
scribed in Section 3.1 are provided in Figure 4. In the doc-
ument 1, an appropriate collection of keywords would be:
{supervised learning, classification, regression}.

Figure 4: Three examples of self-contained educational re-
sources taken from a corpus dealing with machine learning
basics

Linear corpus. In our experiments, we used 6 corpora
based on courses taken from a popular e-learning platform.
Figure 5 shows the evolution of the total number of keywords
throughout each course. Note that although they all cover
different topics and were designed by different educators,
they always introduce new keywords in a “linear” way. This
supports the idea that the distribution of keywords can be
a good indicator of pre-requisite relationships between doc-
uments.

Figure 5: Evolution of the total number keywords in each
course

Simulated learners. In the following we present a step by
step example of a learning path followed by a simulated
learner (also detailed in Table 3).

Consider a corpus of three documents {d1, d2, d3}, designed
to be explored in the order of indices: d1 is a prerequisite
for d2 and d2 is a prerequisite for d3. A simulated student
can understand a document only if they have understood its
prerequisites. Throughout the learning path, we maintain

Table 3: Example of a sequence of interactions (learning path)
between a simulated student and our policy

step action at feedback ft reward rt D◦

1 d2 f< 0 {}
2 d1 f◦ 1 {d1}
3 d3 f< 0 {d1}
4 d2 f◦ 1 {d1, d2}
5 d1 f> 0 {d1, d2}
6 d3 f◦ 1 {d1, d2, d3}

a set D◦ of understood documents, initialized as an empty
set: D◦ = {}.

At step 1, the policy recommends document d2 (with pre-
requisite d1). d1 /∈ D◦, therefore the student returns feed-
back (f<). At step 2, the policy recommends document d1.
This document has no prerequisite, therefore the student
returns feedback (f◦) and we add d1 to D◦. At step 3, the
policy recommends document d3. d2 /∈ D◦, therefore the
student returns feedback (f<). At step 4, the policy recom-
mends document d2. d1 ∈ D◦, therefore the student returns
feedback (f◦) and we add d2 to D◦. At step 5, the policy
recommends document d1. d1 ∈ D◦, therefore the student
returns feedback (f>). Finally at step 6, the policy recom-
mends document d3. d2 ∈ D◦, therefore the student returns
feedback (f◦) and we add d3 to D◦.

Note that in this example, we fixed T = 6 to display a
greater number of situations. Conversely, in our experi-
ments, T was always equal to the size of the corpus.

Self-attention. The self-attention coefficient αwd used in
Equations (3) and (4) is defined as follows. For any nodes
w, d:

α
(ℓ)
wd = softmax

N (w)

(
a
(
W (ℓ)h

(ℓ)
d ,W (ℓ)h(ℓ)

w

))
(11)

where W (ℓ) ∈ RK×K refers to the weights of ℓth layer and
a : RK × RK → R is the additive attention mechanism. The
softmax function is taken over all neighbors of node w (fur-
ther details below).

Multilayer perceptron. Each MLPK1→K2(·) operator used
in Section 4 is a multilayer perceptron with one hidden layer.
For any input vector x, this operation boils down to:

x′ = A(2)σ
(
A(1)x +B(1)

)
+B(2) (12)

where σ(·) is the ReLU activation function, A(1) ∈ RK1×K ,

A(2) ∈ RK×K2 , B(1) ∈ RK and B(2) ∈ RK2 are trainable
parameters.

Softmax operator. The softmax operator over a finite col-
lection E of real numbers is defined as follows:

∀x ∈ E, softmax
E

(x) =
expx∑
y∈E exp y

. (13)
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Figure 6: Evolution of the episodic return on 50 simulated learners for 6 corpora

Wikipedia2Vec. The pretrained Wikipedia2Vec embeddings
leveraged as keyword features in our experiment were de-
rived from a skip-gram model trained on a triple objec-
tive: (1) predicting neighboring entities in the link graph
of Wikipedia, (2) predicting neighboring words given each
word in a text contained on a Wikipedia page, and (3) pre-
dicting neighboring words given a target entity using anchors
and their context words in Wikipedia [34]. We hypothe-
size that in addition to modeling the semantic information
carried by each keyword, these embeddings allow to cap-
ture prerequisite relationships between concepts, especially
through task (1).

Experimental results. The learning curves of our experi-
ments are reported in Figure 6. For reproducibility, we also
reported the hyperparameters of our model in Table 4.

Table 4: Hyperparameters used in our policy model

Name Value

Learning rate 0.0005
Hidden dimension 32

Activation function ReLU
Attention type additive

Number of attention heads 2
Wikipedia2Vec embedding size 100

Documents encoding vector of zero
Feedback encoding one-hot-encoding

Remaining time encoding counter
Batch size 16

Repeat per collect 15
Episodes per collect 1
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ABSTRACT
Teachers often rely on the use of a range of open-ended
problems to assess students’ understanding of mathematical
concepts. Beyond traditional conceptions of student open-
ended work, commonly in the form of textual short-answer
or essay responses, the use of figures, tables, number lines,
graphs, and pictographs are other examples of open-ended
work common in mathematics. While recent developments
in areas of natural language processing and machine learning
have led to automated methods to score student open-ended
work, these methods have largely been limited to textual an-
swers. Several computer-based learning systems allow stu-
dents to take pictures of hand-written work and include such
images within their answers to open-ended questions. With
that, however, there are few-to-no existing solutions that
support the auto-scoring of student hand-written or drawn
answers to questions. In this work, we build upon an ex-
isting method for auto-scoring textual student answers and
explore the use of OpenAI/CLIP, a deep learning embedding
method designed to represent both images and text, as well
as Optical Character Recognition (OCR) to improve model
performance. We evaluate the performance of our method
on a dataset of student open-responses that contains both
text- and image-based responses, and find a reduction of
model error in the presence of images when controlling for
other answer-level features.
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1. INTRODUCTION
The blending of educational technologies with machine learn-
ing and statistical modeling has led to the emergence of tools
designed to augment instruction. While some such tools are
designed to automate certain tasks for the teacher (e.g. [3,

17, 2]), others attempt to improve the efficiency with which
teachers are able to assess student work and write directed
feedback to guide learning.

In the context of mathematics education, teachers utilize a
range of question formats to assess students’ understanding
of covered topics. Prior work has described these question
types in terms of “close-ended” and “open-ended” problems,
distinguishing various types of problems by the difficulty
with which answers to such questions may be automatically
assessed by a simple matching algorithm. Multiple choice or
fill-in-the-blank problems, as examples of close-ended prob-
lems, often allow for a small number of acceptable “correct”
answers (i.e. in most cases, there is a single answer consid-
ered as correct). Although prior works have demonstrated
the utility of these types of answers for measuring student
knowledge (e.g. the extensive work on knowledge tracing [9,
25]), teachers often rely on the use of open-ended problems
to gain deeper insights into the processes and strategies em-
ployed by students to solve such problems, as well as their
ability to articulate their approach using proper mathemat-
ical terminologies. Short answer and essay question types
are common in this regard, often with prompts such as “ex-
plain your reasoning”, but other open-ended formats are also
common in the domain of mathematics.

For mathematics, teachers often rely on the use of visual rep-
resentations in conveying mathematical concepts. The use of
diagrams, number lines, graphs, tables, and sometimes even
pictographs are commonly used to portray numerical and
algebraic relationships. Just as these are used for instruc-
tion, students are also commonly asked to generate these
types of visual representations to demonstrate their under-
standing. While open-ended work has typically referred to
the use of text and natural language within prior research
(e.g. [13, 37, 4]), the definition extends to drawings and
similar artifacts produced by students. Tools such as Ge-
oGebra[18] and Desmos[12] are examples of computer-based
applications that allow students to interact with graphs and
algebraic expressions. While tools like these exist, many
teachers still prefer to use more traditional technologies, of-
ten in the form of paper and pencil or other physical media
(e.g. blocks) in conjunction with computer-based technolo-
gies; some systems encourage this blending of media by al-
lowing students to take pictures of their work and upload
them as responses to open-ended problems.
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Figure 1: Simplified representation of the SBERT-Canberra method to generate a predicted score by identifying the most similar
historic response to a given new student answer using Canberra distance within an embedding space.

This paper builds on prior work which focused on the de-
velopment of an automated scoring tool for student answers
to open response problems in mathematics [4]. Baral et. al,
reported on how many students responded to open-response
problems with images of their work (in the form of written
mathematical equations and expressions as well as drawings
of graphs, number lines, and other visual representations),
whereas several others preferred to respond with a combina-
tion of an image of their work combined with a typed textual
explanation within a single student response (e.g. the stu-
dent draws a graph, uploads the image and then types a
description of their thought process with the image of the
graph). These cases were, unsurprisingly, found to con-
tribute significantly to the model error as the presence of
images in student responses were not previously accounted
for within the developed methods. This work seeks to take
initial steps toward understanding how recent advancements
in areas of deep learning-based image and text embedding
methods may help to address these challenges.

Specifically, this paper addresses the following research ques-
tions:

1. Does the use of pre-trained deep learning image and
text embedding methods lead to improved performance
in the context of previously-developed open response
scoring models?

2. Are there differences in terms of the resulting model
performance when comparing across different types of
image-supporting embedding methods?

3. Does the incorporation of image-supporting embed-
ding methods reduce the correlation between the pres-
ence of images in student responses and modeling error
when accounting for other answer-level covariates?

2. RELATED WORKS
2.1 Automated Scoring Models
With the development of online learning platforms, there has
been a growing body of research in the development of au-
tomated methods of assessment for analyzing and providing
immediate feedback on students’ work. These developments
have prevailed in multiple domains of science [23, 6], pro-
gramming[24, 26, 35], writing[21, 1, 8, 29, 39], mathemat-
ics[22, 13, 4] and college level courses[11]. In the domain of

mathematics, auto-scoring have been developed for closed-
ended problems with single or limited correct answers(e.g.,
multiple-choice question, fill-in-the-blank, check all that ap-
ply) [3, 17] to more open-ended problems with multiple pos-
sible solutions (eg. short answer, long answer, Explain in
plain english.) [22, 13, 14, 4, 37, 38, 5, 32]. Some of these
works support pure mathematical content [22], while oth-
ers support combination of both mathematical and textual
answers[13, 4, 5, 38]. However, most of these auto-scoring
methods in mathematical domains are limited to either text
or mathematical content, and a very few have started focus-
ing on automating responses for image-based responses.

2.2 Methods for Image Analysis and Repre-
sentation

Optical Character Recognition (OCR) is an extensive field
of research in image processing, that explores the recogni-
tion and conversion of handwritten textual information to
machine-encoded text, such that this information could be
further processed and analyzed. Studies such as Shaikh et
al. (2019) [31], utilizes OCR-based methods, combined with
Convolutional Neural Networks(CNN) in auto-scoring struc-
tured handwritten answer sheets of multiple choice ques-
tions. Other studies like [34] propose an automated scoring
system for handwritten student essays in reading compre-
hension tests, utilizing handwriting recognition and machine
learning-based automated essay scoring methods. Khuong
et. al [20] in their work proposes clustering handwritten
mathematical answers scanned from paper-based exams, to
improve the efficiency of human raters in scoring these an-
swer sheets. Another study from Gold et. al [15], in their at-
tempt to auto-score handwritten answers, presents the chal-
lenges of using handwriting in intelligent tutoring systems.
Further, they present, how the lack of better recognition
systems in these cases leads to poor scoring performances.

Recent advancements in the areas of deep learning and com-
puter vision have led to the development of large-scale mod-
els of image representation and classification. ImageNet
[10] is a large-scale image dataset widely used for train-
ing and evaluating computer vision models. Trained over
14 million images belonging to more than 22,000 different
classes, ImageNet is considered a benchmark for image clas-
sification tasks. CLIP (Contrastive Language-Image Pre-
training) [27] is a recently introduced image classification

363



model based on transformer architecture, commonly used in
natural language processing tasks. This method is able to
encode both natural languages (text) and images in the same
vector space by using a multi-modal pre-training approach.
The proposed methods in this work utilizes the CLIP model
to represent image and text-based answers.

2.3 The SBERT-Canberra Model
This work utilizes an auto-scoring method developed through
several prior works [4, 7], referred to as the SBERT-Canberra
model. As illustrated in Figure 1, the method produces a
predicted score, scoreAs , for a new student answer, An, by
leveraging the single-most-similar historic student answer,
As. The method utilizes Sentence-BERT [28] to first gen-
erate a 768-valued feature vector for both An as well as all
teacher-scored historic student answers, A0...n−1 before then
making a full pairwise comparison of An to these historic
answers using Canberra distance[19]; Canberra distance is a
rank-order-based distance measure that was found to more
closely align to how teachers identify similarity in compari-
son to other distance measures such as Euclidean and Cosine
Similarity [7]. From this, As is identified and its teacher-
given score is used as the prediction for An; the method,
therefore, adopts a variation of K-Nearest-Neighbors and has
exhibited notable performance when evaluated compared to
a range of baseline models [4, 13], despite its simplicity.

Through prior work, several weaknesses of the auto-scoring
method have also been identified by means of a multi-level
regression-based error analysis [4]. From this, four primary
areas of weakness were identified: 1) model error varied
greatly from problem to problem, 2) there seemed to be
variation in teacher grading, 3) the presence of numbers, ex-
pressions, and equations in textual explanations correlated
with higher error, and 4) the presence of images in student
answers correlated with higher error. Subsequent follow-up
works have explored three out of these four weaknesses, ex-
amining how answers from similar problems can be leveraged
to improve predictive power for problems with smaller sam-
ple sizes [30], explore the contextual factors that contribute
to variance in teacher grading practices [16], and leverage
the most-frequent mathematic terms, numbers, and expres-
sions to reduce modeling error [5]. Following these works,
this paper seeks to address the fourth weakness by exploring
potential methods of representing both textual and image
data within similar embedding spaces.

3. DATASET
In this study, we utilize a dataset of student open-ended
answers in mathematics from the prior studies [4], to com-
pare directly with the prior works. This dataset consists
of 150,477 students’ answers to 2,076 different open-ended
mathematics problems and scores given by 970 different teach-
ers to these responses. The scores given by teachers to these
responses are on an ordinal 5-point scale ranging from 0 to
4. The student responses given to these math-based ques-
tions are typically seen as a combination of textual responses
(typed directly into the learning platform), mathematical
expressions and equations, and images uploaded as a part
of their work. The current dataset includes 3712 image re-
sponses in total to 311 different math problems. Some ex-
ample image responses given by students are presented in
Figure 2. As seen from these examples, the image-based stu-

dent answers are of different types – some are handwritten,
whereas others are digitally drawn images. In addition to
this, these images can include handwritten text, diagrams,
and graphs on a piece of paper. We can see lots of variations
in these responses, in both text and image format.

4. METHODOLOGY
Utilizing the dataset from [4] and a similar model design
to auto-scoring student open-response answers, we propose
an extension to this prior work to support image-based re-
sponses. Similar to [4], we train a separate model per prob-
lem and perform a 10-fold cross-validation for training. For
the problems without any training data, a default model
based on word counts, trained across all problem data is
used similarly to the prior works. In this paper, we explore
and compare three different methods which we describe in
detail in the following sections.

4.1 CLIP-Text Method
As stated earlier, the prior works [4], is a similarity ranking-
based method, that first converts each student’s answers to a
768-valued vector representation using Sentence-BERT[28],
and compares answers using this vector representation and
Canberra distance[19]. In our current method, we use a
similar model structure with a different embedding method.
This method is based on CLIP (Contrastive Language–Image
Pre-training)[27] for encoding textual responses.

In the first method which we call the ‘CLIP-Text’ Method,
we perform a text comparison similar to the prior SBERT-
Canberra model, without accounting for image-based re-
sponses. Using the CLIP[27] model, we first embed the tex-
tual responses ignoring all the image responses. For any new
answer in the test dataset, we compare them with the train-
ing set, by first generating a vector representation, and then
comparing the vectors using Canberra distance to find the
most similar pair of text responses. Using the most similar
text, we utilize the score given by teachers to this similar
response, in suggesting a score for the new response. In the
CLIP-Text Method, we ignore the images, as we want to see
how well the CLIP model does with just the text responses
to directly compare it to the prior method. For any empty
student responses, the model assigns a score of ‘0’, and also
for responses with no textual answers (images are discarded
in this method, so if a response contains only an image, it is
assigned a score of 0).

4.2 CLIP-Image Method
The second method which we call ‘CLIP-Image’ method,
addresses both images and text in student responses. This
method is similar to the ‘CLIP-Text’ method, with the ad-
dition of image embeddings in comparing the similarity of
responses. The CLIP model uses separate text and image
encoders and allows embedding text and images into the
same vector space. With the CLIP model, we first encode
textual and image responses into a vector representation.
If a student response contains both text and images, the
text part is discarded and just the images are encoded in
this method. Once all the responses in the training data
are encoded, for a new student answer (with either image
or text-based response), its corresponding encoding is cal-
culated and compared to the embeddings in the training
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Figure 2: Examples of image-based responses from students given in response to Open-ended math problems

data, and the most similar response is selected based on the
shortest Canberra distance between the new response and
the responses in the training set.

4.3 CLIP-OCR Method
The third method is called ’CLIP-OCR’ method which is
based on state-of-the-art Optical Character Recognition (OCR).
This method uses the Tesseract engine[33] from Google for
text extraction. Tesseract is an open-source OCR engine,
that extracts both printed and written text from images.
Similar to the ‘CLIP-Text’, this method, then encodes the
original textual responses, and also the extracted text from
images (without completely ignoring the image responses).
The text information from the responses is then encoded us-
ing the CLIP model, and finally, any new response is com-
pared to the historic responses in the training data using the
encodings and Canberra distance, to get a score prediction.

5. RESULTS
To answer our first and second research questions, we com-
pare the current approaches directly to the prior methods
from [13, 4]. We utilize similar evaluation methods, using
a Rasch model[36] 1 that is equivalent to a traditional item
response theory (IRT) model. This model aims to determine
distinct parameters for each student and problem, represent-
ing student ability and problem difficulty, respectively. The
rationale behind using this model is to allow a fairer com-
parison that accounts for factors external to the observed
student response, such that the automated scoring model is

1A detailed description on the use of the Rasch model can
be found in our prior works relating to [13, 4]

evaluated solely based on its capacity to interpret the text
in each student’s response.

We evaluate the methods using three different metrics –
AUC score, Root Mean Squared Error (RMSE), and multi-
class Cohen’s Kappa. The AUC score here is calculated as
an average AUC over each score category and Root Mean
Squared Error(RMSE) is calculated using the model esti-
mates as a continuous-valued integer scale. The results of
three methods as compared to the prior works [4] are pre-
sented in Table 1.

The result suggests that the CLIP-Text that uses the sen-
tence embeddings from OpenAI CLIP model [27] has an
AUC score of 0.852, RMSE error of 0.594, and Kappa of
0.469. Though the model doesn’t outperform the prior SBERT-
Canberra method [4] of auto-scoring, the difference in each
of the scores is very small. The next method CLIP-Image,
which compares both sentence and image embeddings us-
ing the OpenAI CLIP model, outperforms the CLIP-Text
method across all three evaluation metrics used (though the
difference in these scores is minimal). This method has an
AUC score of 0.854, RMSE error of 0.587, and Kappa of
0.469. The next method CLIP-OCR, based on text extrac-
tion from images using OCR methods, has a similar per-
formance to the CLIP-Image model. Though the newly in-
troduced methods do not outperform the prior text-based
method, the introduction of auto-scoring image responses is
something novel that this work explores. And we can see im-
proved performance with the addressing content from image-
response in the CLIP-Image and CLIP-OCR model, than
solely using text-based responses in the CLIP-Text model.
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Table 1: Model Performance compared to the auto-scoring methods developed in the prior works [4]

Model AUC RMSE Kappa

Current Paper

Rasch* + CLIP-Text 0.852 0.594 0.469

Rasch* + CLIP-Image 0.854 0.587 0.471

Rasch* + CLIP-OCR 0.854 0.588 0.471

Prior works[4]

Baseline Rasch 0.827 0.709 0.370

Rasch* + Random Forest 0.850 0.615 0.430

Rasch* + SBERT-Canberra 0.856 0.577 0.476

*These rasch models also included the number of words.

Table 2: The resulting model coefficients for the linear regression model of error for the auto-scoring method, conducted as a
part of the error analysis similar to the prior method from Baral et. al [4].

CLIP-Text CLIP-Image CLIP-OCR

B Std. Error B Std. Error B Std. Error

Intercept 0.379*** 0.005 0.361*** 0.005 0.361*** 0.005

Length of Answer 0.002*** 0.000 0.002*** 0.000 0.002*** 0.000

Avg. Word Length 0.012*** 0.001 0.015*** 0.001 0.015*** 0.001

Numbers Count 0.0002*** 0.000 0.0002*** 0.000 0.0002*** 0.000

Operators Count -0.001** 0.000 -0.001** 0.000 -0.001** 0.000

Equation Percent 0.139*** 0.008 0.158*** 0.008 0.156*** 0.008

Presence of Images 2.418*** 0.018 0.472*** 0.018 0.560*** 0.018

*p <0.05 **p<0.01 ***p<0.001;

6. ERROR ANALYSIS
To answer our third research question and to explore if the
proposed image-supporting methods lead to improvements
in the model’s performance in the presence of images, we
conduct an error analysis of the proposed methods. As pre-
viously introduced, prior work conducted an error analysis to
understand the limitations of the SBERT-Canberra method
[4]. This error analysis involved the calculation of several
student answer-level features and using a linear regression
analysis with the absolute prediction error (absolute differ-
ence between the teacher-provided score and the prediction
from the model) as the dependent variable. This analysis
reported that the largest amount of error in the SBERT-
Canberra model was correlated with the presence of math-
ematical terms and equations and the presence of images in
the answer text.

In this paper, we propose a method to auto-score responses
in the presence of both text and images. Although the
proposed methods do not outperform the previous method
on auto-scoring strictly text-based answers, we hypothesize
that this could be a result of using a different method of em-
bedding text; there may be an inherent trade-off where per-
formance is reduced for textual responses but results in im-
proved performance where there are images (averaging out
to little-to-no overall improvement). Also, from the results,
we have seen improvements in the performance of the ‘CLIP-
Image’ and ‘CLIP-OCR’ methods (that addresses the con-
tent of the image when auto-scoring) over the ‘CLIP-Text’
method (which is just based on text responses). To further
study the factors that contribute to the error of these mod-

els, and to verify whether introducing image components in
the text-based models actually improve the performance in
the presence of images, we replicate the error analysis from
Baral et. al [4]. Using features from student answers in-
cluding ‘Length of answer’, ‘Average word length’, ‘Total
numbers count’, ‘Total operators’, ‘Percentage of equations’
and ‘Presence of images’ as the dependent variables and Ab-
solute model error as the independent variable, we perform
three different linear regression analyses corresponding to
the three proposed methods for auto-scoring.

6.1 Results of Error Analysis
The results of the error analysis are presented in Table 2. All
the features from student answers are statistically significant
in predicting the modeling error in all three proposed meth-
ods. However, most of these features have low coefficient val-
ues, suggesting a relatively small effect, with the exception of
‘Equation Percent’ and ‘Presence of Images’ which are posi-
tively correlated with the model error in all three cases. This
is similar to the results of error analysis from prior study [4].
For the ‘CLIP-Text’ model, the coefficient for the presence
of images is 2.418, suggesting that the presence of images in
answers attributes to a notable amount of error in the model
prediction, even when considering the difference in feature
scaling. However, the coefficient value decreases to 0.472
in the ‘CLIP-Image’ method, and 0.560 in the ‘CLIP-OCR’
method. This decrease suggests that the introducing im-
age component to the ‘CLIP-Text’ method using embedding
and OCR-based text extraction actually helped the model
improve in the presence of images. It is also important to
note that this work does not explicitly address mathemat-
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ical terms (including numbers, expressions, and equations)
in the score prediction as has been suggested by other work
[5]. Also, we see a slight increase in the coefficient values
for equation percentage from ‘CLIP-Text’ to ‘CLIP-Image’
and ‘CLIP-OCR’. For the ‘CLIP-Text’ method, we discard
any images from the answer text, whereas for the other two
methods, if there is a response that contains both image and
text we discard the text from these responses and just con-
sider the images. The change in the coefficient values for
equation percent could be a result of this quality.

Following the error analysis procedure introduced in [4], we
additionally applied a multi-level model to examine model
error while accounting for clustered variance at the teacher-,
problem-, and student-levels. We used a similar regression
model with answer-level variables at level 1 (i.e. those listed
in Table 2) and teacher-, problem-, and student- identifiers
at level 2 as random effects. As before we again observed
model error as the dependent variable. Controlling for these
additional random effects did not lead to differences in the
interpretation of our results; for this reason, we have omitted
these additional regression results due to space limitations.

7. LIMITATIONS AND FUTURE WORKS
This paper represents an initial step toward improving state-
of-the-art methods for auto-scoring student responses to math-
ematical problems in the presence of images. This is a pre-
liminary work conducted towards exploring the feasibility
and challenges in auto-scoring student image responses in
the mathematical domain. Thus, the methods presented
have several limitations and challenges that can be addressed
with future work.

The proposed methods in this work use the CLIP model [27]
trained on a large variety of datasets of images and natu-
ral language available over the internet. While this method
shows promising results in recognizing a range of common
objects, the pre-trained model may not have been exposed
to the dataset of student hand-written or hand-drawn math-
ematics; the model was trained for application in very broad
domains to recognize objects and is not optimized for iden-
tifying similar responses on paper. It has also been found
that while the CLIP model learns a capable OCR system,
it exhibits low accuracy in the case of handwritten digits in
the widely-used MNIST dataset [27]. Further, fine-tuning
this model on a mathematical dataset could lead to better
model performance.

It is also important to note that the OCR method is based
on the Tesseract [33] engine; this is rather a traditional OCR
method and more recent advancements in OCR technology
may be explored in the future to achieve improved results.
Additionally, this method is known to be sensitive to poor-
quality images, complex backgrounds, variation in handwrit-
ing styles, and ambiguity in the characters [33]. All of these
are the common qualities of the images found in our dataset.
While this method supports digital images (that are screen-
shots of work done on a computer), the method has low ac-
curacy in extracting textual information from handwritten
answers. Thus, exploring better OCR methods that support
both handwritten and digital textual answers would better
improve these auto-scoring methods for images. Further,
both of the proposed methods that support images, inher-

ently discard the additional text if present in the response.
These texts may present additional supporting information
to the image-based answers, so it is important to explore
how to address this when evaluating these responses.

Apart from the limitation mentioned above, the process of
analyzing and processing these image-based answers in it-
self is a challenging task, as we can see a lot of variation in
these images of student-provided answers. Figure 2, presents
some examples of image-based student answers. The stu-
dent work in these images are not always clearly presented
and structured – some handwriting is hard to read, the im-
ages sometimes are of low resolution and are blurry, the use
of pencils makes the writing feint and hard to read, and
lacks consistent formatting. Due to the freedom provided to
students by the use of paper and pencil to draw out their
solution, the resulting answer is not always structured in the
same way from student to student. Future work could help
address some of these challenges by implementing a more
rigorous cleaning and preprocessing procedure prior to ap-
plying any image representation models. Cropping images
to focus on the prominent aspects of student work, rotating
images to improve the consistency of orientation, and even
color correction can help improve the clarity of the work.

In all of this work, there are also several ethical concerns that
should be considered in developing and applying these var-
ious methods. Images may contain Personally Identifiable
Information(PII) such as students’ names, faces, skin color,
etc. which exposes a potential risk of biases or disparate per-
formance in regard to the machine learning models. Future
works could mitigate some of these challenges by utilizing
some of the pre-processing methods described above, but
also emphasizes the importance of evaluating these scoring
models for potential biases or unfairness in their predictions.

8. CONCLUSION
In this study, we have presented preliminary work towards
developing an auto-scoring method for student response in
mathematics that includes images. By building upon the
prior research in auto-scoring text-based mathematical an-
swers, we have proposed methods for representing and scor-
ing image-based responses. In addressing our first research
question, our proposed methods did not outperform the cur-
rent state-of-the-art approach for auto-scoring, but they did
exhibit comparable performance across all three evaluation
metrics used. Addressing our second research question, we
did not find meaningful differences between the different
image-supporting embedding methods. The results of the
conducted error analysis, in alignment with our third re-
search question, further indicate that using pre-existing meth-
ods of text and image embeddings can enhance the perfor-
mance of the auto-scoring models in the presence of images.
Our findings from this study point toward new directions for
research in the area of analyzing and processing image-based
student responses in mathematics.
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ABSTRACT
Large language models (LLMs), such as Codex, hold great
promise in enhancing programming education by automat-
ically generating feedback for students. We investigate us-
ing LLMs to generate feedback for fixing syntax errors in
Python programs, a key scenario in introductory program-
ming. More concretely, given a student’s buggy program,
our goal is to generate feedback comprising a fixed pro-
gram along with a natural language explanation describ-
ing the errors/fixes, inspired by how a human tutor would
give feedback. While using LLMs is promising, the critical
challenge is to ensure high precision in the generated feed-
back, which is imperative before deploying such technology
in classrooms. The main research question we study is: Can
we develop LLMs-based feedback generation techniques with
a tunable precision parameter, giving educators quality con-
trol over the feedback that students receive? To this end, we
introduce PyFiXV, our technique to generate high-precision
feedback powered by Codex. The key idea behind PyFiXV
is to use a novel run-time validation mechanism to decide
whether the generated feedback is suitable for sharing with
the student; notably, this validation mechanism also pro-
vides a precision knob to educators. We perform an exten-
sive evaluation using two real-world datasets of Python pro-
grams with syntax errors and show the efficacy of PyFiXV
in generating high-precision feedback.

Keywords
Programming education, Python programs, syntax errors,
feedback generation, large language models
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1. INTRODUCTION
Large language models (LLMs) trained on text and code
have the potential to power next-generation AI-driven edu-
cational technologies and drastically improve the landscape
of computing education. One of such popular LLMs is Ope-
nAI’s Codex [1], a variant of the 175 billion parameter model
GPT-3 [2], trained by fine-tuning GPT-3 on code from over
50 million GitHub repositories. A recent study ranked Codex
in the top quartile w.r.t. students in a large introductory
programming course [3]. Subsequently, recent works have
shown promising results in using Codex on various program-
ming education scenarios, including generating new program-
ming assignments [4], providing code explanations [5], and
enhancing programming-error-messages [6].

We investigate the use of LLMs to generate feedback for
programming syntax errors, a key scenario in introductory
programming education. Even though such errors typically
require small fixes and are easily explainable by human tu-
tors, they can pose a major hurdle in learning for novice stu-
dents [7]. Moreover, the programming-error-messages pro-
vided by the default programming environment are often
cryptic and unable to provide explicable feedback to stu-
dents [8–10]. Ideally, a human tutor would help a novice
student by providing detailed feedback describing the er-
rors and required fixes to the buggy program; however, it is
extremely tedious/challenging to provide feedback at scale
given the growing enrollments in introductory programming
courses [11, 12]. To this end, our goal is to automate the
feedback generation process using LLMs-based techniques.

More concretely, given a student’s buggy program, we want
to generate feedback comprising a fixed program and a natu-
ral language explanation describing the errors/fixes, inspired
by how a human tutor would give feedback. While models
like Codex, trained on both text and code, are naturally
suitable for this, the critical challenge is to ensure high pre-
cision in the generated feedback. High precision is imper-
ative in building educators’ trust before deploying such an
AI-driven technology in classrooms. A recent work inves-
tigated enhancing the default programming-error-messages
using Codex [6]; one of the takeaways, quoted from their pa-
per, is “The key implications of this work are that program-

T. Phung, J. Cambronero, S. Gulwani, T. Kohn, R. Majumdar,
A. Singla, and G. Soares. Generating high-precision feedback for pro-
gramming syntax errors using large language models. In M. Feng,
T. Käser, and P. Talukdar, editors, Proceedings of the 16th Inter-
national Conference on Educational Data Mining, pages 370–377,
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1 print "x"
2 a = input("xxx")
3 print "Xx x"a
4 b = input("xxx xxx?")
5 print "xxxxxx" a + b

(a) Student’s buggy program

1 print "x"
2 a = input("xxx")
3 print "Xx x"+a
4 b = input("xxx xxx?")
5 print "xxxxxx" +a + b

(b) Generated fixed program

The student forgets to concate-
nate the string literal with the
variable. We can fix the error by
adding a plus sign between the
string literal and the variable.

(c) Generated explanation (d) Validation

Figure 1: Illustrative example showcasing PyFiXV on a buggy Python 2 program from TigerJython [9]. (a) Buggy program
(with string literals anonymized as sequences of ‘x’ in our dataset). (b, c) Fixed program and explanation generated by
PyFiXV. (d) PyFiXV’s validation mechanism successfully accepted the generated feedback as suitable for sharing.

1 for i in range(int(input()):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.appned(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

(a) Student’s buggy program

1 for i in range(int(input())):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.append(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

(b) Generated fixed program

In line 1, a closing parenthesis
is missing when calling function
‘range’. We should add a closing
parenthesis at the end of line 1,
before the colon, to fix this er-
ror. In line 6, the function ‘ap-
pend’ is misspelled. We should
replace ‘appned’ with ‘append’
to fix this error.

(c) Generated explanation (d) Validation

Figure 2: Similar to Figure 1, this example showcases PyFiXV on a buggy Python 3 program from Codeforces [13]. While
the misspelling of ‘append’ as ‘appned’ is not a syntax error (raising an AttributeError at runtime instead), PyFiXV typically
fixes such mistakes as well, showing the generalization value in LLMs-powered technique.

1 import math
2

3 def binary(num):
4 x=int(math.log2(num))+1
5 for i in range(x):
6 num=(num ^^(1<<i))
7 print(num)
8 for i in range(int ,input()):
9 n=int(input())

10 binary(n)

(a) Student’s buggy program

1 import math
2

3 def binary(num):
4 x=int(math.log2(num))+1
5 for i in range(x):
6 num=(num ^ (1<<i))
7 print(num)
8 for i in range(int(input())):
9 n=int(input())

10 binary(n)

(b) Generated fixed program

In line 6, the operator ‘ˆˆ’ is
not a valid operator in Python 3.
We should replace it with ‘ˆ’ to
fix this error. In line 8, a closing
parenthesis is missing when call-
ing function ‘range’. We should
add a closing parenthesis at the
end of line 8, before the colon,
to fix this error.

(c) Generated explanation (d) Validation

Figure 3: Similar to Figure 2, this example showcases PyFiXV on a buggy Python 3 program from Codeforces [13]. PyFiXV’s
validation mechanism successfully rejected the generated feedback (we marked text in (c) to highlight issues with explanation).

ming error message explanations and suggested fixes gener-
ated by LLMs are not yet ready for production use in in-
troductory programming classes...”. Our initial experiments
(Section 4) also highlight issues in generating high-precision
feedback. To this end, the main research question is:

Can we develop LLMs-based feedback generation techniques
with a tunable precision parameter, giving educators quality
control over the feedback that students receive?

1.1 Our Approach and Contributions
In this paper, we develop PyFiXV, our technique to gen-
erate high-precision feedback powered by Codex. Given a
student’s buggy program as input, PyFiXV decomposes the
overall process into (i) feedback generation (i.e., a fixed pro-
gram and a natural language explanation for errors/fixes);
and (ii) feedback validation (i.e., deciding whether the gen-
erated feedback is suitable for sharing with the student).
One of the key ideas in PyFiXV is to use a run-time feed-
back validation mechanism that decides whether the gener-
ated feedback is of good quality. This validation mechanism
uses Codex as a simulated student model – the intuition is
that a good quality explanation, when provided as Codex’s

prompt instruction, should increase Codex’s success in con-
verting the buggy program to the fixed program. Notably,
this validation also provides a tuneable precision knob to
educators to control the precision and coverage trade-off.
The illustrative examples in Figures 1, 2, and 3 showcase
PyFiXV on three different student’s buggy programs. Our
main contributions are:

(I) We formalize the problem of generating high-precision
feedback for programming syntax errors using LLMs,
where feedback comprises a fixed program and a nat-
ural language explanation. (Section 2)

(II) We develop a novel technique, PyFiXV, that gener-
ates feedback using Codex and has a run-time feedback
validation mechanism to decide whether the generated
feedback is suitable for sharing. (Section 3)

(III) We perform extensive evaluations using two real-world
datasets of Python programs with syntax errors and
showcase the efficacy of PyFiXV. We publicly release
the implementation of PyFiXV. (Section 4)1

1Github: https://github.com/machine-teaching-group/
edm2023_PyFiXV
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1.2 Related Work
Feedback generation for programming errors. There has been
extensive work on feedback generation for syntactic/seman-
tic programming errors [14–18]; however, these works have
focused on fixing/repairing buggy programs without pro-
viding explanations. The work in [11] proposed a tech-
nique to generate explanations; however, it requires pre-
specified rules that map errors to explanations. Another line
of work, complementary to ours, has explored crowdsourcing
approaches to obtain explanations provided by other stu-
dents/tutors [19, 20]. There has also been extensive work
on improving the programming-error-messages by designing
customized environments [9, 10]. As discussed earlier, a re-
cent study used Codex to enhance these error messages [6];
however, our work is different as we focus on generating
high-precision feedback with a tuneable precision knob.

Validation of generated content. In recent work, [21] devel-
oped a technique to validate LLMs’ output in the context
of program synthesis. While similar in spirit, their valida-
tion mechanism is different and operates by asking LLMs
to generate predicates for testing the synthesized programs.
Another possible approach is to use back-translation mod-
els to validate the generated content [22, 23]; however, such
a back-translation model (that generates buggy programs
from explanations) is not readily available for our setting.
Another approach, complementary to ours, is to use human-
in-the-loop for validating low confidence outputs [24].

2. PROBLEM SETUP
Next, we introduce definitions and formalize our objective.

2.1 Preliminaries
Student’s buggy program. Consider a student working on
a programming assignment who has written a buggy pro-
gram with syntax errors, such as shown in Figures 1a, 2a,
and 3a. Formally, these syntax errors are defined by the
underlying parser of the programming language [14]; we will
use the Python programming language in our evaluation.
Henceforth, we denote such a buggy program as Pb, which
is provided as an input to feedback generation techniques.

Feedback style. Given Pb, we seek to generate feedback com-
prising a fixed program along with a natural language expla-
nation describing the errors and fixes. This feedback style is
inspired by how a human tutor would give feedback to novice
students in introductory programming education [5, 9]. We
denote a generated fixed program as Pf, a generated expla-
nation as X , and generated feedback as a tuple (Pf,X ).

Feedback quality. We assess the quality of generated feed-
back (Pf,X ) w.r.t. Pb along the following binary attributes:
(i) Pf is syntactically correct and is obtained by making a
small number of edits to fix Pb; (ii) X is complete, i.e., con-
tains information about all errors and required fixes; (iii)
X is correct, i.e., the provided information correctly ex-
plains errors and required fixes; (iv) X is comprehensible,
i.e., easy to understand, presented in a readable format, and
doesn’t contain redundant information. These attributes are
inspired by evaluation rubrics used in literature [6, 25–27].
In our evaluation, feedback quality is evaluated via ratings
by experts along these four attributes. We measure feedback
quality as binary by assigning the value of 1 (good quality)

Generating 
fixed program

Generating
explanation

Validating
feedback𝒫" 𝒫# (𝒫#, 𝒳)

		𝔻*+,-

(𝒫#, 𝒳)

CompleteEdit Edit

Figure 4: Illustration of three different compoments/stages
in PyFiXV’s feedback generation process; see Section 3.

if it satisfies all the four quality attributes and otherwise 0
(bad quality).2

2.2 Performance Metrics and Objective
Performance metrics. Next, we describe the overall perfor-
mance metrics used to evaluate a feedback generation tech-
nique. For a buggy program Pb as input, we seek to design
techniques that generate feedback (Pf,X ) and also decide
whether the generated feedback is suitable for sharing with
the student. We measure the performance of a technique
using two metrics: (i) Coverage measuring the percentage
number of times the feedback is generated and provided to
the student ; (ii) Precision measuring the percentage num-
ber of times the provided feedback is of good quality w.r.t.
the binary feedback quality criterion introduced above. In
our experiments, we will compute these metrics on a dataset
Dtest = {Pb} comprising a set of students’ buggy programs.3

Objective. Our goal is to design feedback generation tech-
niques with high precision, which is imperative before de-
ploying such techniques in classrooms. In particular, we
want to develop techniques with a tuneable precision pa-
rameter that could provide a knob to educators to control
the precision and coverage trade-off.

3. OUR TECHNIQUE PYFIXV
In this section, we present PyFiXV, our technique to gen-
erate high-precision feedback using LLMs. PyFiXV uses
OpenAPI’s Codex as LLMs [1] – Codex has shown com-
petitive performance on a variety of programming bench-
marks [1, 3, 17, 18], and is particularly suitable for PyFiXV
as we seek to generate both fixed programs and natural lan-
guage explanations. More specifically, PyFiXV uses two
access points of Codex provided by OpenAI through public
APIs: Codex-Edit [28] and Codex-Complete [29]. As illus-
trated in Figure 4, PyFiXV has the following three com-
ponents/stages: (1) generating a fixed program Pf by edit-
ing Pb using Codex-Edit; (2) generating natural language
explanation X using Codex-Complete; (3) validating feed-
back (Pf,X ) using Codex-Edit to decide whether the gen-
erated feedback is suitable for sharing. The overall pipeline
of PyFiXV is modular and we will evaluate the utility of
different components in Section 4. Next, we provide details
for each of these stages.

2We note that the four attributes are independent. In partic-
ular, the attribute“complete”captures whether the explana-
tion contains information about all errors/fixes (even though
the information could be wrong), and the attribute “correct”
captures the correctness of the provided information.
3When a technique cannot generate feedback for an input
program Pb (e.g., the technique is unable to find a fixed pro-
gram), then we use a natural convention that no feedback is
provided to the student—this convention lowers the cover-
age metric but doesn’t directly affect the precision metric.
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Input Program for Codex-Edit
1 for i in range(int(input()):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.appned(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

Instructions for Codex-Edit
Fix the syntax errors in this Python 3
code

(a) Stage-1 prompt for generating Pf

Prompt for Codex-Complete
1 # Python 3
2 # Give feedback for the syntax

error fixes below:
3
4 ...... <few -shot example 1 >......
5 ...... <few -shot example 2 >......
6 ...... <few -shot example 3 >......
7

8 # [BUGGY PYTHON 3]
9 for i in range(int(input()):

10 l1=[]
11 for i in range(int(input())):
12 if i==0:
13 if i==0:
14 l1.appned(n)
15 elif(i==(n-1)):
16 l1.append (1)
17 else:
18 l1.append(i)
19 print(l1)
20
21

22 # [FIX]
23 1c1
24 < for i in range(int(input()):
25 ---
26 > for i in range(int(input())):
27 6c6
28 < l1.appned(n)
29 ---
30 > l1.append(n)
31
32

33 # [FEEDBACK] The syntax error in
this Python 3 code is:

(b) Stage-2 prompt for generating X

Input Program for Codex-Edit
1 for i in range(int(input()):
2 l1=[]
3 for i in range(int(input())):
4 if i==0:
5 if i==0:
6 l1.appned(n)
7 elif(i==(n-1)):
8 l1.append (1)
9 else:

10 l1.append(i)
11 print(l1)

Instructions for Codex-Edit
The syntax error in this Python 3
code is: In line 1, a closing paren-
thesis is missing when calling func-
tion ‘range’. We should add a clos-
ing parenthesis at the end of line 1,
before the colon, to fix this error. In
line 6, the function ‘append’ is mis-
spelled. We should replace ‘appned’
with ‘append’ to fix this error.

(c) Stage-3 prompt for validating (Pf,X )

Figure 5: Illustration of prompts used by different stages of PyFiXV for buggy Python 3 program in Figure 2. In particular,
the “Instructions for Codex-Edit” in (c) is obtained by concatenating line33 of (b) and the generated X shown in Figure 2c.

3.1 Stage-1: Generating Fixed Program
Given a student’s buggy program Pb as input, PyFiXV’s
Stage-1 generates a fixed program Pf. We use Codex-Edit
for fixing/repairing the buggy program in this stage since it
has shown to be competitive in program repair benchmarks
in recent works [30]. Figure 5a shows a sample prompt used
by PyFiXV to query Codex-Edit for the buggy Python 3
program in Figure 2a. The process of generating Pf is de-
termined by two hyperparameters: (i) t1 ∈ [0.0, 1.0] is the
temperature value specified when querying Codex-Edit and
controls stochasticity/diversity in generated programs; (ii)
n1 controls the number of queries made to Codex-Edit.

More concretely, PyFiXV begins by making n1 queries to
Codex-Edit with temperature t1. Then, out of n1 gener-
ated programs, PyFiXV selects Pf as the program that is
syntactically correct and has the smallest edit-distance to
Pb. Here, edit-distance between two programs is measured
by first tokenizing programs using Pygments library [31]
and then computing Levenshtein edit-distance over token
strings.4 If Stage-1 is unable to generate a fixed program,
the process stops without generating any feedback; see Foot-
note 3. In our experiments, we set (t1 = 0.5, n1 = 10) and
obtained a high success rate of generating a fixed program
Pf with a small number of edits w.r.t. Pb.

3.2 Stage-2: Generating Explanation
Given Pb and Pf as inputs, PyFiXV’s Stage-2 generates a
natural language explanation X describing errors/fixes. We
use Codex-Complete in this stage as it is naturally suited
to generate text by completing a prompt [1, 5, 6]. A cru-

4Note that buggy programs are not parseable to Abstract
Syntax Tree (AST) representations and string-based dis-
tance is commonly used in such settings (e.g., see [17]).

cial ingredient of Stage-2 is the annotated dataset Dshot used
to select few-shot examples when querying Codex-Complete
(see Figure 4). Figure 5b shows a sample prompt used by
PyFiXV to query Codex-Complete for the scenario in Fig-
ure 2. In Figure 5b, line4–line6 indicate three few-shot ex-
amples (not shown for conciseness), line9–line19 provides
Pb, line23–line30 provides Pf in the form of line-diff w.r.t.
Pb, and line33 is the instruction to be completed by Codex-
Complete. Given a prompt, the process of generating X
is determined by two hyperparameters: (i) a temperature
value t2 (= 0) and (ii) the number of queries n2 (= 1). Next,
we discuss the role of Dshot in selecting few-shots examples.

When querying Codex-Complete, we use three few-shot ex-
amples selected from Dshot, an annotated dataset of exam-
ples comprising buggy programs and desired feedback ob-
tained by expert annotations (see Section 4.2). These anno-
tated examples essentially provide a context to LLMs and
have shown to play an important role in optimizing the gen-
erated output (e.g., see [1, 2, 17, 18, 32]). In our case, Dshot

provides contextualized training data, capturing the format
of how experts/tutors give explanations. Given Pb and Pf,
we use two main criteria to select few-shot examples. The
primary criterion is to pick examples where the error type
of buggy program in the example is same as that of Pb—
the underlying parser/compiler provides error types (e.g.,
‘InvalidSyntax’, ‘UnexpectedIndent’). The secondary crite-
rion (used to break ties in the selection process) is based on
the edit-distance between the diff of buggy/fixed program
in the example and diff of Pb/Pf. In Section 4, we conduct
ablations to showcase the importance of selecting few-shots.

3.3 Stage-3: Validating Feedback
Given Pb and (Pf,X ) as inputs, PyFiXV’s Stage-3 vali-
dates the feedback quality and makes a binary decision of
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Technique TigerJython Codeforces
Precision Coverage Precision Coverage

PyFi-PEM 05.0 (1.0) 92.5 (1.6) 35.0 (2.4) 98.8 (0.8)

PyFiXshot:None 00.9 (0.5) 92.5 (1.6) 03.0 (0.4) 98.8 (0.8)
PyFiXshot:Rand 21.6 (1.7) 92.5 (1.6) 48.5 (2.6) 98.8 (0.8)
PyFiXshot:Sel 38.9 (3.5) 92.5 (1.6) 55.2 (3.9) 98.8 (0.8)

PyFi||Xshot:Sel 15.8 (1.8) 92.5 (1.6) 15.6 (2.8) 98.8 (0.8)

PyFiX-RuleP≥70 48.6 (4.4) 30.8 (12.5) 61.6 (9.0) 38.3 (10.5)
PyFiXVP≥70 76.0 (4.0) 31.2 (4.0) 72.4 (6.2) 64.2 (6.3)
PyFiX-OptP≈VP≥70

76.1 (0.4) 47.1 (3.4) 72.8 (0.1) 75.0 (5.7)

(a) Results for different techniques, reported as mean (stderr)
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Figure 6: Experimental results on two real-world datasets of Python programs, namely TigerJython [9] and Codeforces [13].

“accept” (feedback is suitable for sharing) or “reject” (feed-
back is discarded). PyFiXV uses a novel run-time feedback
validation mechanism using Codex-Edit to decide whether
the feedback (Pf,X ) w.r.t. Pb is of good quality. Here,
Codex-Edit is used in the flipped role of a simulated student
model – the intuition is that a good quality explanation X ,
when provided in Codex-Edit’s prompt instruction, should
increase Codex-Edit’s success in converting Pb to Pf. Fig-
ure 5c shows a sample prompt used by PyFiXV to query
Codex-Edit for the scenario in Figure 2—see the caption on
how “Instructions for Codex-Edit” in Figure 5c is obtained.5

The validation mechanism has three hyperparameters: (i)
t3 ∈ [0.0, 1.0] is the temperature value specified when query-
ing Codex-Edit; (ii) n3 controls the number of queries made
to Codex-Edit; (iii) h3 ∈ [1, n3] is the threshold used for
acceptance decision. More concretely, PyFiXV begins by
making n3 queries to Codex-Edit with temperature t3. Then,
out of n3 generated programs, PyFiXV counts the num-
ber of programs that don’t have syntax errors and have an
exact-match with Pf. Here, exact-match is checked by con-
verting programs to their Abstract Syntax Tree (AST)-based
normalized representations.6 Finally, the validation mecha-
nism accepts the feedback if the number of exact matches
is at least h3. These hyperparameters (t3, n3, h3) also pro-
vide a precision knob and are selected to obtain the desired
precision level, as discussed next.

3.4 Precision and Coverage Trade-Off
PyFiXV’s validation mechanism provides a precision knob
to control the precision and coverage trade-off (see perfor-
mance metrics in Section 2.2). Let P be the desired precision
level we want to achieve for PyFiXV. The idea is to choose
Stage-3 hyperparameters (t3, n3, h3) that achieve P precision
level. For this purpose, we use a calibration dataset Dcal for

5In our initial experiments, we tried using alternative signals
for validation, such as (a) Codex-Complete’s probabilities
associated with generated X ; (b) automatic scoring of X
w.r.t. explanations in few-shots using BLEU score [33]; (c)
filtering based on X ’s length. Section 4 reports results for (c)
as it had the highest performance among these alternatives.
6We check for AST-based exact match instead of checking
for Levenshtein edit-distance over token strings being 0 (see
Section 3.1). AST-based exact match is more relaxed than
edit-distance being 0 – AST-based representation ignores
certain differences between codes, e.g., based on extra spaces
and comments. We used the AST-based exact match in the
validation mechanism as it is more robust to such differences.

picking the hyperparameters. More concretely, in our ex-
periments, PyFiXV first computes performance metrics on
Dcal for the following range of values: (i) t3 ∈ {0.3, 0.5, 0.8};
(ii) n3 ∈ {10}; (iii) h3 ∈ {1, 2, . . . , 10}. Then, it chooses
(t3, n3, h3) that has at least P precision level and maximizes
coverage; when achieving the desired P is not possible, then
the next lower possible precision is considered. The cho-
sen values of hyperparameters are then used in PyFiXV’s
Stage-3 validation mechanism. We refer to PyFiXVP≥x as
the version of PyFiXV calibrated with P ≥ x.

4. EXPERIMENTAL EVALUATION
We perform evaluations using two real-world Python pro-
gramming datasets, namely TigerJython [9] and Codeforces
[13]. We picked Python because of its growing popularity as
an introductory programming language; notably, PyFiXV
can be used with other languages by appropriately changing
the prompts and tokenizers used. We use OpenAI’s public
APIs for Codex-Edit [28] (model=code-davinci-edit-001 ) and
Codex-Complete [29] (model=code-davinci-002 ). We begin
by describing different techniques used in the evaluation.

4.1 Baselines and Variants of PYFIXV
Default programming-error-messages without validation. As
our first baseline, PyFi-PEM uses PyFiXV’s Stage-1 to
generate Pf and uses programming-error-messages provided
by the programming environment as X . PyFi-PEM uses er-
ror messages provided by Python 2.7 environment for Tiger-
Jython and Python 3.12 environment for Codeforces. This
baseline is without validation (i.e., the generated feedback
is always accepted).

Variants of PyFiXV without validation. PyFiXshot:Sel is a
variant of PyFiXV without the validation mechanism (i.e.,
only uses Stage-1 and Stage-2). PyFiXshot:Rand is a vari-
ant of PyFiXshot:Sel where few-shot examples in Stage-2 are
picked randomly from Dshot. PyFiXshot:None is a variant of
PyFiXshot:Sel that doesn’t use few-shot examples in Stage-2.
PyFi||Xshot:Sel is a variant of PyFiXshot:Sel that runs Stage-
1 and Stage-2 in parallel; hence, Stage-2’s prompt doesn’t
make use of Pf. All these variants are without validation
(i.e., the generated feedback is always accepted).

Techniques with alternative validation mechanisms. We con-
sider two variants of PyFiXV, namely PyFiX-Rule and
PyFiX-Opt, that use different validation mechanisms (i.e.,
replace PyFiXV’s Stage-3 with an alternative validation).
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1 import time
2
3 def cd(seconds):
4 while seconds > 0:
5 rem_m = seconds // 60
6 rem_s = seconds % 60
7 remaining_time = str(rem_m) + "

minutes " + str(rem_s) + " seconds"
8 print(remaining_time , end=’\r’)
9 seconds = seconds - 1

10 time.sleep (1)
11
12 print("Xxxxx xxxxX")
13

14 cd(60)

(a) Student’s buggy program Pb

1 from __future__ import print_function
2 import time
3
4 def cd(seconds):
5 while seconds > 0:
6 rem_m = seconds // 60
7 rem_s = seconds % 60
8 remaining_time = str(rem_m) + "

minutes " + str(rem_s) + " seconds"
9 print(remaining_time , end=’\r’)

10 seconds = seconds - 1
11 time.sleep (1)
12
13 print("Xxxxx xxxxX")
14
15 cd(60)

(b) Generated Pf

The student
wants to use the
print function
from Python 3.
To do so, the
correct way is to
add the line ‘from

future import
print function’ at
the beginning of
the code.

(c) Generated X (d) Validation

Figure 7: Similar to Figure 1, this illustrative example showcases PyFiXV on a buggy Python 2 program from TigerJython [9].

1 name = input("Xxx xx?")

2 num = input("Xxx xx xxxxxxx?")

3 print ("Xxxx " + name + "Xxx ")*,num

(a) Student’s buggy program Pb

1 name = input("Xxx xx?")

2 num = input("Xxx xx xxxxxxx?")

3 print ("Xxxx " + name + "Xxx ")*num

(b) Generated Pf

The student forgets to enclose
a string literal with quotes.
We can fix the error by enclos-
ing the string literal in line 3
with a pair of double quotes.

(c) Generated X (d) Validation

Figure 8: Similar to Figure 3, this example showcases PyFiXV on a buggy Python 2 program from TigerJython [9]. PyFiXV’s
validation mechanism successfully rejected the generated feedback (we marked text in (c) to highlight issues with explanation).

PyFiX-Rule validates (Pf,X ) based on X ’s length, as noted
in Footnote 5. Given a hyperparameter hr, (Pf,X ) is ac-
cepted if the number of tokens in X is at most hr, where to-
kenization is done by splitting on whitespaces/punctuations.
PyFiX-Rule’s hr is picked from the set {30, 40, 50, . . . , 200}
based on the desired precision level P, by following the cal-
ibration process in Section 3.4. PyFiX-Opt uses an oracle
validation that has access to expert’s ratings for the gener-
ated feedback (Pf,X ). Then, for a desired P, PyFiX-Opt
performs optimal validation and highlights the maximum
coverage achievable on Dtest for the generated feedback.

4.2 Datasets and Evaluation Procedure
Datasets and annotations for few-shot examples. As our first
dataset, namely TigerJython, we have 240 distinct Python 2
programs written by students in TigerJython’s educational
programming environment [9]. We obtained a private and
anonymized version of the dataset used in [34], with string
literals in programs replaced with sequences of ‘x’ (e.g., see
Figure 1). As our second dataset, namely Codeforces, we
curated 240 distinct Python 3 programs from the Code-
forces website using their public APIs [13], inspired by simi-
lar works that curate Codeforces dataset [35, 36]. Programs
in both datasets have syntax errors and have token length
at most 500 (see Section 3.1 about program tokenization).
For the Codeforces dataset, we only include programs sub-
mitted to contests held from July 2021 onwards (after the
cut-off date for Codex’s training data [1]). Since a part of
these datasets will be used for few-shot examples (as Dshot in
PyFiXV’s Stage-2), we asked experts to annotate these 480
programs with feedback (i.e., a fixed program along with an
explanation). Three experts, with extensive experience in
Python programming and tutoring, provided annotations.

Evaluation procedure and feedback ratings. Given a dataset
D with 240 buggy programs, we can evaluate a technique by
splitting D as follows: (a) Dtest (25%) for reporting preci-
sion and coverage performance metrics; (b) Dshot (50%) for
few-shot examples; (c) Dcal (25%) for calibrating validation

mechanism. To report overall performance for techniques,
we perform a cross-validation procedure with four evalua-
tion rounds while ensuring that Dtest across four rounds are
non-overlapping. We then report aggregated results across
these rounds as average mean (stderr). As discussed in Sec-
tions 2.1 and 2.2, evaluating these performance metrics re-
quires feedback ratings by experts to assess the quality of the
feedback generated by each technique.7 For example, evalu-
ating metrics on TigerJython dataset for PyFiXV requires
480 feedback ratings (4×60 for Dtest and 4×60 for Dcal). To
begin, we did a smaller scale investigation to establish the
rating criteria, where two experts rated 100 generated feed-
back instances; we obtained Cohen’s kappa reliability value
0.72 indicating substantial agreement between experts [37].
Afterward, one expert (with experience in tutoring Python
programming classes) did these feedback ratings for the eval-
uation results.8

4.3 Results
Comparison of different techniques. Figure 6a provides a
comparison of different techniques on two datasets. All tech-
niques here use PyFiXV’s Stage-1 to obtain Pf. The cov-
erage numbers of 92.5 and 98.8 reported in Figure 6a corre-
spond to the success rate of obtaining Pf on these datasets
(the average edit-distance between Pb and Pf is about 10.4
and 7.5 tokens on these datasets, respectively). For our
baseline PyFi-PEM, we see a big jump in precision from 5.0
for TigerJython (Python 2) to 35.0 for Codeforces (Python

7We note that precision and coverage performance metrics
for different techniques are reported for the end-to-end pro-
cess associated with each technique, and not just for the
validation mechanism. Also, even if a technique doesn’t use
any validation mechanism, the coverage could be less than
100.0 as discussed in Footnote 3.
8We note that the experts were blinded to the condition
(technique) associated with each feedback instance when
providing ratings. Moreover, these generated feedback in-
stances were given to experts in randomized order across
conditions instead of grouping them per condition.
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3), owing to enhanced error messages in recent Python ver-
sions [38–40]. Results for PyFiXVP≥70 in comparison with
results for PyFiXshot:Sel, PyFiXshot:Rand, PyFiXshot:None,
and PyFi||Xshot:Sel showcase the utility of different compo-
nents used in PyFiXV’s pipeline. Comparing PyFiXVP≥70

with PyFiX-RuleP≥70 shows that PyFiXV’s validation sub-
stantially outperforms PyFiX-Rule’s validation.9 Lastly,
results for PyFiX-OptP≈VP≥70

are obtained by setting the
desired precision level for PyFiX-Opt to match that of
PyFiXVP≥70 on Dtest – the coverage numbers (47.1 for
TigerJython and 75.0 for Codeforces) indicate the maxi-
mum possible achievable coverage. Notably, PyFiXVP≥70

achieves a competitive coverage of 64.2 on Codeforces.10

Precision and coverage trade-off curves. The curves in Fig-
ures 6b and 6c are obtained by picking different desired pre-
cision levels P and then computing precision/coverage val-
ues on Dtest w.r.t. P. The curves for PyFiX-Opt show the
maximum possible coverage achievable on Dtest for different
precision levels P using our generated feedback. To obtain
these curves for PyFiXV and PyFiX-Rule, we did calibra-
tion directly on Dtest instead of Dcal (i.e., doing ideal calibra-
tion for their validation mechanisms when comparing with
PyFiX-Opt’s curves). These curves highlight the precision
and coverage trade-off offered by PyFiXV in comparison to
a simple rule-based validation and the oracle validation.

Qualitative analysis. We have provided several illustrative
examples to demonstrate our technique PyFiXV. Figures 1,
2, and 7 show examples where PyFiXV’s Stage-1 and Stage-
2 generate good quality feedback and Stage-3 successfully
accepts the feedback. Figures 3 and 8 show examples where
PyFiXV’s Stage-1 and Stage-2 generate bad quality feed-
back and Stage-3 successfully rejects the feedback. Figure 7
highlights that PyFiXV can make non-trivial fixes in the
buggy program and correctly explain them in a comprehen-
sible way. Figure 3 shows an example where the overall feed-
back is bad quality and successfully rejected, though parts of
the generated explanation are correct; this could potentially
be useful for tutors in a human-in-the-loop approach.

5. CONCLUDING DISCUSSIONS
We investigated using LLMs to generate feedback for fixing
programming syntax errors. In particular, we considered
feedback in the form of a fixed program along with a nat-
ural language explanation. We focussed on the challenge
of generating high-precision feedback, which is crucial be-
fore deploying such technology in classrooms. Our proposed
technique, PyFiXV, ensures high precision through a novel
run-time validation mechanism and also provides a precision
knob to educators. We performed an extensive evaluation to

9When comparing PyFiXVP≥70 with these techniques in
Figure 6a, the results are significantly different w.r.t. χ2

tests [41] (p ≤ 0.0001); here, we use contingency tables with
two rows (techniques) and four columns (240 data points
mapped to four possible precision/coverage outcomes).

10Techniques PyFiXshot:Sel, PyFiX-Rule, PyFiXVP≥70,
and PyFiX-OptP≈VP≥70

differ only in terms of validation
mechanisms. We can compare the validation mechanisms
used in these techniques based on F1-score. The F1-scores
of these four techniques are as follows: 0.56, 0.39, 0.70, and
0.86 for TigerJython, respectively; 0.71, 0.47, 0.77, and 0.84
for Codeforces, respectively.

showcase the efficacy of PyFiXV on two real-world Python
programming datasets. There are several interesting direc-
tions for future work, including (a) improving PyFiXV’s
components to obtain better precision/coverage trade-off,
e.g., by adapting our technique to use recent LLMs such
as ChatGPT [42] and GPT-4 [43] instead of Codex; (b)
extending PyFiXV beyond syntax errors to provide feed-
back for programs with semantic errors or partial programs;
(c) incorporating additional signals in PyFiXV’s validation
mechanism; (d) conducting real-world studies in classrooms.
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[18] Harshit Joshi, José Pablo Cambronero Sánchez, Sumit
Gulwani, Vu Le, Ivan Radicek, and Gust Verbruggen.
Repair is Nearly Generation: Multilingual Program Re-
pair with LLMs. In AAAI, 2023.

[19] Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. What Would Other Programmers
Do: Suggesting Solutions to Error Messages. In CHI,
2010.

[20] Andrew Head, Elena L. Glassman, Gustavo Soares, Ryo
Suzuki, Lucas Figueredo, Loris D’Antoni, and Björn
Hartmann. Writing Reusable Code Feedback at Scale
with Mixed-Initiative Program Synthesis. In Learning
@ Scale, 2017.

[21] Darren Key, Wen-Ding Li, and Kevin Ellis. I Speak,
You Verify: Toward Trustworthy Neural Program Syn-
thesis. CoRR, abs/2210.00848, 2022.

[22] Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. Understanding Back-Translation at Scale. In
EMNLP, 2018.

[23] Yewen Pu, Kevin Ellis, Marta Kryven, Josh Tenen-
baum, and Armando Solar-Lezama. Program Synthesis
with Pragmatic Communication. In NeurIPS, 2020.

[24] Hiroaki Funayama, Tasuku Sato, Yuichiroh Matsub-
ayashi, Tomoya Mizumoto, Jun Suzuki, and Kentaro
Inui. Balancing Cost and Quality: An Exploration of
Human-in-the-Loop Frameworks for Automated Short
Answer Scoring. In AIED, 2022.

[25] Rui Zhi, Samiha Marwan, Yihuan Dong, Nicholas Ly-
tle, Thomas W. Price, and Tiffany Barnes. Toward
Data-Driven Example Feedback for Novice Program-
ming. In EDM, 2019.

[26] Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin,
and Adish Singla. Adaptive Scaffolding in Block-
Based Programming via Synthesizing New Tasks as
Pop Quizzes. In AIED, 2022.

[27] Anäıs Tack and Chris Piech. The AI Teacher Test:
Measuring the Pedagogical Ability of Blender and
GPT-3 in Educational Dialogues. In EDM, 2023.

[28] OpenAI. Codex-Edit. https://beta.

openai.com/playground?mode=edit&model=

code-davinci-edit-001, .

[29] OpenAI. Codex-Ccomplete. https://beta.

openai.com/playground?mode=complete&model=

code-davinci-002, .

[30] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury, and
Shin Hwei Tan. Automated Repair of Programs from
Large Language Models. In ICSE, 2022.
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Fariha, Sumit Gulwani, Vu Le, Ivan Radicek, and
Ashish Tiwari. Neurosymbolic Repair for Low-Code
Formula Languages. Proceedings ACM Programming
Languages, 6(OOPSLA2), 2022.

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. BLEU: A Method for Automatic Evaluation
of Machine Translation. In ACL, 2002.

[34] Tobias Kohn. The Error Behind The Message: Finding
the Cause of Error Messages in Python. In SIGCSE,
2019.

[35] Ethan Caballero and Ilya Sutskever. Description2Code
Dataset. https://github.com/ethancaballero/

description2code, 2016.

[36] Yujia Li and et al. Competition-Level Code Generation
with AlphaCode. 2022.

[37] Matthijs J Warrens. Five Ways to Look at Cohen’s
Kappa. Journal of Psychology & Psychotherapy, 5(4):
1, 2015.

[38] The Python Software Foundation. What’s New In
Python 3.10. https://docs.python.org/3/whatsnew/

3.10.html, .

[39] The Python Software Foundation. What’s New In
Python 3.11. https://docs.python.org/3/whatsnew/

3.11.html, .

[40] The Python Software Foundation. What’s New
In Python 3.12. https://docs.python.org/3.12/

whatsnew/3.12.html, .

[41] William G Cochran. The χ2 Test of Goodness of Fit.
The Annals of Mathematical Statistics, 1952.

[42] OpenAI. ChatGPT. https://openai.com/blog/

chatgpt, 2023.

[43] OpenAI. GPT-4 Technical Report. CoRR,
abs/2303.08774, 2023.

377



Modeling and Analyzing Scorer Preferences
in Short-Answer Math Questions

Mengxue Zhang
UMass Amherst

mengxuezhang@umass.edu

Neil Heffernan
Worcester Polytechnic Institute

nth@wpi.edu

Andrew Lan
UMass Amherst

andrewlan@cs.umass.edu

ABSTRACT
Automated scoring of student responses to open-ended ques-
tions, including short-answer questions, has great poten-
tial to scale to a large number of responses. Recent ap-
proaches for automated scoring rely on supervised learning,
i.e., training classifiers or fine-tuning language models on a
small number of responses with human-provided score la-
bels. However, since scoring is a subjective process, these
human scores are noisy and can be highly variable, depend-
ing on the scorer. In this paper, we investigate a collection of
models that account for the individual preferences and ten-
dencies of each human scorer in the automated scoring task.
We apply these models to a short-answer math response
dataset where each response is scored (often differently) by
multiple different human scorers. We conduct quantitative
experiments to show that our scorer models lead to improved
automated scoring accuracy. We also conduct quantitative
experiments and case studies to analyze the individual pref-
erences and tendencies of scorers. We found that scorers can
be grouped into several obvious clusters, with each cluster
having distinct features, and analyzed them in detail.

Keywords
Automated Scoring, Scorer Models, Bias

1. INTRODUCTION
Automated scoring (AS), i.e., using algorithms to automat-
ically score student (textual) responses to open-ended ques-
tions, has significant potential to complement and scale up
human scoring, especially with an ever-increasing number of
students. AS algorithms are often driven by supervised ma-
chine learning-based algorithms and require a small num-
ber of example responses and their score labels to train
on. These algorithms mostly consist of two components: a
representation component that use either hand-crafted fea-
tures [8, 17, 21, 27, 28, 37] or language models [24, 25, 34, 36,
42] to represent the (mostly textual) content in questions,
student responses, and other information, e.g., rubrics [12]

and a scoring component that use classifiers [4, 26] to pre-
dict the score of a response from its textual representation.
In different subject domains, the representation component
can be quite different, from hand-crafted features and neu-
ral language model-based textual embeddings in automated
essay scoring (AES) [2, 27], automatic short answer grading
(ASAG) [35, 47], and reading comprehension scoring [16] to
specialized representations in responses where mathemati-
cal expressions are present [6, 31, 32, 40]. On the con-
trary, the scoring model does not vary significantly across
different subject domains, often relying on simple classifiers
such as logistic regression, support vector machines, random
forests, or linear projection heads in neural networks [20].
We provide a more detailed discussion on related work in
Section 1.2.

One key factor that limits the accuracy of AS methods is
that the scoring task is a subjective one; human scorers are
often given a set of rubrics [1] and asked to score responses
according to them. However, different individuals interpret
rubrics and student responses differently, leading to signif-
icant variation in their scores. For example, inter-scorer
agreement can be as quite high in NAEP reading compre-
hension question scoring, with a quadratic weighted Kappa
(QWK) score of 0.88 [16] and quite low in open-ended math
question scoring, with a Kappa score of 0.083 (see Section 3.1
for details and Table 1 for a concrete example). This vari-
ation creates a noisy labels problem, which is a common
problem in machine learning where one often needs to ac-
quire a large number of labels via crowdsourcing [3, 18, 19].
In educational applications such as AS, this problem is even
more important since the amount of labels we have access to
is often small, which amplifies the negative impact of noisy
score labels. Therefore, there is a significant need to ana-
lyze the preferences and tendencies of individual scorers, to
not only improve AS accuracy by providing cleaner labels to
train on but also understand where the variation in scores
comes from and investigate whether we can reduce it.

1.1 Contributions
In this paper, we propose a collection of models for the vari-
ation in human scorers due to their individual preferences
and tendencies, from simple models that use only a few pa-
rameters to account for the bias and variance of each scorer
to complex models that use a different set of neural net-
work parameters for each scorer. We ground our work in an
AS task for short-answer mathematical questions and show
that by adding our model to the classification component of

M. Zhang, N. Heffernan, and A. Lan. Modeling and analyzing scorer
preferences in short-answer math questions. In M. Feng, T. Käser,
and P. Talukdar, editors, Proceedings of the 16th International Con-
ference on Educational Data Mining, pages 378–387, Bengaluru, In-
dia, July 2023. International Educational Data Mining Society.
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AS models, we can improve AS accuracy by more than 0.02
in Kappa score and 0.01 in AUC compared to AS meth-
ods that do not account for individual scorer differences.
We also conduct qualitative experiments and case studies to
analyze the individual preference and tendencies of scorers.
We found that scorers can be grouped into several major,
obvious clusters, with each cluster having distinct features,
which we explain in detail. We emphasize that our goal is
NOT to develop the most accurate AS model; instead, our
goal is to show that accounting for the variation across differ-
ent individual scorers can potentially improve the accuracy
of any AS model.

1.2 Related work

Noisy labels. Individual scorers often exhibit different pref-
erences and tendencies, as found in [38]. Some of our mod-
els for scorer preference and tendency are closely related to
models used in peer grading [30], where students grade each
others’ work, which is often deployed in settings such as mas-
sive open online courses (MOOCs) where a large number of
open-ended responses make it impossible for external human
scorers to score all responses. Most of these models are in-
spired by methods in machine learning on combining labels
from human labelers with different expertise in crowdsourc-
ing contexts [41]. These models are simple and interpretable,
with the most basic version involving a single bias parameter
(towards certain score labels) and a single variance param-
eter (across different score labels) for each scorer. On the
contrary, we experiment with not only these models but also
more flexible but uninterpretable models, which are compat-
ible with using pre-trained neural language models [13, 29]
in the representation component of AS models.

AS and math AS. The majority of existing ASAG and
AES methods focus on non-mathematical domains [7, 9, 11,
21, 27, 37, 39]. Recently, some AS methods are developed
for specific domains that contain non-textual symbols, e.g.,
Chemistry, Computer Science, and Physics, which exist in
student responses in addition to text, achieving higher and
higher AS accuracy [5, 14, 23, 33, 34]. Our work is grounded
in the short-answer math question scoring setting, which is
studied in prior works [5, 6, 32, 46]. The key technical chal-
lenge here is that mathematical expressions that are often
contained in open-ended student responses can be difficult to
parse and understand in the representation component. The
authors of [5] proposed a scoring approach for short-answer
math questions using sentence-BERT (SBERT)-based rep-
resentation of student responses and simply ignored mathe-
matical expressions. The authors of [6] developed an addi-
tional set of features specifically designed for mathematical
expressions and used them in conjunction with the SBERT
representations as input to the scoring component. The au-
thors of [32] fine-tuned a language model, BERT [13], fur-
ther pre-trained on math textbooks, as the representation
component; however, this representation was found to not
be highly effective in later works [46]. The authors of [46]
used a sophisticated in-context meta-training approach for
automated scoring by inputting not only the response that
needs to be scored but also scored examples to a language
model, enabling the language model to learn from examples,
which results in significant improvement in AS accuracy and

especially generalizability to previously unseen questions.

Another line of related work is about fairness in educational
data analysis since scorer preference can be classified as a
form of individual bias. Researchers have proposed methods
to incorporate constraints and regularization into predictive
models to improve parity and mitigate fairness issues [10,
44, 45]. On the contrary, our work does not attempt at
reducing biases; our focus is only on identifying a specific
source of bias, individual scorer bias, in the AS context.
Therefore, the only approach we use to mitigate biases is to
leverage scorer identification information and investigate its
impact on AS accuracy, following prior work on using this
information in predictive models [43].

2. MODEL
We now detail our models for individual scorer preference
and tendency in AS tasks. For all models, we use a BERT
model [13] as the corresponding representation component
of the AS model, which has been shown to perform well and
reach state-of-the-art performance on the short math answer
AS task with an appropriate input structure [46]. Let us
denote each question-response pair that needs to be scored
as qi, while the j-th scorer assigns a score yi,j ∈ {1, . . . , C}
where C denotes the number of possible score categories.

2.1 Baseline
Our base AS model is one that directly uses the output
[CLS] embedding of BERT as the representation of the question-
response pair ri ∈ RD, where D = 768 is the dimension
of the embedding. We also use a linear classification head
(omitting the bias terms for simplicity) with softmax out-
put [20] for all score categories, i.e.,

p(yi,j = c) ∝ e(wT
c ri)+bc ,

where wc denotes the D-dimensional parameter for each
score category and bc ∈ R is the universal bias toward each
score category.

2.2 Scalar bias and variance with scorer em-
beddings

The first version of our model is the simplest and most inter-
pretable: we use a scalar temperature, i.e., variance param-
eter for each scorer, and a scalar offset, i.e., bias parameter
on each score category for each scorer, i.e.,

p(yi,j = c) ∝ eαj(w
T
c ri+bc,j), (1)

where αt > 0 is the “temperature” parameter that controls
the scorer’s uncertainty across categories: larger values in-
dicate higher concentrations of the probability mass around
the most likely score category, which corresponds to more
consistent scoring behavior. bc,j ∈ R is the “offset” pa-
rameter that controls the scorer’s bias towards each score
category: larger values indicate a higher probability of se-
lecting some score category, which corresponds to more pos-
itive/negative scoring preferences.

In practice, we found that parameterizing biases with a set
of scorer embeddings lead to better performance than simply
parameterizing the biases as learnable scalars. Specifically,
we introduce a high-dimensional embedding for each scorer,
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Table 1: Example questions, student responses, and scores. Some scorers assign highly different scores to similar responses.

question id question body response scorer id score
43737 Chris spent $9 of the $12 he was given for

his birthday. His sister Jessie says that he
has spent exactly 0.75 of the money. Chris
wonders if Jessie is correct. Explain your
reasoning.

Jessie is correct because 0.75 in fraction
form is 3/4. 9 is 3/4 of 12, so she is right.

1 4

Jessie is wrong. 1 0
she is correct 1 1
Jessie is incorrect. 2 4
Jessie is right because if you divide 12 by
9 you get 0.75.

2 2

ej ∈ RD, and use a C × D matrix S to map it to a low-
dimensional vector that corresponds to the bias terms for
all score categories. This advantage is likely due to the fact
that more model parameters make the model more flexible
and more capable in capturing detailed nuances in scorer
preferences and tendencies.

2.3 Content-driven scorer bias and variance
In the models above, we have set the scorer biases and vari-
ances to be scorer-dependent but not question/response-
dependent, i.e., the bias and variance of a scorer stay the
same across all question-response pairs. However, in prac-
tice, it is possible that these parameters depend on the ac-
tual textual content of the question and the student’s re-
sponse. Therefore, we extend the scorer model in Eq. 1 into

bi,j = fb(ri, ej), αt = fα(ri, ej),

where fb(ri, ej) = rTi Abej , fα(ri, ej) = rTi Aαej ,

where the bias bi,j is now a C × 1 vector of biases across
all score categories and both question-response pair (i)-
dependent and scorer (j)-dependent. fb and fα denote func-
tions that map the textual representation of the question-
response pair and the scorer embedding to the bias and
variance parameters, which can be implemented in any way
(from simple linear models to complex neural networks). In
this work, we found that using bi-linear functions of the
question-response pair representation ri and the scorer em-
bedding ej , using two D ×D matrices Ab and Aα, results
in the best AS accuracy.

2.4 Training with different losses
We explore using various different loss functions as objec-
tives to train our AS model, which we detail below.

2.4.1 Cross-entropy
Since the AS task corresponds to a multi-category classifica-
tion problem, the standard loss function that we minimize is
the cross-entropy (CE) loss [20], summed over all question-
response pairs and scorers, as

LCE = −
∑

i,j

C∑

c=1

1yi,j=c log p(yi,j = c)

where 1yi,j=c is the indicator function that is non-zero only if
yi,j = c. In other words, we are minimizing the negative log-
likelihood of the actual score category among the category
probabilities predicted by the AS model, p(yi,j = c).

2.4.2 Ordinal log loss
One obvious limitation of the standard CE loss is that it
assumes that the categories are unordered, which works for
many applications. Therefore, it penalizes all misclassifica-
tions equally. However, for AS, the score categories are nat-
urally ordered, which means that score classification errors
are not equal: if the actual score is 1 out of 5, then a mis-
classified score of 2 is better than 5, but they are weighted
equally in the standard CE loss. Therefore, we follow the
approach outlined in [15] and use an ordinal log loss (OLL),
which we define as

LOLL = −
∑

i,j

C∑

c=1

|yi,j − c| log(1− p(yi,j = c)),

where we weight the misclassification likelihood, i.e.,
− log(1 − p(yi,j = c)), according to the difference between
the actual score, yi,j , and the predicted score, c. In the
aforementioned example, this objective function would in-
crease the penalty of a misclassified score of 5 by four times
compared to a misclassified score of 2 when the actual score
is 1, which effectively leverages the ordered nature of the
score categories.

2.4.3 Mean squared error
Since the score categories are integers and can be treated
as numerical values, one simple alternative to the CE loss is
the mean squared error (MSE) loss, i.e.,

LMSE =
∑

i,j

(yi,j −
C∑

c=1

p(yi,j = c)c)2, (2)

where we simply square the difference between the actual
score and the expected (i.e., weighted average) score under
the category probabilities predicted by the AS model.

3. QUANTITATIVE EXPERIMENTS
We now detail experiments that we conducted to validate the
different scoring components of AS models and loss functions
that capture scorer preferences and tendencies. Section 3.1
discusses details on the real-world student response dataset
we use and the pre-processing steps. Section 3.2 details the
evaluation metrics we use in our experiments. Section 3.3
details our experimental setting, and Section 3.4 details the
experimental results and corresponding discussion.

3.1 Dataset
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Table 2: Comparing different scorer models on short-answer math scoring. The combination of content-driven scorer bias and
temperature with the OLL loss outperforms other scorer models and training losses.

Bias (b) & Temperature (α) Loss Function AUC RMSE Kappa
Universal (bc, α = 1) CE 0.765 ± 0.003 0.954 ± 0.014 0.614 ± 0.009
Universal (bc, α = 1) MSE 0.764 ± 0.003 0.946 ± 0.018 0.615 ± 0.008
Universal (bc, α = 1) OLL 0.768 ± 0.003 0.944 ± 0.015 0.617 ± 0.006
Scorer-specific (bc,j , αj) CE 0.768 ± 0.005 0.928 ± 0.023 0.628 ± 0.006
Scorer-specific (bc,j , αj) MSE 0.772 ± 0.005 0.926 ± 0.025 0.625 ± 0.006
Scorer-specific (bc,j , αj) OLL 0.770 ± 0.003 0.916 ± 0.013 0.628 ± 0.004
Content-driven (bc,j(ri), αj(ri)) CE 0.772 ± 0.003 0.923 ± 0.016 0.631 ± 0.006
Content-driven (bc,j(ri), αj(ri)) MSE 0.774 ± 0.004 0.922 ± 0.021 0.629 ± 0.005
Content-driven (bc,j(ri), αj(ri)) OLL 0.779 ± 0.004 0.924 ± 0.013 0.641 ± 0.005

We use data collected from an online learning platform that
has been used in prior work [5, 14], which contains student
responses to open-ended, short-answer math questions, to-
gether with scores assigned by human scores. There are
a total of 141,612 total student responses made by 25, 069
students to 2, 042 questions, with 891 different teachers be-
ing scorers. The set of possible score categories is from 0
(no credit) to 4 (full credit). The dataset mainly contains
math word problems, where the answer could be mathemat-
ical such as numbers and equations or textual explanations,
sometimes in the format of images.

We found that different scorers sometimes assign very differ-
ent scores to the same response, which motivated this work.
As an example, we analyze question-response pairs that are
scored by more than one scorer and evaluate the Kappa
score between these scorers. The human Kappa score is
only 0.083, which means a minimal agreement between dif-
ferent scorers. Although there are only 523 such pairs, this
case study still shows that even for the same exact response,
scorers have highly different individual preferences and ten-
dencies and may assign them highly different scores.

We also perform a series of pre-processing steps to the orig-
inal dataset. For example, since some of the scorers do not
score many responses, e.g., less than 100, there may not be
enough information on these scorers for us to model their be-
havior. Therefore, we remove these scores from the dataset,
which results in 203 scorers, 1, 273 questions, and 118, 079
responses. The average score is 3.152±1.417. Table 1 shows
some examples of data points of this dataset; each data point
consists of the question statement, the student’s response,
the scorer’s ID, and the score.

3.2 Metrics
We utilize three standard evaluation metrics for integer-
valued scores that have been commonly used in the AS task
[5, 14]. First, the area under the receiver operating charac-
teristic curve (AUC) metric, which we adapt to the multi-
category classification problem by averaging the AUC num-
bers over each possible score category and treating them as
separate binary classification problems, following [22]. Sec-
ond, we use the root mean squared error (RMSE) metric,
which simply treats the integer-valued score categories as
numbers, as detailed in Eq. 2. Third and most importantly,

we use the multi-class Cohen’s Kappa metric for ordered
categories, which is often used to evaluate AS methods [1].

3.3 Experimental setting
In the quantitative experiment, we focus on studying
whether adding scorer information leads to improved AS ac-
curacy. Therefore, when we are splitting a dataset into train-
ing, validation, and test sets, we ensure that every scorer
is included in the training set. We divide the data points
(question-response pairs, scorer ID, score) into 10 equally-
sized folds for cross-validation. During training, we use 8
folds as training data, 1 fold for validation for model se-
lection, and 1 fold for the final testing to evaluate the AS
models.

For a fair comparison, every model uses BERT1 as the
pre-trained model for question-response pair representation,
which has been shown to result in state-of-the-art AS ac-
curacy in prior work [46]. We emphasize that our work on
scorer models can be added on top of any AS method for
response representation; applying these models on other AS
methods is left for future work. We use the Adam opti-
mizer, a batch size of 16, and a learning rate of 1e − 5 for
10 training epochs on an NVIDIA RTX8000 GPU. We do
not perform any hyper-parameter tuning and simply use the
default settings.

3.4 Results and discussion
Table 2 shows the mean and standard deviation of each
scorer model trained under each loss function. We see that
generally, models with content-driven scorer biases and vari-
ances outperform scorer-specific biases and variances, which
outperform the base AS model that treats each scorer the
same with universal values for bias and variance. The im-
provement in AS accuracy is significant, up to about 0.02 in
the most important metric–Kappa, for the content-driven
biases and variances over the standard AS approach of not
using scorer information. This observation validates the
need to account for individual scorer preferences and ten-
dencies in the highly subjective AS task. Meanwhile, since
the content-driven scorer bias and variance models outper-
form the scorer-specific bias and variance models, we can
conclude that the content of the question and response does
play an important role in scorer preference.

1https://huggingface.co/bert-base-uncased
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(a) 2-D visualization of the learned scorer embedding space (b) Bias for each score category

Figure 1: Visualization of clustering result on scorer embedding learnt via scorer-specific model. The left figure shows the 2-D
visualization of scorer embedding space, and the right figure shows the average bias for each cluster

We also observe that training scorer models with the OLL
loss outperform the other losse, while training with the MSE
loss does not even lead to the best results on the RMSE
metric. This observation suggests that taking into account
the ordered nature of score categories instead of treating
them as parallel ones is important to the AS task.

4. QUALITATIVE ANALYSIS
Despite the content-driven model delivering the highest
AUC and Kappa results, the complexity of the information
contained in its embedding space renders it difficult to in-
terpret. Consequently, we have elected to concentrate on
examining the scorer-specific model (detailed in Sec. 2.2).

4.1 Visualization of scorer embedding
Figure 1 shows a 2-D visualization of the learned scorer
embedding space; We see that there are obvious clusters
among all scorers. We then fit the learned scorer embeddings
under a mixture-of-Gaussian model via the expectation-
maximization (EM) algorithm with 6 clusters. The sub-
figures to each side of the main plot shows each cluster’s
average bias towards each score category, which are 0, 1, 2,
3, and 4 from left to right.

4.2 Features analysis based on each cluster
Cluster 1 shows a negative scoring profile, with a strong, pos-
itive bias towards the lowest score category 0 (positive bc,j
values) and small, negative biases against higher scores, 1,
2, and 3 (negative bc,j values). These scorers assign 0 scores
much more often than other score categories, compared to
other scorers. The average score across question-response

pairs is the lowest for this cluster, at 1.69. Meanwhile, this
cluster has a relatively high score variance of 1.69, meaning
that these scorers tend to have inconsistent behavior and
assign a wide variety of score labels.

Cluster 2 shows a positive scoring profile, with a strong,
positive bias towards the highest score, 4, and moderate
negative biases against other scores. These scorers prefer to
assign scores that are overwhelmingly higher compared to
other scorers. The average score across question-response
pairs is the lowest for this cluster, at 3.45. Meanwhile, this
cluster has a relatively low score variance of 0.92, meaning
that these scorers are consistent in scoring responses higher
than other scorers.

Cluster 3 shows a conservative scoring profile, with small,
positive biases towards the middling scores 1, 2, and 3 and
a strong, negative bias against the top score 4. The average
score across question-response pairs is 2.41 for this cluster
with a variance of 1.4, which is high considering that scorers
in this cluster rarely use the top score category, indicating
that their scoring behavior is not highly consistent.

Cluster 4 shows an unbiased scoring profile, with a low bias
towards or against any score category, with a slight pref-
erence for the top score category, 4. This cluster contains
almost half of the scorers, which means that the majority of
scorers are reliable (their scores depend mostly on the actual
quality of the response, i.e., the wT

c ri term in Eq. 1 rather
than the bias term.

Cluster 5 shows a polarizing scoring profile, with strong, pos-
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Table 3: Detailed biases and variance (inverse of temperature) for each scorer profile, their observed scoring distributions,
and average response features. We normalize the observed scoring distributions to zero-mean, which makes them easier to
visually compare against the learned biases. math tok (%) is the percentage of math tokens in the response. img (%) is the
percentage of images in the response. length is the number of word tokens in the response.

Cluster Bias
Observed scoring

distribution
(normalized)

Temperature Score Response features

math tok
(%)

img (%) length

1 1.013
1.685 ±

1.644
29.13 0.101 23.06

2 1.034
3.451 ±

0.919
32.12 1.286 24.40

3 0.996
2.415 ±

1.400
23.51 1.311 36.16

4 1.033
3.074 ±

0.991
29.48 0.304 21.94

5 1.026
2.558 ±

1.806
45.18 5.271 14.35

6 1.007
2.714 ±

1.331
33.83 1.403 13.34

itive biases toward both the lowest score, 0, and the highest
score, 4, while having strong, negative biases against score
categories in between. Scorers in this cluster often score
a response as all or nothing while using the intermediate
score values sparingly. The average score across question-
response pairs is 2.55 for this cluster with a variance of 1.81,
the highest among all clusters, which agrees with our ob-
servation that these scorers are highly polarizing and rarely
judge any response to be partially correct.

Cluster 6 shows a lenient scoring profile, with a strong, neg-
ative bias against the lowest score, 0, and a moderate, posi-
tive bias towards the next score, 1, with minimal bias across
higher score categories. Scorers in this cluster tend to award
students a single point for an incorrect response instead of
no points at all. The average score across question-response
pairs is 2.71 for this cluster with a middling variance of 1.33.

5. CONCLUSIONS AND FUTURE WORK
In this paper, We created models to account for individ-
ual scorer preferences and tendencies in short-answer math
response automated scoring. Our models differ from pre-
vious work by focusing on capturing the subjective nature
of scoring rather than textual content. Our models range
from simple to complex, with some using bias and variance
as a function of the question and response. Our experi-
ments on a dataset with low inter-rater agreement showed

that accounting for scorer preferences and tendencies im-
proved performance by more than 0.02 in the Kappa metric.
Qualitative analysis showed obvious patterns among scorers,
some with biases towards certain scores. Scorer-specific set-
tings can model scorer grading behavior very well. In other
words, the scorer’s grading behavior is highly controllable,
and the scorer’s grading behavior representation is also well-
represented in the hidden space. One practical extension
could be adjusting the learned scorer bias by using a differ-
ent type of scorer embedding to control model grading in a
different scorer style. Future work can address limitations in
our analysis. Our dataset only provides scorer IDs, lacking
gender, race, or location. Investigating biases with this addi-
tional information is crucial, including how teacher-student
relationships or shared demographics impact biases. Our
analysis also did not consider student demographic informa-
tion, which is important for fairness studies. Additionally,
our scorer models were only validated with a BERT-based
textual representation model, so further testing is needed
to determine their adaptability to traditional, feature-based
automated scoring methods.
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APPENDIX
A. CORRELATION ANALYSIS
In Table 3, we see that the learned scorer biases for each
cluster are highly correlated with the observed score distri-
bution across score categories. However, it is not obvious
how the variance, i.e., the inverse of the temperature pa-
rameter (α), correlates with other model parameters and
response features. Therefore, we calculate the correlation
coefficient (left) and the corresponding p-value (right) be-
tween each pair of model parameters and response features
and show them in Figure 2. In the left part of the figure, we
see that α positively correlates with the mean of scores and
negatively correlates with the standard deviation of scores.
In the right part of the figure, we see that α is significantly
correlated with the standard deviation of scores, which is
expected since this temperature parameter is designed to
capture the variation in score category assignments. We
also see that α is also significantly correlated with the bias
terms of each score category, with a positive correlation with
the bias for score category 4 and negative correlation with
the bias for other categories.

For the bias terms, we see that most of the biases are signif-
icantly correlated with the mean and standard deviation of
scores, but less correlated with question-response pair fea-
tures. This observation suggests that the bias terms mainly
depend on scorer behavior rather than the question-response
pair, which is what the model intended to do; the question-
response pair is captured by the wT

c ri term in Eq. 1. The
bias for score category 2, however, does not significantly cor-
relate with the mean and standard deviation of scores but
significantly correlates with other question-response pair fea-
tures. One possible explanation is that since this score cate-

gory is the middle of all scores, scorers do not show any bias
towards or against this score category and can solely rely on
the actual content of the question and response. , for exam-
ple, the length of the response which might show that bias
2 does not accurately represent scorer grading behavior.

B. CASE STUDY: SAME SCORER, DIF-
FERENT RESPONSES

Table 4 shows several examples of different questions and re-
sponses and corresponding scores for a single scorer, with the
actual score, biases calculated from the content-driven scorer
bias and variance model, and predicted scores for different
models. The overall bias for this scorer is [−0.043,−0.36,
−0.212, 0.061, 0.439] across all score categories, which indi-
cates that this scorer prefers to assign high scores (especially
the full score 4) but often assigns low scores except the low-
est score (0). Overall, we see that if we do not include
biases in the AS model (the sixth column), the AS model
tends to predict middling scores, while the human scorer
tends to give students full credit (4). For Question 2, this
example shows that the content-driven scorer bias model
captures nuanced scorer preference: for the meaningless re-
sponse “idk”, which should have a score of 0, the scorer has
a strong preference towards giving it a high score (3). This
bias only appears for seemingly meaningless responses but
not overall (overall bias towards score category 3 is minimal
at 0.061). Therefore, we see that the scorer-specific model
cannot capture this information since its biases and variance
are global across all question-response pairs for this scorer.
As a result, content-driven scorer models are more flexible
in handling these cases compared to other models, which is
also evident in the quantitative results in Table 2 that this
model achieves the highest overall AS accuracy.
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(a) Correlation Coefficient Matrix (b) P-values Matrix

Figure 2: Correlation coefficients and corresponding p-values across the bias, variance terms, and response features for the
scorer-specific bias and variance models.

Question Response Actual Content- Scorer- No Content-driven scorer bias
id score driven specific bias

prediction prediction prediction
1 The graph was touching the

origin, but it didn’t have a
straight line

4 4 4 3 [-0.61, -1.29, 0.04, -0.33, 1.33]

2 It meets the origin and it goes
perfectly diagonal.

3 4 4 3 [-0.26, -1.80, -0.57, -0.39, 2.09]

Because it’s a straight line
that goes through the orgin

4 4 4 3 [0.13, -1.53, -0.76, -0.47, 1.71]

its porportional because it
has a straight line and and
starts at the bottom.

3 3 4 2 [1.19, -0.20, -3.18, 1.24, 1.21]

idk 3 3 0 0 [-6.26, -0.09, 2.76, 4.56, 1.50]

Table 4: Examples of student response and scores for a single scorer with biases −0.043,−0.36, 0.061,−0.212, 0.439 for all
score categories. Notice that the no-bias prediction is the prediction of the content-driven model that does not scale with
bias.
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ABSTRACT
In studies that generate course recommendations based on
similarity, the typical enrollment data used for model train-
ing consists only of one record per student-course pair. In
this study, we explore and quantify the additional signal
present in course transaction data, which includes a more
granular account of student administrative interactions with
a course, such as wait-listing, enrolling, and dropping. We
explore whether the additional non-enrollment records and
the transaction data’s chronological order play a role in
providing more signal. We train skip-gram, FastText, and
RoBERTa models on transaction data from five years of
course taking histories. We find that the models gain mod-
erate improvements from the extra non-enrollment records,
while the chronological order of the transaction data im-
proves the performance of RoBERTa only. The generated
embeddings can also predict course features (i.e. the depart-
ment, its usefulness in satisfying requirements, and whether
the course is STEM) with high accuracy. Lastly, we discuss
future work on the use of transaction data to predict stu-
dent characteristics and train course recommender models
for degree requirements.

Keywords
Higher education, course recommendation, course2vec, en-
rollment records, chronology

1. INTRODUCTION
Prior work has shown that standard enrollment data can be
used to infer content similarities between courses within [11]
and across institutions [10]. One hypothesis for how these
models capture semantics, is that they encode students’ ag-
gregate perceptions of a courses as communicated by the
contexts in which they are selected by a student (e.g., in
which semester and along with which other courses) [13].
Transaction data includes additional student actions and,
therefore, more potentially inferable student perceptions of
course semantic information and course similarity.

Two important features of transaction data are: 1) it con-
tains more granular information on top of student enroll-
ment actions, such as waitlisting and dropping, including
students’ reasons for doing so; 2) the order of the student ac-
tions is available as these granular actions are timestamped
instead of just term-stamped, as is the case with conven-
tional enrollment data that has inhibited chronological sort-
ing within semester in past work. We hypothesize that both
features might provide more granular semantic information
and similarity signal, and thus improve similarity-based rec-
ommendations. In this study, we first present summary
statistics of transaction data and features of courses that
will be used in subsequent analyses. Next, we present the
methodology and results related to the following research
questions:

• RQ1: Does the extra non-enrollment transactions (wait-
listing and dropping) provide additional course similar-
ity signal on top of enrollment transactions?

• RQ2: Does the chronological order of the transaction
data provide more course similarity signal than ran-
dom (within-semester) order?

We quantify the amount of signal gained by these two fea-
tures by comparing the performance of skip-gram, Fast-
Text, and RoBERTa models with varying additional non-
enrollment records and orders. We further investigate how
well the model representations from transaction and enrollment-
only data represent other semantic features of courses by
predicting features of the courses, such as department, STEM
/non-STEM designation, student major diversity, utility in
fulfilling requirements, and course popularity.

We find that the extra non-enrollment records do provide
more similarity signal. Most models trained with full trans-
action data perform better than the baseline models that are
only trained on enrollment actions. We also find that the
chronological order of the transaction data does not improve
the course similarity signal for skip-gram and FastText, but
does improve the signal for RoBERTa. Lastly, we find that
the best embedding model (FastText trained on transaction
data) is able to predict course features better than the best
embedding model trained only on enrollment actions.

2. RELATED WORK

Y. Xu and Z. A. Pardos. Mining detailed course transaction records
for semantic information. In M. Feng, T. Käser, and P. Talukdar,
editors, Proceedings of the 16th International Conference on Edu-
cational Data Mining, pages 388–395, Bengaluru, India, July 2023.
International Educational Data Mining Society.
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tives 4.0 International (CC BY-NC-ND 4.0) license.
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Big Data is one of the driving forces behind educational rec-
ommender systems and learning analytics as there is an in-
creasing volume, variety, and integrity of data obtained from
various educational platforms [2]. Furthermore, as the use
of MOOCs (massive open online courses) and other digital
platforms has increased, student data (ranging from student
enrollment data to behavioral data like clickstream) has be-
come more granular. Representations of students, lessons,
and assessments from historical lesson student-content inter-
actions in an online tutoring system are used to create per-
sonalized lesson sequence recommendations [14]. Students’
daily activities, including potentially sensitive, private data,
could be used to predict their success in online courses using
supervised machine learning systems [3].

In traditional higher education institutions, there have been
efforts to conduct predictive modeling and create course
recommender systems using a variety of novel institutional
data. These data include enrollment histories, major decla-
rations, and catalog descriptions. Large-scale syllabus data
was introduced as a novel source of information on tasks of
predicting course prerequisites, credit equivalencies, student
next semester enrollments, and student course grades [6]. It
was found that course descriptions resulted in the highest
signal representation accuracy in predicting course similar-
ity, the prediction task we are also concerned with. Student
enrollment data and course catalog data were also used to
create course recommendations given students’ academic in-
terests and backgrounds at a liberal arts program [9]. The
course recommendations were based on topic modeling on
course catalog descriptions, and were found to be relevant
for a wide range of academic interests. A course recommen-
dation system based on score predictions with cross-user-
domain collaborative filtering was developed using course-
score records based on different student majors [4]. In par-
ticular, the algorithm was designed to effectively predict the
score of the course for each student by using the course-score
distribution of the most similar senior students.

More recently, it has been shown that incorporating data
from multiple heterogeneous sources improves course recom-
mendations [5, 16]. Specifically, sources such as course, stu-
dent, and career information are integrated with ontology-
based personalized course recommendation to help students
gain comprehensive knowledge of courses based on their rel-
evance. Course description data was integrated with job
advertisement data to identify necessary job skills [17] with
a hybrid course recommendation system to extract relevant
skills and entities, and provide recommendations on multi-
ple individualized levels of university courses, career paths
with job listings, and industry-required with suitable on-
line courses. Course description and job advertisement data
were also used to build a heterogeneous graph approach for
cross-domain recommendation for both students and profes-
sionals[19]. However, student enrollment data used in these
previous studies only have contained courses that students
enroll in each semester, as the type of granular and detailed
student behavioral data are not always readily available in
traditional formal higher education learning environments.
Our study utilizes a new source of detailed, more granular
course enrollment data for course similarity-based recom-
mendation.

Figure 1: Transition diagram for enrollment status

Nascent findings [18] on the application of FastText to course
equivalency task, found that there is 97.95% improvement
in model performance from skip-gram to FastText. Since
course names are morphologically rich, usually with informa-
tion such as the department, level of division, and whether
it is cross-listed, we expect that transaction data would pro-
vide more course similarity signal. Additionally, transaction
data contains non-enrollment tokens that we concatenate
to the end of course names (i.e. English 100 W denotes a
course that is waitlisted) to distinguish various actions. We
take advantage of such additional tokens with subword rep-
resentations from FastText and RoBERTa.

3. DATA
The transaction data was provided through official chan-
nels at UC Berkeley, a large public university in the US. It
shows a history of students enrolling, dropping, and wait-
listing into classes, with each row representing one of these
actions with a specific timestamp It is set to be from 2016
Fall — 2022 Summer. Table 1 contains the size and number
of unique courses of the original transaction data, and its
various filtered versions. Table 2 shows an example of the
transaction data where one student (xxxxxx123) enrolls in
110 Math and gets waitlisted in 150 Molecular & Cell Bi-
ology; while another student (xxxxxx456) attempts to drop
148 Sociology but is unsuccessful. Figure 1 shows how en-
rollment status token changes based on user actions. Each
action would generate a row of records with the correspond-
ing status token. For example, when a student attempts to
enroll in a course, there are 3 scenarios: 1) enroll success-
fully and their action is recorded with the status token ”E”;
2) waitlist in the class and their action is recorded with the
status token ”W”; or 3) their action does not affect their
enrollment status and it is recorded with the status token
”n-a” which we filtered out. At a later time, when the stu-
dent moves up the waitlist and successfully enrolls in the
class, another record with token ”E” will be recorded. And
any time when a student drops a course, status token ”D”
will be recorded.
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Table 1: Size and number of unique courses of transaction
data and its various filtered versions
Data size unique courses
Transaction original 11,136,719 16,686
Transaction filtered
(student initiated,
action affects status)

9,141,091 9,251

Transaction filtered
(student initiated,
action affects status,
outcome status = E)

2,807,265 8,817

Transaction filtered
(student initiated,
action affects status,
outcome status = E, D)

4,335,464 9,025

Transaction filtered
(student initiated,
action affects status,
outcome status = E, D, W)

5,273,907 9,033

Table 2: Example of transaction data

Student id
Enrollment
request
timestamp

Semester Course
Enrollment
status
outcome

Enrollment
message

xxxxxx123
2021-10-11
15:22:15

Fall 2021
150 Molecular
& Cell Biology

W

You have been
placed on the
waitlist in
position number 3.

xxxxxx123
2021-10-11
15:29:17

Fall 2021 110 Math E

Your enrollment
request has been
processed
successfully.

xxxxxx456
2021-3-11
20:48:39

Spring 2021 148 Sociology NaN
You cannot drop this
class.

While the transaction data contains various features associ-
ated with student enrollment actions such as the source and
reasons for the enrollment request, we focus on ”enrollment
status outcome”. It contains token “D” (dropped), “E” (en-
rolled), “W” (wait-listed), or n-a (when the action does not
affect enrollment), and the enrollment message contains the
description accompanying the enrollment status outcome.
The top 3 enrollment status messages corresponding to the
four status tokens are listed below:

• Token “D”

– A Grade of [LETTER] has been assigned for this
Drop Request.

– Your enrollment request has been processed suc-
cessfully.

– Warning - Enrollment status is Withdrawn.

• Token “E”

– Your enrollment request has been processed suc-
cessfully.

– You have already taken this class.

– Invalid Access to Override Class Links

• Token “W”

– You have been placed on the waitlist of [CLASS]
in position number [NUMBER].

Table 3: Summary table of statistics on the transaction data

Median number
of actions

Top 3 departments
Proportion of
STEM/
non-STEM

Proportion
of different
divisions

Median
course
requirement
lists satisfied

Enrolled
records

2,408.5

Computer Science,
Business Admin-
Undergrad,
Statistics

54% STEM,
56% non-STEM

59% upper,
41% lower

18

Waitlisted
records

6,188
Computer Science,
Mathematics,
Chemistry

66% STEM,
34% non-STEM

58% lower,
42% upper

12.5

Dropped
records

6,188

Computer Science,
Business Admin-
Undergrad,
Mathematics

58% STEM,
42% non-STEM

55% lower,
45% upper

16

– The Requirement Designation Option was set to
’YES’ by the enrollment process.

– Course previously taken and may be subject to
institutional repeat policy.

• Token “n-a”

– Unit Limit Exceeded For Appointment Period.

– You are unable to enroll in this class at this time.

– Class [CLASS] is full.

We then filtered the transaction data to only contain student-
initiated actions and actions that affect enrollment status,
filtering out the records with the enrollment status token
”n-a” and removing 20% of the rows. Actions that are not
student-initiated include those that are initiated by the ad-
ministration (e.g., manual enrollment of a student), and
those that are batch-processed (e.g., if a class is canceled,
then everyone is dropped). Actions that affect enrollment
status include dropping, enrolling, enrolling from waitlist, or
dropping to waitlist. Actions that do not affect enrollment
status include adding grade, changing grade, or changing
waitlist position.

3.1 Analysis of Transaction Data
We conducted data analysis of the transaction data to ex-
plore the types of courses students get enrolled, waitlisted
for, and dropped the most. The categories we investigate
are: whether the course is STEM, its divisions, and its use-
fulness in satisfying degree requirements. We select the top
100 courses to analyze. As show in Table 3, the courses for
all three actions include popular courses in Computer Sci-
ence and Business Administration. The majority of wait-
listed and dropped records contain STEM courses and lower
division courses, while the majority of enrolled records con-
tain non-STEM and upper division courses. Enrolled records
contain the highest median number of course requirement
lists that are satisfied, followed by dropped, and then wait-
listed records. We further investigate these features in a
later section to quantify the prediction power of course em-
beddings trained on the transaction data.

4. MODELS
We apply three embedding models to the transaction data.
Two of the models, skip-gram and FastText, have been eval-
uated on a similar task of course equivalencies. The third
model is a SentenceTransformer network architecture with
a custom trained RoBERTa model as the word embedding
model layer.
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4.1 skip-gram Course2Vec
The Course2Vec model, like a Word2Vec model, learns course
representations by treating an enrollment sequence as a sen-
tence and each class in the sequence as a word [12, 11]. To
distinguish between courses associated with different enroll-
ment outcomes, the enrollment status outcome token is con-
catenated to the end of the course (e.g. ”Math 10A E”) be-
fore passing the course sequence to the transaction model. A
transaction sequence with the token concatenated is [”Molec-
ular & Cell Biology 160 E”,”Molecular & Cell Biology 160 D”,
”Statistics 134 W”], in which a student enrolls in Molecular
& Cell Biology 160, drops it, and is waitlisted in Statistics
134.

4.2 FastText Course2Vec
The department name, course affixes, and course number
are typically included in course titles, which have a rich
morphological structure. Prefixes like ”C” in ”History C140”
indicate a course that is taught jointly by two or more de-
partments, whereas suffixes like ”A” or ”B” in ”Chemistry
1A” and ”Chemistry 1B” indicate courses that should be
taken sequentially. At UC Berkeley, lower-division courses,
upper-division courses, and graduate-level courses are des-
ignated by course numbers below 100, 100-199, and 200 and
above, respectively. So FastText [1], which represents words
as a bag of character n-grams and is able to compute out-
of-vocabulary words, is expected to take advantage of the
extra enrollment status tokens of the transaction data.

4.3 Sentence Transformer with RoBERTa
RoBERTa [8] is a modification of the original BERT model
that is trained on a much larger dataset and removes the
Next Sentence Prediction objective. We first trained a byte-
level Byte-pair encoding tokenizer rather than a WordPiece
tokenizer like BERT to make sure all words will be decom-
posable into tokens as it builds its vocabulary from single
bytes. Each transaction sequence is again treated like a sen-
tence. We then trained the RoBERTa model from scratch on
a task of Masked Language Modeling, noting the similarity
in completing a sentence and suggesting a course sequence.
Next, we constructed a Sentence Transformer network [15]
using the RoBERTa word embedding model and a mean
pooling layer. For RoBERTa models trained on multiple en-
rollment status tokens, we derived the course embeddings
using a sentence consisting of all the course’s related tokens
(i.e. Data 100 E, Data 100 D).

4.4 Model Training and Evaluation
We use the equivalency validation set containing 480 course
credit equivalency pairs maintained by the Office of Regis-
trar as ground truth for course similarity. To increase the
validation set, we swap the pairs, resulting in 960 pairs. We
then filtered the validation set to include only courses that
occur in the intersection of all filtered data (8,817 unique
courses as shown in table 1) and courses that could be pre-
dicted by all models, yielding a total of 784 pairs.

Recall@10 is calculated for equivalency validation pairs us-
ing the model evaluation metrics and validation dataset (con-
taining pairs of courses with equivalent credits) established
in a previous study [12]. We find similar courses to the
first course for each validation course pair by ranking other

courses based on cosine similarity of their vector represen-
tations, and we calculate recall@10 based on the rank of
the second course. For transaction Course2Vec models that
take into account enrollment status tokens – for instance
Course2Vec trained on classes with enrollment token “W” –
equivalency pairs that could not be predicted because either
one does not exist in the vocabulary set of Course2Vec (to-
ken “W”) are then predicted by a Course2Vec model trained
on non-token sequences. To obtain a single embedding for
a course with a Course2Vec model trained on multiple ver-
sions of the course with different enrollment tokens (E, D,
W), we use 3 different methods: 1) simply use this model
to get the embedding for the original course without any
tokens (i.e. Math 1A), 2) average and 3) concatenate the
embeddings of the various versions of the course with dif-
ferent tokens. To obtain a course embedding with Sentence
Transformer based on a RoBERTa trained on transaction
records with different tokens, we use 2 methods: 1) simply
pass in the course without any tokens; 2) pass in a synthetic
course sequence containing various versions of the course
with different tokens (i.e. Math 1A E, Math 1A D).

We then use ten-fold cross-validation to select the best model
hyper-parameters. We split the 784 validation pairs into 10
folds. Then, within each phase of the cross-validation, 80%
of the validation pairs are used to find the best training
hyper-parameters, which are then used to create a model
to evaluate on the rest of the 20% of the pairs. The ranks
of the test pairs are recorded for each fold, then they are
appended together to calculate overall recall@10. We don’t
use temporal cross-validation because the validation set con-
sists of similarity pairs that do not have established dates
associated with them. Grid search is used on the following
hyperparameter space for both skip-gram and FastText:

• Min count: [10, 20, 30, 40, 50, 60, 70, 80, 90]

• Window: [2, 3, 4, 5, 6, 7, 8, 9]

• Vector size: [200, 210, 220, 230, 240, 250, 260, 270,
280, 290, 300, 310]

• Sample: [3.e-05, 2.e-05, 1.e-05]

• Alpha: [0.01, 0.02, 0.03, 0.04]

• Min alpha: [0.0001, 0.0003, 0.0005, 0.0007]

• Negative: [10, 15, 20, 25]

See Appendix A.1 for optimal hyperparameters for the best
model. The optimal hyperparameters for our data are likely
to differ from others’ based on size of course catalog and
number of enrollments.

5. RESULTS
5.1 RQ1: Utility of non-enrollment transac-

tions records
We found that transaction records do provide more course
similarity signal. As shown in table 4, most models trained
with enrollment (E) and non-enrollment (D& W) transac-
tions (whether the tokens are hidden, averaged, concate-
nated) show improvements from the baseline models that
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Table 4: Percent improvement of the best models trained on
transactions (E,D,W) from baseline models trained only on
enrollment (E)

Baseline
(random)
recall

Random
Baseline
(ordered)
recall

Ordered

Skipgram 0.296
2.53%
(E&D/
no token)

0.244
0%
(E&D/
no token)

FastText 0.446
4.22%
(E&D/
avg)

0.367
14.5%
(E&D&W/
concat)

RoBERTa 0.309
4.96%
(E&D&W/
no token)

0.347
-2.19%
(E&D&W/
no token)

Table 5: Percent improvement of the best models trained
on chronologically ordered transaction records from those
trained on randomly ordered records

E E & D E & W E & D & W
Skipgram 0.296-17.6% 0.304-19.6% 0.296-22.6% 0.295-17.9%
FastText 0.446-17.6% 0.464-11.9% 0.418-11.9% 0.458-7.67%
RoBERTa 0.309+12.4% 0.320+3.19% 0.305-3.35% 0.324+4.72%

are only trained on enrollment records. Only skip-gram
and RoBERTa trained on chronologically ordered transac-
tion records do not show any improvement from their re-
spective baseline models trained on chronologically ordered
enrollments. Additionally, we see that the best models that
outperform the baseline E model are either models trained
with the tokens E&D, or models trained with E&D&W. The
enrollment status token W does not improve from the base-
line model, as models trained on E&W perform worse than
the baseline E models, suggesting that W transactions could
be random noise. The greatest percent improvement from
enrollment to transaction records is to use FastText trained
on the full records (E,D,W) and ordered sequences. Over-
all, the best-performing model for skip-gram is that trained
on E&D random order (no token), the best FastText model
is that trained on E&D random order (average token), and
the best RoBERTa model is that trained on E chronological
order (no token).

5.2 RQ2: Utility of chronological transactions
records

The chronological order of the transaction data does not
improve the course similarity signal for skip-gram and Fast-
Text, but does improve the signal for RoBERTa, as shown
in table 5. The greatest percent decrease in performance
from randomization to chronology is skip-gram trained on
E & W transactions, and the greatest percent increase in
performance from randomization to chronology is RoBERTa
trained only on enrollments.

In general, the best model overall is FastText trained on
random (within-semester) ordered E & D transactions (eval-
uated by averaging the E and D embeddings), with a re-
call@10 of 0.464. And the best model trained only on en-
rollment events is FastText trained on randomly (within-
semester) ordered events, with a recall of 0.445.

Figure 2: TSNE visualizations of courses in selected depart-
ments created by skip-gram and FastText

5.3 Visualizing embeddings
To provide an intuitive explanation for the increase in re-
call@10 from course2vec skipgram to FastText, we present
comparisons of the TSNE visualizations of courses in ran-
domly selected departments produced by these 2 models
(Fig.2.). We chose to not present all departments to avoid
overcrowding the visuals. The colored points indicate dif-
ferent departments, the transparent blue points indicate the
rest of the courses in the validation pairs, and the faint grey
lines indicate connections between equivalency pairs. Vi-
sually, we see that the FastText embeddings appear more
closely clustered than the Course2Vec skipgram embeddings.

6. ANALYZING PREDICTIVE POWER
We investigate how well we could predict the various fea-
tures of the courses using the best model trained on ex-
tra non-enrollment actions vs. the best model trained on
only enrollment actions. These features include whether the
course is STEM (binary), the department of the course (80
categories), the division (3 categories), diversity of student
majors enrolled in the course (binary), the course’s utility
to satisfy requirements (binary), and its popularity (binary).
Diversity (the number of different types of unique student
majors enrolled in the course), requirement utility (the num-
ber of requirement lists the course satisfy), and popularity
(the frequency of student interactions with the course) are
made into binary variables by categorizing the course as be-
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Table 6: Accuracy of baseline majority, logistic regression,
and MLP in predicting course features, using the baseline
enrollment (E) and best transaction (E,D) embeddings

Baseline
majority

Logistic
regression
(E)

MLP
(E)

Logistic
regression
(E, D)

MLP
(E,D)

STEM/
non-STEM

0.519 0.993 0.994 0.995 0.999

department 0.0885 0.998 0.987 0.995 0.998
division 0.549 0.994 0.984 0.984 0.998
student major
diversity

0.785 0.816 0.975 0.944 0.983

course
requirement
utility

0.510 0.816 0.950 0.950 0.989

popularity 0.472 0.846 0.963 0.914 0.984

low and equal to or above the median value. We compared
the accuracies (Table 6) of a baseline majority, logistic re-
gression, and MLP classifier using the best embeddings of
the enrollment actions (FastText trained on randomly or-
dered E records) and the best embeddings of transaction
actions (average FastText embedding trained on randomly
ordered E & D records), obtained through 5-fold cross vali-
dation. See Appendix A.2 for the optimal hyperparameters
for logistic regression and MLP.

In general, for all models, the best transaction embedding
is able to improve on the enrollment embedding. For both
embeddings, logistic regression and MLP models are able to
achieve almost perfect accuracy on predicting STEM/non-
STEM, department, and division of the courses in the val-
idation pairs. The biggest improvement comes from course
requirement utility (16.4% increase for logistic regression).
Overall, transaction embeddings have great predictive power
in classifying various course features.

7. DISCUSSION & FUTURE WORK
Does chronology add more similarity signals to enrollment
data? Our results suggest that there is no more signal in
chronology than randomization. Overall, the best-performing
model for skip-gram is that trained on E&D random order,
the best FastText model is that trained on E&D random
order, and the best RoBERTa model is that trained on E
chronological order. This suggests that these models are
more likely to pick up on course similarity signals when the
data contains transactions (E,D,W) and are randomly or-
dered. The reason that randomized course sequences work
better than ordered ones could be that randomization gives
courses more contexts, especially popular courses. Popular
courses are more likely to be chosen first in a course se-
quence for a semester, meaning that they may have fewer
different courses in their context window than other courses
during training for skip-gram and FastTexts, compared to
courses that are chosen in the middle of the sequence. How-
ever, for chronologically ordered transactions, FastText is
the only model that’s able to pick up more signal, likely be-
cause of its ability to take advantage of the morphological
structure of course names, despite the potential negative ef-
fect of chronology in reducing contexts. Future work could
focus on investigating further the reason why randomization
provides better similarity signal than chronology.

There are several other areas of additional future work. First,
a limitation of our work is that it may not be practical
for many institutions to collect or utilize transaction data.
These data are rare, so we only had one institution’s dataset
to analyze, limiting our ability to make claims on general-
izability. Future work could focus on investigating whether
the same conclusions hold for transaction data of other in-
stitutions. Second, the fact that RoBERTa is able to benefit
from the signal of the chronology of the transaction data,
while FastText benefits from the random order could justify
future work into combining the embeddings of FastText and
RoBERTa. Next, we could explore better ways of obtaining
course embeddings from RoBERTa to take advantage of its
contextual nature. The subpar performance of RoBERTa
compared to FastText despite it being a contextual model is
one of the limitations of our work. When we are obtaining
the course embeddings, we are not taking advantage of the
contextual nature of the model to the fullest extent. Usu-
ally, a sentence is passed to the contextual model to obtain
a word embedding using the contexts of the sentence. In
our case, to get a course embedding, we could pass in an ac-
tual transaction sequence containing the course. We could
also use Set Transformer as an additional model of compar-
ison for course embedding, given our finding that the order
of course sequences did not matter[7]. Next, future work
could also focus on investigating why wait-listed transac-
tions don’t provide additional signals on top of enrollment,
where as dropped, or dropped and waitlisted actions do add
additional signal. Perhaps students are more likely to drop
a course as they enroll in an equivalent course, than wait-
listing a course as they enroll in another course that satis-
fies the same requirement. Lastly, while transaction data
is shown to predict course features well, we could also use
it to predict student-level features. For instance, we could
explore the rationality of student decision-making by using
additional transaction data features such as reason for en-
rollment actions.

8. CONCLUSION
Our study investigates the utility of novel transaction data
(which contains granular non-enrollment student actions and
chronologically ordered records) in similarity-based course
recommendations. We evaluate such similarity signals with
skip-gram, FastText, and RoBERTa models. We showed
that transaction records including enrolling, waitlisting, and
dropping student actions improve course similarity signals
from enrollment records. Additionally, we found that chronol-
ogy does not provide more course similarity signal than ran-
domization of transaction records for skip-gram and Fast-
Text, but does so for RoBERTa. In fact, the best-performing
model is FastText trained on random enrolling and dropping
transactions. Our study provides some new pieces of infor-
mation that could help course recommendation systems. We
now know that chronology of enrollment is not beneficial to
course2vec using skip-grams or FastText, but does benefit
the transformer-based RoBERTa. We also found transaction
course embeddings have greater predictive power in classi-
fying courses into features such as STEM/non-STEM desig-
nation, department, and requirement satisfaction. The ac-
curacy from predicting which courses satisfy major require-
ments significantly improves by using transactions (enroll
and drop events) – from 81.6% to 95.0%, which is likely
close to human advisor-level fidelity. This increase could be
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essential for course recommender models that may want to
learn degree requirements from data.
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APPENDIX
A. OPTIMAL MODEL HYPERPARAMETERS
A.1 FastText
The optimal hyperparameters for the best performing model
(FastText trained on randomly ordered E & D transaction
records) are as follows: min count = 50, window = 9, vector
size = 210, sample = 3.e-05, alpha = 0.04, min alpha =
0.0007, negative = 15.

A.2 Predictive Models
The hyperameters used for the multinomial logistic regres-
sion are: max number of iterations = 1000, penalty = l2
norm. The hyperparameters used for MLP are as follows:
hidden layer = 100, activation function = relu, solver =
adam, alpha = 0.0001, batch size = min (200, number of
samples), learning rate = 0.001, maximum number of itera-
tions = 200.
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ABSTRACT
Automatically identifying struggling students learning to pro-
gram can assist teachers in providing timely and focused
help. This work presents a new deep-learning language model
for predicting“bug-fix-time”, the expected duration between
when a software bug occurs and the time it will be fixed by
the student. Such information can guide teachers’ attention
to students most in need. The input to the model includes
snapshots of the student’s evolving software code and ad-
ditional meta-features. The model combines a transformer-
based neural architecture for embedding students’ code in
programming language space with a time-aware LSTM for
representing the evolving code snapshots. We evaluate our
approach with data obtained from two Java development en-
vironments created for beginner programmers. We focused
on common programming errors which differ in their diffi-
culty and whether they can be uniquely identified during
compilation. Our deep language model was able to outper-
form several baseline models that use an alternative embed-
ding method or do not consider how the programmer’s code
changes over time. Our results demonstrate the added value
of utilizing multiple code snapshots to predict bug-fix-time
using deep language models for programming.

Keywords
computer programming, predict bug fix time, deep learning
language models

1. INTRODUCTION
Programming courses have become an essential component
of many STEM degrees and are attracting students from
diverse backgrounds. Many beginners struggle with learn-
ing fundamental principles of programming [20]. Addition-
ally, previous studies suggest that compiler messages have
an imperfect mapping to errors which can confuse the stu-
dents [24]. Providing students with personalized support
can significantly aid their learning. The time spent by pro-
grammers to fix bugs is known to be a proxy for the difficulty

they encounter and can be used as an indicator for finding
struggling students [14, 3]. Thus, predicting the bug-fix-
time of errors for students can help teachers identify those
students requiring additional attention and support. Such
prediction can also support hint generation systems for bet-
ter inferring when a hint is needed [11, 23].

Past work has estimated the bug-fix-time for different errors
based on bug error reports. These are reports created by
the quality assurance team in organizations to describe and
document the bugs found in computer programs [15, 33,
18]. These studies ignored the personal variations between
programmers, predicting a single value per a specific bug.

We address this gap by providing a personalized approach
for predicting bug-fix-time for programming errors. Our un-
derlying assumption is that if the student’s fix time for a
bug is longer than a threshold, it may indicate a struggling
student requiring assistance and guidance. Specifically, our
method predicts if the error fix time will be“short”or“long”,
with the median used as the cutoff value. The median is cho-
sen as threshold to focus on the lower half of students that
may benefit from some level of assistance. This is a standard
approach in other works studying bug-fix-time [5, 15].

Our approach is personalized per student and per bug type
and uses snapshots of the evolving student’s code. Errors
vary in whether the compiler can identify the error, and
whether the compiler’s error message is unique to the specific
error type. The proposed method is based on CodeBert[13],
a state-of-the-art transformer-based neural architecture for
embedding students’ programming code, and combines an
LSTM-based architecture which is used to capture multiple
time dependant code snapshots.

We compared our approach to three baselines for predicting
the fixed time of the different errors in two datasets (1) A
method that is based on the Halstead Metrics [16]. This ap-
proach computes features based on operators and operands
in the code. (2) A code embedding-based approach using
Code2Vec [2], which is a common framework for learning
representations of natural language and code, and has been
used previously in an educational context. This approach
considered the student’s code which produced the bug as
well as the prior code submissions of the same program. (3)
A language model-based approach using CodeBert which
considered only the student’s code that produced the bug
(4) Our approach: A language model-based approach using
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CodeBert which considered the student’s code which pro-
duced the bug as well as the previous code snapshots saved
by the system while the student was evolving their code.

We evaluated our approach on code and compilation in-
stances obtained from thousands of students’ code submis-
sions, sampled from two different programming environments.
The first environment was the BlueJ Java development en-
vironment [21], a programming environment designed for
beginner programmers and used in a large number of edu-
cational institutions. We obtained 241,418 code submission
instances containing errors that were generated by students
when learning to program. The prediction task focused on
4 common types of novice errors that differ in complexity.

The second environment, called CodeWorkout, was collected
from an introductory programming course in the Spring and
Fall of 2019 semesters at a public university in the U.S.
[12]. We obtained 80,013 code submission instances that
contained 75 different compilation errors, each error has a
different cause, such as: unknown variable, missing operands
etc. The CodeWorkout dataset contained simpler comput-
ing problems, with typically shorter submitted programming
solutions.

We considered two different settings for the BlueJ dataset,
one in which a different model was built for each error type
and a setting where one model was built for all error types.
The CodeWorkeout dataset was tested with one model per
all error types due to data size limitations.

For both environments, our proposed approach was able to
outperform the baseline approaches in terms of accuracy, re-
call, and F1 measures when predicting bug-fix-time. These
results demonstrate the efficiency of using transformer-based
language models developed for programming languages for
solving the bug-fix-time prediction task and the value of
adding students’ code history for such tasks. Our approach
has implications for software development education, in that
it can potentially be used by instructors to identify strug-
gling students requiring further support.

2. RELATED WORK
Our work relates to several research areas: (1) Programming
errors performed by novice programmers (2) Predicting bug-
fix-time for programming errors, and(3) Recent deep Natu-
ral Language Processing language models for programming
language representations. We elaborate on each one in turn.

2.1 Student Programming Errors
Hristova et al. [19] collected a list of common students’
Java programming errors based on reporting of teaching as-
sistants. Most of the errors identified were detected and re-
ported by the Java compiler. Nonetheless, McCall et al. [24]
investigated logical errors in students’ code and suggested
that compiler messages alone have an imperfect mapping to
student logical errors. They demonstrated that the same
logical error can produce different compiler error messages
and different logical errors can produce the same compiler
error message. Bayman et al. [8] examined errors related to
individual program statements and found that many learn-
ers possess a wide range of misconceptions about individ-
ual statements or constructs of even very simple statements,

which lead to programming errors.

Brown et al. [4] analyzed 18 students’ errors using the BlueJ
dataset and focused on two error types, those identified by
the compiler, and those that require a customized source
code analyzer that searches the source code for programming
mistakes. Errors relating to the latter type are not uniquely
identifiable by the compiler and may be more complex to
fix. We are inspired by this study and test the potential of
machine learning-based approaches to predict the bug-fix-
time of student errors for both compiler errors as well as
errors identified by static source code analysis.

2.2 Predicting Bug Fix Time of Programming
Errors

Various approaches have been used in past research to pre-
dict the time required for fixing bugs. Zhang et al. [32]
investigated the connection between bug reports and other
features and the bug fixing time. Bug reports are the re-
ports created by the quality assurance and testing team in
an organization to describe and document the bugs found
in a computer program and include attributes such as prob-
lem description and priority. Zhang et al. [33] predicted the
number of bugs to be fixed and estimated the time required
to fix a certain bug using bug report attributes only. They
estimated the time to fix a bug as “slow” or “quick” based on
several thresholds. Other studies have focused on predicting
bug fixing time using different classifications than “slow” or
“fast”. Panjer et al. [25] employed multi-classification using
various classification models to classify the time to fix bugs
into seven-time buckets, using only the bug report.

Some studies have focused on predicting the exact time to
fix the bug. Weiss et al. [29] used text similarity to predict
the bug-fixing time. Given a new bug report, they used text
similarity to search for similar, earlier reports and use their
average time as the prediction time. Recently, some deep
network-based approaches were proposed for the bug-fix-
time prediction problem. Ardimento et al. [5] used BERT,
a pre-trained deep bidirectional Transformer model, to pre-
dict bug fixing time as fast or slow from bug reports. This
approach has shown the best performance so far.

Our research differentiates from these past efforts in three
main manners: (1) First, all past work performed non per-
sonalized bug-fix-time prediction. I.e., the prediction was
performed per error type and not per user. In contrast,
we focus on predicting bug-fix-time per user for each error
type. (2) Second, past studies used errors of experienced
programmers and were trained on code repositories such as
GitHub and the like. In this research, we focus on errors
generated by novice student programmers and use appro-
priate datasets for this task. (3) Third, past studies did
not directly take into account the programmer’s source code
nor did they use previous code snapshots which capture the
programmer’s evolving code prior to the error generation.
Specifically, these works used only attributes from bug re-
ports and did not directly consider the code in which the bug
was found. In this paper, we hypothesize that the source
code itself as well as past code snapshots of the program-
mer’s evolving work hold strong signals for predicting the
bug-fix-time for errors generated by the programmer.
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2.3 Language Models for Programming Lan-
guage Representations

One technique for the embedding of software program meth-
ods is Code2Vec, a neural model for representing snippets of
code as continuously distributed vectors [2]. Code2Vec was
developed for the task of method name prediction and uses
paths in the program’s abstract syntax tree (AST) for its
embeddings [7]. We choose to use Code2Vec as a baseline
since it outperformed other models in past works and has
been used previously in educational contexts [26, 6].

Recently, deep language models have been developed for
code representations. One such model which demonstrated
state-of-the-art results is CodeBert [13]. CodeBert is a trans-
former based large scale language model for both natural
and programming languages. The model is trained with a
dataset that includes 6.4M unimodal source codes in dif-
ferent programming languages including Java, Python, Go,
JavaScript, PHP, and Ruby. CodeBert learns general-purpose
representations and can be fine-tuned to support downstream
natural language and programming language applications
such as source code classification tasks. We used CodeBert
for code representation in our proposed approach.

3. METHODOLOGY
In this study, we evaluated the usage of a large scale deep
learning language model combined with software code snap-
shots for the prediction of bug fix time. Specifically, our
research questions were as follows: (RQ1) Do models that
embed students’ code do better than those relying on Hal-
stead metrics features when predicting bug fix time? (RQ2)
Can deep language models built for software code represen-
tation improve such a prediction task? (RQ3) Does using
preceding snapshots of the students’ code further improves
the prediction task?

3.1 Datasets
To increase the generality of the developed approach, two
datasets were used in this study, both from development
environments created for the Java programming language.
The first dataset was obtained from the BlueJ environment
which is a general-purpose Java programming environment
designed for beginner programmers. The second dataset
was collected on the CodeWorkout environment which con-
tains assignments submitted by Java students during two
semesters. We note that the obtained data from both pro-
gramming environments did not include any personal or de-
mographic information about users. In both datasets, we
leave out errors that were not solved altogether by the stu-
dent (i.e., the bug fix time is unknown).

3.1.1 The BlueJ Dataset
BlueJ is an integrated Java programming environment de-
signed for beginners and used in a large number of institu-
tions around the world [21]. The environment has been used
for a variety of assignments designed to support and exploit
pedagogical theories of programming. The BlueJ platform
includes an advanced capability of recording the student’s
programs (as they are being developed) in a dedicated re-
search environment called Blackbox [9]. In Blackbox, each
instance includes a timestamp of a compilation event by a
programmer, together with the code that was submitted for

Table 1: Selected Errors in the BlueJ Dataset

Bug
Type

Median
BFT(sec.)

Average
BFT(sec.)

STD
BFT(sec.)

Num.
instances

I 51 164 261 80,000
O 35 136 239 80,000
A 52 193 298 60,254
B 60 228 398 21,164

that compilation, a student ID, a session ID, and a list of
error messages reported by the compiler (if any).

Similarly to Brown et al.[4], we used a dataset representing
one year of activity in the BlueJ environment, from Septem-
ber 1st, 2013 to August 31st, 2014. In this set, we focus on
the four errors that were identified by Brown et al.[4] among
the most common errors for novice programmers:

Error I: Invoking method with a wrong argument type; the
compiler can uniquely detect this error.
Error O: Non-void method without a return statement; the
compiler can uniquely detect this error.
Error A: Confusing operator (=) with (==); the compiler
detects error, but does not output a unique error statement.
Error B: Using the operator (==) instead of (.equals); the
compiler cannot detect the error.

In this research, errors I and O were identified directly from
the output messages issued by the compiler. Errors A and
B were identified by a static analyzer built using XML rep-
resentation [10] of projects’ code. In total, the dataset con-
tains 17, 682, 006 instances. From this dataset, we sample
241, 418 instances which include the four mentioned error
types. Each instance in the dataset is a code submission.

Table 1 presents the number of instances and the bug-fix-
time (BFT) median, average, and STD values for each se-
lected error in the BlueJ platform. As shown by the table,
the errors vary in average difficulty in terms of the average
fix time. An example of the distribution of bug-fix-time for
error I in BlueJ can be seen in Figure 1. As seen in the
figure, the distribution is right-skewed, with some students
exhibiting very long fix times for this error. A similar trend
was also apparent for the other bug types in the platform.

3.1.2 The CodeWorkout Environment
The CodeWorkout environment [12] is an online system for
people learning Java programming for the first time. This
open-source site contains 837 coding problems spanning top-
ics such as sorting, searching, and counting. The environ-
ment includes tests for each problem, which verifies the cor-
rectness of each student’s submission. Student submissions
are graded automatically using these tests and feedback is
returned including error messages.

The dataset includes student assignment submissions from
an introductory course of Computer Science course (“CS1”)
administered in the Spring and Fall 2019 semesters at a pub-
lic university in the U.S. During this course, 50 different
coding problems from CodeWorkout were given to students,
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Figure 1: Distribution of bug-fix-time for Error I in BlueJ

and their code submissions were collected. The coding prob-
lems used in this dataset are easy and designed for beginner
programmers. Each problem requires 10-26 lines of code
and includes basic operations such as for loops, and if / else
statements. Each submission in the CodeWorkout dataset
includes the submitted code by the user, the user ID, the
assignment ID, and the list of reported compiler errors if
any. The CodeWorkout dataset included only bugs that are
identifiable by the compiler. Overall this dataset contains
75 error types from 819 students and a total of 80,013 in-
stances. As with the BlueJ dataset, the bug-fix-time in the
CodeWorkout datasets exhibits a long tail distribution.

3.2 Computing Bug-Fix-Time
The bug-fix-time (BFT) for a given error is defined as the
length of time (in seconds) between the first compilation
submission in which the error was reported, and the near-
est compilation submission in which the error was resolved.
For the BlueJ environment, The bug-fix time is adjusted to
the periods when the user is logged into the system. For
CodeWorkout, session login information is not available, so
bug-fix-time considers only bug occurrence and bug resolu-
tion timestamps.

We note the high variance in bug fixing time as indicated
by the STD value in table 1 (also occurs for CodeWork-
out). This indicates that bug-fixing time is a personal phe-
nomenon, which may depend on specific students’ charac-
teristics. We hypothesize that such characteristics are ex-
pressed in the way that students write and evolve their
program code. Thus, we define the bug-fix-time prediction
problem, as the problem of predicting the time to fix a bug
for a specific student given the occurrence of a specific bug
in their latest compilation and considering their past code
submissions. Following past approaches, we use the median
value of bug fixing time per each bug type as the threshold
between “slow” and “fast” fixing times [5].

3.3 Predicting Bug Fix Time
We now describe the deep learning model for the prediction
task at hand. Our architecture includes three layers: (1) An
embedding layer using pre-trained deep language models for
representing programming languages, (2) A time-aware layer

Figure 2: Model Architecture

using Long Short Term Memory, and (3) A classification
layer. The architecture can be seen in Figure 2.

The input to the model is a student’s compilation submission
that includes the following:

First, the Critical Code snapshot: the code snapshot that
generated the error. Second, the Code History: the most
recent code submissions that preceded the critical code sub-
mission. We use 4 preceding code submissions as this is the
median number of available code snapshots before an er-
ror is identified, in both datasets1. If the code history was
shorter, we used zero-based representations for the empty
submissions.

Third, we added four meta features relating to the user.
These include: (a) The number of compilation submissions
performed before the error occurred. Represents how long
the user is working on this program. A higher number of
submissions may indicate a struggling or hesitant student.
(b) A binary value indicating whether the student gener-
ated this error before in any of their previous submission
in blueJ. If the student had seen this error before, it may
be easier for them to solve this error. (c) A binary value
indicating whether the compiler has detected additional er-
rors at the same compilation. Multiple errors may indicate
that the student is struggling and will need a longer time
to fix the designated error. (d) A value indicating the user
experience in the system. For BlueJ, this is the time since
the user created the account (available only on BlueJ). For
CodeWorkout this is the number of assignments the user has
submitted out of the total assignments given in the univer-
sity course used for the dataset.

We note that if a code submission generated multiple errors,
we created multiple instances, one for each error type gen-
erated by this code submission. Additionally, we have tried
meta-features b,c and d as integers and as binary values and
used the representation that had the best results.

1We explore the sensitivity of the results to the code history
length in Appendix A.
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Embedding layer. The first model’s layer encodes student’s
code submission and the history of previous code submis-
sions. We use CodeBert [13] for this embedding layer. Code-
Bert is a bimodal pre-trained language model for program-
ming languages and natural language text comments. It
is based on the RoBERTa-base [22] model architecture, a
BERT-based language model with 12 transformer layers,
768-dimensional hidden states, and 12 attention heads. The
input format to CodeBert is concatenating two data seg-
ments with a special separator token, namely [CLS]. The
first segment is natural language text representing the com-
ments in the program and the second segment is the pro-
gramming code itself. The output of CodeBert includes a
representation of the [CLS] token which works as the aggre-
gated representation for the input code snapshot. This out-
put is a 768-dimensional vector and is passed from the em-
bedding layer to the next layer. We note that the maximum
input sequence length of CodeBert is 512 tokens. Longer
snapshots are truncated to the first 512 tokens2.

Time-Aware layer. The time-aware layer is designed to re-
flect the changes in the user code over time. This layer
utilizes a Bidirectional Long Short Term Memory (LSTM)
[17]. Each code snapshot representation from the previous
layer is concatenated to additional four features about the
user added to the end of the code snapshot representation.
This results in a 772-dimensional vector fed into the Bidirec-
tional LSTM layer. The output of the Bidirectional LSTM
layer is a 1544-dimensional vector.

Classification layer. The last layer is the classification
layer designed to predict the binary bug-fix-time value (slow
or fast). This layer takes the output of the LSTM layer and
feeds it into the following layers: (a) A fully connected layer
with an output size of 128. This fully connected layer mul-
tiplies the input by a weight matrix and then adds a bias
vector, using the relu activation function (2) A fully con-
nected layer with an output size of 2 and (3) A Sigmoid
function. The output is a binary prediction score of slow or
fast time-to-fix.

3.4 Baselines
We evaluated our model against alternative approaches that
vary in how students’ code is represented and whether the
history of past code compilations is considered.

Halstead Metrics Based Method. This baseline is the
Halstead metrics method used for measuring code. The
method views a computer program as a collection of operator
and operand tokens and proposes 12 metrics as described in
[16]. In this baseline, we represent each code snapshot with a
12-dimensional vector based on Halstead metrics. This em-
bedding replaces the CodeBert embedding in figure 2. The
LSTM in this method is fed with a 16-dimensional vector
for each snapshot.

2We explore the sensitivity to other truncation approaches
in Appendix A.

Code2Vec Based Method. This baseline used Code2Vec
[2], an Abstract Syntax Tree (AST) [27] embedding model
for code. We used the pre-trained model of Code2Vecv from
[2]. The Code2Vec embedding replaces the CodeBert em-
bedding in figure 2.

Critical Code only. This baseline used a version of our
proposed model which does not consider past snapshots of
the programmer’s evolving code. For this baseline, only the
critical code submission and the 4 additional meta-features
for this submission are used and the LSTM layer is removed.

4. EXPERIMENTS
To address the research questions, four different methods
were compared during the experiments:

Halstead Metric Based Method: predicts bug fix time using
the code snapshot that contains the error and four preceding
snapshots (i.e. code history). Each code snapshot is rep-
resented using the Halstead metrics and 4 additional user
features (used for RQ1).
Code2Vec Based Method: predicts bug fix time using the
snapshot that contains the error and four preceding snap-
shots. Each code snapshot was embedded using Code2Vec
and 4 additional user features (used for RQ2).
Critical code only: predicts bug fix time using the full code
snapshot that contains the error and additional 4 features
(used for RQ3).
Proposed model: predicts bug fix time using the snapshot
that contains the error and four preceding snapshots, each
one embedded using CodeBert and 4 additional meta-features.

Our experiments evaluate the above approaches in two dif-
ferent setups: (1) Error-specific: in which a prediction model
is trained and evaluated for each error type in separation,
and (2) Error-agnostic: where one prediction model is trained
and evaluated for multiple error types.

Unfortunately, the CodeWorkout dataset contains on av-
erage only 455 instances per error type, so there is not
enough data for the error-specific approach for this dataset.
Thus, only the error-agnostic model was evaluated for this
dataset. All experiments were evaluated using a 5-Fold
cross-validation setup and the recommended hyperparam-
eters values from the literature.

The metrics used include: (1) ROC-AUC: summarizes how
well the model separates the positive and negative samples
for different thresholds. (2) Recall (positive samples): the
ratio of positive samples correctly classified as positive to the
total number of positive samples. (3) F1 (positive samples):
combines the precision (i.e. number of true positive results
divided by the number of all positive results) and recall of a
classifier into a single metric by taking their harmonic mean.

We focus on the positive samples which represent struggling
students that took a long time to fix a bug. Therefore, recall
and F1 metrics are measured and reported for this class.

Statistical significance was tested for all results using the
Wilcoxon signed rank test [30]. Post-hoc corrections for
statistical tests were performed using the Holm-Bonferroni
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Table 2: BlueJ - Error Specific Results

Results for Error I

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 44 49 55

Code2Vec Based 57 56 56
Critical Code Only 64 59 55
Proposed model 74* 64* 62*

Results for Error O

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 49 52 56

Code2Vec Based 59 56 54
Critical Code Only 57 55 53
Proposed model 75* 63* 60*

Results for Error B

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 44 46 49

Code2Vec Based 53 50 49
Critical Code Only 63 56 51
Proposed model 83* 64* 54*

Results for Error A

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 42 46 50

Code2Vec Based 55 52 51
Critical Code Only 60 57 55
Proposed model 70* 64* 61*

method [1]. A star mark (”*”) in the results tables (tables
2, 3, 4) denotes a model is significantly better than the rest.

4.1 Error-Specific Results
Table 2 displays the results for error-specific models in BlueJ.
As seen in the table, the proposed model outperforms all
other approaches for all error types and for all measured
metrics. Interestingly, the Code2Vec baseline did not im-
prove over the Halstead metric method in some of the error
types on ROC-AUC metric.

4.2 Error-Agnostic Results
We compare models’ performance in the error-agnostic case:

BlueJ Dataset. On the BlueJ dataset, we combined the
four errors A, B, I and O. The dataset contained 80,000 in-
stances (sampled from the entire dataset). For each instance
in the dataset, the binary labels were determined separately
for each error type. Table 3 presents the performance of this
dataset. As seen in the table, the proposed method outper-
formed all baselines in all measured metrics. The second
performing approach was the Critical Code Only approach.
Code2Vec embedding showed better results than the method
based on the shallow Halstead metrics embedding 3.

3We evaluate feature importance for the proposed model in
Appendix B.

Table 3: BlueJ - Error Agnostic Results

Results for Errors A+B+I+O

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 47 48 48

Code2Vec Based 55 54 52
Critical Code Only 61 56 55
Proposed model 77* 64* 62*

Figure 3: Correct Prediction Using Code Text

CodeWorkout Dataset. For the CodeWorkout dataset, we
combined code submissions for all 75 error types into one
dataset that contained 80,013 instances. The binary labels
were determined based on the median bug-fix-time threshold
for each error type in separation. Table 4 presents the results
for this dataset. As seen in the table, the proposed model
outperformed all other baselines on all measured metrics.
The second performing model was the Critical Code Only
model. For this dataset, the Code2Vec-based model outper-
formed the Halstead-based model in 2 of the 3 metrics.

Table 4: CodeWorkout - Error Agnostic Results

Method Recall[%] F1 [%]
ROC-

AUC[%]
Halstead Metric Based 54 55 52

Code2Vec Based 58 55 56
Critical Code Only 65 62 65
Proposed model 70* 64* 70*

5. CASE STUDIES
To further demonstrate the performance of the proposed
method, we present two illustrative examples.

5.1 Case A: The Value of Code Text
Figure 3 presents a code submission that contains the error
”Missing Return Statement”. The user generating this error
took a long time to fix. While the model that used the
Halstead metrics was wrong in predicting a “short” label for
this snapshot, the two CodeBert-based models performed
a correct prediction. As seen in the figure, the submitted
code contains multiple if-else statements which may make it
difficult for the student to identify that yet another return
statement is missing and its location. We hypothesize that a
code-based model correctly classified this sample since it is
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Figure 4: Correct Prediction Using the Code History

using the entire code structure, while a shallow model relying
only on item counting is blind to such subtle differences.

5.2 Case B: The Value of Code History
Figure 4 presents code submissions that contain an error
that brackets are missing with a binary label of“long”. While
the model that used only the last snapshot (Critical Code
Only model) predicted a“short”fix time, the proposed model
predicted correctly that the fix time will be “long”. Looking
at the code submission history may explain why the student
is struggling and why it took them a long time to solve the
error. As shown in code submissions 1-3 in red, the student
changed the code and then changed it back. In code submis-
sion 4 they then deleted a full “if” statement and changed
an “else” statement to an “if” statement which led to the er-
ror. This behavior is most likely a behavior of a struggling
student and may indicate that when faced with a resulting
error, it will take them a long time to fix it. Such inference
can only be captured by a model which considers multiple
snapshots and tracks the student’s behavior over time.

6. DISCUSSION
The results of this study demonstrate that deep language
models built for code representation can significantly im-
prove on past models when predicting bug-fix time (RQ2).
They also show that using multiple code snapshots further
improves such results (RQ3) validating the benefits of com-
bining the latest language models built for code represen-
tation with a multi-snapshot approach. These results re-
flect the representation power of the latest language models,
which are pre-trained on vast amounts of past data. Interest-
ingly, the simpler Halstead method-based approach outper-
formed the Code2Vec approach in some cases (RQ1). This
demonstrates that earlier deep learning methods (such as
Code2Vec), which were trained on fewer data and with less
sophisticated neural network structures, lack the power in-
herited in the latest approaches. The key takeaway of these
findings is the potential and importance of harnessing such
latest language models in the educational data mining field,
as it relates to software education and beyond.

We mention some limitations of the proposed approach. First,
the computed bug fix time is only an estimation of the true,
latent value of the actual time spent by a user on fixing a
bug. Even when sign-in and sign-out information is avail-
able, such as in the BlueJ dataset, the user may have been
occupied with other activities when logged in, contrary to
our assumptions. Second, the model assumes each error is

independent even though one error can lead to another er-
ror. Third, the CodeBert model, similar to other Bert-based
models, is limited to 512 input tokens. We used truncation
approaches to accommodate this limitation. Nonetheless,
future work may consider other approaches (such as summa-
rization, hierarchical representation, etc.) to accommodate
longer code snapshots. Fourth, the rapid improvement in
language models for code representation implies that Code-
Bert is only an early bird among an increasing number of
evolving models in the field [31]. As such, additional latest
models should be investigated in future work.

7. CONCLUSION AND FUTURE WORK
This work provides a new approach for predicting whether
a student’s bug-fix-time will be “short” or “long” based on
a given threshold for common errors made by novice pro-
grammers. Predicting a “long” bug-fix-time is one possible
way to identify struggling students in need of teacher sup-
port. We developed and compared four approaches towards
this task (1) A model using Halstead metrics computed over
multiple code snapshots preceding a software error (2) A
model using Code2Vec for code embedding that considers
the code compilation which produced the error and previ-
ous student’s code snapshots (3) A model using CodeBert for
code embedding which considers only the code compilation
which produced the error (4) Our approach: a model using
CodeBert for code embedding which considers the code sub-
mission producing the error and previous student’s code sub-
missions. Our approach was able to outperform all baselines
for ROC-AUC, Recall, and F1. Our results demonstrate the
efficacy of CodeBert and of using multiple time-based code
snapshots in identifying struggling students by predicting
the bug-fix-time of their software errors.

In future work, we intend to cover additional common stu-
dent errors and extend this study to different programming
languages. Furthermore, during data pre-processing, we
found out that some errors are not solved by some students
altogether and we plan to extend our model to identify such
cases. Finally, we are working on developing and evaluating
a regression-based model to predict a continuous bug-fix-
time value to better estimate how long it will take students
to solve their programming errors.
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APPENDIX
A. SENSITIVITY ANALYSIS
In this section, we analyze the sensitivity of the model to
code truncation and the length of snapshot history.

A.1 Code Truncation
As explained in the Embedding layer section, code trunca-
tion is needed for some samples to accommodate to Code-
Bert’s (and Bert’s) limitation of 512 tokens. This is im-
portant for the BlueJ dataset since it contains 57.4% sam-
ples over 512 tokens, compared to the CodeWorkout dataset
which contains only 1.6% samples over 512 tokens. In this
analysis, we compare truncation to the first 512 tokens vs
truncation to the last 512 tokens. Figure 5a presents the
result of a sensitivity analysis on the BlueJ dataset. As seen
in the figure, the result of truncating the first 512 tokens
and the last 512 tokens are similar with a slight advantage
to the first 512 tokens truncation. Thus, we decided to trun-
cate the code to the first 512 tokens.

(a) Sensitivity Analysis: Code Truncation Approach

(b) Sensitivity Analysis: Code History Length

Figure 5: Sensitivity Analysis

A.2 Code History Length
Figure 5b presents an analysis of the model’s performance
when manipulating the number of preceding code snapshots
included. Specifically, we change the number of such snap-
shots from 0 to 4 and present the Recall, F1, and ROC-AUC
results for these manipulations on the CodeWorkout dataset.

As seen in the figure, the model results improve in all met-
rics as we add more preceding snapshots. Even though the
ROC-AUC metric improves only by 2.42% when we move
from zero snapshots to 4 snapshots, the recall metric that
represents how well the model detected struggling students
improve by 10.2%. This suggests not only that history helps
to predict bug-fix-time, but that adding more history may
improve the performance of the model, pending on the avail-
ability of such data.

Figure 6: Feature Importance

B. FEATURE IMPORTANCE
To evaluate feature importance, we used Integrated Gradi-
ents [28] to calculate feature attribution for the proposed
model on the BlueJ dataset. Integrated Gradients are an
explainability technique for deep neural networks that visu-
alizes the input feature importance by computing the gra-
dient of the model’s prediction output to its input features.
In this analysis, we were specifically interested in comparing
the importance of different snapshots (latest vs earliest) and
the importance of code vs metadata information. To this
end, we computed the maximal integrated gradient value
for each snapshot and for each metadata group. Calculat-
ing the maximum value of each feature group indicates the
strongest attribution generated by the group on the output
result.

Figure 6 presents the normalized 10 top max attributions.
As can be seen in the figure, the critical code snapshot
holds the strongest importance, followed by the code snap-
shot which precedes the critical snapshot (History Code 1).
These are then followed in importance by the metadata in-
formation from the Critical and History 1 code submissions.
Of lower importance are the older code snapshots (History
Code 2 and History Code 3). The metadata of Code 2 and
Code 3 snapshots and the information of the oldest snapshot
(Snapshot 4) are last in line. These results indicate the value
captured by both the code itself and the additional metadata
information, as well as the value of the information captured
from all available historical snapshots (although decreasing
as we get earlier in time).
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ABSTRACT
In this study, we analyze data from the National Assessment
of Education Progress (NAEP) digital test to understand
how digital tool usage relates to the efficiency of answering
questions. Digital testing software provides students with
on-screen tools such as calculators and scratchpads. We
found that students who used digital tools in NAEP were
slower in solving the problems but more accurate when the
question demanded using the tool. We also found that when
students used the tool when it was not needed, they were
more likely to be incorrect. Overall, our findings suggest
that students need to be trained on how to use the tools
and when to use them to make the most use of their testing
time.

Keywords
Digital Assessments, Process Data, Student Behavior

1. INTRODUCTION AND PRIOR WORK
The study focuses on the relationship between on-screen tool
usage and the efficiency of students. The software used for
online testing typically provides tools such as scratchpads
and calculators to the students to help them think, and solve
problems. Students’ usage patterns of these tools can help
us model their behavior and help instructors to help students
identify tool usage. Data from the NAEP (National Assess-
ment of Educational Progress) used by the US Govt, was
used. Computer-based tests are now standard in large-scale
assessments.

To ensure the digital competency of the test taker [1, 4]
students are subjected to lab-based studies where they are
recorded while interacting with the assessment interface [2].
NAEP test provides some tools for the students to aid in
problem-solving. Students are provided with quick train-
ing before the test starts. Two key tools in the NAEP test
are Calculator and Scratchpad. All students in the NAEP
test have access to a physical calculator (they are given one

if they don’t bring their own), and students can also re-
quest pencils and scratch paper if needed. The NAEP UI
(shown in Figure 1) also has a digital Calculator and a dig-
ital Scratchpad that substitute for their physical versions.

Efficient test-takers show distinct digital patterns in the log
data. Sahin used Latent Profile Analysis to look at how
students allocated times to different test items in the NAEP
[5]. They discovered four distinct groups in their sample
that they described as 1) little time on the first (problem)
visit, 2) balanced time (across problem visits and revisits),
3) little revisit with more time in the end, and 4) little revisit
with less time in the end. The researchers found that these
four groups differed in the average outcomes, with group 4
scoring the lowest (pg. 21, ibid). Another recent study [3]
showed that in the NAEP test, students were more likely to
use the digital calculator on calculation-heavy items. When
it was used in an ideal way, students were also likely to score
higher.

We analyzed the process data from the 2018 NAEP test and
compared the students who did not use digital on-screen
tools with the ones who did. All students in the NAEP test
had access to physical tools, so we wanted to understand
student preferences in using digital tools. In our analysis,
we compared the time taken by students who used digital
tools with those who did not.

2. DATA
We used a random sample from the 2018 NAEP Mathe-
matics test for Grade 8. Our sample had data N = 1642
students. The digital Math assessment consists of two 30-
minute blocks, and our sample had data from the first block.
There were a total of 20 questions in the first block. The
entire test-taking process of the students was captured by
collecting data points for each interaction event. Each stu-
dent interaction in the digital assessment system resulted in
one observation in the dataset. Each observation had seven
different variables. They are listed in Table 1 below.

There were forty-two unique types of actions (Observable
column in the data). These actions were further coded by
us into six different categories: Answer (responding to the
item), Navigation (switching between items), Timer (looking
at the remaining time), Calculator (using the digital calcu-
lator), Scratchpad (using the digital scratchpad), Equation
Editor (using the equation editor), and Readability (ad-
justing the readability of the on-screen text). We consid-

G. Jain, A. Sharma, N. Patel, and A. A. Nanavati. Tool usage and
efficiency in an online test. In M. Feng, T. Käser, and P. Talukdar,
editors, Proceedings of the 16th International Conference on Edu-
cational Data Mining, pages 406–412, Bengaluru, India, July 2023.
International Educational Data Mining Society.
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Figure 1: User interface of the NAEP digital test.

Variable Description
STUDENTID Unique identifier of the student
Block Block of the NAEP test, A or B

AccessionNumber
Unique identifier of the question that
the student is attempting

ItemType
Type of the question e.g. MCQ, Fill
in the Blank, etc.

Observable
The name of the action that student
took e.g. clicking, dragging, scrolling,
typing, opening a calculator

ExtendedInfo Metadata of the student action

EventTime
Time when the student interaction oc-
curred

Table 1: Columns of the NAEP Process Data.

ered Calculator, Scratchpad, and Equation Editor as Digi-
tal Tools. We calculated the time students spent doing each
type of action, and the combined time students spent using
Digital Tools on a question, used to categorize them into
tool users and non-tool users. The non-tool users had no
tool used for a given question, while the tool users had one
or more events related to the digital tools. Once the students
were categorized for their tool usage for each question, we
compared the two groups for each question, in how quickly
they responded to the question items.

We had accuracy data available for eight multiple-choice
questions, calculated by looking at the latest option clicked
by the students and comparing it with the answer key. Fur-
ther, the accuracy data was used to compare students who
did and did not use the digital tools.

3. RESEARCH QUESTIONS AND METHOD
Our objective was to understand how students who used the
on-screen tools differed from those who did not. We wanted
to know whether students who used the digital tools were
faster at responding to the test items. We also wanted to

understand whether the tool usage behavior was different
across items and if there were any differences in the profi-
ciency of the students using the tools versus not using the
tools.

• RQ1: What are the differences in item response times
for the students who use the digital tools versus those
who do not?

• RQ2: Are the tool usage preferences similar or different
across question items?

• RQ3: Are there any differences in the scores of stu-
dents who can identify tool usage correctly compared
to those who don’t?

For RQ1, we used the t-Test to compare the item response
times of the groups of students who used the digital tools and
those who did not. For RQ2, for each question, we compared
the number of students who used digital tools for answering
it with those who did not use the tools. Given that we had a
random sample from the test, we expected that the student
preference seen in our data would generalize to the target
population. To answer RQ3, we used correctness data from
the multiple choice questions of the test and calculated what
proportion of the students using the tools were getting the
items correct.

4. RESULTS
RQ1: We found that, on average, students who used the dig-
ital tools took more time to respond to the items than those
who did not use the tools. Figure 2 summarizes our findings
for each question. We can see that for some questions, the
difference in the response time between non-tool and tool
users is as much as double. We performed mean compar-
isons for items where we had correctness data for the correct,
incorrect, and not attempted results. Appendix A contains
the results of the t-Tests, where we see that most of the
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Figure 2: Comparison of item response times for students who used the digital tools and who did not use the digital tools. The
answer key was only available for multiple-choice questions.

differences were statistically significant. This answers RQ1
and tells us that students who used the on-screen tools were
slower than the ones who did not use the on-screen tools.
We do not have precise data about what the non-tool users
used. Maybe they did some guesswork (given the multiple-
choice questions), or they used physical tools. Based on the
content of the questions (provided in Appendix C), we can
say that mental math may not be sufficient to solve most of
the questions.

RQ2: We found that students preferred to use tools in some
questions and not use them in others. This is consistent with
findings from [3], where they observed that calculator use
was more in calculation-heavy items. Question 810, a recall
question (shown in Appendix C), did not need a calculator
at all, and we can see that out of the 1642 students, 1573
(95.8%) did not use any tool while answering this question.
For Questions 753, 759, 783, and 808, more than 80% of
the students preferred to use the tools (whether correct or
incorrect). For Questions 812 and 519, the tool users were
49.5% and 56.4%, telling us that students did not clearly
prefer to use tools for these questions. Looking at Appendix
C, we can see that Question 812 may not require tool usage.
In summary, Table 2 answers RQ2 and shows us that in some
questions, tools were preferred, in some, they were not, and
in others, there was mixed behavior.

RQ3: Overall, we found that the tool-using group of students
scored more on average than the non-tool-using group. We

Question Tool Usage Correct Incorrect Prop.
(N) (N) Correct

VH098519 ToolsNotUsed 246 462 65.25
VH098519 ToolsUsed 251 665 72.60
VH098753 ToolsNotUsed 221 29 11.60
VH098753 ToolsUsed 1000 328 24.70
VH098759 ToolsNotUsed 261 18 6.45
VH098759 ToolsUsed 741 604 44.91
VH098783 ToolsNotUsed 130 161 55.33
VH098783 ToolsUsed 259 1049 80.20
VH098808 ToolsNotUsed 146 173 54.23
VH098808 ToolsUsed 653 657 50.15
VH098810 ToolsNotUsed 697 876 55.69
VH098810 ToolsUsed 39 30 43.48
VH098812 ToolsNotUsed 483 318 39.70
VH098812 ToolsUsed 461 324 41.27
VH098839 ToolsNotUsed 322 79 19.70
VH098839 ToolsUsed 637 438 40.74

Table 2: Number of correct and incorrect students by their
digital tool usage. We can see that for some questions, the
total number of students who used the tools is higher than
the ones who did not use the digital tools. We can also see
that tool users scored more on average for some questions.
In questions where tools were not required, the tool users
scored less.
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can see in Table 2, students typically scored more in ques-
tions where tools were used. Appendix B shows where the
students scored significantly more when using digital tools.
The biggest difference was seen in Question 759, a question
on calculating averages. Here, 44.9% of the tool users an-
swered correctly, whereas only 6.5% of the non-tool users
answered correctly. We do not know why so many students
who did not use the tools got the question incorrect because,
as per NAEP policy, they all had access to physical calcu-
lators. It may be possible that students’ digital tool use is
an indicator of their other abilities. We know that students
who answered without using the digital tools answered the
question faster, though some of those responses could be
guesses.

5. DISCUSSION
Based on the results, we can see that the students who did
not use the tools provided in the NAEP digital interface
were faster in answering the question - whether correct or
incorrect. Since we did not have data on students’ outside
activities, we cannot say anything about why the students
not using the digital tools were faster. We also tried to
sequence modelling on students, but the patterns were too
complex for the scope of this poster (Appendix C).

For certain Questions tool usage was not required (based
on the content of the question). These questions could be
solved without tools, and it was seen that the proportion
of correct and incorrect responses for non-tool users is sta-
tistically insignificant (Appendix B). For certain Questions
which required calculation, we still found that the difference
between correct and incorrect non-tool users was insignifi-
cant, which is interesting and should be investigated further.
In all questions, students have to decide whether to use the
tool, implying that student training needs to be conducted
on not just how to use the tool but also when to use the tool.
As the difference between incorrect and correct proportions
when not using a tool is positive, it implies that many stu-
dents were either hesitant to use the tools, inept at using
them, or found the tools lacking.

Our analysis did not utilize the fine-grained process data
provided by the NAEP system. The step-by-step data of
student actions can show how they utilized the tools. To
help students be more efficient while taking the test, we
can provide personalized feedback based on their usage pat-
terns. For the students who answered correctly, we can find
tool usage patterns that were more efficient than theirs (if
available) and provide the closest and fastest patterns as
suggestions. This can guide the students in avoiding un-
necessary steps while solving the problem and making the
most of their time. It may be worthwhile to consider having
practice tests where the digital test-taking interface disables
access to tools for the questions when they are unnecessary.
Appropriate tool usage can help students save time and have
fewer digital distractions during the test.

6. CONCLUSION AND FUTURE WORK
Our study found that students taking the NAEP test dif-
fered in their on-screen tool usage behavior. Students who
used the digital tools were typically slower in responding to
the items than those who did not. If the question item de-
manded tool use, then students preferred to use the tools

and also scored higher when they used the tools. Our find-
ings show that when taking digital tests, students are better
off if they know when to use the tools and when not to use
them. A future study can analyze the nuanced processes
of tool usage and compare efficient and inefficient digital
tool usage. The process data can provide students with per-
sonalized recommendations on how to use the tools more
efficiently and save time while taking the test. We could
also look at the sequence of tool usage and non tool usage
amongst students, attempting NAEP.
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Oláh, and Ilona Minchuk. Using sequence mining to
study students’ calculator use, problem solving, and
mathematics achievement in the national assessment of
educational progress (naep). Computers & Education,
193:104680, 2023.

[4] Fanny Pettersson. On the issues of digital competence
in educational contexts–a review of literature.
Education and information technologies,
23(3):1005–1021, 2018.
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APPENDIX 

A. RESPONSE TIME COMPARISON 
i) For Correct Answers (T-value calculated by Time consumed by tool not used- tool not used) 

AccessionNu
mber 

VH098
519 

VH098
753 

VH098
759 

VH098
783 

VH098
808 

VH098
810 

VH098
812 

VH098
839 

T-Value -11.759 -6.733 -4.811 -9.962 -12.677 -4.275 -4.114 -6.251 

P-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 

 

ii) For Incorrect Answers (T-value calculated by Time consumed by tool not used- tool not used) 

AccessionNu
mber 

VH098
519 

VH098
753 

VH098
759 

VH098
783 

VH098
808 

VH098
810 

VH098
812 

VH098
839 

T-Value -10.689 -14.246 -15.657 -6.507 -12.565 -3.711 -6.49 -9.497 

P-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 

 

iii) For Unattempted Answers (T-value calculated by Time consumed by tool not used- tool not used) 

AccessionNum
ber 

VH0985
19 

VH0987
53 

VH0987
59 

VH0987
83 

VH0988
08 

VH0988
12 

VH0988
39 

T-Value -3.295 -3.423 -3.057 -3.802 -2.49 -2.965 -1.514 

P-value 0.0046 0.0012 0.0121 0.0012 0.0472 0.0069 0.1355 

 
 

B. CORRECTNESS PROPORTION FOR NON-TOOL USERS 
 

Question 
No. 

Correct 
When 
Tool Not 
Used 

Incorrect 
When 
Tool Not 
Used Difference 

Count 
Correct 

Count 
Incorrect Proportion z-test p-value Sig 

VH09851
9 0.410 0.495 0.085 1127 497 0.436 3.185 0.0025 Yes 
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VH09875
3 0.081 0.181 0.100 357 1221 0.158 4.541 0.0000 Yes 

VH09875
9 0.029 0.260 0.232 622 1002 0.172 12.025 0.0000 Yes 

VH09878
3 0.133 0.334 0.201 1210 389 0.182 8.944 0.0000 Yes 

VH09880
8 0.208 0.183 -0.026 830 799 0.196 -1.307 0.1698 No 

VH09881
0 0.967 0.947 -0.020 906 736 0.958 -1.996 0.0544 No 

VH09881
2 0.495 0.512 0.016 642 944 0.505 0.638 0.3254 No 

VH09883
9 0.153 0.336 0.183 517 959 0.272 7.538 <2.2e-16 Yes 

 

C. SEQUENCE MODELLING 
 

i) Where Calculator was used 
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ii) Where no tool was used 

 

 

D) Link for the NAEP test:-   

https://www.nationsreportcard.gov/nqt/ 
 

 

 

412



A Conceptual Model for End-to-End Causal Discovery in
Knowledge Tracing

Nischal Ashok Kumar, Wanyong Feng, Jaewook Lee, Hunter McNichols,
Aritra Ghosh, Andrew Lan

University of Massachusetts Amherst
{nashokkumar,wanyongfeng,jaewooklee,wmcnichols,arighosh,andrewlan}@umass.edu

ABSTRACT
In this paper, we take a preliminary step towards solving
the problem of causal discovery in knowledge tracing, i.e.,
finding the underlying causal relationship among different
skills from real-world student response data. This problem
is important since it can potentially help us understand the
causal relationship between different skills without extensive
A/B testing, which can potentially help educators to de-
sign better curricula according to skill prerequisite informa-
tion. Specifically, we propose a conceptual solution, a novel
causal gated recurrent unit (GRU) module in a modified
deep knowledge tracing model, which uses i) a learnable per-
mutation matrix for causal ordering among skills and ii) an
optionally learnable lower-triangular matrix for causal struc-
ture among skills. We also detail how to learn the model pa-
rameters in an end-to-end, differentiable way. Our solution
placed among the top entries in Task 3 of the NeurIPS 2022
Challenge on Causal Insights for Learning Paths in Educa-
tion. We detail preliminary experiments as evaluated on the
challenge’s public leaderboard since the ground truth causal
structure has not been publicly released, making detailed
local evaluation impossible.

Keywords
Causal Discovery, Knowledge Tracing, Response Data

1. INTRODUCTION
Knowledge Tracing (KT) [1] refers to the problem of estimat-
ing a student’s understanding or mastery of certain skills,
concepts, or knowledge components through their responses
to questions and using these estimates to predict future per-
formance. KT methods are frequently utilized in modern
online education platforms to determine the knowledge lev-
els of many students to enable the platform to provide per-
sonalized feedback and recommendations, ultimately leading
to better learning results [19]. KT methods are limited in
how they represent the relationship between skills; One key
limitation is that most do not model the causal relation-

ships between skills. Most KT methods simply treat human
expert-provided skill tags as a flat structure (with a few ex-
ceptions, such as [27], that organize skills hierarchically as
trees). As a result, these models are not capable of providing
meaningful pedagogical insights, i.e., predicting future stu-
dent performance if a particular instructional plan is applied
instead of the actual plan applied.

Causal analysis tools are a perfect fit to address these lim-
itations in KT. The task of causal discovery, i.e., learn-
ing causal relationships among different skills from obser-
vational data, is especially important. First, it helps educa-
tors learn prerequisite relationships among skills. This can
guide educators in ordering topics within their curriculum,
and can guide students to review prerequisite information
when they are stuck on a question [2]. Second, causal rela-
tionships among skills helps us with the task of causal infer-
ence, i.e., estimating the effect of a particular pedagogical
treatment or intervention. Traditionally, these tasks are ad-
dressed through randomized controlled trials which are diffi-
cult to scale. Therefore, incorporating causal discovery into
KT methods has the potential to become a scalable alterna-
tive since it can be done solely from observational student
response data. Performing causal discovery directly from
observational student response data is challenging since it is
not straightforward to estimate treatment effects from obser-
vational data with incomplete or no knowledge of the causal
relationship between skills. This problem is referred to as
the end-to-end causal inference problem, where we discover
the causal graph and estimate treatment effects together.

1.1 Contributions
In this paper, we take a preliminary step towards learning
causal ordering among skills from student response data.
This task is proposed in the NeurIPS 2022 Challenge on
Causal Insights for Learning Paths in Education1. Our pro-
posed conceptual solution is, to the best of our knowledge,
the first KT method to learn the causal structure among hu-
man expert-provided skill tags directly from observational
data in an end-to-end manner. Specifically, our contribu-
tions in this paper are as follows:

• First, we propose an interpretable causal structure
model that characterizes both i) the dependency
among skills using a lower-triangular matrix and ii)
their prerequisite ordering using a permutation matrix.

1https://eedi.com/projects/neurips-2022

N. A. Kumar, W. Feng, J. Lee, H. McNichols, A. Ghosh, and A. Lan.
A conceptual model for end-to-end causal discovery in knowledge trac-
ing. In M. Feng, T. Käser, and P. Talukdar, editors, Proceedings
of the 16th International Conference on Educational Data Mining,
pages 413–418, Bengaluru, India, July 2023. International Educa-
tional Data Mining Society.
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We hypothesize that this module can be combined with
any existing KT method that rely on human expert-
provided skill tags.

• Second, as a (among the top) solution2 to Task 3 in the
NeurIPS 2022 Challenge, we apply our causal structure
module to a variant of deep knowledge tracing (DKT)
[17], with a causal gated recurrent unit (GRU) module
at its core, due to i) the simple nature of DKT and ii)
its good empirical performance in our experiments.

• Third, we detail our experimental results based on the
public leaderboard of the NeurIPS 2022 Challenge. We
are honest up front that our evaluation is limited since
i) the ground-truth causal structure data is not pub-
licly released and ii) the nature of this brand new task
means that there are no baselines to compare against.

2. RELATED WORK
2.1 KT methods
Existing KT methods can be classified along several differ-
ent axes, the first of which is how they represent the student
knowledge representation variable h. Classic Bayesian KT
methods, such as those in [9, 15, 28], treat student knowl-
edge as a latent binary variable. Recent methods like deep
learning-based KT methods, such as [4, 14, 17, 22, 29], treat
student knowledge as hidden states in neural networks. This
setup results in models that excel at predicting future per-
formance but have limited interpretability [3]. Another ma-
jor axis is how KT methods represent responses, questions,
skills, and time steps. To represent student responses, most
existing KT methods treat them as binary-valued indicat-
ing response correctness. However, a few methods, such
as option tracing [5] and predict partial analysis [26], have
characterized student responses as non-binary-valued by an-
alyzing the specific options selected on multiple-choice ques-
tions. Another exception is [11], which uses large language
models to predict open-ended student responses in a gener-
ative way. To represent questions and skills, most existing
KT methods one-hot encode them based on question IDs or
skill tags [24], except [11, 12]. To represent time steps, most
existing KT methods treat each question as a discrete time
step, with a few exceptions such as [25], which considers the
exact, continuous time elapsed between responses.

2.2 Causal Analysis Methods
In the field of education, there exist very few works on
causality and especially few in the context of KT. [8] is
closely related to our work, where the authors study the
relationship between courses in higher educational institu-
tions using historical student performance data. They use
matching methods and regression to determine the average
treatment effect (ATE). Along similar lines, [20] and [21]
developed theory and methods for analyzing A/B testing
data and presented studied data collected from real-world
randomized controlled trials. These works focus on causal
inference, i.e., assuming that the structure is given and the
focus is on estimating the treatment effect. However, the
data we use from Eedi contains fine-grained skills, defined
as the smallest elements of learning among primary/middle

2The code for our solution can be found at: https://
github.com/umass-ml4ed/Neurips-Challenge-22

Figure 1: The implementation of a causal GRU cell. All the
GRU weight matrices, Wz, Wr, and W are multiplied by
the causal mask M = PLPT , resulting in W′

z, W
′
r, and W′.

school students. Therefore, our work is different from these
works in terms of both the goal and the educational con-
text. The only existing works that study causal discovery
in the context of KT are [10] and [13]. The former uses
a special model structure that has some similarity to ours
to model knowledge state transitions among uninterpretable
latent skills. The authors showed that their method, while
simple, is highly accurate in predicting unobserved student
responses, but do not evaluate on whether the identified
causal structure is valid. Our proposed method to learn la-
tent causal structure is closely based on the structural equa-
tion model (SEM) [16]. SEM enables us to estimate the re-
lationships between observed and latent variables, offering
valuable insights into their underlying relationships. The
hypothesized causal relationship among variables is repre-
sented as a directed acylic graph (DAG). In this work, our
goal is to learn the causal structure graph G.

3. METHODOLOGY
We now detail our conceptual causal KT method.

3.1 Basic Setup
The basic KT model contains two components:

hj,t ∼ f(hj,t−1,xj,t). (1)

p(Yj,t | hj,t, ij,t). (2)

For a student j at time step t, The knowledge estima-
tion component in Eq. (1) estimates the current knowl-
edge state hj,t given the previous knowledge state hj,t−1

and the student’s performance on the problem xj,t as in-
puts. The response prediction component in Eq. (2) out-
puts the prediction of the student’s likelihood of answering
the next question Yj,t correctly given the current knowledge
state hj,t and the next question index ij,t as input. Dur-
ing the learning process, the KT model needs to maximize
the predicted likelihood across responses of all students, i.e.,∑
j

∑
t log p(Yj,t | Yj,1, . . . , Yj,t−1).

We adopt the DKT setup detailed in [18] for consistency.
Since incorporating causal learning into the base KT model
introduces additional parameters, we use the gated recurrent
unit (GRU) as the transition model instead of long short-
term memory (LSTM) for computational efficiency. For re-
sponse prediction, we simply use a single linear layer over
the hidden states of the GRU. For causal discovery, i.e.,
learning the causal structure among skills, we use the causal
GRU module detailed below.
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Figure 2: The intuition behind causal GRU. Here, M =
PLPT . Mi,j = 1 if and only if [ht−1]j influences [ht]i where
ht is the student’s knowledge state at time-step t.

3.2 Causal GRU
We now detail the structure of the Causal GRU. From now
on, we drop the student index j for notation simplicity. We
define a permuted causal mask M that represents the causal
ordering and structure between skills. The L matrix repre-
sents the causal structure/skill dependency, and the P ma-
trix represents the causal ordering. The permuted causal
mask M is calculated in Eq. (3) as first multiplying P by L
to obtain the updated causal structure and multiplying by
PT to transform the causal structure into the original space.

The parameters in the Causal GRU are masked, i.e.,
element-wise multiplied by the permuted causal mask M in
Eq. (4). By masking out some parameters, we zero out pa-
rameters that do not satisfy the causal graph. This step en-
sures that there is no relationship between the hidden states
of the non-causally dependent skills in latent student knowl-
edge states. The latest student knowledge state estimation
ht is calculated in Eq. (5). The input xt is represented as a
one-hot vector with the dimension size equals to the number
of skills C. The entry of value ±1 represents whether the
student can correctly answer the question corresponding to
the skill. The input ht−1 is the previous student knowledge
state estimation. The implementation detail of a Causal
GRU cell can be found in Fig. 1.

M = PLPT , (3)

W
′

= M⊙W, (4)

ht = GRUc(ht−1,xt). (5)

3.2.1 Causal Ordering
One important element of the causal GRU is the causal or-
dering matrix P, which we set to be a permutation ma-
trix. By definition, a permutation matrix has exactly one
entry of 1 in each row and each column and 0s elsewhere.
Since multiplying a matrix by a permutation matrix per-
mutes the order of the columns/rows of that matrix, the
permutation matrix is naturally capable of sorting skills
into order based on prerequisite relationships. However,
the binary and discrete nature of the permutation matrix
makes the learning process non-differentiable. To solve
this problem, we introduce a relaxed version of the prob-
lem by approximating a permutation matrix with a doubly
stochastic matrix, i.e., one where all entries are non-negative
and the summation of each column/row is equal to 1, i.e.,

Pi,k ∈ [0, 1],
∑
k Pi,k = 1 ∀i , ∑i Pi,k = 1 ∀k . Instead of

learning a doubly stochastic matrix directly, which is very
difficult, we learn a matrix of free parameters P̄, from which
we can obtain P after applying the Sinkhorn operator [23]
P = Sinkhorn(P̄).

The Sinkhorn operator works as follows: First, starting with
the base matrix P̄, we subtract the largest entry of the ma-
trix from each entry, multiply each entry with the temper-
ature hyper-parameter, and pass it through an exponential
function. Second, we apply a series of row and column nor-
malizations by dividing each entry of the column/row by
the summation of all the entries in the column/row. In
our implementation of the Sinkhorn operator, there are two
hyper-parameters: temperature and unroll. The tempera-
ture hyper-parameter specifies the extent of the continuous
relaxation: the larger the temperature hyper-parameter, the
closer P’s entries are to either 0 or 1. The unroll hyper-
parameter specifies the number of times row/column nor-
malization is carried out: the more times the normalization
is applied, the closer P is to satisfying the row/column nor-
malization constraints.

3.2.2 Causal Structure
The other important element of the causal GRU is the causal
structure/ skill dependency matrix L, which we set to be
lower triangular. By definition, a lower triangular matrix is
one in which all the elements above the principal diagonal of
the matrix are 0. This matrix is important since it specifies
the causal structure among the skills. Once the skills are
ordered using the causal ordering matrix P, we apply the
causal structure matrix L to regularize student knowledge
state transitions across time steps. Due to its lower-diagonal
structure, an entry Li,k > 0 with i > k implies that skill k
is a prerequisite of skill i. Therefore, since the causal GRU
weight matrices are masked by the PLPT matrix, at the
next time step t, the entry in the latent student knowledge
vector that corresponds to skill i, [ht]i, depends only on the
entries in the previous knowledge state that correspond to
prerequisites of skill i, i.e., [ht−1]k ∀k s.t. Li,k > 0.

The L matrix being lower diagonal ensures that the result-
ing causal structure is a DAG. This means that if skill C1

depends on C2 then C2 cannot depend on C1. As a con-
crete example, Fig. 2 visualizes the effect of applying a mask
M = PLPT on the skill matrix C. The skill matrix C rep-
resents 5 skills where each skill is represented as a one-hot
vector. The causal ordering matrix P is applied to the skill
matrix to give a skill ordering of C3, C2, C1, C5, C4 which is
in the order of decreasing pre-requisites (C3 being the most
pre-requisite of all skills). We further apply the L matrix (in
this case a lower diagonal matrix with all ones) that spec-
ifies that every subsequent skill depends on the preceding
one. For example, it specifies that C4 depends on all of C1,
C2, C3, and C5; C5 depends on C1, C2, and C3 and so on.

One easy choice for L is to set its lower-diagonal part to
be all ones; this setting means that every subsequent skill
causally depends on all the previous skills. However, in prac-
tice, causal dependencies among skills nay not be this dense;
most skills will only be causally related to a few other skills.
To resolve this problem, we can make the L matrix learnable
by restricting the lower diagonal elements to be either 0 or

415



Table 1: Results on different model variants.
Model
Variant

Leaderboard
F1 Score

No Embedding
No Adaptive

0.11

No Embedding
Adapative

0.17

Embedding (300D)
Adaptive

0.33

Embedding (300D)
Adaptive
Learnable L

0.43

1. We do this by learning a matrix of free parameters L̄,
from which we can obtain L after applying the element-wise
sigmoid operator L = sigmoid(αL̄). A large value of the
temperature parameter α > 0 will push entries to be close
to either 0 or 1 but not in between.

3.2.3 Skill Embeddings
We use a learnable dense embedding to represent each skill
and alter both the input and the output layers of the causal
GRU. We learn an embedding matrix E where each column
ec represents the embedding of skill c. We treat the dimen-
sion of ec as a hyperparameter. For the input layer, we
use another learnable embedding d, which is either added
or subtracted from the skill embedding depending on the
correctness of the previous answer. We then learn the
input to the causal GRU using NN(ec ± d) where NN
is a single-layer neural network. For the output, we use
p(Yt) ∼ NNo([eTc , h̃Tt ]T ), where h̃t is a masked version of ht
with the only non-zero entry being the one that corresponds
to the skill of the next question that we are predicting. Here
NNo is a single-layer neural network that predicts the prob-
ability of the correct answer.

4. EXPERIMENTS
4.1 Data and Challenge Description
We participated in Task 3 of the NeurIPS Challenge co-
hosted by Eedi, Microsoft Research, and Rice University
[6]. The goal of this task is to discover the causal relation-
ships between different skills, or constructs (as defined by
Eedi, which means the smallest unit of learning; for exam-
ple, “mental addition and subtraction” is a construct within
the main topic “math”), and evaluate the effect of learning
one skill on another. Questions in this dataset are multiple-
choice, with a single correct option and three distractors
that are designed to assess a single skill. The challenge hy-
pothesis is that it is possible to discover the hidden relation-
ship behind different skills through analyzing the responses
to a large number of diagnostic questions. The challenge
uses an F1 score-based metric which calculates the similar-
ity between the predicted adjacency matrix Â and the true
adjacency matrix A.

4.2 Model Learning and Hyperparameters
The dataset consists of 1855 skills and 6468 students. We
set the default skill embedding dimension to 300. We use
an adaptive strategy and start with small values of the tem-
perature and unroll and linearly increase their values over a
set of epochs. We set the initial temperature and unroll to
2 and 5 respectively and linearly increase the values with a

factor of 2 and 5 respectively for every 10 epochs. We train
the model for 50 epochs with a batch size of 64, and a learn-
ing rate of 5e-4 using four Nvidia Tesla 2080 GPUs with a
GPU memory of 12GB each which takes about 6 hours. Af-
ter training, to obtain the final causal structure matrix L we
apply a post-processing step. We define a hyperparameter
κ such that all values of the L matrix less than κ are set to
0 and all values greater than or equal to κ are set to 1.

4.3 Results and Discussion
In Table 1, we show the results of different model variants.
We report the leaderboard F1 score obtained in our experi-
ments. We see that the F1 score is 0.11 for the case where we
are not using the skill embeddings. Using an adaptive strat-
egy increases the F1 score by 0.06, which suggests that the
adaptive strategy is helpful during model training. We also
report the results corresponding to the skill embeddings and
the learnable L. We see that using an embedding dimension
of 300 almost doubles the F1 score. This observation con-
firms our hypothesis that using skill embeddings increases
the representational capacity of the neural network model
and hence performs better. When the causal structure ma-
trix L is learnable, we see that we get a further 0.1 increase
in the F1 score. The increase in the F1 score on using the
learnable L configuration of the model shows that it is bet-
ter to learn the explicit causal dependence of skills instead
of assuming a dense representation where each skill depends
on all the skills preceding it.

5. CONCLUSIONS AND FUTURE WORK
In this work, we proposed a conceptual method for learning
causal structure among skills from student response data,
as a part of our solution to the NeurIPS 2022 Challenge
on Causal Insights for Learning Paths in Education. Our
method is a novel causal knowledge tracing method that en-
ables us to learn the causal structure in an end-to-end man-
ner while performing knowledge tracing. Unfortunately, due
to space limitations, we cannot show a qualitative example
of the learned causal structure among skills. We believe
that our work should inspire future works in the direction of
building causal knowledge tracing methods on observational
student response data. First, it is important to evaluate the
accuracy of the the learned causal structure between skills,
either against human domain experts or via A/B testing.
Second, it is important to apply our causal module to more
flexible knowledge tracing methods, such as attention-based
methods, to see whether it is applicable and effective. Third,
it is important to develop ways to leverage both the opin-
ion of human experts and our data-driven causal discovery
model, in a human-in-the-loop manner. The former may be
less accurate but the latter requires extensive training data;
a hybrid human-AI collaboration may be able to take the
best from both sides.
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Figure 3: The Sinkhorn operator is a smooth operator that
outputs an approximate permutation matrix.

Table 2: Results on varying the cutoff for the L matrix, κ.

κ F1 Score
0.42 0.43
0.45 0.43
0.435 0.43
0.48 0.43
0.495 0.43
0.51 0.33
0.525 0.18

APPENDIX
A. STRUCTURAL EQUATION MODEL-

ING
In SEM, given a collection of random variables x =
(x1, · · · , xD) and a causal directed acyclic graph (DAG)
G, each variable xi is generated using its parents Pa(i;G)
in the DAG and an exogenous noise variable ϵi: xi =
fi({xj}j∈Pa(i;G)) + ϵi. The structural vector autoregres-
sion (SVAR) model extends SEM to random variables that
form a time series xt = (x1,t, · · · , xD,t) for time steps
t ∈ {1, · · · , T} [7]. The influence of one variable on oth-
ers can be instantaneous or lagged behind for a few time
steps. The SEM model is given by

xi,t =

k∑

τ=0

fi,τ ({xj,t−τ}j∈Pa(i,t,τ ;G)) + ϵi,t,

where Pa(i, t, τ ;G) are random variables from time step t−
τ that influence random variable xi,t. One can also use a
single latent state h·, t to model the influence of past random
variables. The SEM becomes

hi,t = fi({hj,t−1}j∈Pa(i;G)) + ϵi.

B. SINKHORN OPERATION
Fig. 3 shows the working of the Sinkhorn operator.

C. ADDITIONAL RESULTS
We report the results obtained using different hyperparam-
eters of the learnable L model configuration. In Table 2,
we show the results across different κ values. We vary the
values from 0.42 to 0.525 and observe that using any values
out of this range gives a leaderboard F1 score of 0. Among
the experimented values for κ we see that we obtain a max-
imum F1 score of 0.43 for all values in the range of 0.42 to

Figure 4: An example of learned causal ordering among skills
in actual student response data.

0.495. The maximum F1 score for κ values in the range of
0.42 to 0.495 means that using very large or very less values
of κ does not give the optimal skill dependency.

We perform qualitiative analysis of our proposed method.
Fig. 4 shows an example from the DAG obtained from the
learned adjacency matrix for causal relations. Here, we rep-
resent the constructs based on their subject names, and an
arrow from subject i to subject j implies that subject i is
a pre-requisite of subject j. Here, in the figure, we can see
that “Counting” is the most pre-requisite skill. The subse-
quent skills in fractions depend on “Counting”. Calculating
areas of simple figures depends on fraction multiplication.
In the same way, calculating the volume depends on calcu-
lating the area. Hence, from this, we can see that we are
able to learn a meaningful DAG using our methodology.
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ABSTRACT
The use of digital lecture slides in e-book platforms allows
the analysis of students’ reading behavior. Previous works
have made important contributions to this task, but they
have focused on students’ interactions without considering
the content they read. The present work complements these
works by designing a model able to quantify the e-book LEC-
ture slides and TOpic Relationships (LECTOR). Our results
show that LECTOR performs better in extracting impor-
tant information from lecture slides and suggest that read-
ers’ topic preferences extracted by our model are important
factors that can explain students’ academic performance.

Keywords
e-book, reading behavior, keyphrase extraction, multimodal
learning analytics

1. INTRODUCTION
The adoption of e-learning technologies in blended courses
can help instructors better understand students’ learning
behaviors and make more informed revisions of lessons and
materials [9]. Examples of these technologies include the
e-book reading systems used in university classrooms to dis-
tribute lecture materials. By modeling students’ interac-
tions on these systems, instructors can analyze their reading
behavior and support their learning process [14, 22, 15].

Several works have investigated how to model e-book read-
ing users based on their set of reading characteristics [1,
34, 24, 8, 2]. Nevertheless, their models did not consider
the content that students read [31], information that may
be important for improving the course content’s structures
[16], or providing process-oriented feedback to students [27].

Figure 1: Topic-wise data generation

Since lecture slide data consists of text and images, their
integration into current models poses several challenges to
be addressed [7, 31]. Both text and image processing are
difficult tasks that recent advances in computer science are
attempting to address in different domains. Furthermore,
considering multimodal data would require formulating a
model able of integrating the different data sources.

In this context, the present work takes the first step by fo-
cusing on the text-processing task. We propose the model
LECTOR, which uses Natural Language Processing (NLP)
techniques to estimate a quantitative relationship between a
lecture slide and a topic. By performing this estimation, we
can convert a slide-wise set of reading characteristics into
a topic-wise set of reading characteristics (Figure 1). Ac-
cordingly, we validate LECTOR’s performance on this task
against previous models.

2. RELATED WORK
2.1 Text processing in e-book lecture slides
Previous studies describe the use of e-book lecture slide
text to address various problems, such as slide summariza-
tion [28], personalized recommendation [21, 23], and learn-
ing footprint transfer [33]. Almost all of these works used
the TF-IDF method [26] to process their slides [28, 33, 21].
Other works use hierarchical models to perform this process
[32, 5], but they require human labeling of all the text in the
slides [3], a task that can be burdensome for teachers.

In addition, a previous study estimated topic reading time
from e-book user data by considering only the slides where

E. D. L. Z., T. Minematsu, Y. Taniguchi, F. Okubo, and A. Shimada.
Lector: An attention-based model to quantify e-book lecture slides
and topics relationships. In M. Feng, T. Käser, and P. Talukdar,
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the topic was written [31]. We can reformulate this method
as a matrix product (Figure 1), where they assigned a rela-
tionship of 1 when the topic appears in a given slide, and 0
in other cases (referred to as “Binary score” in this paper).

2.2 Keyphrase extraction from documents
Our problem is reduced to an unsupervised keyphrase ex-
traction task if we consider lecture slides as documents and
topics as key phrases. The state-of-the-art studies on this
task use pre-trained models (e.g., Doc2Vec [18], ELMo [25],
BERT [12]) to represent words as embedding vectors [6, 29,
13]. Then, their methods estimate the similarity between
key phrases and documents from the cosine similarity of
their corresponding embedding representations [6, 29, 13].

3. PROPOSED MODEL
LECTOR extracts a set of topic candidates from all the
slides of a given course and assigns a single score to each
slide-topic pair (Figure 2). This score is defined as a linear
combination of two different scores, one based on the words’
importance and the other on the similarity between the topic
and the slide embeddings.

Figure 2: Overview of our proposed model.

3.1 Topics extraction
We consider a topic to be an observable entity (keyphrase).
Models such as EmbedRank [6] and AttentionRank [13] use
the Part-Of-Speech to generate noun phrases that become
their possible key phrases. In our case, we work with slides
written in Japanese and use the Bi-LSTM-based NLP li-
brary Nagisa to identify the nouns. Then, we define single
nouns and n-gram sequences (n=2) of nouns as our topics.

3.2 Word embeddings and attention matrix
We use a BERT model (fine-tuned on all the course slides’
text in the MLM task [12]) to estimate a self-attention ma-
trix Ai and a set of word embeddings Ei for each slide. We
then correct these token-wise values to word-wise values [10].

3.3 LECTOR’s importance score
For a given slide si, we quantify the attention aij that words
w belonging to a given topic tj receive from all the other
words w within the slide si by summing the different weights
of the matrix Ai as shown in Equation 1.

aij =
∑

w∈tj

∑

w′∈si\{w}
Aiw′w (1)

Since this score is strongly influenced by the frequency of the
topic’s words fj , the importance score (ssij) is calculated by

considering the Smooth Inverse Frequency [4] (Equation 2).

ssij = aij

(
k

k + fj

)
(2)

3.4 LECTOR’s similarity score
For a given slide si, we estimate its embedding represen-
tation P is as a weighted average of its corresponding word
embeddings Ei (Equation 3).

P is =
∑

w∈si
Weight (w)Eiw (3)

We define the word weight as the probability of belonging
to the discourse of the given slide. We consider that this
discourse is given by a general discourse introduced in the
first slide of the lecture material and a specific discourse
introduced by the title of the respective slide (Figure 3).

Figure 3: Overview of the weight calculation process.

Accordingly, given the set of title and body embeddings Eist
and Eisb, the Weights are calculated as shown in Equation
4. In Appendix A, we detail the formulation and estimation
of these Weights from the set of word embeddings.

Weight = Pr (wt ∈ sti|st1)Pr (wt ∈ sbi|sti) (4)

Finally, the similarity score is given by the cosine similarity
between the topic tj and slide si embeddings [6, 29, 13].

bij =
P is · Ejt
||P is || ||Ejt ||

(5)

csij =

(
1

fj

∑

topicj

bij

)
fαj , α ∈ [0, 0.25] (6)

3.5 LECTOR’s final score
The final score for a given topic tj and slide si is a linear
combination of the previously normalized importance and
similarity scores (Equation 7). The parameter d defines the
importance of each score value.

scoreij = d ∗ ssij + (1− d) ∗ csij (7)

LECTOR’s final output is the matrix M, whose elements
Mij are the final scores between slides si and topics tj .

4. RESULTS AND DISCUSSION
4.1 Dataset
Our dataset consists of the textual content of 620 slides from
22 e-book materials delivered in the course “Programming
Theory” in the year 2019 (before the pandemic restrictions).
This course was offered by the School of Engineering at
Kyushu University for 7 weeks.
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4.2 First Experiment formulation
The ground-truth values to evaluate LECTOR’s estimates
are given by the relationships between different topics and
slides. However, to find them empirically, we would need
a large number of samples because these relationships are
perceived differently by different people. Furthermore, given
the large number of topics and slides in a course, we would
need millions of ground truth labels for each sample.

For this reason, our experiment is designed to indirectly
evaluate the estimates of the models. Similar to works on
keyphrase extraction, we assume that the most important
topics should have the highest relationships with the course
content (the different slides). For a given topic tj , we define
its keyphrase candidate score mtj as the sum of the scores
obtained across all slides (Equation 8).

mtj =

#slides∑

i=1

Mij (8)

We use the mtj values to extract the most important
topics of the course. Our ground-truth labels are given
by the course keywords extracted from the course syl-
labus (“Scheme”, “Data Structure”, “List Processing”, “Re-
cursion”,“Expression”,“Condition”,“Design Recipe”,“Func-
tion”, “High-level function”). We define @n as the set that
contains the top n topics according to the scores mtj . By
comparing this set to the ground truth, we can measure the
model performance.

We considered three baselines. The first is given by the TF-
IDF model [26], which is predominant in the slide text pro-
cessing literature. The second is given by the AttentionRank
model [13], which represents the state-of-the-art in unsuper-
vised keyphrase extraction. The third model is given by the
previously described Binary score model proposed by [31].

4.3 First Experiment results
Our results are summarized in Table 1. We can see that
AttentionRank outperforms all the other models with an F-
score of 28.68% when considering the 5 most important top-
ics. This result shows the high performance of this state-of-
the-art model even in a different domain (slides unstructured
text). This F-score was achieved by identifying 2 keyphrases
in its five most important topics. As we can see in Table
2, while all the models identified the keyphrase “Function”
as the most important topic, AttentionRank also identified
the keyword “Recursion” as its fourth most important topic.
From Table 2, we can also note that despite all the other
models achieving the same F-score, the TF-IDF and Binary
models are more influenced by the frequency of the topics,
estimating topics such as“i”and“define”as one of their most
important ones.

At n = 10, we can see that the attention-based models out-
perform the TF-IDF and Binary models. Specifically, Atten-
tionRank, LECTOR Similarity score, and LECTOR achieve
an F-score of 31.68%. At n = 15, LECTOR outperforms all
the other models with an F-score of 33.44%. We can see the
same result when comparing the best F-score obtained by
each model and the mean of the results obtained in the first
n@100 sets. These results show that AttentionRank has dif-
ficulty finding new keyphrases, whereas LECTOR does not.

Table 1: Summary of the F-score results for Experiment 1.
The mean is calculated from the first n@100 sets

.
n Model P R F1

5

Baseline (TF-IDF) 20.00 11.11 14.39
Baseline (AttentionRank) 40.00 22.22 28.68
Baseline (Binary score) 20.00 11.11 14.39
LECTOR Importance Score 20.00 11.11 14.39
LECTOR Similarity Score 20.00 11.11 14.39
LECTOR 20.00 11.11 14.39

10

Baseline (TF-IDF) 10.00 11.11 10.63
Baseline (AttentionRank) 30.00 33.33 31.68
Baseline (Binary score) 10.00 11.11 10.63
LECTOR Importance Score 20.00 22.22 21.15
LECTOR Similarity Score 30.00 33.33 31.68
LECTOR 30.00 33.33 31.68

15

Baseline (TF-IDF) 20.00 33.33 25.11
Baseline (AttentionRank) 20.00 33.33 25.11
Baseline (Binary score) 20.00 33.33 25.11
LECTOR Importance Score 20.00 33.33 25.11
LECTOR Similarity Score 20.00 33.33 25.11
LECTOR 26.67 44.44 33.44

Best

Baseline (TF-IDF) 20.00 33.33 25.11
Baseline (AttentionRank) 37.50 33.33 35.39
Baseline (Binary score) 23.08 33.33 27.38
LECTOR Importance Score 20.00 33.33 25.11
LECTOR Similarity Score 25.00 44.44 32.11
LECTOR 33.00 44.44 38.20

Mean

Baseline (TF-IDF) 11.68 46.00 15.53
Baseline (AttentionRank) 12.63 40.89 15.65
Baseline (Binary score) 11.26 43.33 14.77
LECTOR Importance Score 12.68 50.22 16.85
LECTOR Similarity Score 14.48 59.67 19.69
LECTOR 15.19 61.56 20.70

In Table 2, we can see that AttentionRank tends to give
high scores also to minor topics such as “define”, “else”, or
“empty” which may explain its lower performance.

The mentioned problem of AttentionRank has two reasons.
The first is that its “Accumulated Self-Attention” is influ-
enced by the word frequencies. In their paper, the authors
pointed out that this characteristic can be beneficial in large
documents. However, in the context of lecture slides, sev-
eral words from the domain knowledge of the course can ap-
pear repeatedly. For example, the mentioned “define” and
“else” are well used in the program examples of the course
“Programming Theory”. On the other hand, the design we
considered in the LECTOR’s importance score limits the
influence of the frequency of the words.

However, in the AttentionRank model, topics must also
achieve a high ”Cross-Attention” value in order to get a high
final score. The reason that words like ”define” and ”else”
are important topics of the model is due to the two discourse
hypotheses of AttentionRank. For a given slide, the first as-
sumes that the topic candidate defines the slide discourse,
and the second assumes that the slide defines the topic dis-
course. In the context of noisy and unstructured slide text,
this consideration can lead to some problems.

For example, given the topic “define” and a slide that con-
tains a programming code example about list processing,
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Table 2: Most important topics of each model. ENG: a word originally written in English.

n TF-IDF AttentionRank Binary score LECTOR
1 function function function function
2 list example problem list data
3 list (ENG) definition define (ENG) list
4 i (ENG) recursion definition definition
5 define (ENG) example cond (ENG) program
6 definition value data computation
7 page define (ENG) list (ENG) function definition
8 data expression empty expression
9 count argument count example problem
10 program computation i (ENG) recursion
11 value list value data definition
12 expression else (ENG) expression list processing
13 cond (ENG) empty (ENG) recursion program design
14 example element else (ENG) recursion function
15 recursion count element exercises

the mentioned model will focus on the context words of “de-
fine” in the code (including the “define” itself) resulting in a
high Cross-attention score in this case. Then, when we con-
sider the topics “list processing” or “example code”, even if
the model manages to estimate high scores for these topics,
they will be relatively as important as “define”.

Similarly, the presence of noise in the slides can highly influ-
ence the relative scores, sometimes estimating low scores for
a closely related topic and slide pair. In contrast, LECTOR’s
similarity score considers a singular discourse defined by the
main title and slide title that give relatively high scores to
topics highly related to this discourse. In the previous exam-
ple, LECTOR would give higher scores to “list processing”
and“example code” rather than“define”, and also would give
a higher score to “define” rather than a random noise word.

4.4 Second Experiment formulation
Previous studies of students’ eye-tracking data have con-
cluded that each student has a different preference for learn-
ing content [20]. Accordingly, this experiment aims to com-
pare the topic preferences of students with different grades.

We extract their reading time on the different slides (inside
and outside of class) and obtain their slide preferences by
normalizing the reading time values across the week. Then,
we use LECTOR to quantify their Relative Reading Times
for the different topics (Topic RRT), as shown in Figure
1. Finally, we group the students according to their grades
(A=24, B=6, C=4, D=6, F=10) and compare both their
reading time and RRT distributions. We measure the sepa-
rability of the distributions by using the Fisher Discriminant
Ratio (FDR) and statistically validated them with a T-test.

4.5 Second Experiment results
We can see an example of our results in Figure 4. Figure 4a
shows the distribution of the reading time of the students
with final grades A and B in the second week after the lecture
(out-class). Both distributions overlap, so the FDR is 0.0502
and the significance level (p) of the T-test is 0.3302. In
Figure 4b we see the same distributions when we consider the
relative time spent reading about “Design method”. Here,

Figure 4: a) Reading time of the students with final grades
A and B. b) The same distributions when considering the
relative time of reading about the topic “Design method”.

students with a final grade of A tend to read more on this
topic, resulting in a higher FDR of 5.5802 and a lower p of
0.037 in the T-test.

Our different results are summarized in Table 3. We con-
sidered the first 3 weeks of the course because of insufficient
data in later weeks due to dropouts. As shown in this table,
we have included 5 cases, comparing students with consecu-
tive grades (A-B, B-C, C-D, D-F) and at-risk students (stu-
dents who failed the course) with non-risk students. The
result shown in Figure 4 can be found in the first column
and fourth row of the table.

In the results of Reading Time, we can see that students
from different groups tend to read the same amount of time.
In the case of at-risk and non-risk student groups, we find
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Table 3: Fisher Discriminant Ratio between different groups of students in the first 3 weeks of the course.

A-B B-C C-D D-F At-risk

WEEK 1
(IN-CLASS)

Reading Time 0.0342 0.2615 2.782 0.0229 1.111*
Topic RRT 1.4517 612.44* 46.861 3.233* 4.3245
(Topic) (expressions) (data) (exercises) (design (execution)

method)

WEEK 1
(OUT-CLASS)

Reading Time 0.0409 0.0023 0.0436 0.0085 0.000
Topic RRT 3.0031 29.3069 653.11** 72.649 1.4049
(Topic) (auxiliary (problems) (program (problems) (auxiliary

functions) design) functions)

WEEK 2
(IN-CLASS)

Reading Time 1.0128 0.6902 0.1735 0.0021 0.0192
Topic RRT 6.3908 8.4876 568.83* 1.7794 1.5921
(Topic) (problems) (boolean (problems) (program) (program)

value)

WEEK 2
(OUT-CLASS)

Reading Time 0.0502 0.0855 0.2629 0.0913 0.325*
Topic RRT 5.5802* 29.9718 241.1* 2.8445 17.92*
(Topic) (design (cond (data (body (exercise

method) expression) analysis) expression) problems)

WEEK 3
(IN-CLASS)

Reading Time 0.0503 0.4597 0.1141 0.0142 0.3367
Topic RRT 11.8214 8.263 7.998 15.061 5.031
(Topic) (exercise (synthetic (synthetic (sorting) (examples)

problems) data) data)

WEEK 3
(OUT-CLASS)

Reading Time 0.0234 0.0008 0.2131 1.4279 0.1951
Topic RRT 15.166* 168.33* 286.84** 42.266 43.126*
(Topic) (templates) (element (structure (exercice (exercice

count) element) problems) problems)
*p<0.05 **p<0.01

statistically significant differences in out-of-class engagement
in the second and third weeks. On the other hand, we find
statistically significant differences between different groups
almost 40% of the time when we consider the Topic RRT,
which means that these preferences are good variables to
understand the differences between students with different
grades. This suggests that works that attempt to predict at-
risk students such as [24, 8] may benefit from the integration
of models such as LECTOR to obtain more differentiated
features.

We can consider student’s reading preferences for further
analysis. For example, as mentioned earlier, at-risk students
engage less outside of class in the second and third weeks.
In Table 3, we also see that they tend to focus more on ex-
ercise problems. This is a signal that at-risk students adopt
a surface learning approach [17], focusing on the content di-
rectly related to the assessments. Thus, previous works [1,
34] that have analyzed the students’ reading behavior can
use the topic preferences to make better reports.

5. LIMITATIONS
The first limitation is the indirect evaluation of the models’
estimates. As previously discussed, collecting labels for a
direct evaluation is impractical, but if we limit the number
of topics to the most important ones we can collect a limited
set of labels to conduct a more direct evaluation.

The second limitation is the size of our dataset. To evalu-
ate the generalizability of our model, we need to consider
slides from different courses. In a science course, the slides
are less structured and include equations or code. In this
case, the robustness of LECTOR plays an important role.

In addition, our slides are in Japanese and the generality of
our results may be affected by the use of other methods for
topic extraction in different languages.

6. CONCLUSIONS
We proposed LECTOR, a new model that adapts state-of-
the-art keyphrase extraction models to the domain of lec-
ture slides. From our results, we conclude that LECTOR
can quantitatively extract the relationships between topics
and e-book lecture slides better than previous models when
considering noisy text from scientific lecture slides. LEC-
TOR was able to extract important topics (higher F-score)
while avoiding frequent out-of-context topics.

LECTOR’s topic-wise representation of e-book reading char-
acteristics provides new insights into the students reading
behavior. Specifically, it allows to access the students’ pref-
erences for some topics and use them to model more detailed
behaviors. Our results show that this new model preserves
the differences related to reading preferences that exist be-
tween students with different final grades.

These responses validate the benefits of integrating attention-
based models like LECTOR into reading behavior models.
Accordingly, it allows future works to consider students read-
ing preferences in their models. Also, our model can be used
for other text processing tasks, such as slide summarization,
content recommendation, etc.
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APPENDIX
A. WORDS’ WEIGHTS ESTIMATION
A.1 Preliminary definition
Given a set of words A = {w1

a, w
2
a, ..} and B = {w1

b , w
2
b , ..},

we will estimate Pr (wa ∈ A|B): The probability of each
word in A being generated under the discourse (context) of
the set of words B.

First, the probability that a given word wa is generated un-
der a given context word wb is proportional to the inner
product of their word embeddings (Equation 9) [4, 19].

Pr (wa|wb) ∝ exp
(
ea · eTb

)
(9)

With this equation, we can estimate the probability of each
word wa in the set A to be generated under the single context
word wb, as shown in Equation 10.

Pr (wa ∈ A|wb) = [k1exp
(
ea · eTb

)
, k2exp

(
ea · eTb

)
, ..]

(10)
We assume a common proportional constant (k1 = k2 =
...). Then, we can represent Equation 10 as the softmax of
the matrix product between the set of embeddings Ea =
[e1a, e

2
a, ..] and the context embedding eb, as shown in Equa-

tion 11 (the parameter φ preserves the influence of the pro-
portional constant). This equation can also be interpreted
as the cross-attention between the Query eb and the Key Ea
[30].

Pr (wa ∈ A|wb) = Softmax

(
eb · EaT
φ
√
dk

)
(11)

Finally, we can generalize this equation to the context B =
{w1

b , w
2
b , ...} by using the approach “Attention over atten-

tion” proposed in the study [11].

S =
Eb · EaT
φ
√
dk

(12)

Pr (wa ∈ A|B) = AVrow (SFcol (S))SFrow (S) (13)

where AVrow means average along the row axis, SFcol means
softmax along the column axis, and SFrow means softmax
along the row axis.

A.2 Formulation
Given the set of words embeddings Ei for each slide, we split
it into the set of title and body embeddings Eist and Eisb.
Then, the words’ Weights are estimated using Equations 11
and 13 as follows:

S =
E1
st · EistT

φ
√
dk

(14)

Pr (wt ∈ sti|st1) = AVrow (SFcol (S))SFrow (S) (15)

Pr (wt ∈ sbi|sti) = Softmax

(
Eist · Eisb

T

φ
√
dk

)
(16)

Weight = Pr (wt ∈ sti|st1)Pr (wt ∈ sbi|sti) (17)
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ABSTRACT
Massive open online courses (MOOCs) are online courses
for multiple learners with different backgrounds, including
English-as-a-second-language (ESL) learners. In a MOOC,
course concepts are important for diverse learners to grasp
what they can learn in the course and its prerequisite knowl-
edge. Previous studies have explored methods to automat-
ically extract concepts from course videos or identify pre-
requisite concepts in a course. However, as a concept typi-
cally consists of several words, it could be difficult for ESL
learners to understand what a concept means if they do not
know the words in the concept. For example, for “geospatial
data,” many of them may need an additional explanation of
what “geospatial” means in addition to the explanation of
the concept. This paper extensively analyzes the readabil-
ity of MOOC concepts using an openly-available manually-
annotated MOOC-concept dataset on computer science and
economics and a vocabulary test result dataset of ESL learn-
ers with different English skills. We found that the percent-
age of concepts for which an ESL learner is likely to know
all the words is only 25.8% in computer science. In eco-
nomics, the value is 56.5%. This implies that ESL learners
usually require additional vocabulary explanations to under-
stand MOOC concepts. We also show qualitative analyses
and that almost half of the concepts are unreadable to ESL
learners.

Keywords
Course Concepts, Readability, Second Language Learners

1. INTRODUCTION
Massive open online courses (MOOCs) are online lecture
courses intended for use by a large number of learners with
different backgrounds, including English-as-a-second-language
(ESL) learners. In MOOCs, students learn numerous knowl-
edge concepts, or course concepts, some of which are taught
in the course, whereas others are prerequisites of the course.
Course concepts are important because learners “with dif-

ferent backgrounds can grasp the essence of the course” [5].
Previous studies have focused on extracting course concepts
automatically from course video recordings [5] or identify-
ing prerequisite concepts of a course [5]. However, MOOC
learners also include ESL learners. How much additional ef-
fort is required to ensure that ESL learners understand the
concepts taught in the course? No previous study has exten-
sively investigated this research question, which we address
in this paper.

For example, consider the concept of “big data.” ESL learn-
ers who are willing to listen to an English course usually
know both “big” and “data” because both “big” and “data”
are high-frequency words on the general corpus; therefore,
they are likely to have been mastered by the learners in their
previous English studies. In this case, the teacher only needs
to explain what “big data” is. Therefore, the effort to teach
this concept to ESL learners is almost the same as that to
native English speakers. In contrast, when considering the
concept of “geospatial data,” it is possible that many ESL
learners do not know the meaning of the word “geospatial”.
“Geospatial” is a specialized word that is rare in general
corpora. While native English speakers may only need an
explanation of “geospatial data,” an ESL learner may need
an additional explanation of what “geospatial” means, such
as “something related to locations and maps.” No previous
studies have extensively studied the difference in the effort
required to teach a concept to native English speakers and
ESL learners.

This study estimates how much additional effort is required
when teaching concepts to ESL learners using an openly
available manually checked MOOC concept list dataset. Specif-
ically, we estimate which words learners are likely to know
the meaning of by using a machine-learning method that
takes vocabulary test results and the frequency of the gen-
eral corpus as features. We experimented with manually
annotated concept datasets from online courses in computer
science and economics. The experiment showed that 60% of
the concepts consisted of two English words, and approxi-
mately half of the concepts are not readable to almost all
learners in the learner vocabulary dataset that we employed.

2. DATASETS
Unlike academic wordlists and specialized terminology ex-
traction studies and their datasets, MOOC concepts refer to
the specific knowledge taught in MOOCs. One of the openly
available English course concept datasets manually verified

Y. Ehara. Course concepts: How readable are they for esl learners? In
M. Feng, T. Käser, and P. Talukdar, editors, Proceedings of the 16th
International Conference on Educational Data Mining, pages 426–
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Table 1: Bigram concepts with largest difference between two
words in computer science.

Words Difference Mean Prob.

right subtree 0.655 0.215

left subtree 0.642 0.212

block tridiagonal 0.581 0.190

Table 2: Bigram concepts with largest difference between two
words in economics.

Words Difference Mean Prob.

OCO order 0.621 0.215

rediscounted rate 0.602 0.210

salesforce management 0.596 0.209

is that of [5], which is a collection of concepts taken from
eight computer science and economics courses on Coursera,
one of the most popular English MOOCs. While larger
MOOC concept datasets are available in subsequent stud-
ies, namely MOOCCube and MOOCCubeX, they are taken
from XuetangX, which mainly consists of Chinese courses.
Hence, throughout the paper, we use the dataset by [5].

To answer our research question, we also need a dataset from
which we can obtain what kinds of words ESL learners know.
Since MOOCs are intended to offer courses for many learners
with diverse backgrounds over the Web, the ESL learners of
the dataset are also preferred to have been collected on the
Web. Few datasets meet this criterion because, in most ESL
datasets, ESL learners are classroom students of a school;
hence, they are not diverse. One such dataset is [1], in which
100 ESL learners answer 100 vocabulary questions. The
learners of this dataset were collected using crowdsourcing;
hence, they have more diverse backgrounds than classroom
learners.

3. EXPERIMENTS
The dataset of [5] contains eight Coursera computer sci-
ence and economics courses, including their transcripts. Hu-
man annotators manually annotated whether k-grams in the
transcripts were course concepts or not. In computer sci-
ence, in total, the dataset has 4,096 concepts; nearly 60%
of them consist of two words (bigrams), 18% one word (un-
igrams), and 22% three words (trigrams). In economics, in
total, the dataset has 3,652 concepts; nearly 66% of them
consist of bigrams, 10% unigrams, and 24% trigrams.

We also built a classifier that predicts how likely a word is
to be known to a learner. To this end, we used the learner

Table 3: Bigram concepts with smallest difference between
two words in computer science.

Words Difference Mean Prob.

learning rule 9.94×10e-5 0.645

thread programming 3.74×10e-4 0.468

network traffic 4.38×10e-4 0.614

Table 4: Bigram concepts with smallest difference between
two words in economics.

Words Difference Mean Prob.

federal agency 3.16×10e-6 0.643

quantitative easing 3.69×10e-5 0.426

domestic cresit 1.04×10e-4 0.659

Figure 1: Histogram of Concepts Known to Learners in com-
puter science.

Figure 2: Histogram of Concepts Known to Learners in eco-
nomics.
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vocabulary test dataset of [1]. We built a machine-learning
classifier that, given a learner and a word, classifies whether
the learner knows the word. Following [1], we used one-
hot vectors for learner features and word frequencies taken
from the British National Corpus (BNC) and Contemporary
Corpus of American English (CoCA) as features; both cor-
pora are general corpora frequently used for teaching ESL
learners. In the [1] dataset, the learners’ English skills in
this dataset are diverse while the test-takers are mainly
Japanese because the dataset was built using a Japanese
crowdsourcing service called Lancers. The dataset consists
of 100 ESL learners; those who do not know even the basic
words “computer” and “science” are unlikely to be willing to
learn computer science in English, we omitted such lowly
skilled learners, resulting in 94 learners. For classification,
we used logistic regression because it was previously applied
to their dataset and was reported to have high accuracy in
measuring ESL learners’ readability [3]. For the 10,000 re-
sponses (100 learners for 100 vocabulary questions) of the
dataset, we first split the data into 9,800 for training data
and 200 for test data. The logistic regression was highly
accurate as it achieved 86.1% accuracy on the test data in
the [1] dataset, whereas the chance rate was 60.3%.

We then applied our classifier to the MOOC concepts. Specif-
ically, for each learner in the dataset, we obtained the prob-
ability that the learner knows the word for each word in a
concept. By simply taking the product of the probability
values of all words in a concept, we obtained the probabil-
ity that the learner knows the concept: for example, when
learner A knows “big” and “data” with probabilities of 0.9
and 0.8, respectively, the probability that learner A knows
“big data” is 0.72. Then, if the probability of a concept is
equal to or greater than 0.5, we considered that the learner
knows the concept.

In computer science, on average, an ESL learner knows 1,058
concepts, which amounts to only 25.8% of the 4,096 con-
cepts, implying that an ESL learner needs an explanation
to understand some word(s) in the concept. Figure 1 is
a histogram showing what percentage of ESL learners the
concepts are known to. We can see that almost half of the
concepts are known to less than 10% learners.

In economics, situations are quite different from those in
computer science. On average, an ESL learner knows 2,065
concepts, which amounts to only 56.5% of the 3,652 con-
cepts, implying that an ESL learner needs an explanation
to understand some word(s) in the concept. Figure 2 is a
histogram showing what percentage of ESL learners the con-
cepts are known to. We can see that almost 500 of the con-
cepts are known to less than 10% learners, whereas almost
800 concepts are known to more than 90% learners.

We then focus on the average ESL learner in the dataset and
see the concepts that may require special attention when
teaching second language learners. To this end, we focus
on the bigram concepts and see the difference in the prob-
ability known to ESL learners between the two words of
which each concept consists. Whereas native-speaker learn-
ers know both words and simply need to learn what the
concept as a whole means, in addition, ESL learners need
to learn what the word in the concept means if the learner

does not know the meaning of a word in the concept. What
is particularly unintuitive is that one word of the concept
is easy for learners, whereas the other(s) is/are not. In this
case, the words constituting the concept may seem easy to
native-speaker teachers because one of the words is easy.
However, as the other word(s) is/are not, such concepts can
be confusing to ESL learners. Hence, we list up these words
in the following paragraphs.

In computer science, Table 1 shows the bigram concepts with
the largest difference in the mean probability known to the
average learner between the two words in the concepts, and
Table 3 shows the concepts with the smallest difference. We
can see that the words particularly difficult for the average
learner were “subtree” and “tridiagonal.”

In economics, Table 2 shows the bigram concepts with the
largest difference in the mean probability known to the av-
erage learner between the two words in the concepts, and
Table 4 shows the concepts with the smallest difference. We
can see that the words particularly difficult for the average
learner were “OCO” and “rediscounted.”

4. RELATED WORK AND DISCUSSION
In this study, we used concept data from an English MOOC.
On the other hand, if the language is not limited to En-
glish, a study on MOOCs includes data from a large MOOC
in Chinese in [7]. Conceptual information is expensive for
teachers to tag, so the study [8] helps teachers by automat-
ically assigning conceptual information. Such research will
eventually be used to recommend courses for MOOCs [9].

However, these studies have not paid particular attention
to the common case of MOOC participants being second
language learners. As for the readability of second language
learners, there are mainly two approaches to collecting the
dataset for experiments.

One approach is to collect data from language teachers. In
this approach, language teachers teaching second language
learners read each text in the dataset and label the diffi-
culty. Particularly, the task for automatically assessing the
readability of texts is called automatic readability assess-
ment (ARA) and has been studied extensively in [6, 4]. The
strength of this approach is that we can easily obtain one
gold label for each text. The weakness of this approach is
that the quality of the annotations heavily depends on the
expertise of the language teachers.

In contrast, another approach is to collect data from lan-
guage learners themselves. English learners cannot directly
annotate what texts are difficult for them. However, unlike
the method of having English teachers annotate the texts,
this method can obtain information directly from the En-
glish learners. Therefore, it is not affected by the noise of
what kind of students the English learners have taught in the
past. In this approach, data from language learners taking a
vocabulary test consisting of short sentences is available to
the public [1]. This study also followed this approach. Espe-
cially, [2] investigates the readability of scientific abstracts.

5. CONCLUSIONS
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To conclude, we made preliminary analyses of the readabil-
ity of MOOC concepts to ESL learners. Importantly, Fig-
ure 1 shows that, for nearly 2,000 concepts of the 4,096 ones,
ESL learners also need an explanation of the words used in
the concept to understand the explanation of the concept.
According to the Figure 2, this situation is relaxed in the
field of economy, but still, about 500 concepts out of 3652
concepts, or 13.7%, are not understood by ESL learners.

These results indicate that if ESL learners could know the
meaning of the basic words used in the concepts before tak-
ing these courses, their understanding of the courses might
be greatly improved. To this end, future work includes per-
sonalized support systems that automatically explain the
words in the concepts.
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ABSTRACT 
In this paper, a proof of concept is shown to generate formative 

textual feedback in an online course. The concept is designed to be 

suitable for teachers with low technical skill levels. As state-of-the-

art technology still does not provide high-quality results, the 

teacher is always held in the loop as the domain expert who is sup-

ported by a tool, and not replaced. The paper presents results of our 

proposed approach for semi-automatic feedback generation using a 

real-world university seminar, where students create sample micro-

learning units as online courses, for which they get feedback for. A 

supervised machine learning approach is trained based on learner 

submissions features, and the feedback, that was chosen by teachers 

in former submissions. The results are promising. 

Keywords 
Formative Feedback, Online Learning, Teacher Support, Predic-

tion. 

1. INTRODUCTION 
Feedback is considered essential for supporting successful learning 

processes and outcomes [1]. Feedback can be defined as „infor-

mation provided by an agent (e.g., teacher, peer, book, parent, self, 

experience) regarding aspects of one’s performance or understand-

ing” [1]. However, the timely provision of elaborated individual 

feedback is limited due to large student cohorts and limited re-

sources in higher education. The lack of resources results in 

predominant use of summative assessments (and feedback) [2], 

which are often used at the end of a learning unit or course for grad-

ing and certification purposes if predefined objectives are met [3]. 

Due to heterogeneous students, the provision of individual support 

is even more relevant. Therefore, formative assessments aiming at 

providing students feedback on their performance or next learning 

steps is crucial. Instead of being distinct concepts, the functions of 

formative and summative assessments are on a continuum as such 

that the engagement with assessment tasks or the potential feedback 

can result in a change of learners’ behavior [4]. In sum, elaborated 

feedback offering information on task-, process- and self-regulation 

level has been found to be most effective for learning success [5]. 

This includes an understanding of the learning goals that need to be 

achieved („Where the learner is going”), assessing the evidence of 

learning („Where the learner is right now”), and the provision of 

feedback on how to achieve the designated learning goals [6]. How-

ever, even with the increased use of digital learning environments 

and methods such as learning analytics the provision of informative 

feedback at scale is challenging [7] and time-consuming. Due to the 

need of extra resources, formative feedback is often not provided at 

all, or solely on the correctness, in the form of sample solutions or 

short paragraphs. The paper aims to support teachers in the process 

of giving textual feedback. 

2. RELATED WORK 
Automated feedback can be characterized based on several proper-

ties [8]: a) the adaptiveness of the feedback; b) its timing; c) 

learners’ control over the feedback: and d) the purpose of the feed-

back. Automated feedback can for example be not adaptive at all, 

dependent on students’ solution to a task or also on their character-

istics and learning behavior. Timing of the automated feedback can 

be immediate after the action, upon request or at the end of a task. 

The feedback provision might further be controlled by the learner 

for example with regards to the amount and frequency of feedback, 

the timing, its appearance. The need for control has also been 

brought up by studies investigating students’ preferences of auto-

mated interventions (e.g. [9]). The purpose of the feedback refers 

to simple corrective feedback, suggestion of future actions, addi-

tional information, or motivational feedback [8]. Despite the 

examination of computer-generated feedback for decades; still the 

creation of highly informative feedback is very complex, where 

machines can be supportive, but do not replace teachers [10]. As 

texts created by learners are manifold and diverse it is hard to eval-

uate them automatically [11]. Due to the low quality of computer-

generated feedback, its use can lead to high frustration [12]. For 

example, available state-of-the-art automatic writing evaluation 

tools, such as proofreading tools to detect mistakes in submissions 

of language learners, do not meet teachers’ expectations [13]. 

Hence, the teacher is vital for the provision of feedback. Thus, in-

stead of providing computer-generated feedback to learners 

directly, a teacher-in-the-loop approach is of high importance. 

Therefore, the process to create feedback must be intuitive without 

the need for complex adjustments.  

In the domain of education, decisions coming from computer-gen-

erated feedback tools must be explainable. This is a key component 

of the trusted learning analytics approach (TLA) [14]. One possible 

solution is the tool OnTask [15], which can principally be used to 

generate texts based on pre-defined text snippets and rules that use 

trace data. Based on such rules, decisions can be justified and ex-

plained. If for example, the learner submits a text and the tool 

recognizes that the learner skipped watching a related learning 

video, which is implemented as a rule, then feedback is given using 

the snippet with the advice to have a deeper look at the learning 
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material. However, it is essential to educate teachers so that they 

get an understanding of the versatility of such software. Teachers 

must have scenarios in mind, which must be implemented in rules. 

From the practical perspective, this is a pitfall as teachers want to 

focus on their domain to create learning material and not on scenar-

ios that possibly can exist [12]. Hence, feedback is mainly limited 

to tasks, where feedback can be predefined. For multiple-choice 

questions, feedback can be given if the correct choices are selected, 

but also for incorrect selections, respectively. Considering textual 

submissions, the state-of-the-art Moodle, and H5P versions allow 

searching for specific keywords. If they are missing in the text, 

feedback can be provided. Nevertheless, such feedback assumes 

that the learner uses concrete vocabulary (or synonyms, that are 

predefined by the teacher). If they use other words or descriptions, 

they still get the same feedback as others, which can lead to frus-

tration. If learner texts are aimed to be evaluated on an individual 

level automatically, the topic of automatic essay scoring (AES) 

emerges. There, texts are scored, intending to compare learners’ re-

sults. Most AES systems have in common, that they need to be 

trained with a large sample size with annotated texts and they ex-

tract a huge number of linguistic features [16]. Exemplarily, the 

AES „IntelliMetric” [17] extracts over 300 features, ranging from 

conceptual, and structural features to rhetorical attributes [18]. 

First, the approach examines cohesiveness and consistency. Then, 

the scope of the content is analyzed, followed by an evaluation of 

text structure, and transitional fluency. Then, sentence structure is 

investigated, using sentence complexity with readability metrics, 

and syntactic variety. Finally, mechanics and conventions are ana-

lyzed, to test whether the text is in line with standard American 

English (spelling, grammar, etc.) [16]. However, most tools are not 

open-source and rely on financial benefits. Thus, their application 

is limited to institutes, which have the budget to spend.  

3. FRAMEWORK 
Following Deeva et al. [8], automated feedback can be expert-

driven as in the rule-based systems (e.g., OnTask), or data-driven 

considering student data using algorithmic approaches or a combi-

nation of both. In the proposed framework, the importance of the 

teacher in the loop is emphasized. The idea of having the teacher-

in-the-loop is extended by Rüdian et al. [19] to connect learner sub-

missions with feedback by exploring derived NLP features and its 

relation to feedback given in concrete contexts. To the best of our 

knowledge, this concept has not been applied to a real-world online 

course setting. Thus, we focus on the research question of whether 

there is a set of NLP features (extracted from learner submissions), 

that are predictive to auto-select ratings, which were previously se-

lected by teachers. 

The approach proposes a teacher-in-the-loop approach that is based 

on pre-defined text snippets to provide feedback on task-level. Such 

snippets can be extracted from already given feedback texts or best 

practices in the literature. Text snippets must meet the condition to 

be related to a scale (e. g., Likert scale, binary (yes/no) scale). In 

the training process, teachers create feedback by selecting pre-de-

fined text snippets. The idea of using such snippets is not new, but 

a helpful step for teachers to reduce the required time to create feed-

back [19]. Then, snippets are stored including the rating on the 

scale, e. g. whether a learner correctly applied a concept, or not. 

NLP features are extracted from user artifacts (e. g. textual submis-

sions). Features can be based on sentiment analysis, word-sense 

disambiguation, argument mining, or others [18]. Such features are 

then used to train a supervised machine learning approach, aiming 

to predict ratings on evaluation criteria. Explainable methods such 

as the Naïve Bayes classifier [20] are favored to follow the TLA 

approach. For all labels that can be predicted with acceptable accu-

racy, a model is stored. Then, for new learner artifacts of the same 

task, ratings can be predicted. The teacher gets those predictions so 

that related text snippets are automatically pre-selected when the 

teacher aims to create feedback. Based on those selections, a final 

feedback text is generated. Besides, a reinforcement learning ap-

proach is used. The teacher can change pre-selections. Thus, new 

training data are continuously created to train the model with more 

data to become more generalizable. Also, the student can evaluate 

feedback to obtain a critical view of its applicability. The main idea 

is to separate teachers from the machine learning approach, that 

runs in the background. 

4. STUDY DESIGN 
In a university seminar, students have the task to design a micro-

learning online course (~15-25 min) covering a topic of their 

choice. Students create courses in a Moodle instance. 33 courses 

are created. They receive feedback from a tutor who uses a form of 

28 evaluation criteria and selects whether the criteria are fulfilled. 

Selections must be rated on a Likert (5=totally agree to 1=totally 

disagree) or binary scale (the latter is used for the case, where only 

two options exist). For binary options, also 5 (agree), and 1 (do not 

agree) are used. Feedback criteria are based on literature research 

to rate the quality of an online course. In detail, clearness, instruc-

tions, and learning materials are rated, whether appropriate 

feedback is given [23], learning goals and expectations are included 

[24], a target group is defined, and whether the course content is 

appropriate for those learners [25]. Further, it is rated whether de-

signed tasks have an appropriate difficulty level and whether final 

tests are suitable to evaluate knowledge gain [26], and, of course, 

the correctness of the created learning material. 

The tutor uses the system to generate a feedback text, based on 

his/her selections, which is the standard process in this setting to 

provide feedback. The automatically generated text can be changed 

or enhanced by the tutor. However, as to date, further text adjust-

ments are only used to a negligible amount by the tutors; this will 

be investigated at a later stage in more detail and is not covered in 

this paper. Selected feedback options are stored for each course that 

is submitted by students. Those courses are the artifacts and build 

the base for the data set. Thus, the courses are used as the input 

variables and the aim is to pre-select the rating on the evaluation 

criteria, that are used to generate the textual feedback.  

Then, an experimental analysis is done to examine the predictabil-

ity of the items. Textual features must first be extracted from all 

courses. To do that, courses are transferred to a CSV file using 

Moodle backups of the courses, and from that, the main information 

is extracted. Each line is related to an item of the course progres-

sion. The CSV file contains the item type (more detailed, whether 

H5P is used, a content page is created, or the Moodle quiz tool is 

used). It contains the header of the item, the content, and in case of 

interactive items (H5P/quiz), also questions including responses, 

correctness, and feedback. Based on that information, the course 

can principally be reconstructed. As a CSV file is created for each 

course, a transfer to a feature vector is required, containing the same 

number of features for each course, aiming to train a predictive 

model. 

The following features are extracted and stored in a new CSV file: 

(1) Number of items, including types (H5P, pages, Moodle 

quiz, videos), 

(2) Text complexity metrics of the content, and questions 

(Flesh Reading Ease [25], or Gunning Fog Index [26]), 
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(3) Use of keywords in texts („target group”, „references/lit-

erature”), 

(4) Number of items, where feedback is given, namely feed-

back given on wrong, or correct responses, and overall 

feedback, 

(5) Polarity and subjectivity of contents. 

Before training an approach to make predictions, the distribution of 

selected options is analyzed to detect highly imbalanced options. 

Due to the limited number of courses (33), ratings on a Likert scale 

are not well balanced. To be still able to predict those ratings, rat-

ings are transformed to a binary scale on indicating that the criterion 

is met (5, criterion passed) and one representing all other values (1-

4; at-risk, criterion failed). Criteria, that are still imbalanced (like 

all students fulfilled them), are filtered out as it is not worth exam-

ining predictability due to the limited dataset. To give an example: 

All students described the learning goal in their course. Thus, there 

is no low rating for the criterion, so it can be ignored. For the re-

maining ones, distributions are explored to see whether there is a 

remarkable difference, considering all features separately. Those, 

where a difference can be seen, are selected for the proof-of-con-

cept. Then, a Naïve Bayes model is trained, as it is easy to interpret 

probabilities, which fulfills the TLA condition. Besides, it can eas-

ily be extended to a multidimensional problem and the resulting 

trained model can easily be implemented by using web technolo-

gies without the necessity of deploying complex computational 

power. The resulting predictions are evaluated using 5-fold cross-

validation. 

5. RESULTS 
Based on the initial analysis of the distributions of binary ratings 

for all criteria and all features, the target variable is chosen on 

whether the learning goal is covered by a final test. There have 

been 11 failed and 22 passed cases. For the selected target variable, 

the corresponding extracted features distributions with a focus on 

the target class has been visually analyzed and the most promising 

4 features have been selected for the initial proof-of-concept. Se-

lected features are: the number of Moodle quiz items; the number 

of feedbacks given for correct responses; question readability 

grades ARI (Automated Readability Index); and question readabil-

ity grades for Flesch Reading Ease (FRE). Remaining features are 

excluded. The corresponding distributions are depicted in Figure 1. 

 

Figure 1: Distributions of binary classes for four features.  

Both cases (passed vs. at-risk/failure) are plotted with red, and blue 

colors. For selected features, differences in distributions can be 

seen. This is a good sign, as those features split the dataset by the 

binary ratings in general. Following the selected features, the Naïve 

Bayes model with Gaussian kernel is trained using 10-fold cross-

validation. The error is estimated using 5-fold cross-validation cov-

ering the complete data set. Thus, the process of error estimation 

and model training is as following: data is divided into 5 folds using 

stratified sampling without replacement and in 5 steps, the model 

is trained using 4 folds of input data via 10-fold cross-validation 

and the error is estimated with the remaining 1 data fold.  

To simplify the model for the deployment, we explored 5 different 

scenarios: using each feature separately (4 scenarios) and using se-

lected features together to train the model. Table 1 reports the 

results using mean values accuracy (Acc), precision (P), and recall 

(R) in 5 rounds of cross-validation. P and R are computed for both 

classes (passed and at-risk/failed) to understand their predictive 

power (guessing would be .5 for the binary option). As visible, the 

feature of the „number of given feedback on correct responses” out-

performs scenario 5, where all features are used together.   

Table 1. Results for four features. 

Feature  Acc P R P R 

  passed failed 

Number items quiz .68 .74 .78 .63 .46 

Number of given feedback on 

correct responses 

.75 .87 .77 .63 .73 

Question readability ARI .76 .80 .86 .81 .56 

Question readability FRE .73 .75 .90 .60 .43 

All features .71 .77 .77 .63 .60 

6. DISCUSSION 
Compared to a pre-defined rule-based approach the proposed ap-

proach allows to provide more fine-grained feedback and dynamic 

support. Furthermore, it aims at enhancing teachers’ practices and 

reducing their workload for providing highly informative feedback 

on text artifacts. Thus, the approach considers the limited resources 

in higher education for providing formative feedback but still ena-

bles learners to derive appropriate future learning activities. Due to 

complexity of algorithms and their limitedness of providing action-

able outcomes a major concern in educational settings is the limited 

acceptance of the stakeholders. This might be avoided by the sim-

plicity of the proposed approach that enables teachers to create 

feedback without the need for abstract technical skills plus by being 

grounded in the idea of TLA of having the human in the loop of an 

explainable approach.  

This proof-of-concept is limited as only data of students that agreed 

to share their data for this research were analyzed resulting in 33 

submissions which might have led to biases. This calls for future 

research with larger data sets. 

From a statistical perspective, computational complexity involves 

the estimation of the Gaussian distribution during the model train-

ing and then, it compares two posterior probabilities. In the final 

model, only two equations (for estimation of the probabilities) and 

their comparisons are computed. We also limited ourselves to the 

most promising features and selected one criterion for which the 

concept is working well. The training step is required for each cri-

terion, requiring to create 28 separate models. Thus, in future a 

more refined approach which can do the estimation at once (for ex-

ample by mapping the separate criteria to another dimension, where 

one number reflects unique criteria combination) will be explored. 

The restriction to binary cases is necessary to simplify the small 

dataset, in future work either the one-vs.-rest/one-vs.-one approach 

or a regression model for proper estimation of the scale values will 

be investigated. However, if this is aimed to be examined, the da-

taset must be extended with further samples.  

The accuracy of using all features suggests, that the model tends to 

overfit with higher dimensions. Using one feature leads to better 
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results, less computational complexity, and ease of use. Values of 

precision and recall are better in general for the case of passed class. 

This is probably because even with the selected binary target value, 

classes are imbalanced. Thus, the trained model prefers positive 

cases due to a better fit of the distribution. Further, we used a hand-

ful of NLP features, extracted from learner submissions. Exploring 

more linguistic features is of high interest to explore its predictive 

power. However, the approach needs to be enhanced further to sup-

port the teacher more as still the human needs to validate the 

feedback which might be also time-consuming. Furthermore, also 

students’ behavioral data should be considered, for example, to de-

termine the timing of the feedback as well as its properties (e.g., 

provided by a system or an e-mail of the tutor (see further [27]). As 

the uptake and actual use of feedback by the students is key for its 

effectiveness [28], their perceptions of the feedback [7] as well as 

their actions taken need to be investigated in more detail. Using 

experimental study designs the impact of the feedback on students’ 

learning processes and outcomes will be investigated in detail. In 

sum, the proof-of-concept is promising, and predictions have been 

working in the concrete setting. 
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ABSTRACT 
Informal learning is a significant part of lifelong learning. The rise 
of online communities as a new venue for informal learning has led 
to an increase in the availability of discourse data. As the dataset 
grows, it is feasible for scholars to understand the learning 
dynamics of these communities. However, the manual coding and 
analysis of such large datasets can be cost-prohibitive. Natural 
Language Processing (NLP) has been demonstrated to be a viable 
solution for analyzing large datasets in educational contexts. In this 
paper, we explore the application of NLP topic modeling method, 
Latent Dirichlet allocation (LDA), in understanding informal 
learning dynamic within an AI painting community. We collected 
data in two months from November 7, 2022, to January 8, 2023, 
and our findings show that major topics discussed in the space are 
around ethics, models, and procedures of AI painting, and topics 
updated over two months.  

Keywords 
Topic modeling, Affinity Space, LDA, AI Painting, Informal 
Learning 

1. INTRODUCTION 
The first and second decades of the 21st century have seen the 
emergence of online communities, such as subreddits on Reddit and 
groups on Facebook. These communities provide a platform for 
interest-driven learning outside of formal education settings [11]. 
Studies have shown that online spaces, particularly those in remote 
areas, provide individuals with a shared space to learn diverse 
knowledge [4], such as literacy [3] and disease management [15]. 
Additionally, online affinity spaces bridge the gap between 
socioeconomic, ethnic, and social groups, allowing learners to 
communicate freely around topics of interest [4]. 

As the Internet becomes more prevalent, there is a growing amount 
of data available for studying online affinity spaces [8]. However, 
as the size of data increases, so does the cost of hand-coding it. 
Traditional qualitative coding requires researchers to read and 
understand thousands of data points [12], which can be costly and 
time-consuming. To address this issue, researchers have been 
exploring alternative methods, such as natural language processing 
(NLP), to get a snapshot of the data before embarking on the hand-
coding process [10]. 
NLP has been shown to be a valid solution for qualitative research. 
Previous research [9] has demonstrated that when used with 
appropriate parameters, NLP can effectively enhance our ability to 
systematically investigate and interpret discourses in large 
collections of text. 
AI painting is a new application of generative AI. It works by using 
algorithms to analyze and learn from images available on the 
Internet and input specified by humans [13]. The algorithm 
generates new images in adherence to the aesthetics it has learned. 
AI painting has attracted public attention and sparked many 
discussions in online communities due to its potential and 
associated risks. For example, the subreddit r/StableDiffusion is a 
prevalent community where participants gather, share, ask, and 
debate around AI painting issues. In previous work, we hand-coded 
2,291 posts and comments in r/StableDiffusion and found eight 
major topics of discussion: algorithm & model, application, data, 
entertaining, ethics & social implications, hardware, off-topic, and 
procedure. In this paper, we use Latent Dirichlet allocation to 
identify the major topics discussed in the space and determine if 
there are changes within 2 months. 

2. RELATED WORK 
2.1 Affinity Space and Informal Learning 
Online affinity spaces have garnered the attention of researchers in 
education field. Affinity spaces are a form of public pedagogy in 
informal learning [6]. In these spaces, learners exchange 
information about shared passions through design and resources [6, 
15]. Affinity spaces help learners prepare for their lifelong learning 
journey outside of traditional educational environments.  
Discussions play a crucial role in the information-exchange process 
within affinity spaces. Understanding the dynamics of these 
discussions is essential for studying informal learning. Recent 
studies on the discussion patterns of affinity spaces [14, 15] have 
identified key content types on online social network sites and 
different behaviors between key and other actors. While [14] 
collected 514 posts discussing disease management, they did not 
examine the change of topics over time. Additionally, previous 
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studies have not addressed the issue of how the topics in a 
technology-focused affinity space change. Through this study, we 
aim to utilize topic modeling to analyze the larger scale of discourse 
data and identify the dynamics of the space.  

2.2 Topic Modeling in Discourse Analysis 
Topic modeling is an NLP method applied in discourse analysis. 
One of the most widely used topic modeling methods is Latent 
Dirichlet Allocation (LDA), which derives probabilities of words 
belonging to topics (clusters of semantically related words) from 
textual data [21]. Another study [20] investigated the potential of 
using LDA to explore topics emerged in social media data during 
the COVID-19 pandemic and found that LDA is useful for 
stakeholders to understand the most discussed topics in the field.  
The gap in literature identified frames our research question and the 
methods discussed above contribute to the choice of our research 
methods. Our research questions are as follows: 
RQ1: What are the topics most discussed in the subreddit in 2 
months? 
RQ2: How do topics change in an AI painting affinity space in 2 
months?  

3. METHOD 
3.1 Data Collection and Cleaning 
In this research, we aim to observe the topics discussed and how 
topic changed in an AI painting affinity space. Thus, we chose one 
highly frequented platform for discussion surrounding AI-
generated painting as the observation site. We observed the 
community for 2 months, utilizing the Pushshift API [1]. All posts 
and comments were obtained within a specific time frame, from 
November 7th, 2022, to January 8th, 2023. The sample included 
14,319 posts and 172,770 comments. The 2-month period included 
workdays, weekends, and vacation season to help us better 
understand the trend and dynamics of informal learning in the space. 
In terms of data cleaning, a flexible approach was implemented. 
Firstly, comments were removed if they were not associated with 
posts within the designated time frame. Secondly, all posts were 
concatenated based on their title, text, and comments, being treated 
as a single paragraph. 

3.2 Data Analyzing and Visualization 
In the process of analyzing data, a time series analysis was 
conducted on the number of posts, comments, and subscribers of 
the Stable Diffusion channel over a period of two months (9 weeks). 
It indicates an increase in subscribers from 80,000 to 116,000 at a 
steady rate. Furthermore, the time series plot of comments revealed 
three peaks during the two-month period. The first peak occurred 
during the week of Thanksgiving, due to the viral spread of AI-
generated holiday greeting graphs. The other two peaks occurred 
two weeks prior to Christmas. Based on our analysis, we noticed a 
seasonality of increased comments on weekends as opposed to a 
higher frequency of post submissions on weekdays. Additionally, 
text mining and topic modeling using LDA was conducted, yielding 
interesting results that warrant further investigation. Data 
visualization is achieved by using LDAvis [16], an interactive 
visualization of topics estimated using LDA. As shown in Figure 1, 
bubble graph refers to different topics emerged from the material, 
with a red bubble highlighted. The bar chart refers to the frequency 
of top 30 terms related to topic 1 that appeared in the context of 
topic 1. The slide bar could adjust the relevance parameter of terms. 
The numbers of week mentioned in this paper represent the order 
of week in a year, for example, week 45 is the 45th week in 2022.  

 
Figure 1. Topic modeling of posts-only data 

4. RESULTS 

4.1 What are the Topics Most Discussed in 
the Subreddit in 2 Months? 
When we examined the results of posts only, topics related to 
models, such as training the model and Dreambooth, are the most 
discussed. Ethical and social implications, including keywords 
such as art and artists, are also mentioned in the first category. 
However, when analyzing both posts and comments, the topics 
become clearer, as shown in Figures 1 and 2.  

 
Figure 2. Topic modeling of posts and comments data 

In the results of posts-and-comments, topics related to ethics, such 
as artists and art, are separated from the previous first category. We 
found that the results of LDA partly align with the hand-coding 
results from our previous research. In the results of all posts and 
comments, the second most discussed topic is about models, which 
contains words such as "model", "train", and "training". In topic 3, 
words related to procedures, such as "run", "file", "folder", and 
"download" cluster together. In topic 5, words related to 
applications, such as "video", "game", and "life" emerged. Topic 6 
is about all prompts used in the process of generating images, such 
as "prompt", "picture", "text", "girl", and "man". 

4.2 How did Topics Change in an AI painting 
Affinity Space in 2 Months? 
In our observation of weekly differences, we found that in Week 
45, the discussion of ethics in Topic 2 focused on the issue of 
copyright, as shown in Figure 3. By adjusting the relevance metric 
to 0, we observed an increase in the weight of the keyword 
"copyright".  
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Figure 3. Topic modeling result from week 45 

In Week 46, as shown in Figure 4, participants were more 
concerned about job and industry in the context of ethics. 
Additionally, compared to the previous week, there was a new 
discussion on watermarks, due to the release of Stable Diffusion 2 
(SD2) which tends to generate images with watermarks, which 
many users were complaining about.  

 
Figure 4. Topic modeling result from week 46 

In Week 47, as shown in Figure 5, we noticed a different keyword, 
"censorship." Upon further examination of the original data, we 
found that it was related to the release of SD2. 

 
Figure 5. Topic modeling result from week 47 

5. DISCUSSIONS 
In alignment with previous research [5, 18], in this paper, we 
believe that LDA can only provide a glimpse of the data and capture 
certain keywords in the discussion. To gain more in-depth insights, 
researchers must go back to the data and explore the reasons behind 
why these keywords appear. However, LDA can save time by 
reducing the need to read less important data and improve the 
efficiency of analyzing discourse data in social media. Affinity 
space as an information hub, dispersed knowledge pattern, time-
sensitivity of topics, and limitations and future research are 
discussed below. 

5.1 Information Hub for Interested Learners 
Affinity spaces serve as an information hub for all interested 
learners, and our results show that they contain mainstream topics 
related to AI painting, aligning with our previous hand-coding 
results. Topics related to ethics and social implications, such as art, 
artists, industry, jobs, and copyright, consistently took the first or 
second position throughout 2-month data. Similarly, topics related 
to applications consistently appeared throughout 2 months, 
although with a lower ranking. Procedures and algorithm & models 
were the second most discussed topics. Also, users participated in 
much discussion about prompts and data in the subreddit, echoing 
the open-source tradition in coding community [7]. Discussions 
about hardware appeared in several weeks and some keywords 
related to hardware were mixed in the algorithm and models 
category. Some entertaining content was also mixed in off-task 
categories. 

According to [4], the subreddit r/StableDiffusion acts as an affinity 
space where learners can share their experiences and knowledge 
surrounding AI-generative painting, specifically about Stable 
Diffusion. This generator allows individuals to gather and explore 
sets of signs and potential relationships among signs [4]. Unlike 
other learning environments such as bootcamps that cater to a 
specific level of skill, r/StableDiffusion welcomes both beginners 
and experts alike [4]. The community encourages both extensive 
and intensive learning [4], with members frequently sharing 
analyses of results, algorithms, and models, providing abundant 
resources for novice learners entering the space. 

5.2 Dispersed Knowledge of Affinity Space 
During our topic modeling analysis, we observed that learners 
engage in sharing behaviors that connect to other sites, such as “png” 
and “github”, which are external to the subreddit. This reveals that 
space enables users to actively participate in sharing and learning 
beyond its confines. The distributed nature of knowledge in 
network-like formats means that there are no strict boundaries or 
limitations on what learners can access, which encourages their 
agency [19]. Freedom and choice are vital components of informal 
learning [17], and the dispersed nature of the resources connected 
by a network-like format enables learners to select what interests 
them the most, and continue their learning journey accordingly. 

5.3 Time-sensitiveness of Affinity Space 
We found that the affinity space is time-sensitive, meaning that 
users promptly respond to updates of Stable Diffusion and other 
related news in AI painting. For example, even before the public 
release of Stable Diffusion 2 on November 24, 2022, users were 
discussing the watermark issue in SD2 in Week 46 (November 7-
13, 2022). Similarly, the launch of ChatGPT on November 30, 2022 
was also discussed in the following week's discussion. This finding 
adds to current understanding of affinity space and informal 
learning, especially a few principles mentioned in [4]. Learners in 
affinity space proactively react to the development and updates of 
the software and might change the development of the software 
itself.  

Time-sensitiveness matters because it contributes to the learning 
material development in the affinity space. Affinity space is a 
public pedagogy [6]. People come here for up-to-date experience 
and knowledge, thus, the immediacy of sharing and response to the 
software in the space are useful learning materials for all learners 
in the space.  
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5.4 Limitations and Further Research 
While our analysis captured the topics that emerged during the two-
month period of our data collection, we acknowledge that the 
dynamics of the community are constantly evolving. In addition, 
comparing the keywords from each week proved challenging due 
to the sheer volume of data. Future research could benefit from 
using dynamic topic modeling [2], another NLP methods in 
discourse analysis, to achieve a more in-depth understanding of 
how the community's discourse and topics of discussion evolve 
over time. 

6. CONCLUSION 
In this paper, we report on the progress of using Latent Dirichlet 
Allocation (LDA) to capture the dynamics of topics in an AI 
painting affinity space. We collected data over a two-month period, 
from November 7, 2022, to January 8, 2023. Our findings indicate 
that the community's primary topics revolve around ethics, models, 
and procedures, and that these topics evolved over the course of the 
two-month period. 
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ABSTRACT
Twitter communities receive increased attention as informal
environments for teacher professional development. How-
ever, the diversity and temporal evolution in user adoption,
switching, and retention are understudied. This study uses
the diffusion of innovation (DOI) framework to examine user
switching patterns in two large educational Twitter commu-
nities (N = 2,039,260 tweets, N = 104,847 unique users). We
find that users’ DOI types relate to user switching over time.
Features of the DOI user classifications and other user-level
characteristics explain 79% of the variance in user switching
decisions and 15% of the timing of user switching. In par-
ticular, community switching depends on users’ community
entry time, Twitter account age, community interaction cen-
trality, and user type (i.e., teacher vs. non-teacher). There-
fore, users’ perceived community fit and their relative mo-
tivation to seek out novel communities to engage with can
help explain community-switching behavior. Overall, this
study informs community-level interventions for user reten-
tion and a better understanding of user diversity in informal
educational communities on social media.
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1. INTRODUCTION
Informal online learning receives increased attention in edu-
cational data mining [29, 25, 41]. Learning on social media
often takes place in communities; on Twitter, hashtags con-
nect thousands of teachers [10]. As this provides meaningful
learning opportunities for teacher professional development
(PD), prior research argued that social media could augment
traditional PD activities [19, 24, 21].

User retention has been a topic of research investigating
motivational differences for online community participation
[14], social presence [26], and affiliation of central users with
the community [42]. Prior work showed a gradual user
dropout of the #EdChat Twitter community, with mixed
success in explaining user retention through user-level fea-
tures [46]. Prior research identified several user-level factors
that may contribute to user retention and user membership
switching in online communities outside of social media [2,
27]. These features relate to Diffusion of Innovation theory
[47], network centrality [8], and social presence [36]. Yet,
user community retention and switching in informal educa-
tional learning communities are understudied.

This study bridges two lines of research: First, prior findings
on educational Twitter communities have focused on single-
community retention and engagement [46, 42]. Second, com-
munity retention studies in educational data mining have
been restricted to more formal learning settings, including
MOOCs [8] and higher education [1]. Studying retention
and user switching in educational Twitter communities may
inform learner retention in informal online learning.

We study user retention by comparing two large and struc-
turally different educational Twitter communities: (a) a
chat-based education community and (b) a more informal
“teacher lounge” community. Prior work indicates that the
chat-based community’s decline coincided with the lounge
community’s growth [20].

This study has three main contributions: First, we provide
initial evidence for identifying and developing relevant fea-
tures related to community retention in educational Twit-
ter communities. Second, we compare the importance of
different features in these models. This may support subse-
quent intervention studies and early-warning capabilities for
user retention in informal learning communities. Third, we
advance existing research on multi-community membership,
user switching, and retention [44, 30, 28, 45]. Compared
to prior work on teacher PD on Twitter, which emphasized
cognitive and interactive over social-transactional tweets to
bolster community retention [9, 46], we find that social inte-
gration and users’ perceived community fit may matter most
for community retention.
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2. RESEARCH BACKGROUND
2.1 Diffusion of Innovation
Diffusion of Innovation (DOI) theory describes the adoption
process of an idea or product by members of a social group
[40]. Diffusion describes the adoption rate for innovation as
mediated through communication. The framework consists
of four major components: (a) innovation, (b) communica-
tion channels, (c) the social system, and (d) time.

DOI theory classifies members into “adopter types” [40].
These adopter types include innovators, early adopters, early
majority, late majority, and laggards. Membership of an
adopter type is determined by the time of adoption during
the diffusion process and is often considered predictive of
different behavior within the diffusion process [40]. Quanti-
tative modeling suggests that generalizations of DOI theory
can have sufficient predictive power [6].

DOI has been used prominently to explain and predict inno-
vations in the context of social media [37, 35, 22]. Studying
Twitter, prior research has used DOI to investigate factors
mediating adoption by various social and political groups
[39, 5, 4, 34]. This approach was extended to study the con-
tinued or discontinued use of Twitter after its initial adop-
tion using a combination of DOI and the “uses and gratifi-
cations theory” [16, 14, 15]. Notably, prior work generally
overlooks the complexities of competition between commu-
nities. This work addresses this gap by using DOI to inves-
tigate community switching behavior.

2.2 Multi-group Membership and Switching
Multi-community membership refers to users simultaneously
engaging with two or more distinct user groups, with these
communities typically situated in related domains. Multi-
community membership can be synergistic and facilitate
between-group connections. On Twitter, exchanges across
hashtagged communities could form and reform
multi-directional connections, effectively bridging communi-
ties and leveraging their resources and audiences [30]. Cross-
community ties can also emerge due to users switching net-
works and retaining links to their old community [45].

Multi-community membership can facilitate between-group
competition, affecting community growth and thriving [44].
This suggests that larger and older groups may experience
difficulty growing their membership and are more vulner-
able to competitive pressure. At the same time, commu-
nity members identify community leaders via sociability,
knowledge contribution behaviors, and structural social cap-
ital (often operationalized via betweenness centrality; [18]).
Therefore, influential users play a central role in the compe-
tition between established and emerging communities.

Connections in emerging communities are based on geo-
graphic and social similarities between users. For exam-
ple, the types of social ties in communities are often corre-
lated with community age [28]. In established communities,
sharing is more predicated on expertise. Moreover, prior
work found user membership characteristics (e.g., engage-
ment rate, professional role, and user account age) to relate
to the sentiment in educational Twitter communities [41].
Given these systematic differences in online communities,
research may exploit these variations to predict community

membership. Prior work on such predictive models is scarce
but indicated that models might predict community mem-
bership via social ties, user attribute homophily, and existing
community memberships for a set of game-based communi-
ties [3].

2.3 The Present Study
This study investigates two large educational Twitter com-
munities with considerable user and time overlap regarding
user activity. Prior research on user community switching
and retention primarily focused on non-educational commu-
nities [44, 30, 28, 45] and put limited focus on explaining the
determinants of user switching based on community- and
user-level features. Understanding the determinants of user
switching and its timing offers novel lenses into user switch-
ing behavior and opens up the potential to intervene and
retain users in educational communities. We investigate the
following three research questions (RQs):

RQ1: How did the user base of two large educational Twitter
communities overlap over time according to the Diffusion of
Innovation model?

RQ2: How can user switching between two large educational
Twitter communities be inferred using community member-
ship and user-level features?

RQ3: How can the relative timing of user switches between
two large educational Twitter communities be inferred using
community membership and user-level features?

3. METHOD
3.1 Sample Description
This study uses data from a large project that examined
the entire German educational Twittersphere [20]. The cor-
responding data download occurred between April 8 - 25,
2022, with the Twitter API 2.1. Our sample includes all
tweets until the end of 2021 in Germany’s two largest educa-
tional Twitter communities: the EdChatDE and the TWLZ
community.

EdChatDE is the German chapter of the American EdChat
network, which holds and facilitates regular chat hours for
educators. In contrast, the TWLZ (an abbreviation for
“Twitterlehrerzimmer,”which translates to“Twitter teacher’s
lounge”) is an umbrella community for education profession-
als to talk, connect, and share content across subject areas
and school levels.

Notably, our data does not only include tweets that used the
sampled hashtags but also all of their conversation tweets
(i.e., replies to the tweets, including the respective hashtags).
We removed 255,061 tweets from 170 identified bot accounts.
Bot detection followed a hybrid approach based on keyword
filtering in user bios and human coding as described in [20].
This led to a full study sample of 2,039,260 tweets from
104,847 unique users.

3.2 Measures
This study infers user switching and timing from user roles
based on the DOI theory and other features mined from
Twitter data. The code of our analyses is publicly available.1

1github.com/conradborchers/community-switch-edm23
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Community membership and switching. We defined
community membership as users having at least two com-
munity interactions (i.e., mentioning, quoting, replying, or
retweeting another user in a post that contributed to the
community). This number was determined by investigat-
ing a logistic growth model’s fit via RSS (as assumed by
the DOI model). We checked the robustness of our results
across one, two, and three required interactions.

Notably, the last 10% of user interactions are not counted as
community interactions. This hedges against artificially pro-
longing users’ community membership beyond a long break
through random postings long after their primary commu-
nity engagement ended. We verified the robustness of our
results against a 15% and 5% cutoff.

We define user switching as the point in time when users be-
come members of one community and cease to be members
of another community (Equation 1). Our definition allows
for a time gap where users are members of neither commu-
nity before joining the community to which they switch.

tswitch[a→b] = max(texit[a], tentry[b]) | texit[b] > texit[a] (1)

DOI user types. We classified users based on the time
they joined the chat community following DOI theory [32].
Users are ranked based on how early they joined a com-
munity, with groups separated by quantiles. This results
in the following variable levels: innovators (earliest 2.5%),
early adopters (13.5%), early majority (34%), late majority
(34%), and laggards (remaining 16%).

Social network analysis. To operationalize the social sta-
tus of users within a community, we calculate a set of com-
mon centrality measures, including degree, closeness, be-
tweenness, and eigenvector centrality on an unweighted and
undirected network of user-to-user interactions [7]. Degree
centrality refers to the number of nodes (i.e., other users) a
user has interacted with. Closeness centrality measures the
distance between a node and every other node in the net-
work. That means well-connected users have shorter con-
nection paths to all other users. Betweenness centrality is
a measure of a node’s function as a bridge to connect other
nodes. Eigenvector centrality describes the importance of a
node by the sum of the centrality of the nodes it connects to.
Thus, a user interacting with a central user gains importance
in the network.

Teacher classification. We trained a supervised learning
classifier based on a training data set of 1,000 randomly-
sampled user profiles [38]. Two experienced human coders
first labeled users’ Twitter bios and up to 50 sample tweets
into “teachers” and “non-teachers.” Their inter-rater relia-
bility was substantial with κ = 0.77 [12]. Subsequently, we
trained and tested multiple text-based teacher classification
models using different algorithms, from which a logistic re-
gression model emerged as the most predictive. The model
was optimized with hyperparameter tuning via grid search
and 10-fold cross-validation and achieved a holdout test set
(N = 250) accuracy of AUC = 0.79. Applied to our study
sample, 10,313 users were classified as teachers, contribut-
ing 1,078,976 tweets while 94,534 non-teachers contributed
960,284 tweets.

Twitter engagement. User and social engagement vari-
ables are provided by the Twitter API, including a continu-
ous variable on the user’s lifespan, that is, the time passed
(in days) since they first joined Twitter. Also, we included
two continuous variables indicating the number of followers
and followings. This allows us to gauge a user’s popularity
and connectedness on the platform. Lastly, we included two
continuous variables describing users’ posting behavior: the
average number of tweets a user posted per day and their
total number of reposts (i.e., retweets and quotes). These
measures indicate a user’s level of engagement and respon-
siveness.

3.3 Analytical Methods
RQ1 reports descriptive statistics on the size and overlap
of two large educational Twitter communities. Then, we
describe the descriptive overlap in DOI membership types
between these two communities for active users.

RQ2 applies logistic regression models to infer user switching
behavior. We employ AIC-based backward search to deter-
mine a parsimonious and interpretable user switching model
[31]. We z-standardized all numeric variables to aid model
coefficient interpretations. Additionally, we log-transformed
network centrality measures before standardizing them, given
their heavy-tailed distributions [17]. For all linear models,
we verified that modeling assumptions (e.g., normal distri-
bution of residuals, homoscedasticity, and linearity assump-
tions) are not violated through inspection of corresponding
diagnostic plots.

RQ3 replicates the modeling procedure presented in RQ2
using the z-standardized relative timing of user switching as
the dependent variable with ordinary least squares (OLS)
regression models.

4. RESULTS
4.1 Community User Overlap (RQ1)
The chat community included N = 5,391 members, while
the lounge community included N = 69,877 members. N =
2,775 users had dual membership for an average of M = 243
days (SD = 273 days). The median number of active days
was 1,273 for the chat community and 317 for the lounge
community. We report the longitudinal development of user
numbers in both communities in Figure 1. Most notably,
the decline of user numbers in the chat-based community
occurred shortly after the lounge community experienced
exponential user growth starting in 2017.

We found that N = 2,891 (65.98%) of chat community mem-
bers switched to the Twitter lounge. The median switching
time was 842 days after joining the chat-based community
with an IRQ of 1,218 days, yielding a considerable variance
in whether users switched and their exact time of switching.
Associations between the DOI user types of both communi-
ties are displayed in Figure 2.

Figure 2 indicates that chat community laggards were often
early adopters of the teacher lounge community. Notably,
these users were also less often innovators in the teacher
lounge community. Conversely, the late majority of the
chat-based community were more often innovators and less
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often early adopters of the teacher lounge community. A χ2

independence test rejected the independence of both user
classifications (χ2 = 320.82, df = 16, p < .001).

Figure 1: Community development over time, including
unique user counts per year, transformed to log scale to rep-
resent growth rates.

4.2 Determinants of Community Switching (RQ2)
We investigate user switching determinants from the chat
community to the teacher lounge community via logistic re-
gression (Table 1). The four main findings are as follows:

First, the later users joined the chat community, the more
likely they were to switch to the teacher lounge commu-
nity. Effect sizes ranged between OR = 1.10 (p = .863)
for early adopters compared to innovators and OR = 296.87
(p < .001) for early adopters compared to innovators. Sec-
ond, users whose Twitter account was a standard devia-
tion older than average were around 24 times more likely
to switch (OR = 24.49, p < .001). Third, teachers were
more than three times as likely to switch to the teacher
lounge community than non-teachers (OR = 3.06, p < .001).
Fourth, users with larger followings and more followed ac-
counts were less likely to switch (OR = 0.76, p < .001 and
OR = 0.60, p < .001, respectively). Fourth, among our
centrality measures, degree centrality exhibited the largest
effect size and was positively associated with user switching
(OR = 2.48, p < .001).

4.3 Timing of Community Switching (RQ3)
Analogous to RQ2, we investigate the determinants of the
relative timing of user switching using ordinary least squares
regression (Table 2). The three main findings are as follows:

First, users that joined the chat community later were also
more likely to join the teacher lounge community later. While
early adopters joined the teacher lounge community β =
0.13 standard deviations (approx. 50 days) later (p = .055)
compared to innovators, laggards joined the teacher lounge
community β = 0.42 standard deviations (approx. 163 days)
later (p < .001) compared to innovators. Second, teachers
switched β = −0.29 standard deviations (approx. 112 days)
earlier (p < .001) than non-teachers. Third, degree central-
ity was most strongly associated with the relative timing of

user switching. Per additional standard deviation in user
degree centrality, users switched β = −0.37 standard devia-
tions (approx. 143 days) earlier (p < .001).

Figure 2: Crosstable of DOI adopter categories with colored
residuals from the expected frequencies of a χ2 test.

Table 1: Logistic regression model on user switching behavior.

Effect OR SE

(Intercept) 0.05*** 0.51

Chat DOI group [vs. innovators]
Early adopters 1.10 0.53
Early majority 9.34*** 0.51
Late majority 60.10*** 0.53
Laggards 296.87*** 0.55

Teacher [vs. non-teacher] 3.06*** 0.18
Lifespan (days) 24.49*** 0.11
User following 0.60*** 0.09
User followers 0.76*** 0.08
Chat tweets per day 0.76*** 0.06
Degree Centrality 2.48*** 0.14
Closeness Centrality 0.63*** 0.07
Betweenness Centrality 1.61*** 0.10

Observations 5,391
R2 Tjur 0.785

* p < .05, ** p < .01, *** p < .001

User classification features had among the largest effect sizes.
Figure 3 illustrates interactions between DOI and teacher
user classifications to further examine associations of DOI
types across different user types. Notably, teachers consis-
tently switched communities across all DOI user types earlier
than non-teachers. However, the difference between teach-
ers and non-teachers diminished the later users switched. In
particular, the smallest difference in medians between teach-
ers and non-teachers was for the late majority (0.12 SD;
approx. 48 days) and laggards (0.43 SD; approx. 166 days)
of the chat-based community.
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Table 2: OLS regression on the relative user switch time.

Effect β SE

(Intercept) -0.01 0.11

Chat DOI group [vs. innovators]
Early adopters 0.14 0.11
Early majority 0.18 0.11
Late majority -0.06 0.12
Laggards 0.43** 0.13

Teacher [vs. non-teacher] -0.29*** 0.04
Lifespan (days) -0.08** 0.03
User following 0.04* 0.02
User reposts -0.04* 0.02
Degree Centrality -0.37*** 0.04
Closeness Centrality -0.17*** 0.04
Betweenness Centrality 0.16*** 0.03
Eigenvector Centrality 0.05 0.04

Observations 2,693
R2 / Adjusted R2 0.145 / 0.141

* p < .05, ** p < .01, *** p < .001

5. DISCUSSION
This study examines user switching determinants between
two large education-related Twitter communities through a
DOI theory lens. While prior studies focused on the growth
and retention in single communities [16, 14, 15], less atten-
tion has been given to user characteristics explaining com-
munity switching. Our three main findings are as follows:

First, community switching was more likely the longer users
were active on Twitter and the later they joined the commu-
nity from which they switched. This is important as prior
work focused on increasing cognitive and interactive tweets
over social-transactional tweets to increase retention in PD
communities [9, 46]. However, our findings suggest that so-
cial integration into the community matters for community
retention. Users that joined a community late may have
more challenges in making connections or building a reputa-
tion in the community. Therefore, they might be more likely
to switch communities. Alternatively, the entry barrier may
feel higher for newcomers in more established communities,
given that sharing in older communities tends to be predi-
cated on expertise rather than social and geographic similar-
ity [28]. Notably, we found the relative community joining
time measures to have large effect sizes encouraging future
research to use relative community join times as measures
for understanding informal learning communities.

Second, teachers were around three times more likely to
switch communities and switched around 112 days earlier
compared to non-teachers. Given that the community to
which users switched in our sample is an “Twitter teacher
lounge,” these observed effects may relate to an increased
perceived fit for teachers regarding the target community
[11]. This interpretation aligns with findings from marketing
research investigating customer adoption of products mod-
erated by self-identity [13, 43]. Therefore, communities may
improve user adoption by explicitly addressing their target
audiences. Future research may investigate more features of
perceived role fit to infer educational community retention.

Figure 3: Group-wise box plots based on DOI types and
teacher classification for the standardized user switching
time. One SD equals approximately 386 days.

Third, central community members were more likely to switch
communities. This finding extends prior work suggesting
that interactions with highly influential users positively re-
late to community retention [42] and prolonged engagement
in blogs [33]. A potential interpretation is that highly central
users may have a stronger tendency to adopt and seek novel
participation opportunities in educational Twitter, irrespec-
tive of their integration into the community. Alternatively,
the decline of the chat-based community in our data set may
be predicated on highly influential users, being the commu-
nity backbones, leaving the community. Comparing both
explanations in future research may improve community in-
tervention efforts, for example, by targeting highly central
users in the network to continue their engagement and boost
community health and longevity.

5.1 Limitations and Future Work
This study only examined two Twitter communities. Spe-
cific events, such as the COVID-19 pandemic, may have in-
fluenced community growth, during which the teacher lounge
community experienced large growth [23]. In addition, our
data are correlational and do not allow for causal claims.
However, future work may leverage longitudinal or hierar-
chical modeling with repeated user engagement measure-
ments to better understand the strong association of DOI
groups with user switching. Similarly, future work may ex-
plore user-level differences in device usage (e.g., desktop vs.
mobile use) or create an early warning system flagging de-
clining engagement of central users.

Taken together, our findings can provide important insights
for stakeholders initiating, studying, and orchestrating infor-
mal PD spaces on Twitter and inform research on informal
learning in digital spaces more broadly.
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ABSTRACT
Revision behavior in adaptive writing support systems is
an important and relatively new area of research that can
improve the design and effectiveness of these tools, and pro-
mote students’ self-regulated learning (SRL). Understanding
how these tools are used is key to improving them to better
support learners in their writing and learning processes. In
this paper, we present a novel pipeline with insights into the
revision behavior of students at scale. We leverage a data
set of two groups using an adaptive writing support tool in
an educational setting. With our novel pipeline, we show
that the tool was effective in promoting revision among the
learners. Depending on the writing feedback, we were able
to analyze different strategies of learners when revising their
texts, we found that users of the exemplary case improved
over time and that females tend to be more efficient. Our
research contributes a pipeline for measuring SRL behav-
iors at scale in writing tasks (i.e., engagement or revision
behavior) and informs the design of future adaptive writing
support systems for education, with the goal of enhancing
their effectiveness in supporting student writing. The source
code is available at https://github.com/lucamouchel/

Understanding-Revision-Behavior.

Keywords
Revision Behavior, Writing Support Systems, ML-based adap-
tive feedback, Self-Regulated Learning

1. INTRODUCTION
Intelligent writing support tools (e.g., Grammarly, Word-
Tune or Quilbot) offer new ways for learners to receive feed-
back and thus revise their texts [19]. These and other writing
support systems bear the potential to provide learners with
needed adaptive feedback on their writing exercises when
educators are not present, (e.g., on grammatical mistakes
[32], argumentation [26], empathy [29], or general persuasive

writing [27]). They can help students in their self-regulated
learning (SRL) process [11, 36], to organize their thoughts
and ideas, reflect on their learnings, or simply receive feed-
back on frequently occurring grammar or argumentation
mistakes. From an educational perspective, it is important
to understand how these tools are used by learners in edu-
cational settings and how they improve the effectiveness of
educational scenarios [7, 18]. Present research is largely fo-
cused on designing and building writing support systems [8,
20]. However, there are not many insights into the effects of
the usage of these tools and their impact on students’ SRL
processes [4, 25], which is why we contribute a novel pipeline
analyzing and visualizing revision behavior to better under-
stand how we can design, develop and improve existing sys-
tems to better support students. Techniques from the field
of data mining are a solution to understanding revision be-
havior and explaining SRL. One such technique is Keystroke
Logging (KL). KL allows us to use educational data mining
to analyze user behavior in writing tasks [16, 35, 23]1. In
this study, we model, inspect, and analyze quantitative data
in learners’ writing interactions through KL by developing a
novel pipeline. We use a keystroke log from an experiment,
where users were divided into two groups. The first one
was given adaptive feedback and the second one was not. A
detailed description of our dataset and the experiment de-
mographics and procedure are available in Section 3. To the
best of our knowledge, no publicly available pipeline exists
that focuses on processing the keystroke behavior of learn-
ers and helps analyze SRL characteristics such as engage-
ment, revision, or visualize the learning path. We intend to
first identify and visualize the differences between these two
groups in their revision process and compare different user
profiles and measure their engagement over time. We use
an exemplary data set to build this pipeline and apply data
mining in order to gain insights into the underlying process
of this writing activity.

2. BACKGROUND
Research on Automatic Data Mining for Writing Be-
haviour
Research in writing process analysis can be traced to the
1970s [9, 24]. However, only more recently have studies been
focusing theoretically on behavioral and cognitive processes

1Tools such as InputLog [16] or ETS [35] are examples of
KL programs.
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of writing [14, 17]. In fact, Flower and Hayes [10] laid the
groundwork for research on the psychology of writing. They
propose that the act of writing is propelled by goals, which
are created by the writer and grow in number as the writing
progresses. Today, writing support tools need to support
this cognitive process as it emphasizes writers’ intentions,
rather than their actions [12]. It is important to understand
what these tools help with, and how we may design new
ones [12]. While prior works on text revision [8, 15, 20,
28] have proposed machine collaborative writing interfaces,
they focus on collecting human-machine interaction data to
better train neural models, rather than understanding the
underlying processes of text revision. Several studies in the
past have used KL as a technique to study revision [16, 23,
35] in different settings and some of the aims were to under-
stand and evaluate keystroke log features in a writing task
context. However, until now, KL has been scarcely used in
the classroom [25]. One issue with keystroke loggers is their
invasive nature. KL raises several ethical issues, most no-
tably privacy violation [25], but in this study, participants
gave their consent for the collection of their data, all the
while preserving their privacy. Previous research has sug-
gested that writing time and number of keystrokes, which
are indicative of general writing fluency and effort, are re-
lated to writing quality [1, 33]. Another feature of interest
is pause times, [34] found that under a certain timed-writing
test condition, shorter pauses are preferred as that indicates
an adequate understanding of the task requirements, more
familiarity with the writing topic, and better task planning
[23].

Self-Regulated Learning
To analyze revision behavior, we rely on the lens of self-
regulated learning (SRL). SRL refers to the pro-active pro-
cess that learners engage in to optimize their learning out-
come [36]. According to Zimmerman’s model of SRL [36],
there are three major phases: forethought, performance and
self-reflection. The forethought phase includes task anal-
ysis, such as goal setting and strategic planning and self-
motivational beliefs. The performance phase includes self-
control processes, such as task and attention-focusing strate-
gies. The self-reflection phase includes processes involving
self-judgment and self-reaction [31]. SRL is essential in the
context of studying revision behavior in writing support sys-
tems as it allows writers to take an active role in identifying
and addressing their own writing weaknesses, rather than
simply relying on the writing support system to automati-
cally detect and correct errors. This can lead to a deeper
understanding of the writing process.

3. METHOD
To investigate revision behavior in the writing process, we
propose a pipeline for the automatic analysis of the SRL
behavior of users during a writing task. Our work follows
the Knowledge Discovery in Databases process by following
the methodology in Fig. 1.

Demographics, Procedure & Dataset Description
With approval of the ethical board of our university, we
collected data from a writing experiment which consisted of
73 users divided into two groups, as illustrated in Table 1.

Figure 1: Overview of our pipeline and methodology, follow-
ing the KDD process

Table 1: Demographics of the participants per group from
the exemplary data set

With Adaptive
Feedback (G1)

Without Adaptive
Feedback (G2)

No. Participants 34 39

Age Mean 26.8 26.3

Age Std 3.3 2.8

% Female 43 51

% Male 51 46

% Other 6 3

The two groups of users were tasked with writing three cook-
ing recipes. Both groups were given a sample recipe as refer-
ence. The first group (G1) received adaptive feedback from
the platform when they submitted their texts. The second
group (G2) did not receive any feedback. Once they submit-
ted their recipes to the system, users in G1 had the option to
reset and start a new recipe or revise their texts based on the
feedback. The same protocol was followed for G2, but they
did not receive feedback. Here are several examples of the
feedback the platform provided users: ’List each ingredient
separately.’, ’Enumerate the steps.’, ’How can your recipe be
more specific?’, ’Use stir, mix, or beat instead of “add” to
be more specific.’ or ’Indicate whether the meat, poultry, or
seafood is boned, skinned, or otherwise prepared.’

With regards to the dataset, the entries of the log data we
collected consisted of user ids, event dates, the keystroke
logs as a JSON file and the final version of the text sub-
mitted at that particular date. An example of an entry
is as follows: 2023-01-01, 12:00:00, user1, [{’time’:

1, ’character’: ’a’}, ... }], "a) Cook ...".
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Qualitative Perception
Following the experiment, users were tasked with answering
follow-up questions and we identified eight different topics
regarding the reported revisions, including, adding missing
ingredients, improving the clarity, not making any changes
and others. To do this, we used BERTTopic [13], a topic mod-
eling technique that clusters sentence embeddings generated
by Sentence-BERT [22], to perform qualitative analysis of
participants’ open responses about recipe revisions: (What
did you edit (add, remove or change) from the original text
(the recipe you wrote)? ). We split the sentences into clus-
ters based on their relevance, assigned names to each cluster,
and computed the probability of each sentence belonging to
a cluster. We grouped the sentences by participant to ob-
tain the set of topics associated with their entire text answer.
For example, if a participant’s answer consisted of sentences
with assigned topics A, B, and C, the set of topics associated
with their answer would be Z = {A,B,C}.

Data Processing
Given that the logs consist of the users’ first attempts at
writing one of the three recipes and their respective revision
phases, it is important to separate them in order to focus
only on the revision steps. We define sessions for a user as
all the data collected from them for one recipe. To separate
sessions, we use cosine distance to detect where the session
ends and where the next one starts. One advantage of using
cosine distance for text comparison is that it is relatively
insensitive to the length of the strings. In contrast, other
measures of distance such as Euclidean distance are sensi-
tive to the length of the vectors and can be affected by the
presence of common words that do not contribute signifi-
cantly to the meaning of the strings. To map sentences to
50-dimensional vectors, we use a GloVe model [21], which
is already trained on Wikipedia. First, we map each word
to their embeddings and then compute the sum of the vec-
tors component-wise. Formally, each text submitted t has
a set of words W = {wi | 1 ≤ i ≤ Nt}, where Nt is the
number of words for text t. Then, we map each wi to their
embeddings w̃i which are 50-dimensional vectors. Now let
t̃ be the embedding of the text t, then t̃ =

∑Nt
i=1 w̃i. This

allows us to capture each word of the text and this way,
we can collect the set of all text embeddings in the dataset

T = {t̃1, t̃2, ...} =
{∑N1

i=1 w̃i,
∑N2
i=1 w̃i, ...

}
. We use T to

run the recursive algorithm described in Appendix C on the
recipes submitted and compute the cosine distance between
the text embeddings of tk, tk+1, ..., starting at k = 0, until
we find n > k

1− ⟨t̃k, t̃n⟩
∥t̃k∥ · ∥t̃n∥

< 0.995

When we do, we define n as the index of a new recipe in
our data. Then, we repeat the process by starting at tn
and comparing t̃n with the text embeddings t̃n+1, t̃n+2, ... to
find the next index. This way, we collect the indices of new
recipes in our dataset so that we can focus on the revision
between these indices.

Moreover, to apply process mining techniques, we built event
logs from the writing task. For each group, we collect the
activities for each user, by looking at when they submit the
first, second and third recipes and all the revision steps in
between.

Feature Extraction
Different aspects of SRL have been researched extensively
[18]. In a meta-analysis on online education, [6] found sig-
nificant associations with academic achievement for five sub-
scales of SRL: effort regulation (persistence in learning),
time management (ability to plan study time), metacog-
nition (awareness and control of thoughts), critical think-
ing (ability to carefully examine material), and help-seeking
(obtaining assistance if needed)2. Based on these findings,
we use the following dimensions to represent student behav-
ior: effort regulation (Number of Revisions, Number of Ed-
its, Time Spent Revising), time management (Time Spent
Revising, Pause Times), metacognition (Efficiency, Pause
Time), and critical thinking (DIRatio). A detailed descrip-
tion of these feature variables can be found in Appendix A,
Table 3.

Building the Learning Path
Understanding revision behavior implies understanding the
underlying process in the writing task (e.g., how long do
users in a group take to revise on average or how many users
revise). In order to understand this better, process mining,
especially process discovery [5], can help us model and visu-
alize the writing process for users in a group and design a
learning path when using adaptive writing support systems
[30]. In this study, we use Directly-Follows Graphs (DFGs)
[3], which represent activities and their relationships3. This
is useful for the field of SRL as it provides a way to visu-
alize and analyze the steps involved in a process, especially
revision. A formal definition of DFGs can be found in Ap-
pendix B.

4. RESULTS
Revision Strategies
With this study, we find that users in different groups re-
vise their texts differently. Recall that G1 is given adaptive
feedback and G2 is not. By providing insightful feedback on
what a user can change in their writing, users tend to have
more revision steps with fewer edits at each step. How-
ever, users not receiving feedback follow the opposite trend,
they have fewer revision steps, with a larger number of re-
visions at each step. This phenomenon is visible in Fig. 2.
In fact, for the first and second texts (Appendix D, Tables 4
and 5), we find p-values < 0.05 for Number of Revisions
using t-tests, which indicates a significant difference in the
number of revisions. This is also underlined by the mean
number of revisions and edits. On average, users in G1 tend
to revise their texts more often, with fewer edits at each
step (Appendix D, Tables 4 to 6). From the directly-follows
graphs (Fig. 3), we see that users spend approximately the
same amount of time writing recipes and the same amount
of time revising at the first revision step. However, we see
that users in G2 revise much longer when having consecu-
tive revision sessions (6 min on average) compared to G1 (56
s)(Fig. 3). This confirms that users in G1 have shorter revi-
sion sessions, whereas users in G2 have longer revision steps.

2The nature of our log data does not allow to represent help-
seeking.
3Other data structures like Petri Nets could also be used.
Petri Nets are commonly used to apply process mining [3].
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Figure 2: Bubble plot for the first recipe sorted by the num-
ber of revisions. The bubbles correspond to the number of
edits (insertions and deletions) for a user at each revision step

Figure 3: Overview of the SRL behavior of students revising
their texts as directly-followed graphs for G1 (left) and G2

(right) automatically calculated and drawn by our pipeline

Engagement
From the second recipe onwards, we find that users revise
less often, perform fewer edits, spend less time revising and
type faster (Fig. 4). This stems from users being less en-
gaged in the task at hand. In fact, users spend 67% less
time revising in G2 (Fig. 4) (from 264 seconds on average for
the first recipe to 86.5 seconds for the third one (Tables 4
and 6)) and 64% less in G1 (from 224 seconds to 81.2). In
G2, users perform 74% fewer edits between the first and last

recipe (Fig. 4). Users in G2 performed on average 222 edits
when revising for the first recipe and only 57 for the third
one (Tables 4 and 6). The decrease in pause time for the two
groups also declines over time (0.822 to 0.553 seconds on av-
erage for G1 and 0.646 to 0.525 seconds for G2), even though
participants in G2 consistently maintain a smaller average
pause time when revising. This is one interpretation of the
results and Fig. 4, another one would be to consider users
are improving in this task. On average, pause time for G1

decreased by 32.7% and 18.7% for G2 (Fig. 4). Shorter pause
times indicate better understanding of the task requirements
and better task planning [34]. This is coherent with the par-
ticipants’ reported changes. As seen in Fig. 5, we found
that participants from G2 increasingly reported making no
changes to their recipes (36% for the third recipe). In con-
trast, participants in G1 continued reporting making changes
based on the received adaptive feedback. Nevertheless, there
was also an increase in the participants in G1 that did not
edit the recipe, one participant noted I didn’t edit as much
this time as I remembered to add them the first time around.

Figure 4: Visualizing user engagement and feature evolution
on 4 feature variables over the entirety of the writing exper-
iment

Figure 5: Percentage of participants that stated that they
made no changes when editing their recipes in the survey
following the experiment
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Gender Comparison
Research has often found that males tend to be more im-
paired at composing text in comparison with women. The
study in [35] found that female students performed better
than male students on a number of levels. Females had
higher scores, revised more, and were more efficient: they
revised more per unit of time, exhibiting greater writing
fluency. In this study, we found that there is a clear distinc-
tion in the writing capabilities between males and females.
Like [35], we find females are more efficient in this writing
task. They tend to have higher efficiency scores (Fig. 6) and
we find p = 0.0038 when comparing efficiency scores in G2

(Table 2), which demonstrates the disparity in efficiency dis-
tribution between the two groups. Curiously, males revise
less often when receiving feedback (as seen on the x-axis by
the number of times revised, (Fig. 6)4). On the contrary,
when users do not receive feedback, females revise once at
most (because index 0 is not a revision phase, Fig. 6). This
also reinforces women’s abilities in their writing, suggesting
they feel less need for revision if they do not receive feed-
back on what they can improve. Regarding the Delete-Insert
ratio (DIRatio), although we find there is no statistical dif-
ference (Table 2), we find that males in G2 generally have
higher scores, especially in G2. Having higher DIRatio scores
means users delete a larger portion of their texts (over 15%
for several male users in G2, Fig. 6). Looking back at SRL,
especially on the critical thinking aspect [6], which is de-
fined as the ability to examine material, we can see males
are more self-critical and delete a larger portion of their texts
compared to females when they do not receive feedback.

Table 2: p-values for Efficiency and DIRatio features compar-
ing males and females in each group; *p<0.05, **p<0.01,
***p<0.001

With Adaptive
Feedback (G1)

Without Adaptive
Feedback (G2)

Efficiency p = 0.215 p = 0.0038**

DIRatio p = 0.387 p = 0.088

5. DISCUSSION & CONCLUSION
With this research, we contribute to the field of understand-
ing the use of intelligent writing systems by learners. We do
this by gaining insights into their SRL by inspecting revi-
sion behavior. From the log data we collected, we built and
modelled a pipeline to analyze and visualize user behavior in
the revision phases of the writing task, by observing differ-
ent features extracted from the revisions of G1 (with adap-
tive feedback) and G2 (without adaptive feedback)(Figs. 2,
4 and 6). Our analysis revealed that learners in different
groups revise using different strategies. Learners who were
equipped with adaptive feedback revised more often, with
fewer edits at each revision step and users without adaptive
feedback followed the opposite trend. This suggests that
the support provided by the system may influence revision
behavior and how it is used. Additionally, we found users
seemed to be improving in the writing task as demonstrated
by the post-survey and the data, even though they seem to

4Some outliers were removed (e.g., users who spent over
10’000 seconds revising or users who have very low efficiency
scores (few edits over a long period of time)).

Figure 6: Overview of 4 SRL features from our pipeline com-
paring males and females

be less engaged from the evolution of the feature variables
in Fig. 4. Finally, we concluded females were more efficient
than males in this experiment, by having higher efficiency
scores. While there has been research on the effectiveness of
such systems in improving writing skills, there is a limited
understanding of how users revise their writing when using
these tools. To evaluate users’ SRL, it is crucial to have
a better understanding of how they self-regulate, especially
in writing activities, in order to provide them with the cor-
rect tools to improve their writing skills and understand the
underlying writing process [4, 31].

Regarding future directions, one can focus on clustering re-
vision data in order to gain further insights into the revision
behavior in a writing task. We have already done this, by
identifying eight reported revisions, including adding more
details, changing the structure, improving the clarity or not
making any changes. Nevertheless, we focus on not making
any changes, but analyzing other revision reports could help
shed light on more differences between the groups. As such,
clustering could be used for each group to identify the dif-
ferences between the two groups or between learners in the
same group, to see how users revise when receiving feedback
or not.

In conclusion, our research on revision behavior in adap-
tive writing support systems has shed light on how users
in different groups approach revision. The development of
a pipeline to study this topic has allowed us to collect and
analyze data on user writing and revision activity, leading
to the discovery of important patterns and trends. Overall,
our study has made a significant contribution to the field by
providing a deeper understanding of revision behavior.
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S. Handschuh, and J. M. Leimeister. AL: an adaptive
learning support system for argumentation skills. In
Proceedings of the 2020 CHI Conference on Human

450



Factors in Computing Systems, pages 1–14.

[29] T. Wambsganss, C. Niklaus, M. Söllner,
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APPENDIX
A. FEATURES
Table 3 gives a detailed description of the features we study
in this paper, extracted in our pipeline.

B. DIRECTLY-FOLLOWS GRAPHS
In process mining, a Directly-Follows Graph is a directed
graph that represents the sequence of activities in a process
based on event logs. Formally, given a set of activities A,
an event log L is a multiset of traces t ∈ L, where t is
a sequence of activities t = (a1, a2, ..., an), with ai ∈ A
1 ≤ i ≤ n [2]. Given the event log L, the DFG G is a directed
graph such that G = (V,E). V is the set of activities in L:
V = {a ∈ A | ∃t ∈ L ∧ a ∈ t}. E is defined as E = {(u, v) ∈
V × V | ∃t = (a1, a2, ..., an), t ∈ L ∧ ai = u ∧ ai+1} [2].

C. SEPARATING WRITING SESSIONS
Algorithm 1 describes our implementation of session separa-
tion. Each participant wrote a first version of their recipes,
then revised it, before starting the next recipes. To focus
on the revision sessions, we needed to implement a function

which captures the indices in the dataset where participants
started their recipes. First, we preprocess the submitted
text by removing noisy characters, such as punctuation and
return the list of sanitized words. Then we use the GloVe
model to convert the words to vectors and return one 50-
dimensional vector which is the sum of each word embed-
ding. Then we recursively find the indices of new recipes
using cosine distance. However, the algorithm is 91% ac-
curate: this is because sometimes users submitted random
strings or the revisions led to the algorithm detecting an-
other recipe. We adjusted the missing indices by hand by
looking at the dataset.

Algorithm 1 Separating writing sessions using cosine dis-
tance

function separateSessions
model← GloVeModel
function getVector(text)

p← preProcess(text) ▷ splits and sanitizes text
arr ← Initialize an empty list
for word ∈ p do

add model[word] to arr if word ∈ model
end for
return np.sum(arr, axis = 0) ▷ uses numpy

end function

function computeIndices(startIndex, accumulator)
recipes← retrieve recipes from the dataset
size← the total number of recipes
if startIndex ≥ size− 1 then

return accumulator
end if
vec← getVector(recipes[startIndex])
for n← startIndex to size do

d← 1−cosineDist(vec,getVector(recipes[n]))
if d < 0.995 then

add n to the accumulator
return computeIndices(n, accumulator)

end if
end for

end function
return computeIndices(0, empty accumulator)

end function

D. RESULTS
Detailed Results
Tables 4 to 6 report the mean, standard deviation of different
feature variables for both groups, as well as p-values.
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Table 3: Overview of feature variables automatically calculated through our pipeline to measure SRL behavior of users in their
writing exercises based on keystroke logs

Feature Variables Description

Number Of Revisions For each user, we count the amount of times they revise each time they write a recipe (i.e.,
when they submitted then re-edited their texts). This gives a sense of the effort put into the
revision phase of the writing task.

Number of edits The total number of insertions and deletions during a revision step. Insertions are counted as
any characters that are typed including whitespaces, and deletions are counted as the number
of times the user presses any of the Backspace or Delete buttons.

Time Spent Revising in
seconds

We compute the average time users spend revising for each group, for each recipe. This allows
us to compare the two groups and to estimate the effort put in by both groups.

Delete-Insert Ratio (DI-
Ratio)

The average deletions over insertions ratio, which approximately captures the extent of editing
and revision of any kind [35].

Efficiency Estimated by the number of insertions per second, which indicates a general writing speed.
This feature is arguably an indicator of writing fluency [35].

Pause Time during Revi-
sion in seconds

For each user, we collect the inter-key time interval and compute the mean of these intervals.
This captures the average lag time between two adjacent keystroke actions [35]. This feature
captures the effort and persistence level of users.

Table 4: Overview of SRL features from our pipeline for the first written text between students receiving adaptive feedback
(G1) and no feedback (G2) based on our data set

With Adaptive Feedback (G1) Without Adaptive Feedback (G2)
Feature Variables Mean Std Mean Std p-values
Number of Revisions 1.882 2.166 0.846 0.735 0.0071
Number of Edits 75.734 95.114 222.73 338.574 0.24
Time Spent Revising (sec) 224.48 237.37 264.01 530.47 0.694
Pause Time in Revision (sec) 0.822 0.225 0.646 0.08 0.339

Table 5: Overview of SRL features from our pipeline for the second written text between students receiving adaptive feedback
(G1) and no feedback (G2) based on our data set

With Adaptive Feedback (G1) Without Adaptive Feedback (G2)
Feature Variables Mean Std Mean Std p-values
Number of Revisions 1.147 1.033 0.692 0.722 0.033
Number of Edits 95.051 192.92 57.52 61.31 0.26
Time Spent Revising (sec) 121.19 148 70.15 120.9 0.11
Pause Time in Revision (sec) 0.69 0.365 0.421 0.2 0.089

Table 6: Overview of SRL features from our pipeline for the third written text between students receiving adaptive feedback
(G1) and no feedback (G2) based on our data set

With Adaptive Feedback (G1) Without Adaptive Feedback (G2)
Feature Variables Mean Std Mean Std p-values
Number of Revisions 1.12 1.05 0.737 0.676 0.11
Number of Edits 87.61 270.75 57.7 71.7 0.45
Time Spent Revising (sec) 81.2 115.8 86.5 231.9 0.905
Pause Time in Revision (sec) 0.553 0.212 0.525 0.296 0.85

452



Towards Automated Assessment of Scientific
Explanations in Turkish using Language Transfer

Tanya Nazaretsky
Weizmann Institute of Science

Rehovot, Israel
tanya.nazaretsky@weizmann.ac.il

Hacı Hasan Yolcu
Kafkas University

Kars, Türkiye
hasanyolcu@kafkas.edu.tr

Moriah Ariely
Weizmann Institute of Science

Rehovot, Israel
moriah.ariely@weizmann.ac.il

Giora Alexandron
Weizmann Institute of Science

Rehovot, Israel
giora.alexandron@weizmann.ac.il

ABSTRACT
The paper presents a preliminary study on employing Nat-
ural Language Processing (NLP) techniques for automated
formative assessment of scientific explanations in Turkish,
a morphologically rich language with limited educational
resources. The proposed method employs zero and few-
shot language transfer techniques for creating Turkish NLP
models, obviating the need for extensive collection and an-
notation of Turkish datasets. The study utilizes multilin-
gual BERT-based pre-trained transformer models. It eval-
uates the effectiveness of different fine-tuning approaches
using an existing annotated dataset in Hebrew. The re-
sults indicate that, despite being trained using non-perfectly
automated translations from Hebrew responses, the best-
performing models demonstrated adequate performance when
evaluated on authentic Turkish responses. Thus, this re-
search may provide a useful method for building automated
scientific explanations assessment models that are transferred
between languages.

1. INTRODUCTION
Constructing scientific explanations is one of the core prac-
tices in science. Writing good causal explanations in bi-
ology requires students to provide a conceptual framework
for the observed phenomenon, identify relevant information,
infer the unobservable world, grasp underlying causes, and
link the causes logically [19, 9, 12]. Biology teachers use
open-ended constructive-response items to elicit students’
in-depth understanding of scientific concepts and mecha-
nisms. However, answering such open-ended items is a chal-
lenging task. Students often struggle to write answers for-
mulated in their own language [17]. Receiving formative
feedback that is just and personalized is crucial in allow-
ing students to relate to the missing or wrong parts of their
answers and improve their responses accordingly [21, 24, 2].

Natural Language Processing (NLP) holds much promise
for automation of this process[28, 5], especially in English
[17, 10, 18, 15, 16]. However, for languages like Turkish,
Hebrew, and Arabic, a combination of being morphologi-
cally rich (where each input token may consist of several
functional units, e.g., multiple suffixes and prefixes added
to the original word root), and relatively low resource in
the educational domain, makes applications of NLP in such
languages particularly challenging [25]. To our knowledge,
little research exists in this area [1, 3, 6, 4, 8]. [3] proposed
a method for automated formative assessment of scientific
explanations in Hebrew based on analytic rubrics. [6] pre-
sented the first application of Turkish NLP for automated
summative assessment of Physics open-ended questions. In
the context of summative assessment of short essays in the
Arabic language, which is morphologically rich too, [4] used
latent semantic analysis and rhetorical structure theory, and
[8] used human and automated translation to English to
overcome the shortage in Arabic NLP educational resources.
We are unfamiliar with more recent research on NLP-based
scoring of open-ended questions in Turkish or Arabic. This
work is the first step towards NLP-based tools that can sup-
port K-12 science educators in providing formative feedback
on scientific writing in Turkish. We propose and evaluate a
method for creating Turkish NLP models with no need to
collect and annotate large datasets in Turkish while using
the corresponding annotated dataset in a different language
(e.g., Hebrew). Based on this goal, our research questions
are formulated as follows:

• Can our models accurately grade unseen responses in
Turkish to an item after being trained on Hebrew re-
sponses to several items related to the same biological
phenomenon?
• Can fine-tuning using a small number of Turkish re-

sponses improve the performance of our models?

2. METHODOLOGY
2.1 The instrument
The instrument consisted of two open-ended items about the
effect of Smoking and Anemia on the human ability to ex-
ercise. Both items refer to the role of red blood cells (RBC)
and Hemoglobin, blood circulation, and energy production
in cells on humans’ physical activity ability. These topics are

T. Nazaretsky, H. H. Yolcu, M. Ariely, and G. Alexandron. Towards
automated assessment of scientific explanations in turkish using lan-
guage transfer. In M. Feng, T. Käser, and P. Talukdar, editors, Pro-
ceedings of the 16th International Conference on Educational Data
Mining, pages 453–457, Bengaluru, India, July 2023. International
Educational Data Mining Society.
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part of the Israeli and Turkish high school science curricula.
The instrument was constructed in English and Hebrew as
part of our previous study [3]. One of the authors manually
translated it into Turkish (Table 1).

2.2 Data collection
The research population for this study is high school stu-
dents in Israel and Türkiye. The research sample included
669 Israeli students (25 schools), 10-12 graders, 70% females,
and 84 Turkish students (2 schools), 11-graders, 61% fe-
males. The instrument was administered to the students
by their teachers, who we contacted through teacher profes-
sional communities. The data was collected anonymously
using an online Google form, the students were requested to
fill in their gender, grade, and school name only. In both lan-
guages, several correct responses were written by the teach-
ers. In total, 2007 responses in Hebrew and 174 in Turkish
were collected.

2.3 Grading rubric and data annotation
This study used the analytic grading rubric created as part
of our previous study [3] and aimed at assisting teachers in
formative assessment tasks [2]. Each rubric category repre-
sents an essential element in the causal chain, constituting
a complete scientific explanation. The original rubric con-
sisted of 11 categories. In this study, we used 7 of them
(Table 2), excluding the 4 categories challenging for Turk-
ish students yielding highly unbalanced datasets with only
0 to 5 correct answers. We used the grading obtained in
our previous study for the Hebrew responses. The Turkish
responses were graded as follows. First, two raters (a bi-
ology high school teacher and one of the authors) graded
all the answers separately according to the analytic rubric
mentioned above. Next, the raters resolved all the conflicts
and came to a complete agreement.

2.4 Turkish NLP pipeline
2.4.1 BERT language models

Using a transformer deep-learning architecture has led to the
development of few shot learning - a method of fine-tuning
ML models based on very small amounts of annotated data
[26] using state-of-the-art language models pre-trained on
enormous amounts of textual data in one or several lan-
guages. In this research, we employ the few-shot learning ap-
proach for sentence classification using several BERT mod-
els: the BERT multi-lingual language model pre-trained on
the concatenation of Wikipedia in 104 different languages
(DistilmBERT1) and the BERT model pre-trained on Turk-
ish language (DistilBERTurk2) [22], and the Hebrew Aleph-
Bert model3 [23].

2.4.2 Text preprocessing
All the original Hebrew responses were part of the train-
ing set. The pre-processing consisted of several steps. First,
the Hebrew responses passed automated spelling corrections
(e.g., the critical word ”Hemoglobin” was misspelled in tens
of different ways) and replacement of the Hebrew acronyms

1https://huggingface.co/distilbert-base-multilingual-cased
2https://huggingface.co/dbmdz/distilbert-base-turkish-
cased
3https://github.com/OnlpLab/AlephBERT

(e.g., ”RBC” was replaced with ”red blood cells”) with the
entire words. Second, the responses were Google-translated
automatically into Turkish. Third, we examined the qual-
ity of the automated translation. Although the translation
was not perfect and, in some cases, was even unsatisfactory
(e.g., ”Red blood cells contain Hemoglobin to which oxy-
gen binds.” was translated as ”Kırmızı kan hücreleri, kardeşi
oksijenle bağlantılı hemoglobin içerir.” meaning ”Red blood
cells contain hemoglobin, which is associated with its sister
oxygen.”), we decided to proceed with the translated data
as is.

2.4.3 Fine-tuning and text augmentation
Data augmentation is a typical solution to the problem of
unbalanced and very small datasets (like our Turkish dataset)
by generating new examples for the minority classes. The
newly generated examples are supposed to be different from
the original ones but carry the same semantic meaning and
label as an original text. It is shown by previous research
that text augmentation can significantly improve the result-
ing models’ performance [14]. This paper employed two
standard paraphrasing augmentation techniques: back trans-
lation [29, 27] and using hand-crafted rules (fixed heuristics)
[7]. The back translation was done by automatically trans-
lating4 the positive examples for each category into 11 lan-
guages5 and back (Table 4). In addition, the following rules
were introduced for paraphrasing. First, we replaced the
words with similar meanings (e.g., red blood cells ”kırmızı
kan hücresi” is a synonym to ”alyuvar” and ”eritrosit” and
can also be replaced by ”hemoglobin” in our context) and
chemical acronyms and abbreviations with the words (e.g.,
CO, O2, and ATP were replaced by ”karbonmonoksit”, ”ok-
sijen” and ”enerji” respectively). Second, we combined each
positive example (per category) with several negative exam-
ples (e.g., the concatenation of the two responses in Table
3 can create an augmented answer with all positive cate-
gories.)

2.5 Experimental setup
To answer the research questions, we performed five exper-
iments. To allow a fair comparison between zero-shot and
few-shot models, we divided the Turkish responses dataset
into 5 folds and ran each experiment 5 times per each fold
and category. Each time 4 out of 5 folds were used as a test
set (n = 139). The fifth fold (n = 35) was not used in the
case of zero-shot experiments (Exp. 1-3) and was used as a
source for fine-tuning (referred to as ”few-shot set” below)
using authentic Turkish responses (Exp. 4,5). Below we
describe each experiment’s settings in more detail.

Exp. 1 Zero-shot with multilingual DistilmBERT. Both Hebrew
training (n=2007) and Turkish test datasets (n = 139)
were used as is, without preprocessing.

Exp. 2 Zero-shot with Hebrew AlephBERT. The Hebrew train-
ing (n = 2007) was used without preprocessing. The
Turkish test set (n=139) was auto-translated into He-
brew.

4by GoogleTranslator from deep translator Python package
5English (En), Finnish (Fi), German (De), Greek (Gr), He-
brew (Iw), Italian (It), Japanese (Ja), Persian (Fa), Tatar
(Tt), Ukrainian (Uk), Uzbek (Uz)
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Table 1: The Instrument in Turkish and English.
Turkish version English version
Anemia Item
Kan testinde kırmızı kan hücre miktarının az olduğu kişiler
anemi hastası olarak tanımlanır. Bu insanlar halsizlikten ve
egzersiz yapmaktaki zorluktan şikâyet ederler. Az miktarda
kırmızı kan hücrelerine sahip anemi hastalarının egzersiz ya-
parken zorluk yaşamalarının nedenini açıklayınız.

A person was found to have low levels of red blood cells
in his blood test (anemia). This person complained to his
doctor about weakness and difficulty to exercise. Explain
how low levels of red blood cells make it difficult for people
with anemia to exercise.

Smoking Item
Sigara dumanı karbon monoksit (CO) gibi birçok zararlı
maddeyi içermektedir. Sigara içerken CO salınımı olur. CO
hemoglobine bağlanmada oksijenden daha etkindir. Sigara
içenlerde yüksek CO seviyesi egzersiz yapmayı zorlaştırmak-
tadır, bu durumu nasıl açıklarsınız?

The smoke from cigarettes contains several harmful sub-
stances, including the gas carbon monoxide (CO). CO is
released from cigarettes while smoking and has a stronger
tendency than oxygen to bind to Hemoglobin. Explain how
high levels of CO make it difficult for smokers to exercise.

Table 2: The categories of the analytic rubric for the Anemia
and Smoking Items. The + and − signs represent if the
category is relevant to the item. The percent indicated the
percentage of the correct answers per category.

Anemia Smoking
Category Name Item Item

a Changes in oxygen levels that
bind to Hemoglobin/RBC − − + 40%

b The role of Hemoglobin/RBC
in oxygen transportation + 45% + 23%

c Changes in oxygen levels
in the body (general) + 29% + 24%

d Changes in oxygen levels
in the cells (micro level) + 10% + 8%

e Oxygen is a reactant
in energy production + 7% + 6%

f Changes in energy/ATP levels + 9% + 9%
g Using the term energy/ATP + 23% + 9%

Exp. 3 Zero-shot with Turkish DistilBERTTurk. The Hebrew
training (n = 2007) was preprocessed and auto-translated
into Turkish (Subsection 2.4.2). The Turkish test set
(n = 139) was used as is.

Exp. 4 Few-shot with Turkish DistilBERTTurk. The training
set consisted of the Hebrew training set as in Exp. 3
combined with the few-shot Turkish set (n = 2007 +
35 = 2042). The Turkish test set (n = 139) was used
as is.

Exp. 5 Few-shot by text augmentation with Turkish DistilBERT-
Turk. The training set consisted of the Hebrew train-
ing set (n = 2007) as in Exp. 3 combined with the
augmented by backtranslation and application of aug-
mentation rules (Subsection 2.4.3) few-shot Turkish
set. The size of the augmented few-shot set varied
from 300 to 400 depending on the number of positive
examples per category. The Turkish test set (n = 139)
was used as is.

We fine-tuned the pre-trained models end-to-end (including
all transformer layers, the pooling layer, and the final dense
output layer) with the Adam optimizer (learning rate = 2e-
6, learning warmup = 600) over 5 epochs to minimize the
binary cross-entropy loss which is consistent with typical
BERT fine-tuning for text classification [11].

3. RESULTS AND DISCUSSION
The performance of the Multilingual models (Exp. 1) was
unsatisfactory (Table 5). We attribute the failure of mul-
tilingual models to generalize to the different subject (S),
object (O), or verb (V) order in Turkish and Hebrew. Both
Turkish and Hebrew have flexibility in word order. For ex-
ample, the sentence ”Red blood cells carry oxygen to the
cells” can be written in Turkish in several ways depending
on the connotation of emphasis on the importance of either
the subject, object, or verb. However, the typical order in
Turkish is SOV. For example, the authentic answer is Turk-
ish ”Alyuvarlar hücrelere oksijen taşır” when translated into
English (preserving the word order) would be ”Red blood
cells to the cells oxygen carry” However, the typical order
in Hebrew would be SVO, as in English. This typological
dis-similarity and zero lexical overlaps between Hebrew and
Turkish (which use entirely different scripts) possibly reduce
the multilingual model’s power of zero-shot language trans-
fer between Hebrew and Turkish[20].

Both zero-shot models based on the automated translation
(Exp. 2 and Exp. 3) showed a significant improvement over
the multilingual models (Table 5). They performed pretty
similarly with a slight advantage towards the AlephBERT-
based model (Exp. 2). However, in our context, the critical
advantage of using DistilBERTTurk is automated transla-
tion in the training stage. After the training is completed,
the real assessment systems based on the resulting models
can work with authentic student responses in Turkish. The
above guided our decision to try improving Exp. 3 models
by fine-tuning using authentic Turkish responses.

The straightforward fine-tuning of the DistilBERTTurk mod-
els (Exp. 4) using a small number (n = 35) of authen-
tic Turkish examples did not improve most models’ perfor-
mance (Table 5). It even was a minor degradation compared
to Exp. 3. The fine-tuning of the DistilBERTTurk models
(Exp. 5) using augmentation performed similarly to vanilla
DistilBERTTurk (Exp. 3). Yet, there was an improvement
(from slight to moderate agreement) for the most problem-
atic category b.

4. CONCLUSIONS AND NEXT STEPS
This paper presents the results of a study on the automatic
scoring of scientific explanations in Biology conducted in
Turkish using state-of-the-art language transfer methods.
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Table 3: Example of student answers to Anemia and Smoking Items in Turkish and English with the corresponding gradings.
Typical Student Answers a b c d e f g
Anemia Item
Egzersiz yaparken enerjiye ihtiyaç duyarız ve
bu enerjiyi oksijenli solunum yapar. Oksijeni
hücrelere alyuvarlar taşır. Eğer hemoglobin az
olursa oksijenli solunum az olur ve açığa çıkan
enerji azalır.

When we exercise, we need energy and oxygen
respiration makes this energy. Red blood cells
carry oxygen to the cells. If the hemoglobin
is low, aerobic respiration will be less and the
energy released will decrease.

− 1 0 0 1 1 1

Smoking Item
Sigara içenler sigaranın yanması sonucu açığa
çıkan CO gazına daha fazla maruz kalır. CO
gazı O2’nin yerine hemoglobinlere bağlanır.
Hücrelere ihtiyacı olan yeterli O2 gazı taşına-
maz. Hücre metabolizmasında aksaklıklar gö-
zlenir. Bu sebeple kaslar daha çabuk yoru-
lur. Çabuk yorulduklardından egzersiz yap-
mayı zorlaştırır.

Smokers are more exposed to the CO gas re-
leased as a result of cigarette combustion. CO
gas binds to hemoglobins instead of O2. The
cells cannot carry enough O2 gas that they
need. Disturbances in cell metabolism are ob-
served. For this reason, the muscles get tired
more quickly. They get tired quickly, making
it difficult to exercise.

1 1 1 1 0 0 0

Table 4: Responses resulting from back translation of the original student response, excluding the duplicates.
Response to Anemia Item lang
Alyuvarlar küçük olduğu için yeterli o2yi taşıyamaz hücreler yeterli besin ve o2 alamaz (original) Tr
Alyuvarları küçük olduğu için yeterince oksijen taşıyamazlar. Hücreler yeterli besin ve O2 alamazlar Fa
Alyuvarlar küçük oldukları için yeterli O2 taşıyamazlar.Hücreler yeterli besin ve O2 alamazlar. Uz
Alyuvarları küçük olduğu için yeterince O2 taşıyamazlar. Hücreler yeterli besin ve O2 alamazlar Iw, En
Alyuvarları küçük olduğu için yeterince O2 taşıyamazlar. Hücreler yeterli besin ve O2 alamıyor Gr, Tt
Kırmızı kan hücreleri küçük oldukları için yeterli O2 taşıyamazlar ve hücreler yeterli besin ve O2 alamazlar. De, Fi
Kırmızı kan hücreleri küçük oldukları için yeterli O2 taşıyamazlar.Hücreler yeterli besin ve O2 alamazlar. It, Uk
Kırmızı kan hücreleri küçük oldukları için yeterli oksijeni taşıyamazlar.Hücreler yeterli besin ve oksijeni alamazlar Ja

Table 5: The results. Category a is not relevant for Anemia Item, so it was evaluated based on Smoking Item only. Kappa
correlation values were interpreted using [13]: poor (< 0.00), slight (0.00 − 0.20), fair (0.21 − 0.40), moderate (0.41 − 0.60),
good (0.61− 0.80), and very good (0.81− 1).

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
Cat. Acc F1 Kappa Acc F1 Kappa Acc F1 Kappa Acc F1 Kappa Acc F1 Kappa

a 0.76 0.76 0.48 0.87 0.87 0.71 0.89 0.89 0.76 0.86 0.86 0.71 0.89 0.89 0.78
b 0.71 0.74 0.26 0.76 0.79 0.40 0.74 0.78 0.33 0.76 0.80 0.38 0.78 0.80 0.48
c 0.75 0.75 0.38 0.81 0.82 0.45 0.79 0.79 0.43 0.78 0.78 0.43 0.77 0.77 0.41
d 0.91 0.91 0.45 0.98 0.98 0.86 0.98 0.98 0.86 0.98 0.98 0.85 0.97 0.97 0.83
e 0.93 0.93 0.50 0.99 0.99 0.89 0.99 0.99 0.89 0.98 0.98 0.79 0.98 0.98 0.84
f 0.82 0.79 0.35 0.95 0.95 0.78 0.95 0.95 0.74 0.95 0.95 0.71 0.96 0.96 0.74
g 0.85 0.87 0.30 0.98 0.98 0.92 0.97 0.97 0.87 0.96 0.96 0.86 0.96 0.96 0.84

mean 0.82 0.82 0.39 0.90 0.91 0.72 0.90 0.91 0.70 0.90 0.90 0.68 0.90 0.90 0.70

Our models, trained based on a non-perfectly automated
translated Hebrew training dataset, were analyzed on au-
thentic responses written in Turkish. Using back translation
for text augmentation, the best-performing models achieved
good and very good agreement with human raters in 5 out of
7 and moderate agreement in 2 rubric categories. Notably,
these two categories (b and c, see Table 2) were also the
hardest to achieve satisfactory performance in the original
Hebrew models [3].

The main limitation of this study is the size of the dataset
used to evaluate the models. We plan to collect additional
data in Turkish to check if the results are robust. Our pre-
vious study in Hebrew estimated the number of required re-
sponses to achieve the satisfactory performance of the mod-
els [3] as 500−900. Following the successful implementation

of the back translation augmentation method in Turkish, we
plan to investigate if the back translation can significantly
reduce these numbers in original Hebrew models.

In Hebrew, our method is already implemented in PeTeL,
a free learning management platform serving about a thou-
sand science teachers in Hebrew and Arabic. We consider
the presented results as a proof of concept of our ability
to generalize our system to other (even very different, like
Turkish) languages using language transfer, with no need
to collect additional training data. Our next steps are to
extend this study to the Arabic language.
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ABSTRACT
It is well–known that personalized instruction can enhance
student learning. AI–based education tools can be used to
incorporate blended learning in the science classroom, and
have been shown to enhance teachers’ ability to prescribe
this personalization. We utilise cluster analysis to reveal
student knowledge profiles from their response data. How-
ever, clustering algorithms typically require the number of
clusters as a hyperparameter, yet there is no clear method
for choosing the optimal number. Motivated by a practical
instance of this foundational problem for a group–based per-
sonalization tool, this paper discusses several variations of
the gap statistic to identify the optimal number of clusters
in student response data. We begin with a simulation study
where the ground truth is known to evaluate the quality of
the identified methods. We then assess their behaviour on
real student data and suggest a stability–based approach to
validate our predictions. We identify an empirical thresh-
old for the number of observations required for a prediction
to be stable. We found that if a dataset had cluster struc-
ture, very small subsamples also showed cluster structure
– large datasets were only required to discern the number
of clusters accurately. Finally, we discuss how the method
enables teachers to tailor their personalization according to
their class environment or teaching goals.

Keywords
Clustering; Gap Statistic; Personalized Instruction

1. INTRODUCTION
In recent years, the increased usage of digital learning envi-
ronments has led to the mass collection of student data [3].
The task of translating these data into tangible insights for
understanding and improving student learning remains an

active challenge. Blending technology into student learning
and providing actionable analytics has massive potential to
support teachers in adopting personalized pedagogy [4, 24,
32, 45]. Personalized instruction has been shown to signif-
icantly enhance learning outcomes by adapting various at-
tributes of the learning procedure, such as the pace and the
contents, to the specific needs of the individual students [6,
56]. The recent development of GrouPer, a learning analyt-
ics tool, has assisted teachers in implementing more person-
alized instruction [39]. The tool was co–designed with teach-
ers and separates students into competency-based knowl-
edge profiles. Whilst participating teachers acknowledged
the power of personalization, they suggested that individ-
ual tailoring would be impractical in real K–12 classrooms,
and that ‘group–based personalization’ would be a viable
compromise between individual adaptation and frontal in-
struction, whilst also supporting social learning. In addition
to competency–based profiling of the students, the teachers
also requested semantic information explaining the knowl-
edge profile that each cluster represents; providing this in-
formation has been shown to enhance teachers’ ability to pre-
scribe personalized learning sequences [39]. GrouPer with its
group–based personalization strategy is currently being inte-
grated into the PeTeL (Personalized Teaching and Learning)
environment1, allowing teachers to blend digital learning re-
sources into their teaching and provide personalized peda-
gogy. Over 1000 physics, chemistry, and biology teachers
have chosen to make the environment accessible to more
than 12,000 students in real classrooms since 2018. In order
to perform a sound analysis, GrouPer must first identify how
many unique knowledge profiles a given activity contains.
This is an instance of a fundamental problem – deciding on
the number of clusters in a dataset. This is relevant for
many applications in education [44, 46], such as discovering
knowledge profiles, adaptive learning and student modelling
[12, 13, 21, 22, 25, 29, 33, 34, 40, 50]. Despite this vast
use, the issue of investigating ways to decide on the num-
ber of clusters in student response data was not studied in
a systematic manner. This is the focus of the current work,
which is motivated, as described above, by an actual EDM
application.

1https://stwww1.weizmann.ac.il/petel/en/home-en/

B. Din, T. Nazaretsky, Y. Feldman-Maggor, and G. Alexandron. Au-
tomated identification and validation of the optimal number of knowl-
edge profiles in student response data. In M. Feng, T. Käser, and
P. Talukdar, editors, Proceedings of the 16th International Confer-
ence on Educational Data Mining, pages 458–465, Bengaluru, India,
July 2023. International Educational Data Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115744
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2. BACKGROUND
In our application, the student responses to each activity
are binary. The number of responses for each activity may
vary from a few hundred responses to many thousands. The
datasets are highly dimensional, where the number of ques-
tions ranges between 5 to 30. Combined with the inherent
noise in human–based data [40], identifying cluster structure,
if it exists, is significantly non–trivial. Unsupervised cluster-
ing learns the natural groups in a dataset from the raw data
alone [20, 26]. This can be difficult, since there is no rigor-
ous definition of a cluster [19]. Cluster analysis is used in
a wide range of applications. Outside of education, it has
found usage in image recognition [17], healthcare [30] and fi-
nance research [14], amongst many others. There are many
algorithms in the literature, such as density–based clustering
(e.g. DBSCAN [11]), distribution clustering (e.g. Gaussian
mixture modelling [8]) and hierarchical clustering [37]. To
avoid placing strict assumptions on our data structure, we
choose the simple yet robust k–means algorithm [20, 31, 49].

The k–means algorithm takes a predefined number of clus-
ters as a hyperparameter, k. One can initialise the cluster
centroids randomly, or choose them strategically to avoid
finding a local minima [54]. Each point is assigned to its
nearest centroid; each centroid is then updated by taking
the mean of all cluster members. This procedure is repeated
until convergence. An alternative framework is the k–modes
algorithm [7, 18], which updates the centroids by taking the
mode of all members, retaining their binary nature. For our
application, since there is no inherent meaning to the cen-
troid, we use the more robust k–means algorithm, which we
found to provide more reliable clustering than k–modes.

3. METHODOLOGY
A handful of methods exist in the literature to identify the
optimum number of clusters within a dataset, denoted k∗.
Classical statistical approaches (e.g. silhouette index [47])
have been used for many decades. X–means works along-
side k–means to estimate k∗ using information criteria [41].
Cluster prediction and validation methods have also been
exploited [9]. Information theoretic approaches [51] and
eigenvalue decomposition methods [16] have recently been
implemented with success. However, the simple gap statis-
tic has remained a consistent contender, and importantly
does not require stringent assumptions to be made on the
dataset. We follow the approach from Tibshirani [53], mea-
suring the quality of clustering at each value of k. We use
the Euclidean metric as a measure for the distance between
two observations. For each cluster, we calculate the total
distance between all members:

Dr =
∑

i,i′∈Cr

∥xi − xi′∥2 = 2nr

∑

i∈Cr

∥xi − µr∥2. (1)

We reduce the complexity to O (nr) by comparing each point
to the cluster centroid, µr. Taking the sum over all clusters,
we obtain the total within–cluster sum of squares (WSS):

Wk =

k∑

r=1

1

2nr
Dr. (2)

As we increase the number of clusters, this quantity will
monotonically decrease. After the optimal number, since
all points are already close to a centroid, the total WSS

plateaus, creating a sharp ‘kink’ at the optimum k. Methods
of detecting this bend have been developed [48], but can be
subjective, particularly for noisy data. To alleviate this, we
utilise the gap statistic [53]; a comparison between the true
sample data and its expectation under an appropriate null
reference distribution, (W ∗

k ):

Gap(k) = E [log (W ∗
k )]− log (Wk) . (3)

We obtain E [log (W ∗
k )] by taking the average of many binary

bootstrapped samples. Finally, k∗ is selected by considering
adjacent values of the gap plot with the selection criterion:

k∗ = min
k

{Gap(k) ≥ Gap(k + 1)− sk+1} , (4)

where sk = sdk

√
1 + 1/B and sdk is the standard deviation

of the bootstrap samples. In our work, we took B = 280,
but we observed no significant difference with varying B.
The gap statistic performs well when clusters are well-separated
and uniform, but fails when the dataset becomes noisy. Prior
work removed the logarithms in Eq. (3) [36]; we observed
no benefit in doing so. Finally, the criterion in Eq. (4) is
not robust; even if the plot has a clear optimum, the crite-
rion fails to identify it correctly. We identify two methods to
successfully overcome both of these issues: the weighted gap
and DD–stopping criterion. The weighted gap approach [57]
is identical to Tibshirani’s approach, but modifies Eq. (2):

W ∗
k =

k∑

r=1

D∗
r =

k∑

r=1

1

2nr(nr − 1)
Dr. (5)

This robust quantity D∗
r represents the averaged sum of the

pairwise distances between all points in cluster r; this averag-
ing reduces sensitivity to outliers. These statistics are inter-
preted as a comparison between a dataset and a truly unclus-
tered distribution, which is crucial for identifying datasets
with no cluster structure. However, the weighted gap statis-
tic is also prone to overestimate the numbers of clusters,
even if there is a clear optimum in the curve. We consider
the alternative ‘DD–stopping criterion’ [57], which compares
adjacent neighbours in the gap curve:

k∗ = max {2Gap(k)−Gap(k − 1)−Gap(k + 1)} . (6)

We have also used this criterion with the Tibshirani gap
statistic. We therefore consider four methods: the gap statis-
tic, the weighted gap statistic, and their DD–stopping cri-
terion variants. Their typical outputs are shown in Fig. 1.
We note that the DD–comparisons not only estimates the
‘dominant’ cluster structure, but also suggests multiple local
maxima. The gap statistic can also produce local maxima
[53]; we only obtained a single maximum in our applications.

On real student data, we do not know the ground truth. We
begin with a simple study on five different structures of bi-
nary synthetic data. In all cases, the dataset will be a matrix
of dimensions ns ×nf , where ns is the number of student re-
sponses and nf is the number of items within the activity. In
the context of this study, we refer to the items as features of
the model. The simplest structure, but perhaps most funda-
mental, is the case when the data has no inherent clustering
(Model N). Here, the data is simply noise: we generate a ma-
trix where each entry is uniformly chosen to be either 0 or 1.
Well–defined cluster structure (Model WC) is generated by
defining a matrix of correct responses and overlaying blocks
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Figure 1: Outputs of the gap statistic, weighted gap statistic,
and their DD–variants as a function of the hyperparameter
k, shown for synthetic dataset R1 (Table 1).

Table 1: Predicted k∗ for a selection of synthetic models. Pre-
dictions denoted ‘F’ failed to satisfy the selection criterion.
DD–local maxima are in brackets. Here, n∗

s = ns/1000.

Synthetic Model k∗ Prediction

Model nf n∗
s k Gap WGap DD–Gap DD–WGap

N1 20 1 1 1 1 – –

WC1 20 1 5 F 8 5 5
WC2 20 1 8 F F 8 8

UWC1 20 1 5 6 F 5 5
UWC2 5 1 3 3 9 3 3

R1 20 1 5 7 5 5 (3, 5) 5 (5, 7)
R2 5 1 3 F 7 3 (3, 6) 3 (3, 7)

UR1 15 1 3 F 8 3 3 (3, 6, 8)
UR2 15 1 5 F 6 3 (3, 5) 2 (2, 4, 6)
UR3 15 10 5 F F 5 2 (2, 4, 7)
UR4 15 1 8 F F 6 (3, 6) 7 (4, 7)
UR5 20 1 5 F F 5 (5, 8) 2 (2, 5, 7)
UR6 32 1 8 F F 7 (3, 7) 2 (2, 5, 8)

of incorrect responses along the diagonal. We assume that
different clusters have students who are weak in particular
skills – a specific block of questions are assumed to measure
a particular skill. For k evenly sized clusters, each block
has dimensions of ns/k×nf/k. To generate psuedo-realistic
datasets with noise (Model R), we allow for the probability
of students slipping (Pslip = 0.1) and guessing (Pguess = 0.2)
[40]. We generate the background matrix where each entry
has a probability of 1−Pslip to be correct. We again overlay
incorrect diagonal blocks but allow for the chance of guess-
ing; each entry has a probability of 1−Pguess to being incor-
rect. Finally, we impose uneven population distributions by
defining the kth triangle number, kt = k(k+1)/2. Each clus-
ter population has an increasing fraction of kt; e.g. cluster n
has n/kt of the total population. This is utilised in the well
clustered and realistic synthetic datasets, Models UWC and
UR respectively. It is worth noting here that the number of
features assigned to each cluster remains constant.

4. RESULTS ON SYNTHETIC DATA
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Figure 2: Outputs of the gap statistic, weighted gap statistic,
and their DD–variants as a function of the hyperparameter
k, shown for the real dataset P2 (Table 4).

A selection of results on synthetic data is shown in Table 1.
On unclustered data (Model N), both the gap method and
the weighted gap method are able to successfully identify
unclustered data. However, on well–clustered data (Model
WC), both methods predicted poorly; as can be seen in Fig.
1, the kink of the plot commonly occurs at the correct k, yet
the stopping criterion proposed by Tibshirani is unsatisfac-
tory. Both the gap and weighted gap methods were found
to suffer from this problem, typically overestimating the
number of clusters within the system. The DD–comparison
methods were found to solve this issue, performing excel-
lently for data with well–separated and compact clusters.
The same results are found with uneven well–clustered data
(Model UWC). On more realistic data (Model R), we see
similar results. Again, the gap and weighted gap methods
are unable to identify the correct number of clusters; how-
ever, they were able to identify that some cluster structure
exists. The DD–comparison methods again performed well.

Finally, on the uneven realistic data (model UR), we see
some interesting results. Model UR1, where each cluster
had 5 features, provided the correct prediction. In Mod-
els UR2–4, the predicted value from the DD–models was
not correct; we can gain some insight by interpreting the
‘strength’ of a cluster. Models UR2 and UR3 have 3 ques-
tions per cluster, whilst Model UR4 has between 1 and 2
questions per cluster. By comparing the labelling of stu-
dents from the synthetic generation to the labels generated
from the clustering, we found that the smallest clusters are
prone to being mislabelled and ‘absorbed’ into the noise of
others. Increasing the number of students within this small-
est clusters has no effect, as seen in comparing Models UR2
and UR3. We conclude that the strength of a cluster with
binary data is determined by the number of questions asso-
ciated with each cluster – in Models UR5 and UR6, each
cluster has 4 features within it and the method is now able
to predict correctly. The DD–gap and the DD–weighted
gap performed similarly. We therefore adopt a two–step ap-
proach: we first apply the gap or weighted gap method to
discern if k > 1, and then use the DD–comparison method
for determining the optimal number of clusters.

5. RESULTS ON STUDENT DATA
The student data considered here was collected from PeTeL
activities in a mixture of subjects (Physics, Chemistry) and
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Table 2: Predicted k∗ for a variety of real student datasets.

Student Dataset k∗ Prediction

ID Number nf ns WGap DD–WGap

P1 17 1572 4 2 (2, 4)
P2 18 726 5 5 (2, 5, 9)

C1 23 943 4 4 (2, 4, 7, 10)
C2 13 216 4 4 (2, 4, 6, 9)

subtopics (magnetism, forces). An example output on real
student data is shown in Fig. 2. Since the signal to noise
ratio is now lower, the original gap statistic curve is much
shallower. Correspondingly, the DD–Gap method does not
provide significantly meaningful predictions, typically find-
ing the optimum number of clusters to be 2; we attribute
this to the algorithm identifying the simple splitting of the
students into strong/weak groups, which does not represent
a meaningful pedagogical contribution. We therefore con-
sider only the weighted gap and DD–weighted gap methods
for the remainder of the paper. In Table 4, we show the
results on real student datasets, with varying numbers of
student responses and items in each learning activity.

Since we do not have a ground truth for these real datasets,
we need to assess the validity of these predictions. If we re-
ceive a prediction that k∗ > 1, how do we know that this k∗

is correct (true positive)? Conversely, if we receive a predic-
tion that k∗ = 1, do we require more data (false negative),
or does the activity have an inherent unclustered structure
(true negative)? Both questions are addressed by consider-
ing the stability of our prediction. There are many methods
of validating the stability of a cluster [9, 27, 52]; we utilise a
resampling method used in similar approaches [28]. A stable
cluster prediction is one that is similar under a small pertur-
bation to the data (e.g. taking a subsample) [5, 55]. Many
methods of cluster stability introduce some figure of merit,
typically measuring the similarity between clusterings. We
choose a simpler (but more practically–oriented) approach,
and compare the predictions of the optimum number of clus-
ters in the resampled dataset. In particular, since we are
focusing on the DD–weighted gap method, we consider the
predictions for the first 2 local maxima. This has a practi-
cal motivation; we do not want to provide teachers with a
number of profiles that is too large to manage. We measure
the validity of our clustering predictions by repeatedly tak-
ing fractional subsamples of our dataset and comparing the
prediction results to those of the complete dataset. In order
to address the second issue of true/false negatives, since we
cannot collect more data, we instead take a dataset which
has previously exhibited clustering (e.g. P1) and take sub-
samples of it. By taking successively smaller fractions, we
attempt to identify some quantitative threshold for a ‘suffi-
cient’ number of student responses.

In Fig. 3, we compare the predictions of the complete dataset
to the predictions on three different fractional subsamples
of the P1 dataset. Unsurprisingly, the positions of the first
two maxima are identical for the largest fraction (90%, cor-
responding to 1415 students), indicating that the prediction
we found was a stable one. We see that there is an increase
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Figure 3: DD–weighted gap plots for three fractions of the P1
dataset: 90% (top), 50% (middle) and 10% (bottom), com-
pared to the full dataset. Each fraction is sampled 10 times.

in variance of the DD–weighted gap plots as we decrease the
fraction to 50% (786 students), but the local maxima are
again identical. Finally, when we take very small fractions,
such as 10% (157 students), we observe significant variance
in the DD–weighted gap curve itself, and the position of
the local maxima now begin to vary. In Fig. 4, we present
the predictions of the first and second local maxima from the
DD–weighted gap as a function of the number of students for
dataset P1. We infer the stability of each fractional subsam-
ple by indicating the frequency of anomalous observations
from the complete dataset.

Our notion of stability allows a prediction on a smaller sub-
sample to be considered stable if the difference is within ±1
of the prediction on the complete dataset, since we expect
only a small change after making a small perturbation to
the dataset. For the dataset shown in Fig. 4, we find that
P1 has a threshold of 550 students. It is worth noting here
that similar numerical thresholds were observed in the other
clusterable datasets; C2 had a threshold of 660 students, P2
had a threshold of 653, and C3 was found to be unstable
immediately. This latter result is not surprising given the
small number of observations in the dataset, which is far be-
low the threshold observed in other datasets. Perhaps the
most interesting result we found is that the identification of
cluster structure required only a remarkably small number
of students. Explicitly, when taking 5% of the P1, P2, C2 or
C3 datasets (with as few as 30 students), an overwhelming
majority of the the weighted gap predictions were still that
k∗ > 1. Although the prediction of k∗ in these small frac-
tions was prone to extreme variation, the method was still
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able to confirm that some cluster structure existed; very few
student responses were needed to discern if a dataset is clus-
terable. Specifically, it suggests that if an activity (with a
reasonable number of responses) is predicted to have k = 1,
then that particular activity likely will not have cluster struc-
ture. In this case, one should investigate the specific activity
more closely, checking for any issues within the dataset and
the data collection procedures itself.

6. DISCUSSION AND CONCLUSIONS
The results on real student data have demonstrated that our
approach is able to provide reasonable predictions, proving
to be robust even in the presence of noise. We have found
that our approach is applicable for a wide range of learning
activities. In particular, our stability verification results sug-
gest that the number of responses is not a limiting factor in
identifying if cluster structure exists. The method proposed
is also completely generic in that it does not rely on any
subject–specific knowledge. Although the interpretation of
the clusters (e.g. as knowledge profiles) may vary between
applications, we expect that this approach should be appli-
cable as a generic tool for identifying cluster structure in a
wide range of educational contexts.

A usability-oriented aspect that may influence our decision
for the number of clusters is that, in reality, teachers may
be constrained in the number of clusters that they are capa-
ble of treating simultaneously. This consideration provides a
further secondary justification for why the DD–weighted gap
method was selected. Providing teachers with multiple good
clustering solutions allows them to choose how many clusters
they want to work with enables the tool to be useful in a va-
riety of situations; if there are additional teaching assistants
in the classroom, or the activities require addtional care and
attention, then the teacher may choose to split the class into
more/fewer groups as required. Predictions on datasets with
an insufficient number of responses will be inaccurate, but
may only deviate by a couple of clusters. For our application,
it could be argued that it is acceptable to provide teachers
with a non-optimal recommendation. Moreoever, the tool is

intended to be a recommendation, allowing teachers to over-
ride the suggestions if they deem it to be necessary – this is
crucial for maintaining trust in the tool [38].

Applying this method in real environments requires careful
data collection; it is very easy for a dataset to become very
noisy. Some environments allow activities to be customized
by teachers, enabling them to remove, modify or rearrange
items, inserting inconsistencies into the data. Noise may
also result from cheating, making responses unrepresenta-
tive of authentic student performance [1, 2]. Such sources
of noise (amongst others) are typical for real educational ap-
plications [10, 15, 43, 58], and our process handled them in
various ways (e.g., excluding activities modified by teachers).
We note that the theoretical basis for an activity to be suit-
able for clustering is yet to be established and a better under-
standing of the types of assessment for which cluster analysis
is theoretically justified is an interesting direction for future
research. We expect clusters to exist in multi–dimensional
activities that involve several binary skills (or skills with
very steep learning curve) with some interconnections among
them. However, in assessments that make the assumptions
of IRT (normally distributed uni/multi–dimensional data),
clusters may simply not exist.

In this work, we have evaluated common options for decid-
ing on the optimum number of clusters within a dataset,
and discussed their application on binary student data. We
have compared these methods on synthetic data where the
ground truth is known. We also found some insights into
the factors determining the strength of a cluster; the num-
ber of features that comprise a cluster is important. This
synthetic study formed the basis of our method applied to
real student data; we discern if cluster structure exists by us-
ing the weighted gap method, and then subsequently deter-
mine the precise number of clusters using the DD–weighted
gap method, as in [57]. We described an approach to val-
idate the predictions from our method based on fractional
resampling [28], and found an empirical threshold for the
number of responses to have a stable prediction, typically
around 500–600 student observations. Interestingly, we also
found that if a data had cluster structure, then the exis-
tence of structure was observable with only a small handful
of responses. This suggests that large datasets are only im-
portant in identifying the precise number of clusters. Our
final contribution is the flexibility to the teachers, providing
them with options of ‘good’ clustering solutions that they
can apply according to the class environment and pedagogi-
cal goals. However, the challenge of providing pedagogically
meaningful information about the strengths/weaknesses of
each cluster is still outstanding. Methods of providing expla-
nations of the knowledge profiles have already been studied
in the literature, automatically building pedagogically mean-
ingful explanations from item-level metadata [23, 35, 42].
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Muñoz-Merino, and D. E. Pritchard. Copying@ Scale:
Using harvesting accounts for collecting correct
answers in a MOOC. Computers & Education,
108:96–114, 2017.

[2] G. Alexandron, L. Y. Yoo, J. A. Ruipérez-Valiente,
S. Lee, and D. E. Pritchard. Are MOOC Learning
Analytics Results Trustworthy? With Fake Learners,
They Might Not Be! International Journal of
Artificial Intelligence in Education, 29:484506, 2019.

[3] R. Baker and G. Siemens. Educational Data Mining
and Learning Analytics. In The Cambridge Handbook
of the Learning Sciences, pages 253–272. Cambridge
University Press, Cambridge, UK, 2014.

[4] R. S. Baker. Stupid tutoring systems, intelligent
humans. International Journal of Artificial
Intelligence in Education, 26(2):600–614, 2016.

[5] A. Ben-Hur and I. Guyon. Detecting Stable Clusters
Using Principal Component Analysis. In Functional
Genomics: Methods and Protocols, pages 159–182.
Humana Press, Totowa, NJ, 2003.

[6] B. S. Bloom. The 2 sigma problem: The search for
methods of group instruction as effective as one-to-one
tutoring. Educational researcher, 13(6):4–16, 1984.

[7] F. Cao, J. Liang, and L. Bai. A new initialization
method for categorical data clustering. Expert Systems
with Applications, 36(7):10223–10228, 2009.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, 1977.

[9] S. Dudoit and J. Fridlyand. A prediction-based
resampling method for estimating the number of
clusters in a dataset. Genome biology, 3(7):1–21, 2002.

[10] A. Dutt, M. A. Ismail, and T. Herawan. A systematic
review on educational data mining. IEEE Access,
5:15991–16005, 2017.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, pages 226–231.
AAAI Press, 1996.

[12] H. Gabbay and A. Cohen. Exploring the Connections
Between the Use of an Automated Feedback System
and Learning Behavior in a MOOC for Programming.
In Educating for a New Future: Making Sense of
Technology-Enhanced Learning Adoption: 17th
European Conference on Technology Enhanced
Learning, EC-TEL 2022, pages 116–130, 2022.

[13] H. Gabbay and A. Cohen. Investigating the effect of
automated feedback on learning behavior in moocs for
programming. In Proceedings of the 15th International
Conference on Educational Data Mining (EDM 2022),
pages 376–383, 2022.

[14] M. C. Gupta and R. J. Huefner. A cluster analysis
study of financial ratios and industry characteristics.
Journal of Accounting Research, 10:77–95, 1972.

[15] S. Gupta and A. S. Sabitha. Deciphering the
attributes of student retention in massive open online
courses using data mining techniques. Education and

Information Technologies, 24(3):1973–1994, 2019.

[16] Z. He, A. Cichocki, S. Xie, and K. Choi. Detecting the
Number of Clusters in n-Way Probabilistic Clustering.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(11):2006–2021, 2010.

[17] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler.
Fuzzy cluster analysis: methods for classification, data
analysis and image recognition. John Wiley & Sons,
1999.

[18] Z. Huang. Extensions to the k-means algorithm for
clustering large data sets with categorical values. Data
mining and knowledge discovery, 2(3):283–304, 1998.

[19] L. Hubert and P. Arabie. Comparing partitions.
Journal of classification, 2(1):193–218, 1985.

[20] A. K. Jain. Data clustering: 50 years beyond K-means.
Pattern recognition letters, 31(8):651–666, 2010.

[21] T. Kabudi, I. Pappas, and D. H. Olsen. AI-enabled
adaptive learning systems: A systematic mapping of
the literature. Computers and Education: Artificial
Intelligence, 2:100017, 2021.
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APPENDIX
A. ADDITIONAL SYNTHETIC DATA RESULTS
Table 3: Predicted k∗ for a selection of synthetic models.
Predictions denoted ‘F’ failed to satisfy the selection crite-
rion. Predictions marked by † were incorrect despite having
a clear optimum. DD–local maxima are in brackets. Here,
n∗
s = ns/1000.

Synthetic Model k∗ Prediction

Model nf n∗
s k Gap WGap DD–Gap DD–WGap

N1 20 1 1 1 1 – –
N2 20 10 1 1 1 – –
N3 5 1 1 1 1 – –

WC1 20 1 5 F† 8† 5 5
WC2 20 1 8 F† F† 8 8
WC3 8 1 3 F† 3 3 3
WC4 6 1 2 F† 3 2 2
WC5 6 10 2 F† F† 2 2

UWC1 20 1 5 6† F† 5 5
UWC2 5 1 3 3 9† 3 3
UWC3 15 1 8 F† F† 8 8

R1 20 1 5 7 5 5 (3, 5) 5 (5, 7)
R2 5 1 3 F 7 3 (3, 6) 3 (3, 7)
R3 15 1 8 F F 8 (3, 5, 8) 8 (3, 5, 8)
R4 15 10 8 F F 8 (3, 5, 8) 8 (3, 5, 8)

UR1 15 1 3 F 8 3 3 (3, 6, 8)
UR2 15 1 5 F 6 3 (3, 5) 2 (2, 4, 6)
UR3 15 10 5 F F 5 2 (2, 4, 7)
UR4 15 1 8 F F 6 (3, 6) 7 (4, 7)
UR5 20 1 5 F F 5 (5, 8) 2 (2, 5, 7)
UR6 32 1 8 F F 7 (3, 7) 2 (2, 5, 8)

B. ADDITIONAL REAL DATASET RESULTS
Table 4: Predicted k∗ for a variety of real student datasets.

Student Dataset k∗ Prediction

ID Number nf ns WGap DD–WGap

P1 17 1572 4 2 (2, 4)
P2 18 726 5 5 (2, 5, 9)

C1 23 943 4 4 (2, 4, 7, 10)
C2 13 216 4 4 (2, 4, 6, 9)
C3 14 292 1 –
C4 14 379 1 –
C5 14 300 1 –
C6 13 241 1 –
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ABSTRACT
Even though Azerbaijan is considered a highly educated
country from the perspective of schooling years and com-
pleted education level, student learning outcomes are under-
performing, according to the World Bank. Due to limited
resources such as classroom size, access to world-class edu-
cational materials, and high-qualified teachers, particularly
students from under-resourced communities encounter more
challenges during their education life compared to other stu-
dents who possess these resources. Moreover, online ed-
ucational platforms play an important role in eliminating
learning gaps, particularly in developing countries such as
Azerbaijan. In this paper, we describe the implementation
and impact of utilizing an online educational platform, the
Khan Academy, in one of the under-resourced communities
of a developing country. For this, we collaborated with a
school in Azerbaijan located in a suburban area. After col-
lecting data through surveys, we applied the association rule
mining method. Results from association rule mining con-
cluded that students who studied using the online platform
improved their grades and the gamification features of the
Khan Academy motivated them. Furthermore, even though
it was the first time the school used an online educational
platform, almost all students mentioned they would like to
learn with these resources in the future. Our study, thus,
contributes to how online educational technologies can pos-
itively impact the motivation and learning outcomes of stu-
dents in under-resourced communities.

Keywords
association rule mining, educational technology, gamifica-
tion, online education, Khan Academy

1. INTRODUCTION
Online learning refers to learning and other supportive re-
sources that are available through a computer. The digi-
tal spaces where online learning happens are called online

educational platforms (OEPs). OEPs generally contain ed-
ucational content in different formats such as videos and
articles. In some cases, OEPs can also analyze the learning
of students based on their interaction inside the platform
and provide feedback to improve their learning outcomes
[7]. During COVID-19, OEPs played an important role in
softening the negative impact of the pandemic on educa-
tional activities [2]. The utilization of the OEPs can bring
opportunities for students who do not have access to high-
quality education, and this can positively alter students’ at-
titudes toward the schools as well as the learning process [6].
After using the OEPs, students enhance their learning per-
formance and become more motivated in the learning pro-
cess since it guides them to have more meaningful learning
behaviors [28]. Students’ attitudes towards the OEPs pos-
itively change due to various reasons such as being able to
track the progress over learning duration, and the possibility
of viewing the educational content anytime [4]. One of the
reasons why students’ attitudes and motivations changed
positively is because OEPs started using the gamification
elements in their platform to increase engagement [46].

Gamification is the application of game design elements (bad-
ges, points, digital coins, etc.) in non-game contexts [15].
[35] and [3] researched the effect of gamification on the mo-
tivation of students. They found that gamification motivates
students to attempt harder tasks and develop the informa-
tion literacy skills necessary for success. Moreover, previ-
ous studies also found that the utilization of gamification
within the learning process can also bring cognitive out-
comes. For instance, [30] found that gamification positively
affects student retention. They also found that gamification
contributes positively to the growth of learners’ attitudes
and interests at schools. In the research of [19], they de-
signed a gamification plugin to collect students’ data and
they found that students who completed the assignments in
the gamified environments got higher scores. While they
made the statement that gamification can possess an emo-
tional and social impact on students that motivate them,
gamification may not be the best way to increase motiva-
tion for all students. [19] highlighted that gamification envi-
ronments can also discourage students if they do not acquire
the goals within the gamified learning process. In addition to
students’ motivation and engagement, gamification can also
positively impact students’ grades [22]. [25] researched the
impact of gamification on the students’ carefulness. They
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of khan academy in the under-resourced communities. In M. Feng,
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found that students indicate a higher level of carefulness
when they perform their educational activities in the gami-
fied environment and being more careful towards the assign-
ments increased their grades.

This paper aims to investigate the impact of using OEPs in
under-resourced communities and we used Khan Academy
as an online educational platform. Khan Academy is one
of the largest online educational platforms and it gamifies
the learning process by adding gamification elements. Fur-
thermore, our study adds to previous research from different
perspectives. Firstly, previous research has been limited to
exploring the implementation and impact of OEPs in other
countries, and to our knowledge, no prior study has been car-
ried out in Azerbaijan on the topic of the impact of OEPs
and their gamification features on students’ learning. Sec-
ondly, even though the research on the usage of gamification
and OEPs in under-resourced communities has been carried
out, the number of participants in these studies was limited
[1, 21, 50]. However, in our study, 207 students partici-
pated within 6 months. Thirdly, recent articles [36, 9, 34]
investigated the utilization of Khan Academy and the im-
pact of its gamification features on students’ learning. Our
study fills the gap by focusing on primary school students
in under-resourced communities and we measure how the
gamification features impact students’ both motivation and
grades.

2. LITERATURE REVIEW
2.1 Online educational platforms
Both students and teachers benefit from the OEPs from dif-
ferent perspectives. For teachers, functionalities of OEPs
can help in analyzing the learning process and students’
learning outcomes in a detailed way [48] and they use OEPs
for assigning additional exercises for students who would like
to eliminate the learning gaps [33]. For students, OEPs of-
fer the chance to study individually chosen topics and one of
the significant advantages is to be able to replay the videos
as much as they need which may not be possible at school.
Additionally, some OEPs possess a complementary learning
experience where the learner can do the follow-up exercises
after watching videos or reading articles. Some research
showed that using OEPs can positively impact students’
learning. [5] mentioned that OEPs improve the students’
ability to learn outside the classroom, and if combined ef-
fectively, then online and offline learning platforms can help
students to understand the subject better. Furthermore,
some of the researchers conducted research on the imple-
mentation of the OEPs to measure their impact on students’
learning. [27] investigated the effect of using online educa-
tional content for a month for a math class. They found
that there is a positive correlation between the number of
studied online educational content and students’ achieve-
ment. [10] examined the causal impact of online education
on the academic performance of students. They found that
online educational activities have a positive impact on the
exam performance of students. [10] highlight the importance
of the content played a crucial role, the lectures that were
recorded by higher- quality teachers produced better exam
results. In addition to this, [21] and [29] also researched
the effect of OEPs on students’ performance. Even though
they both mentioned the positive impact of OEPs on the
students’ learning, according to them, other factors should

be taken into account within the learning process such as
the quality of content and user experience of the platform.
Moreover, Khan Academy is also one of these OEPs, and
some research concentrated on investigating the utilization
and implementation of Khan Academy in the classroom.

2.2 Khan Academy
Khan Academy1 is a non-profit educational organization cre-
ated in 2008 by Salman Khan. The organization aims to cre-
ate a set of online tools that help in providing education to
anyone everywhere. Inside the platform, students can watch
videos, read articles, and do exercises to study the selected
topic. Furthermore, Khan Academy is currently available
in more than 50 languages and Azerbaijani is one of them.
In our research, we collaborated with the team who leads
the localization of the Khan Academy into the Azerbaijani
language to measure the impact of the platform on students
through a pilot project.

Khan Academy is also one of these OEPs that are used in
the classrooms. [9] and [34] measured the impact of using
Khan Academy on the grades of students. [9] measured the
causal effects of Khan Academy by recruiting 103 students
from the 6th and 7th grades. They mentioned that while the
expected improvement was 10%, the students showed a 16%
improvement in scores. From another perspective, [34] inves-
tigated the impact of using Khan Academy on 75 students
from the 7th grade and they concluded their research with
positive feedback from both students and teachers. Accord-
ing to [34], even though there are better sources to learn,
Khan Academy motivates students more since it also in-
cludes some engagement features such as badges. Moreover,
[23] predicted the effectiveness of Khan Academy’s MAP
Accelerator which is a mathematics mastery learning plat-
form. They collected data from 181000 students in grades
3-8 across the United States. [23] found that students from
high ELL (English Language Learners) districts did not have
the same benefits from the use of the MAP Accelerator as
their peers. Additionally, according to them, students from
these districts were prone to improve 5.3 skills on average
per hour, while this number was 7.2 for mid-ELL and 8.9
for low-ELL. Khan Academy also utilizes advanced analyt-
ics tools to analyze the learning of students [14]. [42] de-
scribes the ALAS-KA provides an extension of the learning
analytics support for the Khan Academy platform. ALAS-
KA includes also visualized dashboards which allow teachers
to analyze the students’ learning process. And it also helps
students to reflect on their learning.

Gamification is one of the tools that Khan Academy uti-
lizes to increase the learning outcomes of students. Within
this framework, they implement various gamification fea-
tures such as badging, collecting experience points, etc. [36]
researched the gamification of computer science content on
Khan Academy. According to them, Khan Academy ad-
dresses the short-term engagement in the platform success-
fully by using gamification and this motivates the learner
to move further. However, they concluded their research
by mentioning the lack of meaningful gamification because
this gamification model is not user- centric. [36] mentioned
this because in the platform learners collect points without

1www.khanacademy.org
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matching them to the underlying activities. This does not
make the gamification “playful”. From another perspective,
[41] researched the gamification features of Khan Academy.
[41] conducted research on the learning of freshmen students
in the topics of physics, chemistry, and mathematics. In this
research, they particularly focused on the badging gamifica-
tion feature of Khan Academy. They found that gaining
badges increased their motivation to study more and they
felt more motivated by gaining repetition because they were
easier to get.

2.3 Gamification
Starting from the early 2010s, gamification was started to
be used in the education context to increase learning pro-
ductivity. Some OEPs utilize such gamification elements to
improve the user experience [44]. One example of this can
be Duolingo where while learning new words, the user col-
lects the badges and points, then is eventually promoted to
the next league in Duolingo [39]. The most common gam-
ification elements are badges, leaderboards, virtual goods,
etc. [12], [18], and [17] investigated how one of the gamifi-
cation elements, badges, impacts students’ learning. Badges
are graphical symbols or icons given as a reward for certain
accomplishments in class such as being an active student, do-
ing all the homework, and getting the badges [20]. According
to [12] and [17], using badges positively impact the learning
outcomes of students and improves students’ grades. They
observed that utilizing badges increased the students’ moti-
vation in the classroom. Nonetheless, [1] found that utilizing
badges can negatively impact the motivation of students. [1]
mentioned that when the students earned fewer badges com-
pared to other students, it decreased their motivation.

From another perspective, [38, 11] concentrated on how the
leaderboards impact students’ motivation and learning pro-
ductivity. Leaderboards are used to enhance engagement
through social comparisons. In the leaderboards, all the
participants try to collect points, and based on their points,
they are sorted from the most to the least points [31]. Even
though the research results of [38], [11] showed leaderboards
increase the engagement, motivation, and grades of students,
[8] suggests that the implications of leaderboards can also
lead to failure. Because, for example, in the case of the
research by [32] and [37] leaderboards did not positively im-
pact the motivation of certain groups in the classroom. The
reason for this was that students who were at the bottom
part of the leaderboard mentioned that it was impossible for
them to catch up with the leaders. Thus, at a certain point,
they decided to drop out.

Gamification is not limited only to badges, and leaderboards.
For instance, [43] used avatars while [13] used virtual goods
to increase the motivation of the students. Furthermore, [26]
researched the impact of gamification by creating two differ-
ent groups of students. The first group received a gamified
curriculum and the second group received the same curricu-
lum but without gamification elements. Their research re-
sulted with showing the negative impact of gamification on
students. They found that students who studied without a
gamification-based curriculum scored higher in the final ex-
ams. [16] conducted a systematic literature review on the
implementation of gamification in education. In this system-
atic review, [16] found that gamification has a great potential

to improve learning if it is designed well and coordinated cor-
rectly. They also found that the majority of papers report
positive feedback on using gamification in education since it
increases the engagement of students, their attendance, and
participation in voluntary activities. [24] researched a case
study where a student dropped out the school and demon-
strated why gamification could change this. [24] discusses
that the student was very engaged and motivated about
his classes once his teacher was using gamification elements
such as rewards. However, with the new academy year, his
teacher and their teaching methods changed, then his grades
also drastically decreased. [24] hypothesizes that “gamifica-
tion if conducted globally and interconnected within mul-
tiple subjects, can act as a protective factor against early
school living.”

3. METHODOLOGY
3.1 Context of the study
This research analyzes the impact of using Khan Academy
on the learning of students who were part of the pilot project
supported by the Ministry of Education of the Republic of
Azerbaijan. The project took place in one of the suburban
areas of Baku, Azerbaijan, where the graduation level and
student participation are lower (around 70%) than in other
parts of the country. The project continued from the be-
ginning of October 2021 until the beginning of April 2022.
In this pilot project, students were introduced to using the
math content of Khan Academy for the primary school lev-
els. The focus group was the 3rd and 4th-grade students.
The pilot project was designed in a way that each month
around 50 students joined the project. Within this month,
they were supposed to learn how to use the platform and
then commence studying the topic that they were eager to.
Since some students wanted to revise or study the topics that
they could not learn in the previous years, they started to
study the 1st-grade topic N the platform. Furthermore, at
the end of the month, students were offboarded and instead
of them, new around 50 students are onboarded. This hap-
pened 6 times and in total, 207 participated in the project.
Even though Khan Academy holds different gamification
features, we collected data about badging and collected ex-
perience points of students on the platform. We asked them
to highlight three points from their Khan Academy (Ap-
pendix C).

3.2 Participants
Students were recruited by sending an information letter to
the teachers 15 days in advance. All parents and teachers
signed the consent forms to participate in the research. In
addition to that, special research permission got also re-
ceived from the school administration. We provided the
tablets to all students and they answered the survey ques-
tions with the guidance of teachers. We held an additional
online session with teachers to explain to them how the
survey should be fulfilled. At last, all the students who
participated in the pilot project fulfilled the survey. We
gathered data from 207 students who studied in the 3rd
or 4th grades (3rd grade students=53.6%, 4th grade stu-
dents=46.4%). 53.6% of students mentioned that they iden-
tify themselves as “male”, and the remaining 46.4% selected
the “female” option. The vast majority of students (81.2%)
participated on all days of the project and only 2.6% of

468



Table 1: Students’ feedback on the future usage of the platform and the platform’s impact on their grades

Item N Mean Max value Min value Standard deviation
Evaluation of the project 157 4.87 5 2 0.55

Minutes spent on the platform 157 255.06 695 28 189.59
Points collected in the platform 157 26807.62 413839 30 43448.83

students mentioned that they missed the classes more than
5 times. On average, the students spent 255.0641 minutes
(SD=189.5876 minutes) on Khan Academy, and the average
experience points that the students collected were 43448.83
(SD=26807.62 points).

3.3 Data collection and analysis
We collected the data 2 through surveys. While preparing
the questions for the survey, we aimed to collect informa-
tion about the profiles of students and their performance on
Khan Academy (Appendix A). To understand the profiles
of students, we asked them to mention their gender, grade,
how they evaluate the research project, the number of par-
ticipation days, whether using Khan Academy changed their
grades or not, and their thoughts about using the platform
in the future. To collect the responses, we defined several
dates (16.04.2022, 18.04.2022, 20.04.2022) with the princi-
pal of the school. Because based on the feedback from the
principal, the survey was complicated for the students to ful-
fill by themselves, and they needed the support of teachers.
Due to ethical issues, parents had to confirm the participa-
tion of the students in the research, and consent was already
collected at the beginning of the project when the students
joined. Moreover, the main teacher of each class contacted
the students to participate in the research. All the students
who participated in the pilot project fulfilled the survey in
the agreed sessions in the school together with the support
of teachers and Khan Academy representatives. To facilitate
the process, we also conducted one introductory session for
the teachers so that they can answer any upcoming ques-
tions from the students. Based on the feedback from the
teachers, no problems emerged within the survey fulfilling
sessions. Moreover, to analyze the data, we implemented an
association rule mining technique where we included vari-
ables collected through the survey.

4. RESULTS
4.1 The impact of the platform on the motiva-

tion and grades of students
We asked the students to evaluate their experience at Khan
Academy. Table 1 demonstrates the responses of students
to that question. The students mentioned their thoughts
about the platform by giving points from 1 to 5 (1: Very
bad, 2: Bad, 3: Normal, 4: Good, 5: Very good). While
none of the students mentioned that their experience was
very bad, 92.36% of students evaluated Khan Academy as
“very good” and the average evaluation score was 4.87. Fur-
thermore, students spent 255.06 minutes and they collected
26807.62 points on the platform on average. Secondly, we
asked the students to mention whether they will use Khan
Academy in the future. Almost all of the students (96.8%)

2The datasets generated and analyzed during this study are
available from the corresponding author on request.

mentioned that they will use Khan Academy as an addi-
tional source to improve their learning outcomes. Subse-
quently, we measured whether after using Khan Academy,
their grades changed. Students could select one of these
three options: 1) grade increased; 2) grade remained stable;
3) grade decreased. 68.6% of students answered that their
grades increased after using Khan Academy and 29.5% men-
tioned that their grades did not change.

4.2 Association rules
After the application of the Apriori algorithm, we found
three main associations that improved students’ motivation
and learning. Table 2 indicates the association rules that
we found after holding data analysis. The explanation of
each variable is explained in Appendix B. The minimum
support was 0.5 and the highest support was 0.81 among fu-
ture yes and participation fully variables (confidence=0.98).
In Table 2, all rules were generated when the minimum sup-
port was 0.5. The confidence in the rules (minimum sup-
port=0.5) varied from 51% to 99%. Table 2 also shows the
generated association rules, their support, and confidence.
From Table 2, we can see that 80.7% of the students, who
fully participated in the pilot project, said that they will
use Khan Academy in the future. And 67.3% of students,
who mentioned that they plan to use Khan Academy in the
future, increased their grades. Moreover, we found three
major associations that confirmed the positive impact of
the pilot project. Firstly, students who earned the Mete-
orite badge mentioned that they plan to use Khan Academy
in the future (support=0.58, confidence=0.97). Meteorite
badges are earned in the initial parts of Khan Academy and
it is used to motivate the learner. The association that we
found shows that earning the Meteorite badge motivated
students and they increased their grades. Secondly, the stu-
dents who fully participated in the classes increased their
grades (support=0.62, confidence=0.74). Last but not least,
the male students and 3rd- grade students are more prone
to utilize Khan Academy in the future (support rate=0.5,
confidence=0.98 and support rate=0.53, confidence=0.54 re-
spectively).

When we decreased the minimum support to 0.4, then we
also found that students who fully participated in the ses-
sions and increased their grades are more prone to use Khan
Academy in the future. Furthermore, the students who re-
ceived Meteorite badges and fully participated in the classes
mentioned that they will utilize the platform in the future.
Lastly, based on the generated rules mentioned in Table 2,
we can conclude that both full participation in the classes
and increasing grades after using Khan Academy motivated
students more to use Khan Academy in the future. More-
over, based on the generated association rules, we can see
that getting Meteorite badges motivated students to par-
ticipate in the classes and continue using Khan Academy
further. Last but not least, students who identify them-
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Table 2: Association rules with support≥ 0.5, their support, and confidence

generated association rules support confidence
futureyes → grade3rd 0.53 0.54

futureyes → gendermale 0.5 0.52
participationfully → badgemeteorite 0.5 0.6

participationfully → gradechangegrades increased 0.62 0.74
participationfully → futureyes 0.81 0.98
futureyes → badgemeteorite 0.58 0.6

futureyes → gradechangegrades increased 0.67 0.69
participationfully, futureyes → gradechangegrades increased 0.61 0.75
futureyes, gradechangegrades increased → participationfully 0.61 0.9
futureyes → participationfully, gradechangegrades increased 0.61 0.63

selves as ”male” and students from the 3rd grade are more
motivated to utilize Khan Academy in the future.

5. DISCUSSION
This paper presents the analysis of implementing online ed-
ucational platforms to increase the motivation and learning
outcomes of students. In this research, we investigated the
case of using particularly Khan Academy as a tool to im-
prove students’ grades and engagement. [49] and [51] also
researched the Khan Academy’s impact. [49] mentions that
it is very important that the teacher supports the students
while using Khan Academy and this research found that
Khan Academy can motivate students to do more exercises
that directly affect their learning positively. Moreover, [51]
highlighted the flipped classroom which included the Khan
Academy promoted retention and enhanced students’ under-
standing. In our research, we can also mention that teacher
assists students and it brings an extra engagement factor.
Students mainly utilized Khan Academy in the school with
the guidance and support of the teachers in our research and
as [49] mentioned, it helped students not to deal with tech-
nical problems rather than focus on the learning process.
Furthermore, similar to [49] and [51], we also found that
Khan Academy increases the students’ motivation. Moti-
vation is one of the most factors to increase learning and
while the mentioned authors measured the students’ moti-
vation by asking them directly, we analyzed their motivation
by asking whether they wanted to use the platform in the
future or not [45].

Gamification was also one of the important features that
make Khan Academy more engaging from the perspective of
students [36]. In our research, we found that students who
fully participated in sessions and earned badges (Meteorite
badge on Khan Academy) are the ones who also increased
their grades. Here, we observe the positive impact of gami-
fication on students’ grades. Even though [47] and [40] con-
ducted their research in different regions (Brazil and Spain
respectively), they also found that the gamification features
of Khan Academy increase the engagement and motivation
of students and this directly affects the students’ grades.

6. CONCLUSION AND FUTURE WORK
Online educational platforms enhanced students’ motivation
and learning productivity in different cases. And gamifica-
tion is also mentioned as one of the most impactful tools
to increase engagement inside these online educational plat-
forms. We found that in under-resourced communities, on-

line educational platforms, particularly Khan Academy, pos-
itively affect students’ grades and motivation. Moreover,
gamification increased the willingness of students to spend
more time on the platform and use Khan Academy in the
future as part of their education. Furthermore, in this re-
search, we focused on primary school students in Azerbaijan,
and as an extension of this study, the following points can
be investigated. The first potential extension of this paper
can be conducting research with secondary school students.
Khan Academy helps students to go back to the subjects
that students did not understand and study that particu-
lar topic. Hereby, secondary school students possess more
subjects studied previously. Thus, conducting this research
by focusing on secondary school students may indicate the
impact of Khan Academy from a different perspective. The
second potential extension of this research can be imple-
menting the pilot project within the scope of other social
sciences subjects. In our research, math was selected as the
subject to implement within the pilot project. Nevertheless,
the studying patterns of each subject are various.

Although all the students, who were part of the pilot project
that was supported by the Ministry of Education of the Re-
public of Azerbaijan, fulfilled the survey, these students live
in the same community. Thus, the research would provide
more detailed results if we were able to collect data from
other parts of the country. However, since it was the first
time that this project was implemented, only one school
was selected. Moreover, due to the scope of the project, we
could not collect various information from students. And it
affected the minimum support value that we defined. Ini-
tially, we defined the support value as 0.7, however, this
value did not provide enough association rules to analyze.

6.1 Ethical concerns
Before starting the data collection, we informed both stu-
dents and parents about the aim of the research and we
mentioned that at any phase of the research, they can opt-
out to participate and withdraw. Additionally, in the survey,
we did not ask any questions that can identify participants.
Some parents and students did not want the learners’ data
to be collected and these students did the same activities
with their peers, however, their data were not collected in
any form. Moreover, anonymized data were stored in a se-
cure database. Last but not least, there were not any kinds
of potential legal, physical, or social harm to students.
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[11] M. Ćwil. Leaderboards–a motivational tool in the
process of business education. In Joint International
Conference on Serious Games, pages 193–203.
Springer, 2020.

[12] L. da Rocha Seixas, A. S. Gomes, and I. J.
de Melo Filho. Effectiveness of gamification in the
engagement of students. Computers in Human
Behavior, 58:48–63, 2016.

[13] L. de Marcos Ortega, A. Garćıa-Cabo, and E. G.
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[40] J. A. Ruipérez-Valiente, P. J. Muñoz-Merino,
C. Delgado Kloos, et al. Detecting and clustering
students by their gamification behavior with badges:
A case study in engineering education. International
Journal of Engineering Education, 33(2-B):816–830,
2017.
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APPENDIX
A. SURVEY QUESTIONS

1. What grade are you in? a. 3rd grade b. 4th grade

2. What is your gender? a. male b. female c. other
(please specify)

3. How would you evaluate the platform? 1 (Very bad) -
2 (Bad) - 3 (Normal) - 4 (Good) - 5 (Very good)

4. How many days did you participate in the project? a. I
participated all days. b. I missed 1-2 days. c. I missed
3-4 days. d. I missed more than 5 days.

5. What badges did you earn on the platform? a. Me-
teorite b. Moon c. Earth d. Sun e. Black Hole f.
Challenge patches

6. How many minutes of study time did you have during
the project?

7. How many practice points (XP) did you collect on the
platform?

8. How has your math grade changed since using the plat-
form? a. My grades increased. b. My grades decreased.
c. My grades remained stable.

9. Do you want to use the platform in the future? a. Yes
b. No

B. ACRONYM OF THE VARIABLES
• future yes: the students who mentioned that they would

use Khan Academy in the future

• badge meteorite: the students who received meteorite
badges on Khan Academy

472



• gradechangegrades increased: the students who increased
their grades during the project

• gendermale: the students who identify themselves as
male

• grade3rd: the students who study in the 3rd grade

• participationfully: the students who participated in whole
days of the project

C. COLLECTED DATA FROM STUDENTS’
PROFILE ON KHAN ACADEMY

• Badges that they earned on the platform. Badges are
one of the gamification tools to increase engagement
on Khan Academy and active users are awarded badges
based on different accomplishments. On Khan Academy,
users can earn six various types of badges (Challenge
badges - special awards for completing topic challenges
on Computing courses; Meteorite badges - common and
easy to earn when just getting started; Moon badges
- uncommon and represent an investment in learning;
Earth badges - require a significant amount of learning;
Black Hole badges - the rarest Khan Academy awards;
Sun badges - require impressive dedication).

• Experience points (XPs) that they earned. By watch-
ing videos, reading articles, and doing exercises, the
user can earn points on Khan Academy and we asked
the students to highlight how many XPs they earned.

• Learning duration. Khan Academy counts the number
of minutes spent on the platform while doing learning
activities such as watching videos and solving problems
and students mentioned this in the survey.
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ABSTRACT
ChatGPT is a state-of-the-art language model that facili-
tates natural language interaction, enabling users to acquire
textual responses to their inquiries. The model’s ability to
generate answers with a human-like quality has been re-
ported. While the model’s natural language responses can
be evaluated by human experts in the field through thorough
reading, assessing its structured responses, such as lists, can
prove challenging even for experts. This study compares
an openly accessible, manually validated list of “course con-
cepts,” or knowledge concepts taught in courses, to the con-
cept lists generated by ChatGPT. Course concepts assist
learners in deciding which courses to take by distinguishing
what is taught in courses from what is considered prereq-
uisites. Our experimental results indicate that only 22%
to 33% of the concept lists produced by ChatGPT were
included in the manually validated list of 4,096 concepts
in computer science courses, suggesting that these concept
lists require manual adjustments for practical use. Notably,
when ChatGPT generates a concept list for non-native En-
glish speakers, the overlap increases, whereas the language
used for querying the model has a minimal impact. Addi-
tionally, we conducted a qualitative analysis of the concepts
generated but not present in the manual list.

Keywords
Language Models, Course Concepts, Computer Science

1. INTRODUCTION
ChatGPT is a state-of-the-art natural language processing
(NLP)-based artificial intelligence (AI) chatbot system re-
leased by OpenAI on November 30, 2022, and can answer
any question you enter in a dialogue format. For example,
in education, it can be used to answer simple code genera-
tion and short essays, and early reports say that the system
has surprisingly excellent quality in many tasks. However,
its answers may contain factual or logical errors. For codes,
essays, and other textual items longer than a sentence, a

teacher or expert can read them and find errors. However,
for those with simpler structures, such as lists, it is difficult
for even teachers to detect errors.

In Massively Open Online Courses (MOOCs), typically, learn-
ers can freely choose which courses to take. The concepts
taught in MOOCs are important for learners to decide which
courses to take because the concepts help learners under-
stand what they should learn in the course and what are
prerequisites. Since it is time-consuming for a teacher to
create a list of concepts in a course, methods were previously
proposed to generate the list directly from course transcripts
or course materials [1]. However, even while using these, we
still need to collect transcribed courses and materials.

If we ask ChatGPT to “tell us about concepts that will be
important in computer science learning,” will it be possi-
ble to produce a high-quality list of concepts automatically?
To determine this, it is necessary to evaluate the quality
of ChatGPT’s output, but human teachers are not good at
evaluating list formats.

2. DATASETS
In this study, we need a list of manually identified concepts.
If the concept list is based on use within a specific school or
region, it may have been based on assumptions about the
educational system of that school or region. For example,
a list of concepts from a particular university might include
the name of the computer systems of that university, or what
is learned in high school in the country where the university
resides might be treated as something known by all learners
and not included in the list. Since it is undesirable to use
such a biased list for evaluation, we used concept lists for
MOOCs.

[1] offers an openly available MOOC concept list. Their goal
was to create concept lists automatically from course tran-
scripts. For this purpose, the concept lists were manually
extracted from course transcripts of eight computer science
courses on Coursera, a well-known website for MOOCs in
English. The list has 4,096 concepts in total. Subsequent
works by [1], such as MOOCCube [2] and MOOCCubeX [3],
contain much larger lists of concepts. However, these data
are Chinese concepts based on XuetangX, a MOOC system
whose courses are predominantly in Chinese. Although En-
glish translations of these data sets are also provided, we
did not use them in this study because they raise the ques-
tion of whether the list of concepts used in Chinese courses

Y. Ehara. Measuring similarity between manual course concepts
and chatgpt-generated course concepts. In M. Feng, T. Käser, and
P. Talukdar, editors, Proceedings of the 16th International Confer-
ence on Educational Data Mining, pages 474–476, Bengaluru, India,
July 2023. International Educational Data Mining Society.
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Table 1: Overlap Rate with Manual List.

Lang. for Prompt Gen. for what students Overlap rate

English (not specified) 0.222

English Japanese 0.315

Japanese Japanese 0.336

corresponds directly to the list of concepts in English.

Many studies have created academic wordlists or lists of
technical terms in English, but it is difficult to strictly de-
fine “academic” or technical terms in these studies. Unlike
these studies, in this study, we focuse more specifically on
course concepts that learners actually learn in online com-
puter lectures. Thus, words such as “introduction,” which
are academic in the sense that they are often used in aca-
demic papers but do not express specific concepts in a field,
are excluded from the concepts.

3. EXPERIMENTS
In this study, three lists were created for three use cases,
assuming a variety of students. First is the use case in which
we want to list the concepts that English-speaking students
need to learn when studying computer science in English.
Second is the use case in which we want to list the concepts
that Non-Native English Speaker (NNS) students need to
learn when studying computer science in English. Last is
the use case in which we want to do this for NNS students
by asking ChatGPT in the students’ native language instead
of English. Japanese was chosen as the language other than
English.

The list was generated using ChatGPT. Input to a language
model such as ChatGPT to generate something is called a
“prompt”. For example, the following prompt was used to
ask ChatGPT to list concepts that Japanese students would
need in an English computer science course.

• “List 40 concepts that Japanese students need to learn
when they study computer science in English online
courses on computer science.”

The reason for specifying 40 concepts is the length limitation
of the answers. However, ChatGPT can also ask questions
related to the previous question. Therefore, the following
additional prompt will generate a list of 40 concepts that
are different from the previous one: “List another set of 40
concepts that differs from the previous one.” By entering
additional prompts like this, a total of about 120 responses
can be obtained for each use case. For English-speaking
students, we used the prompt in which the word “Japanese”
was simply removed from the aforementioned prompt.

4. RESULTS
Table 1 lists the “overlap rate” as the percentage of concepts
generated by ChatGPT included in the list of manually con-
firmed concepts. Note that the list of manually identified
concepts is more comprehensive, since the list of manually
identified concepts is 4,096, while only about 120 are gen-
erated by ChatGPT. “Lang. used for prompt” indicates the

Table 2: Generated but not in Manual List.

relational database, normalization, bus, decidability,
transaction, huffman coding, primitive recursive func-
tion, float, array, private key, run-length encoding,
captcha, object-oriented programming, turing ma-
chine, rest, digital signature, loop, arithmetic coding,
brute force

language used for the question, and “Gen. for what stu-
dents” describes the adjective before the word “student” in
the prompt example above, such as “Japanese”. As shown in
Table 1, the highest percentage was generated for Japanese
students in Japanese. Conversely, there was no significant
difference in the overlap rate for the languages used, i.e.,
“Lang. used for prompt”.

The reason for this is future work. Qualitatively, when
the type of student was not specified, the generated con-
cepts tended to have more abbreviations for practical con-
tent than for theoretical content. Also, specifying “Japanese
students” may have implicitly specified generating concepts
for university students because studying abroad is more pop-
ular among university students. Table 2 shows the words
that were not included in the manually generated list for
Japanese students in Japanese. Thus, qualitatively, all words
appear to represent“concepts”. The reasons why these words
were not included are also covered in our future work. No-
tably, the human-made concept list used in this study was
made by annotating words that appeared in the actual spo-
ken lectures. Thus, it could be possible that these concepts,
although relevant to the courses, tend to be related but are
actually not frequently spoken during courses.

5. DISCUSSION
In this study, the course concept lists generated by Chat-
GPT were compared to manually generated concept lists.
The resulting overlap values between ChatGPT-generated
course concepts and manually-created course concepts were
low. However, the generated course concept lists do not ap-
pear to be low quality since almost all of them represent
some concepts of informatics, although the overlap values
were low.

Hence, the main result of this study, the overlap values, are
limited in its generalizability. The low overlap values could
possibly indicate that ChatGPT and other language models
cannot generate high-quality course concept lists. However,
there are other possibilities, as follows.

First, the generated human course concept list may not be
exhaustive, while we employed seemingly the most exhaus-
tive manually-created course concept list to the best of our
knowledge. In this case, the overlap values would be low
regardless of the performance of ChatGPT in generating
course concept lists.

It is also important to note that there is a five-year gap be-
tween 2017 when the human-handled course concept list was
built [1], and 2022, when ChatGPT was introduced. Hence,
it is possible that the low overlap values do not indicate
ChatGPT’s limited capabilities but rather that the trends
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in informatics have changed over the past five years.

Furthermore, ChatGPT itself is updated daily. Therefore,
if the latest version of ChatGPT is used, it is likely that the
overlap values may be improved without any special efforts.

6. CONCLUSIONS
ChatGPT is known for its ability to generate text in a vari-
ety of formats. Text fluency can be more easily evaluated by
native speakers by reading, while evaluation of list format is
difficult for humans. In this study, we evaluated the proper-
ties of lecture concept lists, which are important for learners
to select lectures, by having ChatGPT generate them. Com-
pared to an exhaustive human list of 4096 lecture concepts
in the field of computer science, only up to 33% of the list
generated by ChatGPT was included in the human list of
lecture concepts. This indicates that the focus of ChatGPT
as a lecture concept list is different from the focus of human
beings when creating a lecture concept list.

If the number of lecture concept lists is small, there will
naturally be lecture concepts that are not included in the
list, even if they were created manually. This time, we used
the most comprehensive list of lecture concepts in a single
field that has been created manually. On the other hand, the
list was biased toward one field, computer science. Future
work will be to evaluate the generation of lecture concept
lists by ChatGPT for other fields as well.
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ABSTRACT
Recent works in educational data mining emphasize the need
for producing practical insights that enhance learning. There
is particular interest in supporting student writing by gen-
erating actionable feedback using machine learning algo-
rithms. While algorithmic efficiency is generally sought after
in machine learning, it might not be the most important as-
pect to consider for ’explainability’. This paper presents a
predictive model for argumentative writing feedback where
explanations supported by Local Interpretable Model-agnostic
Explanations (LIME), SHapley Additive exPlanation (SHAP),
and logic are derived to generate insights for designing stu-
dent feedback on argumentative writing. It discusses the
computational trade-offs and insights derived that inform
writing feedback in practice, with lessons transferable to
other contexts.

Keywords
explainable, feedback, predictive models, argumentation, writ-
ing, educational data mining, learning analytics, black box

1. INTRODUCTION
A common usage of data in education involves the develop-
ment of machine learning models that can provide predic-
tions, recommendations, and personalised support for learn-
ers, connecting fields such as Educational Data Mining (EDM),
Artificial Intelligence and EDucation (AIED), and Learning
Analytics (LA) [10]. Yet, the complex algorithms in these
models create a ’black-box’ effect, making the variables that
contribute to the final prediction unclear (Intrinsic opacity)
[2] [6]. This phenomenon is challenged by the emergence of

∗Antonette Shibani
†Ratnavel Rajalakshmi

Explainable Artificial Intelligence (XAI) as a field of research
for models that offer interpretability and trustworthiness [3]
[8].

The need for explainability becomes even more eminent when
designing feedback for student-facing tools where impact on
learning is at the forefront. Feedback-based LA systems gen-
erally include the provision of automated feedback to learn-
ers that closes the loop from the analytics generated [17] [5].
Automated tools can provide additional feedback to learn-
ers in a quick, consistent way at a scale that humans can’t
provide, although noting that students may engage with it
in different ways based on their automated feedback literacy
and critical engagement skills [12]. For actionable feedback
to be provided by LA tools and to increase learner trust, the
foundation lies in explainable LA that can help provide ap-
propriate explanations for the decisions by machine learning
models [4].

Argumentation is a critical skill for humans as they routinely
engage with conflicting information and inconsistencies aris-
ing out of them [1]. Teaching argumentation is often inte-
grated into writing curricula through the use of argumen-
tative essays, with recent efforts in analyzing and providing
automated feedback on these essays [15] [16]. While progress
has been made in identifying and analyzing argumentation
in data sets, for instance using argument mining [7], there
is a need for more work on providing actionable feedback to
learners to improve their argumentation skills. This can be
expanded by the work in writing analytics that supports the
provision of automated feedback to improve writing skills,
where feedback to improve students’ higher order competen-
cies such as argumentation has been a recent focus [11].

In this study, we present an approach to designing an ex-
plainable machine learning model that supports the provi-
sion of feedback to learners in argumentative writing. We
discuss the specific case of building a predictive model for
argumentative writing quality and explain our approaches
and findings examining what works best for explainability
and feedback design. We demonstrate exemplary methods
for developing explainable models for learner feedback and
how it can impact educational practitioners who design this
feedback and point out avenues for future work.
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2. OUR APPROACH
Data for this study came from the Dagstuhl-15512 ArgQual-
ity Corpus [14] - a standard annotated corpus commonly
used for argumentation studies. The corpus contained 320
arguments manually coded for 15 dimensions of argumenta-
tion quality by three annotators with the overall score met-
rics: Low, Average, or High. The corpus consisted of 16 dif-
ferent issues (topics for arguments), with a for and against
stance for each issue. The data set distribution across the
different quality metrics is highly imbalanced, reflecting how
this data occurs in the real world. Table 1 shows examples
from the dataset.

Our approach to building the prediction model for argumen-
tation quality is as follows. To start with, the arguments
were pre-processed by filtering out the non-arguments, re-
moving stop words and punctuation, and stemming the words.
The ground truth was established by consolidating the anno-
tations for argumentation quality (low, average, high) only
considering rows where at least two annotators agreed on the
quality. This process removed inconsistencies in the cod-
ing, reducing the number of arguments to 261. The four
dimensions identified by authors of the data set as key qual-
ity indicators: overall quality, cogency, effectiveness, and
reasonableness [14] were taken for modeling as the other
sub-dimensions were too fine-grained for automated analy-
sis. The data, vectorized using bag-of-words, was then used
to build predictive models for argumentation quality, using
two approaches discussed next.

In the baseline approach, the vectorized arguments were
used to train Logistic Regression, Decision Tree, Random
Forest classifiers, and a Neural Network to predict the over-
all quality. Hyperparameter tuning was performed using
an exhaustive grid search on the Logistic Regression, Deci-
sion Tree and Random Forest models, and model parame-
ters used are shown in Table 2. While this approach would
likely work for evaluating the overall quality of arguments,
it will only be able to provide minimal insight for generating
feedback (which is often an end goal when opting for more
explainable models).

In the proposed approach, we introduce a two-stage model
to predict the overall quality of the argument along with the
other underlying dimensions (cogency, effectiveness, and rea-
sonableness) to enhance model explainability. Three classi-
fiers (Models 1, 2, and 3) individually trained on the vector-
ized arguments to predict the three underlying dimensions
constituted the first stage of the model. The four machine
learning algorithms used in the previous approach were also
employed in this context to find the best-performing classi-
fier. The second stage of the model used a single classifier
(Model 4) trained on a vector formed by augmenting the
one-hot encoding of the underlying dimensions with the vec-
torized argument to add further context (Training stage 2).
This classifier predicts the overall quality. For the final two-
stage model, the argument vector was passed to the stage
1 classifiers, and the best-performing models were used for
predicting each of the three dimensions (Table 4). These
predicted dimensions were encoded and augmented to the
original argument text vector, which was then fed to the
stage 2 classifier to predict overall quality. The steps are
shown in (Figure 1)

We use two existing tools to interpret the models in this
study for explainability. The first, Local Interpretable Model-
Agnostic Explanations (LIME) offers local explanations by
explaining the classifier for a single instance [9]. We used
LIME to extract explainable features from the Logistic Re-
gression model predicting argumentation quality in our work.
The second, SHapley Additive exPlanation (SHAP) uses
Shapely values for finding values of the features that in-
fluence the model’s scoring. SHAP was used to provide
explanations for the Decision Tree model predicting argu-
mentation quality.

3. FINDINGS AND DISCUSSION
A weighted average has been taken for precision, recall,
and F1 score to account for class imbalance to evaluate
the results of the baseline model (Table 3). The Decision
Tree model, though not the best-performing model, is rule-
based and can easily provide explanations for the decisions
it makes, hence demonstrated in this study for better ex-
plainability. The Bag-of-Words representation was chosen
as it provides information on the occurrence of words in the
argument and can provide insight into the overall quality
of the argument, thus enhancing the explainability of the
system. In this model, the decision taken in each node is
based on the presence or absence of a particular token in
the argument. Using the nodes of the tree one can arrive
at a rule-based system to provide feedback to the learner.
For instance, a node in the decision tree can indicate as
follows: if the argument contains any word containing the
token “discov” (discover, discovery, etc.) or ”found”, then
the argument is most likely to be of higher quality. An ex-
planation for these rules might be that the arguments based
on discoveries and findings of others are higher quality be-
cause they include validated claims. This feedback can then
be used to suggest adding evidence or links to supporting
research to strengthen the argument made.

The proposed 2-stage model improves the explainability of
results using the additional underlying dimensions. The cho-
sen classifiers for each model and their results are displayed
in Table 4. Some classifiers like the Logistic Regression clas-
sifier were chosen to predict the overall quality as it offers
better model explainability. This trade-off for explainability
where an easier-to-interpret model is used even if it yielded
lower scores than the black box model is a way to tackle
the intrinsic opacity in algorithmic decision making [2] [6].
The final two-stage model, after integrating stages one and
two, achieves a weighted F 1 score of 0.59. Further explo-
ration of model results can identify insights into words and
dimensions that indicate better quality argumentation for
improved feedback. This was explored using logistic regres-
sion results from the 2-stage model.

The logistic regression model’s feature coefficients can re-
veal the impact of individual words on predicting argument
quality. Table 5 shows sample words and their coefficients
with the three coefficients corresponding to the three levels
of qualities. The word ’found’ had the highest coefficient,
correlating with average overall quality, suggesting its pres-
ence impacted the argument’s average quality coding. An
argument example with ’found’ coded as average is in Table
1, and similar impactful words can be studied for providing
feedback. Since the model was trained on the augmented
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Table 1: Examples from the dataset with selected rows and columns

id argument issue stance overall qual-
ity

arg219206 Americans spend billions on bottled water every year.
Banning their sale would greatly hurt an already strug-
gling economy...

ban-plastic-
water-
bottles

no-bad-
for-the-
economy

3 (High)

arg219259 Bottled water is somewhat less likely to be found in de-
veloping countries, where public water is least safe to
drink...

ban-plastic-
water-
bottles

no-bad-
for-the-
economy

2 (Average)

arg219213 Estimates variously place worldwide bottled water sales
at between $50 and $100 billion each year, with the mar-
ket expanding at the startling annual rate of 7 percent...

ban-plastic-
water-
bottles

yes-
emergencies-
only

1 (Low)

Table 2: Hyperparameter tuning for baseline models

Model Parameters
Logistic Regression ’C’:1.0, ’dual’: False, ’fit intercept’:True, ’penalty’:none, ’solver’:’sag’, ’max iter’:5000

Decision Tree ’criterion’: ’gini’, ’max features’: ’log2’, ’splitter’: ’best’
Random Forest ’bootstrap’:True, ’class weight’:’balances’, ’criterion’:gini, ’max features’:none,’n estimators’:300,

’oob score’:False, ’warm start’:False

Figure 1: Proposed 2-stage model to predict the overall quality of an argument

vector containing the three underlying dimensions, the same
coefficient method can be extended to examine the dimen-
sions as well. From Table 6, we see that if the argument
had average effectiveness, then the overall quality of the
argument is more likely to be average. Similarly, Reason-
ableness has the highest positive and negative coefficients,
implying its greater impact on overall quality than other di-

mensions. Thus the feedback provided can be to improve
the reasonableness of arguments by explaining the reason
behind a stance by using words like ”reason”, ”explain”, and
”because”(derived from the arguments with high reasonable-
ness). Table 6, also displays that Low Cogency contributes
the most to Low Overall Quality. Feedback can thus suggest
avoiding uncertain language (Words like ’would’ and ’think’;
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Table 3: Performance of the different classifiers in the baseline model for predicting overall quality

Classifier Accuracy Precision Recall F1 Score
Logistic Regression 0.62 0.57 0.62 0.59

Decision Tree 0.59 0.58 0.59 0.58
Random Forest 0.62 0.56 0.62 0.58
Neural Network 0.61 0.60 0.61 0.60

Table 4: Performance of the chosen intermediate classifiers

Predicted Dimension Best Model Metrics
F1 score Precision Recall Accuracy

Cogency Neural Network 0.56 0.55 0.58 0.58
Effectiveness Neural Network 0.56 0.54 0.59 0.59

Reasonableness Neural Network 0.56 0.55 0.58 0.58
Overall Quality Logistic Regression 0.87 0.87 0.87 0.87

Table 5: Feature coefficients for the word tokens in logistic
regression in the 2-stage model

Word Coef 1 Coef 2 Coef 3
(Low) (Average) (High)

discov -0.024 0.035 -0.011
found -0.015 0.019 -0.004

although -0.036 -0.077 0.044

Table 6: Feature coefficients for the underlying dimensions
in logistic regression in the 2-stage model.

Dimension Low Average High
Low Cogency 0.335 -0.162 -0.173

Average Cogency -0.146 0.434 -0.288
High Cogency -0.189 -0.272 0.461

Low Effectiveness 0.199 -0.090 -0.109
Average Effectiveness 0.045 0.329 -0.374

High Effectiveness -0.245 -0.239 0.484
Low Reasonableness 0.268 -0.135 -0.132

Average Reasonableness -0.126 0.513 -0.386
High Reasonableness -0.141 -0.378 0.519

derived from low cogency arguments) for higher-quality ar-
gumentative writing.

Figure 2: A sample testing instance using LIME for Logistics
Regression classifier

Figure 3: SHAP summary plot for the Decision Tree classi-
fier

Figure 2 demonstrates how LIME can be used to derive ex-
planations for a sample instance, using the 2-stage model to
predict the overall quality. The figures display the features
and their weights as a table (left) and a bar chart (right),
in decreasing order of relevance. The feature ’reasonable-
ness avg’ having a weight of 0.15, is the most significant
attribute that supports the instance’s average overall qual-
ity. The absence of topic-related words (as per the argu-
ment’s context) such as “father”, “creation”, “marriag” and
“theori” (weights are 0) suggest NOT average overall quality
- the presence of such relevant words might indicate higher
quality arguments instead. A useful feedback can then be to
include more in-depth content related to the topic for higher
argumentation quality.

SHAP’s summary plot (Figure 3) illustrates the features and
their shapely values which attribute more to each target
class. The main feature contributing to the prediction of
overall argument quality as average is cogency avg. Simi-
larly, the word ’said’ supports the overall quality to be high
or average. The word ’idea’ contributes to the overall qual-
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ity being majorly average, possibly pointing to a plan, sug-
gestion, course of action, opinion, or belief, which enhances
the argument’s overall quality. These frameworks and ex-
planations when evaluated and incorporated into a tool can
help generate automated feedback on writing for improving
argumentation.

4. CONCLUSION
Our study demonstrates using explainable predictive mod-
els for designing feedback for learners. We used a 2-stage
model to predict argumentation quality in writing, consid-
ering sub-dimensions of quality along with the argument
text to enhance explainability. We demonstrated different
methods to tackle the intrinsic opacity of algorithms such
as the selection of easier-to-interpret models, tailoring the
models for particular purposes, choosing features that con-
tribute to better feedback, and decoding model results at
different stages to provide actionable feedback. The contri-
bution is hence in presenting an example of a generalisable
approach to develop explainable models for feedback. Our
methods for using explainable models to inform feedback
design apply to various contexts with algorithmic decision-
making. These approaches can improve the design of ma-
chine learning-based feedback tools that provide learners
with interpretable and actionable feedback.

The study is a proof of concept for building explainable mod-
els to generate feedback using a small size argumentative
writing data set and demonstrated feedback design for the
specific context. Future work can build on this work by
expanding to larger data sets and examining finer-grained
details in the models to provide actionable feedback. While
the analysis of the corpus provided insights into argumen-
tation, getting input from educators and co-designing with
them is required for a more deliberate design of feedback.
This can help validate findings from the model to translate
to feedback for classroom practice [13].
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ABSTRACT
This paper studies the problem of automatically adjusting
the difficulty level of educational exercises to facilitate learn-
ing. Previous work on this topic either relies on large data-
sets or requires multiple interactions before it adjusts prop-
erly. Although this is sufficient for large-scale online courses,
there are also scenarios where students are expected to only
work through a few trials. In these cases, the adjustment
needs to respond to only a few data points. To accommo-
date this, we propose a novel difficulty adjustment method
that requires less data and adapts faster. Our proposed
method refits an existing item response theory model to
work on smaller datasets by generalizing based on attributes
of the exercises. To adapt faster, we additionally introduce
a discount value that weakens the influence of past interac-
tions. We evaluate our proposed method on simulations and
a user study using an example graph theory lecture. Our re-
sults show that our approach indeed succeeds in adjusting
to learners quickly.

Keywords
Dynamic difficulty adjustment, Intelligent tutoring system,
Computer adaptive practice, Personalized difficulty, Knowl-
edge tracing

1. INTRODUCTION
In computer-based learning, it is important to solidify newly
learned content through exercises [16]. Appropriately tailor-
ing the difficulty level of these exercises has a positive effect
on learning gains and motivation [8, 23]. Exercises too diffi-
cult could lead to anxiety, whereas exercises too easy could
lead to boredom, thus the importance of balance, dubbed the

state of flow [10]. Consequently, there have been attempts to
automatically adjust the difficulty in computer-based learn-
ing settings. Individual works refer to this idea using differ-
ent keywords, such as computer adaptive practice [21, 29],
adaptive curriculum [4], or personalized difficulty [41]. In
this paper, we use the term Dynamic Difficulty Adjustment
(DDA) [18, 26].

Many works on DDA for educational purposes focus on large-
scale applications, similar to Massive Open Online Courses
(MOOCs). In particular, most of them rely on one of two
prerequisites. Either they require large prerecorded datasets
to pre-train their models, which can mean up to months’
worth of data [4, 21], or they require many interactions
per user until they start adapting well [21, 24, 28]. This
is not suitable for cases where students only complete a lim-
ited number of exercises, for example, when introducing a
new concept in higher math or logic. Educational DDA
approaches that do not rely on large datasets or many iter-
ations, often break down the learning objective into distinct
Knowledge Components (KCs) that students should master
[5, 9, 27]. However, defining these KCs can be a laborious
task that requires extensive expertise in the subject matter
[22]. In certain cases, it is more straightforward to identify
exercise attributes instead. For example, in arithmetic exer-
cises, key attributes might include the magnitude of numbers
involved or the number of computational steps required. In
graph theory, difficulty may hinge on the graph’s size and
complexity.

For cases where exercise attributes are easier to define than
KCs, we propose a novel DDA algorithm based on Item
Response Theory (IRT) that alleviates the aforementioned
problems of few iterations and small datasets. IRT mod-
els are used to predict students’ future success in a task
based on past interactions [20]. In DDA they can be used
to provide a user with exercises that they can solve with a
predefined success probability. Traditional IRT models as-
sume that the students have a constant ability level. To fix
this, we introduce a discount factor that weakens the influ-
ence of past interactions. Because of the lack of massive
datasets, the model cannot learn the difficulty of each exer-
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M. Feng, T. Käser, and P. Talukdar, editors, Proceedings of the 16th
International Conference on Educational Data Mining, pages 482–
489, Bengaluru, India, July 2023. International Educational Data
Mining Society.

© 2023 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.8115740

482



cise individually as IRT-based approaches normally do. By
adapting the IRT model to be trained on exercise attributes,
our algorithm can generalize the difficulty between exercises.
We test our proposed method on an example graph theory
lecture with both simulations and a user study. In both ex-
periments, our algorithm succeeds in quickly adjusting the
difficulty so that the students obtain our defined success
rate.

2. RELATED WORKS
Current DDA methods for exercises in educational settings
can be divided into four major techniques. The first cate-
gory is adapting the difficulty based on handcrafted scoring
systems [3, 33, 34]. Here, the students get a score for each
completed exercise. This score is then compared to expert-
written thresholds to decide which difficulty level will be pro-
vided to the student next. The downside of such approaches
is that a lot of domain knowledge and time is needed to
handcraft good scoring systems for different topics.

The second category is based on the field of Knowledge Trac-
ing (KT). KT addresses the problem of predicting the stu-
dent’s success on an unseen future task given the history
of his learning and task attempts [1]. For DDA, KT can
be used to predict the success rate of each possible exercise
and provide the most suitable one to the student. Leyzberg
et al. [24] and Schodde et al. [36], for example, do so
by using Bayesian Knowledge Tracing (BKT) which models
how likely it is that a student already learned different KCs.
Aside from BKT, other models that require KCs to repre-
sent exercises include Performance Factor Analysis (PFA)
[27] and Additive Factor Model (AFM) [5, 6]. Based on
this, BKT, PFA, and AFM can provide exercises for KCs
that the student likely has not learned yet. However, if ex-
ercises are not distinguishable by different KCs, these mod-
els cannot select suitable exercises because all the exercises
would be equivalent to the model. In such scenarios, a KT
model that can distinguish exercises without relying on KCs
is required. The most prominent examples of this are Item
Response Theory models (IRT) like the One-Parameter Lo-
gistic (1PL) [31] or Four-Parameter Logistic (4PL) [2] model.
These models work by learning an ability value for the stu-
dent and comparing it to the learned difficulty values of each
exercise. However, these models are not suitable for DDA
since they assume that the student’s ability is constant.

The third category of DDA approaches in educational set-
tings is based on the ELO system. ELO was first introduced
for chess [14] where it assigns a rating for each player and
tries to pit players with similar ratings against each other.
After each interaction, the ratings are updated. Klinken-
berg et al. [21] were the first to use ELO for DDA. Instead of
modeling the ratings of different players, they assign a rating
to each individual exercise and each student using the ELO
system. In this way, students can be given exercises that
match their rating. Recent years saw several variations of
ELO-based DDA for education [28, 35, 40]. However, for the
scenario we envision, there are two main drawbacks. First,
these ELO-based systems require datasets with several rep-
etitions of each individual exercise to learn their individual
difficulty rating, with [28] requiring 100 interactions per ex-
ercise item. Second, the learning rate in the ELO system
is scenario-dependent. Handcrafting such a value is difficult

when the goal is fast adaptation without overshooting.

The final category of DDA approaches for education use Re-
inforcement Learning (RL). Belfer et al. [4] and Zhang et
al. [41] use RL to directly choose individual actions that
should be provided to the student next. However, both of
their approaches require extensive datasets to pre-train their
models. Clement et al. [7] used RL to decide whether there
should be another more difficult exercise for the same KC or
an exercise for another KC. This requires experts to design a
carefully crafted curriculum with multiple paths that covers
all possible scenarios, which is not feasible for many appli-
cations. Another drawback of RL-based DDA approaches is
that they require long sequences of interactions to be able to
explore different state-action pairs before they can adapt to
the student. This makes them unsuitable for scenarios with
a limited number of interactions.

In addition to education, there is also a large amount of work
on DDA in games. Because of the quick pace of games, many
DDA techniques in games can afford to use large amounts
of interactions and data [39].For example, Moon et al. [25]
used 60.2M data points for pre-training. However, there
also have been works on DDA for games that focus on fast
adaptation using little data. One group of work here used
procedural content generation [11, 12, 17]. These methods
rely, at least in part, on the ability to procedurally gener-
ate game levels based on the previous game level. This is
not possible for many educational scenarios where exercises
are handcrafted by experts. Finally, Fernandes and Levieux
[15] aim to quickly adapt to players without using any pre-
recorded data points. To this end, they use the first 20
interactions of each new player to generate a dataset for lo-
gistic regression. While this is feasible for fast-paced games,
it requires too many interactions to work with topics like
math or logic, where each exercise may take minutes.

We propose a new DDA approach to address the drawbacks
of the aforementioned approaches for cases where it is hard
to define KCs and only a limited number of exercises and
prerecorded data is available. We use an IRT model based
on attributes to learn the difficulty values for all exercises
based on a limited set of prerecorded data points. To quickly
adapt to new students, we add a discount value to the model
update to weaken IRT’s assumption of constant skill.

3. APPROACH
To adjust the difficulty, we need a model that describes the
student’s behavior, and then a method to decide on the dif-
ficulty based on that. We describe this process in the fol-
lowing.

3.1 Student Model
The student model contains a set of student attributes and
provides the probability of observing each possible student
action. In our case, the set of possible actions is the suc-
cess of or failure to solve an exercise. For our educational
scenario, we find that the 4PL model [2] is a good fit. It
is feasible to train on small-scale datasets. It also models
the guess and slip probabilities - the chances of accidentally
getting the exercise right or wrong - which is an inherent fea-
ture of the kind of exercises we work with. The original 4PL
model, describing the probability of a student ui solving an
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exercise qj , is written in Equation 1.

psolve(ui, qj) = c+ (d− c) 1

1 + e−aj(θi−bj)
(1)

where θi describes the student’s ability, aj defines the dis-
criminatory power of the exercise, i.e. how sharply the ex-
ercise can distinguish students of different ability levels, bj
the exercise difficulty, c the probability that the user guesses
the correct answer, and d the probability that the user does
not slip with a wrong answer. In our scenario where all the
exercises are of the same nature, we find that every exer-
cise should have the same discriminatory power. Therefore,
we learn a single value of a that applies to every exercise
j. The difficulty bj will also not be learned separately for
each exercise, as each exercise in our dataset has far too few
samples. Instead, we calculate bj from the attributes of our
exercises which will be explained in Section 4.1. This is done
by learning weights w⃗ for the attributes:

bj = ⃗attrj · w⃗ (2)

where ⃗attrj is the vector listing the attributes of the exercise,
for example, the number of vertices and edges of a graph.
Through this, we learn a shared set of weights for all the
exercises instead of learning bj for each exercise individually.

3.2 Training Exercise Parameters
We separate the training process of our model into two steps.
The first step is fitting the global parameters of the exercises
on prerecorded data. The second step is to fit the student
ability of each student during deployment. This two-step
training is inspired by Xu et al. [38] and has been shown to
work well and efficiently. The model we train in the first
step is the original 4PL model. The parameters we want
from this are the attribute weights w⃗ and the a, c, d values
from the 4PL model introduced in Section 3.1. Naturally,
we do need to include the student ability θ for the training
to work, but we will not use this θ further after training. We
optimize the joint maximum likelihood of all student’s past
actions using gradient descent, similar to Warm et al. [37]:

L =
∑

(ui,qj ,ysolve,t)∈D

l(ysolve, psolve(ui, qj)), (3)

where the tuple (ui, qj , ysolve, t) represents the event of stu-
dent ui making an attempt on exercise qj with success out-
come ysolve ∈ {0, 1} at time step t ∈ N and l(·, ·) is the
cross-entropy loss. This describes the first step of training,
which uses prerecorded data.

3.3 User Ability Update & Difficulty Adjust-
ment

When deploying the DDA model to a new student, we fix
the exercise parameters w⃗, a, c, and d learned in Section 3.2.
We only learn the student’s ability value θ. Every time
the student finishes an exercise, we run gradient descent on
all observed attempts by this student until it converges or
reaches a maximum number of 1,000 iterations.

One caveat of the original 4PL model is that it assumes that
students have an unchanging ability level. This does not
reflect how students learn a new concept. To remedy this, we
add a discount value γ ∈ (0, 1) to our maximum likelihood
function (Equation 3). With this, we weigh the past actions

Figure 1: The user interface of the graph theory exercises in
our study. This contains the graph, the relevant buttons, and
the counter of currently selected vertices.

by γT−t, where T is the current time step and t is that
action’s time step. By giving less weight to past evidence,
we make the change in ability level more fluid and more
reliant on recent outcomes. The loss function we optimize
for becomes

L =
∑

(ui,qj ,ysolve,t)∈D,t<T

γT−tl(ysolve, psolve(ui, qj)). (4)

After the ability value is updated, the probability of solving
psolve is calculated for each exercise. The exercise with psolve
closest to a desired success rate is chosen and provided to the
student next. For this, we need to pick the success rate that
the students should get. Gonzalez-Duque et al. [11] suggest
a success rate between 50% and 70%, while Klinkenberg et
al. [21] suggest 75%. Therefore we tested our DDA approach
using smaller pilot studies with a target success rate of 70%,
65%, and 60%. Since both 70% and 65% provided too easy
exercises, we opted for 60% for our final study.

4. EXPERIMENTS
4.1 Task
For our experiments, we use an example graph theory lec-
ture, where students are introduced to the Maximum Inde-
pendent Set (MIS) of a graph (i.e., the largest set of vertices
such that none of the selected vertices are adjacent to one
another). It is a concept in graph theory that students need
to be familiar with, therefore the setting simulates a real
learning scenario. Furthermore, most people have not heard
of MIS before, so it is a newly introduced concept. Finally,
the definition of the MIS is simple, yet finding an MIS for a
given graph is difficult. It requires an intuition that is best
built through exercises. To this end, we generate a pool of
191 exercises that can be provided to the students. Figure
1 shows an example of such an exercise during our study.

4.2 Training the DDA Model
We trained our model as described in Section 3. To learn
the difficulty bj of each exercise we use the attributes ⃗attr =
(|VMIS |, palg, |V |, |E|, |I|), where |V | and |E| are the num-
ber of vertices and edges in the graph, |VMIS | is the size of
the MIS, palg is the success rate of a stochastic solver algo-
rithm on this graph (see Appendix A), and |I| is the number
of intersections of edges. To pre-train our DDA model, we
collected data from 80 users without using DDA. For de-
tails of the training parameters and the data collection see
Appendix B.
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4.3 Simulation Design
Before starting the user study, we carry out experiments
with simulations to verify that our algorithm works in ad-
justing to simulated students’ behavior. We handcrafted
simulated students that interact with the DDA algorithm.
Our simulated students have an internal ability value. If the
ability value plus a Gaussian noise is greater than the ex-
ercise’s difficulty, then the attempt is a success. Otherwise,
it is a failure. The ability value is increased by learning,
which happens when the exercise is given at the right level
of difficulty in accordance with Vygotsky’s zone of proximal
development [32]. The student also has a boredom and anx-
iety value, which increase when an exercise is too easy or
too hard, respectively. Learning only occurs when the sum
of boredom and anxiety values is lower than a set threshold.
For details refer to the repository that contains our imple-
mentation and data 1. To emulate our user study (see Sec-
tion 4.4), the simulation starts with three fixed pre-test ex-
ercises, where the DDA algorithm updates its student model
but does not choose the exercises. Then it loops through 12
training exercises that are chosen by the DDA algorithm.

4.4 User Study Design
Procedure: In our user study, the participants are presented
with a sequence of MIS exercises, divided into three phases:
pre-test, training, and post-test. Before the experiment,
there is a questionnaire for the participant’s demograph-
ics and their general interest in puzzles, computer science,
and mathematics. After that, the students are provided
with a tutorial that resembles the part of a graph theory
lecture that introduces Maximum Independent Sets (MIS).
This also includes a tutorial exercise to make sure that the
participants understood the task correctly. The pre- and
post-test phases are fixed and each contains one exercise of
easy, medium, and hard difficulty based on a handcrafted
difficulty metric (see Appendix A). The tests provide bonus
payments and are used to motivate participants to practice.
The training phase consists of 12 exercises where our pro-
posed algorithm (see Section 3) runs in the background to
estimate the student’s ability and provides exercises that the
student is estimated to have a 60% probability of solving.
After the post-test, there is another free-text questionnaire
asking about the task difficulty and the student’s feelings
about the task. For each exercise, the participant sees the
graph and the number of vertices that need to be selected
(Figure 1). The exercise will not be declared solved auto-
matically once the correct vertices are chosen, but the par-
ticipant has to manually click “Submit”. They are told that
there is a time limit on each exercise but do not know how
long it is (90 seconds). This is done to reduce the sensation
of time and enable flow. We display a red flag 5 seconds
before the time runs out to remind them to submit the so-
lution if they think they have one. After submitting, there
is a pop-up saying if the solution was correct. The median
time the experiment took was 23 minutes.

Participants & Compensation: We recruited 30 participants
using the online platform Prolific. They were required to
be fluent in English. For some participants, the training
exercises were too difficult overall and they failed to solve
more than one training exercise. Removing those partici-

1https://github.com/hcmlab/fast-dda-for-its.

pants from the analysis left us with 25 participants. The
participants included 15 males and 10 females, with ages
ranging from 20 to 47 years old and a mean of 29.2. Each
participant was paid £3.9 for successful participation. Ad-
ditionally, for each correctly solved pre- and post-test exer-
cise, they were paid £0.1 - 0.2, depending on the time they
needed. This totals up to a potential bonus of £1.2.

Research Questions & Hypotheses: The main research ques-
tion for our study was whether our DDA approach adapts as
intended. For this, we hypothesized that there is no signif-
icant difference between the desired success rate (60%) and
the actual success rate of the participants during the training
phase. As a secondary research question, we are interested
in investigating if our adapted IRT model is still useful for
knowledge tracing. That would be the case if there is a
correlation between the ability level that the student model
within our DDA approach assigns to each participant after
training and their performance in the post-test. This work
presents the first part of a bigger study that we preregis-
tered online. 2 To keep the scope of this work focused on
the adaptation, we will describe the results of the remaining
study in future work after a thorough analysis.

5. RESULTS
5.1 Result of the Simulations
During the simulation, we used three groups of 50 simu-
lated students where each group simulated students with a
different initial ability level (low, medium, and high). To
visualize how the DDA algorithm performs, we designed a
handcrafted metric for the difficulty of each exercise (see Ap-
pendix A). Figure 2 shows the trajectory of the student’s
ability and the difficulty of the exercises provided to them
in each time step. Right up from the first time step of the
training phase, there was a difference in the difficulties that
the different students get because of the different pre-test
results. The students with higher initial abilities got harder
exercises. The difficulty was slightly lower than the stu-
dent’s ability because we want to have a 60% success rate.
As the users increased in their ability level with training,
the difficulty of the exercises provided to the students also
increased, showing the system can detect the change and
adapt itself accordingly. Taking a look at the success rate
of exercise solves during the training phase, the simulated
students were able to solve 61.1% ± 12.4% of the exercises.
Using a one sample t-test, we find no significant difference
from 60%; t(df) = 1.08, p = 0.28, Cohen’s d = 0.09. Also,
DDA yielded higher learning than random and predefined
difficulty curve baselines. Simulated students on DDA im-
proved by a mean of 12.5 difficulty units between pre- and
post-test, while predefined difficulty curve and random im-
prove by 9.6 and 6.9 difficulty units, respectively.

5.2 Results of the User study
For our main research question, we wanted to verify that
our approach was capable of providing exercises with a 60%
success rate. Our participants successfully solved on aver-
age 7.0 ± 1.2 out of 12 training exercises, which translates
to a success rate of 58 ± 10%. Using a one sample t-test, we
find that the success rate was not significantly different from
our aimed 60% with a very small effect size; t(df) = -0.86,

2https://aspredicted.org/i6zm7.pdf
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Figure 2: Mean ability level (orange) of simulated students throughout the simulation and difficulty levels (blue) provided to
them by DDA. The figures show curves for different initial ability levels, low to high from left to right. The fixed pre-test exercises
are not shown here, so some adaptation is visible already from the beginning. Our algorithm correctly provided exercises that
are slightly below the student’s ability level since we aim for a 60% success rate. The error band shows the 90% CI.

Figure 3: Mean success rate (left) and exercise difficulty
(right) at each time step during the training phase of the
human participants. We omit the pre- and post-test phases.

p = 0.40, Cohen’s d = 0.17. For context, when collecting
training data without DDA, the mean success rate was 49
± 20%. In Figure 3 we show the mean success rate and
exercise difficulty during the training phase. To see if our
DDA approach can infer the student’s post-test performance
from the training session, we calculated the Spearman cor-
relation between the fitted ability value θ after the training
phase and the post-test score. We found significant correla-
tions for the data collected without DDA ((r2 = 0.599, p =
0.003) for predefined difficulty and (r2 = 0.522, p = 0.006)
for self-determined difficulty). For the data collected with
DDA we found no significant correlation (r2 = 0.144, p =
0.49).

6. DISCUSSION
The main goal of this paper was to introduce a DDA algo-
rithm that is able to quickly adapt to students after only
a few interactions. During both our simulated and human
user experiments we did not find a significant difference from
the desired success rate of 60%, with very small effect sizes
in both experiments. This indicates that there is no large
difference between our outcome and the desired success rate.
For simulated users, it also did so while staying in the zone
of proximal development where our simulated users learned
the most. This shows that it did not simply give very easy
and very hard exercises to get the given quota but actually
estimated the student’s chance of success for each exercise.
For real users, the mean success rate hovered around 60%
throughout the course of the experiment while the average
difficulty increased towards the end (see Figure 3). This
shows that the participants improved and that our DDA al-
gorithm adapted to them correctly. As an example for indi-
vidual students, we show and discuss the progression of two
students in Appendix C. While previous user studies with
many interactions managed to achieve their desired success
rate [21], Schadenberg et al. [35] showed that this is not
a trivial task for scenarios with limited numbers of interac-

tions. In their user study, which used a similar amount of
interactions as our study, they were not able to change the
success rate compared to their baseline.

We also took a closer look at the 5 participants that we ex-
cluded from the initial evaluation because they did not get
more than one exercise correct during training. Our DDA
algorithm was correctly providing them with the easiest pos-
sible puzzle in each time step, but could not give them eas-
ier exercises because there just were no easier exercises in
the pool. To alleviate this limitation, future applications
could utilize this ability of the DDA algorithm to identify
situations where students are struggling. Based on this au-
tomatic detection, a human teacher or tutor could intervene
and provide further help individually.

We checked whether the participant’s θ inferred during the
training phase correlates with their post-test performance.
We found that this correlation exists when the DDA does
not choose the exercises, but not when we enforce a 60%
success rate. This is in line with the findings by Eggen and
Verschoor that the further the success rate is from 50%, the
worse the IRT models estimate the performance [13].

Our work has some limitations. First, our approach is only
suitable for problems that can be parameterized by attributes.
Second, our modeling of student learning might be less nu-
anced than models based on KCs that can show how well the
students know each KC. Finally, a direct comparison with
algorithms like ELO or BKT as well as an investigation of
the learning performance of the students is needed to fully
grasp the contribution of our method. This was not within
the scope of this work.

7. CONCLUSION & FUTURE WORK
In this work, we proposed a novel DDA algorithm for intelli-
gent tutoring systems with a limited number of interactions
and small datasets. We showed in simulations and a user
study that our approach is able to achieve the desired suc-
cess rate after limited interactions. In the future, we plan to
evaluate how this influences the students’ learning process.
Furthermore, future work should investigate the potential of
DDA algorithms to detect situations where students require
additional support.
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Table 1: The Spearman’s rank correlation coefficients be-
tween human participants’ performance and the different at-
tributes of our graph theory exercises.

Exercise Attributes Time Correctness
Difficulty Metric 0.2778 -0.2672
Stochastic Solve Probability -0.2007 0.1841
Number of Vertices 0.2422 -0.2059
MIS Size 0.2541 -0.1651
Number of Edges 0.2217 -0.2427
Number of Intersections 0.1518 -0.2249

APPENDIX
A. DETAILS OF STOCHASTIC SOLVER &

HANDCRAFTED DIFFICULTY METRIC
To infer the difficulty score of the generated MIS exercise,
we use a stochastic solver, similar to Poromaa [30]. The
stochastic solver tries to find an MIS of the provided graph
by choosing vertices in a non-deterministic way. The more
often this solver finds a correct solution, the easier we con-
sider the graph to be.

The stochastic algorithm starts with no selected vertices. In
each step, each free vertex (i.e., an unselected vertex with-
out selected neighbors) is given a probability of being chosen
into the set. The probability that a vertex is chosen is in-
versely proportional to the number of its neighbors that are
also free vertices. The algorithm samples from this categor-
ical distribution and adds one vertex to the set of selected
vertices. The algorithm loops until there is no free vertex
left. To verify whether a stochastic solution is maximum,
we calculate the correct size of the MIS, denoted |VMIS |, for
each graph by brute force beforehand. We run the stochastic
algorithm 10,000 times and count the number of successful
solves to get the success rate palg.

The handcrafted difficulty metric of an exercise is |VMIS |
palg

+

|V |+ |E|, where |V | and |E| are the number of vertices and
edges in the graph respectively. This value tries to mimic
the number of elements a human needs to consider and the
average required number of clicks to solve the exercise, in
a similar vein to John et al. [19]. To make sure that the
handcrafted difficulty metric, which we use for our evalua-
tion (see Section 4.1), works as intended, we verified that
it actually reflects the difficulty for real users. To this end,
we calculated Spearman’s rank correlation between each at-
tribute of an exercise, including our difficulty metric, and
the participants’ solving outcome, i.e. whether the attempt
was correct, and the time taken for each exercise. These
correlations are shown in Table 1. Out of all the attributes
we considered, our handcrafted difficulty metric correlates
best with the outcome in both aspects.

B. DDA MODEL TRAINING DETAILS & HY-
PERPARAMETERS

To pre-train our DDA model, we used data from our pi-
lot studies and collected additional user data without using
DDA. For this purpose, we used two other methods to select
the difficulty of training exercises for 30 participants each.
The first is a predefined difficulty curve, where training ex-
ercises start easy and gradually get more difficult, regardless

Figure 4: Progression during training of two human partic-
ipants, A (left) and B (right). The y-axis shows our hand-
crafted difficulty metric. The dots are green for successes
and red for failures.

of the outcome of training. The second method is the self-
determined difficulty, where the first training exercise has a
medium difficulty. After each exercise, the student is asked
whether he wants an exercise with the same difficulty, a
more difficult one, or an easier one. The next exercise is
provided accordingly. Altogether, we obtained 1,200 data
points from 80 users after removing users that did not get
any exercise correct during training and removing post-test
exercises. Pre-training is done using 90% train and 10% vali-
dation split. We use the Adam optimizer with a learning rate
0.005, batch size 64, and 5,000 epochs. After pre-training on
the prerecorded data is done, the DDA model is deployed to
adapt to each student. During this adaptation, we apply a
discount factor γ = 0.7 in the loss function as described in
Section 3.3. Because of implementation reasons, we use gra-
dient descent with a learning rate of 0.001 to fit the student’s
ability value θ.

C. EXAMPLE STUDENTS
To get an in-depth view of how our algorithm performs, we
show the progression of two individual participants in Fig-
ure 4. We list the training exercises they received and plot
the difficulty of each exercise according to the handcrafted
difficulty metric. Student A had the easy pre-test exercise
correct and thus got assigned a medium exercise at first. In
the beginning, it seems like they are staying in their zone of
flow which can be seen by the zigzagging between slightly
too easy and too hard exercises. Then they seem to im-
prove which our algorithm picks up on and provides harder
exercises. Towards the end, the adaptation again seems to
reach the student’s flow zone. Student B also solved the
easy pre-test correctly. After some successes, the DDA al-
gorithm tried to give them a harder exercise but sees that
the student could not work with it. After this, the diffi-
culty stays quite level. Even when the student slips with
exercises of a difficulty level they evidently solved before,
the algorithm does not immediately decrease the difficulty.
This seems to have been the correct procedure as student
B stated in the post-questionnaire: “I felt like the difficulty
level of the puzzle was just right as it made you think twice
before answering.”.
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ABSTRACT
We propose in this work a novel approach to retrieve the pre-
requisite structure of a domain model from learner traces.
We introduce the E-PRISM framework that includes the
causal effect of prerequisite relationships in the learner model
for predicting the learner’s performance with knowledge trac-
ing. By studying the distribution of the learned values of
each learner model parameter from synthetic data, we pro-
pose new metrics for measuring the existence, direction, and
strength of a prerequisite relationship. We apply the same
methodology to real-world datasets and observe promising
results in retrieving the prerequisite structure of a domain
model from learner traces.

Keywords
Learner modeling, prerequisite structure, data mining,
Bayesian networks, knowledge tracing

1. INTRODUCTION
The prerequisite relationships, which describe dependencies
between knowledge components, play a crucial role in deter-
mining the most effective instruction sequence for students.
The objective of this research is to answer the following ques-
tion: is it possible to propose a learner model where the
parameters are enough interpretable to detect the domain
model’s prerequisite relationships, on top of predicting the
learner performance?

We introduce the E-PRISM framework, which relies on an
interpretable learner model, to analyze learners’ data and
detect the prerequisite structure of the domain model. We
summarize our contributions in this work as follows. First,
we introduce an effective and tractable method for incor-
porating prerequisite relationships into a continuous scale
of the learning process. Second, we define new metrics for
assessing the causal impact of prerequisite relationships uti-
lizing the interpretable parameters of the E-PRISM learner
model and we apply them to real-world datasets.

2. DISCOVERING THE PREREQUISITE
STRUCTURE OF THE DOMAIN MODEL
THROUGH LEARNER MODELING

We provide an overview of the current state-of-the-art meth-
ods for retrieving the prerequisite structure of the domain
model through learner modeling. We focus specifically on
the learner performance prediction models and how they are
used in the literature to determine the prerequisite structure
within a domain model.

2.1 Approaches in learner modeling
In the field of learner modeling a variety of algorithms can be
used to predict students’ performance on assessments, diag-
nose their strengths and weaknesses, and track their learning
progress over time.

One of the popular and used methods is logistic regression,
a statistical model to predict the likelihood of an event oc-
curring given a set of predictors or independent variables.
Some logistic regression algorithms, such as IRT [11] and
MIRT [19], use simple features, while others, such as LFA
[2], PFA [17], DAS3H [3], and Best-LR [9], use engineered
and more complex features.

Besides, cognitive diagnosis algorithms model the learner’s
knowledge state to predict their answers. Non-temporal
Bayesian network (BN) approaches, such as DINA [10], NIDA
[14], and DINO [21], use BNs to compute the probability of
answering correctly by modeling the learner’s mastery of
Knowledge Components (KCs). Bayesian Knowledge Trac-
ing (BKT) uses BNs to track the learner’s knowledge over
time [5] and assumes knowledge states to be dynamic.

Deep learning techniques have been applied to learner mod-
eling and have gained popularity due to their ability to learn
and extract features from large and complex datasets auto-
matically. Deep Knowledge Tracing (DKT) is a deep learn-
ing model for the knowledge tracing task using a neural net-
work to learn a non-linear model of the learner’s knowledge,
allowing it to capture more complex patterns and make more
accurate predictions [18]. Variants of DKT have been de-
veloped, but they generally only show minor performance
gains compared to the original DKT model [20], except Self-
Attentive Knowledge Tracing (SAKT) [16]. However, Jaeger
has reported that even the more interpretable deep learning
techniques are less interpretable than probabilistic graphical
models such as BNs [12].
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2.2 Prerequisite structure in learner models
A priori knowledge of the domain to construct a model of
the prerequisite structure has been integrated into simple
learner models, most of the time with Bayesian networks
(BN) [4, 1]. These techniques typically involve experts us-
ing their domain knowledge to define the prerequisite rela-
tionships between the KCs through the probabilities in the
networks. Also, works employ data to retrieve the condi-
tional probabilities that rule such BNs [7].

Another approach to retrieve the prerequisite structure of
the domain model is to use the predicted knowledge states of
a learner over time. The idea is to use the predictions made
by a learner model, which estimates the learner’s knowl-
edge state at different points in time, to infer the prereq-
uisite relationships between the knowledge components [18,
7]. This can be done by comparing the masteries of the dif-
ferent knowledge components over time. The prerequisite
structure of the domain model can then be determined by
conducting a statistical study of these inferred states.

Finally, the work of Käser et al. is notable for its use of a
Dynamic Bayesian Network (DBN) to model the effect of
the prerequisite structure between knowledge components
in learner models [15]. The DBN includes arcs between the
variables of related KCs’ mastery, which allows for modeling
the causal effect of relationships between KCs. However, as
the number of prerequisite KCs increases, the DBN’s condi-
tional probability distributions (CPDs) can become complex
to interpret. The number of parameters grows exponentially
with the number of prerequisite relationships and can be
challenging to analyze. Despite this limitation, Käser’s ap-
proach is a promising method for modeling the prerequisite
structure in learner models, as it allows for explicitly mod-
eling the causal effect of relationships between KCs.

3. E-PRISM: EMBEDDING
PREREQUISITE RELATIONSHIPS
IN STUDENT MODELING

In this research work, we introduce a new student model-
ing framework called E-PRISM (for Embedding Prerequisite
Relationships in Student Modeling). The E-PRISM domain
model supposes a decomposition of the domain knowledge
into Knowledge Components (KCs). The E-PRISM learner
model assumes the learner knowledge defined as the binary
masteries of each KC in the domain model. Predictions
about learners’ knowledge state and performance are made
from data on the learner’s interactions with learning sys-
tems.

3.1 Overview of the E-PRISM learner model
The learner model in E-PRISM is a knowledge-tracing model
that considers variables for the mastery of several KCs of the
domain model. Knowledge tracing is performed through a
dynamic Bayesian network (DBN) which models the mas-
tery of KCs over time. The DBN leverages the causal effect
of the learning process and the causal effect of the prerequi-
site relationships to infer learners’ knowledge states at any
time.

E-PRISM has a key feature that sets it apart from other stu-
dent modeling frameworks. It utilizes ICI-based conditional

probability distributions (CPDs) [8] to model the causal ef-
fects of the learning process and the prerequisite relation-
ships on the KC mastery at each timeslice. This defines
KC mastery variables as deterministic functions of variables
representing the independent causal effects that influence
them. We represent the part of the DBN associated with
the mastery of a KC X at a time t > 0 in Figure 1.

Figure 1: Noisy-AND gate of X and its Markov blanket in the
DBN of E-PRISM. The Noisy-AND gate is colored blue. It is
composed of a variableXt for KC mastery, defined as an AND
function of auxiliary variables representing the causal effect of
both its learning process and the mastery of its prerequisite
KCs. The auxiliary variables are T , representing the causal
effect of learning and forgetting on X mastery, and Zi for
each X prerequisite, representing the causal effect of the i-
th prerequisite mastery on X mastery. PatX,i is the variable
associated with the mastery of the i-th X prerequisite.

The DBN is composed of Noisy-AND gates for each KC
and each timeslice. We represent a toy example of the
DBN in Figure 2. The parameters of the DBN are learned
with the Monte-Carlo Expectation-Maximization (MCEM)
algorithm [23]. The MCEM algorithm is a variant of the
Expectation-Maximization (EM) algorithm [6]. It considers
the expectations of the E-step to be approximated with a
Monte-Carlo sampling, which is the Blocking Gibbs sam-
pling (BGS) [13] in our research. MCEM with BGS allows
for a converging and tractable parameter learning of the
learner model in E-PRISM.

3.2 Interpretability of parameters
ICI-based CPDs rely on a pair of parameters for each causal
effect. In the E-PRISM learner model, there are parame-
ters associated with the learning process, namely (lX, fX)
for each KC X, and parameters associated with the prereq-
uisite relationship, namely for (qX,i, sX,i) each prerequisite i
of each KC X. lX and fX parameters are the probabilities
of learning and forgetting X. qX,i is the probability that the
i-th prerequisite of X is not sufficient to master X. On the
other hand, sX,i is the probability the i-th prerequisite of X
is not necessary to master X. These interpretable param-
eters allow for a clear understanding of the causal effects
of the learning process and prerequisite relationships on the
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Figure 2: Example of the DBN that encodes the learner’s knowledge state and considers a domain model {A,B,C} with
prerequisite relationships A→ C and B→ C.

learner’s performance. E-PRISM allows for the identifica-
tion and understanding of the prerequisite structure of the
domain model, which is a key focus of our research.

3.3 Metrics from E-PRISM
First, we highlight the gain of performance induced by the
presence of an effective prerequisite relationship in the E-
PRISM learner model. We wonder if the difference between
the Root Mean Squared Error (RMSE) values obtained from
different E-PRISM learner models depends on their prereq-
uisite structure. We generate three synthetic datasets D∅,
Dweak, and Dstrong. D∅ is generated from an E-PRISM
learner model considering no prerequisite relationship be-
tween A and B. Dstrong is generated from an E-PRISM
learner model that considering a strong prerequisite relation-
ship A → B. Dweak is generated from an E-PRISM learner
model considering a weak prerequisite relationship A → B.
By generating these synthetic datasets, we will be able to
study the performance of the E-PRISM framework in dif-
ferent scenarios where the prerequisite relationship between
A and B is varied. We learn the parameters of three E-
PRISM learner models, namely e∆∅, e∆A→B, and e∆B→A.
e∆∅ assumes no prerequisite relationship, while e∆A→B and
e∆B→A respectively assume A → B and B → A. We run
1000 simultaneous instances of the MCEM algorithm, with
parameters NGibbs = 10 and M = 0, to perform E-PRISM
parameter learning. The full synthetic dataset is used as a
training dataset. We report the RMSE values obtained from
parameter learning in Table 1.

Table 1: Best RMSE values computed by comparing E-
PRISM predictions with the entire data that considers a
strong prerequisite relationship. Parameter learning of E-
PRISM models is also realized with the full dataset.

Method RMSE on DA→B,strong

e∆∅ 0.353
e∆A→B 0.327
e∆B→A 0.394

We assume the presence of an effective prerequisite relation-
ship in the E-PRISM learner model enhances the model’s

performance. Thus, to study a prerequisite relationship
A→ B, we can compare the performance of e∆A→B, the E-
PRISM learner model that considers the relationship A →
B, and e∆∅, the model with no prerequisite relationship.
We define the LePPED (for Learner Performance Prediction
Error Difference) metric to identify the existence and the
direction of the prerequisite relationship. We compute the
relative difference between their RMSE value obtained af-
ter learning parameters. LePPED is computed in Equation
(1). It senses the direction of the prerequisite relationship
between two KCs.

LePPED(A→ B) =
1

K

(RMSE of e∆∅ − RMSE of e∆A→B)

RMSE of e∆∅
(1)

where K is a normalizing constant.

LePPED(A → B) is a measure for the existence of the
prerequisite relationship, as it indicates how better the E-
PRISM model performs by considering A → B. LePPED
ranges from −1 (very unlikely there exists a relationship
A→ B) to 1 (very likely there exists a relationship A→ B).

Upon analyzing the distributions of the E-PRISM param-
eter learned values, we observed shifts in the value of the
parameter when the direction of an effective prerequisite re-
lationship is reversed. We introduce a custom metric CPVD
(for Comparing Peak Values of the Distribution) computed
by comparing the peak values of the learned parameter dis-
tributions. CPVD is defined in Equation (2).

CPV D(A→ B) =
1

6

(
1(lA→B

A > lB→A
A ) + 1(lA→B

B < lB→A
B )

+ 1(fA→B
A < fB→A

A ) + 1(fA→B
B > fB→A

B )

+ 1(qA→B > qB→A) + 1(sA→B < sB→A)
)

(2)

where 1 is the identity function.

CPVD is an indicator of the existence and the direction of
the prerequisite relationship. It ranges from 0 to 1. The
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Figure 3: Distribution of the values of prerequisite parame-
ters obtained from training on synthetic data.

greater CPVD(A→ B), the most likely the existence of the
A→ B relationship.

Finally, we benefit from the enhanced interpretability al-
lowed by ICI-model CPDs in the E-PRISM learner model.
We observe the distribution of the learned values of q and s
parameters in the different situations for the E-PRISM pa-
rameter learning procedure. Specifically, we study E-PRISM
learner models that either assume the correct or the wrong
direction of the prerequisite relationship A → B, which is
expressed in the data strongly (through Dstrong) or weakly
(through Dstrong).

Based on these previous observations, we propose a novel
metric based on the distribution of the s parameter learned
values. This second metric Nec is calculated by determin-
ing the proportion of learned values of s lower than 0.2 ob-
tained in all the runs of parameter learning. It stands for the
strength of the prerequisite relationship, according to the in-
terpretation of the s parameter. The closer to 1 the value of
Nec, the stronger the prerequisite relationship between the
two considered KCs.

Nec =
1

K

Number of learned parameter values lower than 0.2

Total number of learned parameter values
(3)

with K a normalizing constant.

By combining these three metrics, we should be able to
gain a deeper understanding of the interpretability of the E-
PRISM learned parameters, and how they can be employed
to retrieve the prerequisite structure (existence, direction,
and strength) of the domain model in E-PRISM.

4. DISCOVERY OF THE PREREQUISITE
STRUCTURE FROM REAL-WORLD
DATA

4.1 Method
We study real-world data to evaluate the generalizability of
the proposed metrics for measuring the existence, direction,
and strength of prerequisite relationships.

We evaluate the capacity of our model to search for the exis-
tence, direction, and strength of prerequisite relationships in

the ASSISTments12, Eedi2020, and Kartable datasets. AS-
SISTments12 is issued from the ASSISTment system, with a
relatively coarse granularity of KCs. Eedi2020 was released
as part of a NeurIPS2020 challenge and is issued from the
Eedi system. Kartable is provided by Kartable and is not
freely available.

We focus on the study of pairs of KCs because of tractability
issues of E-PRISM with larger domain models. We consider
the sub-datasets restricted to pairs of KCs and restrict each
sub-dataset to learner traces from students that trained both
KCs. Specifically, we have selected the 6 pairs of KCs with
the highest number of learners transactions. Selected pairs
of KCs are listed in Table 4 in Appendix A. Additionally, we
only consider seven transactions per learner in the parameter
learning procedure to ensure its tractability.

4.2 Study of the proposed metrics
We wonder how the metrics relate to the prerequisite struc-
ture of the domain model with real-world data. We report
metrics’ values for each selected pair of KCs in Table 2.

Some of the relationships with high custom metric scores are
prerequisite relationships according to common knowledge.
In particular, relationships between addition KC and multi-
plication KC are greatly represented. The ordering of met-
ric values can be interpreted as a prerequisite relationship
strength. Metrics CPVD and Nec show great performance
for relationships Determine if a real number is a root of a
quadratic polynomial → Give the roots of a quadratic poly-
nomial, Give the roots of a quadratic polynomial → Give the
sign chart of a quadratic polynomial, and Addition and Sub-
traction Positive Decimals → Multiplication and Division
Positive Decimals. We can clearly observe that these de-
tected prerequisite relationships, thanks to the CPVD and
Nec metrics, are coherent with the mathematics domain
knowledge. Nevertheless, we remark that there is also a
relationship suggesting that Multiplication and Division In-
tegers is a requirement of Addition and Subtraction Integers.
These relationships should be submitted for the approval of
experts in the domain.

4.3 Relative agreement between metrics
We study the relative agreement between introduced met-
rics for asserting the correctness of the inferred prerequisite
structure. To do so, we compute the Cohen kappa [22] be-
tween the metric predictors. For each sub-dataset, we eval-
uate the reliability between metrics on the existence and
direction of the corresponding prerequisite relationship.

For every KCs A and B, we define predictors on the ex-
istence of the prerequisite relationship A → B from each
metric by checking if they are positive. Similarly, predictors
for the correct direction of the prerequisite relationship are
introduced by comparing the metric value of both directions
of the relationship between A and B. We also introduce a
predictor that combines the two conditions, and we present
the results in Table 3.

We observe that the predictors of the existence of the pre-
requisite relationship give different results depending on the
employed metric. The predictors for the direction of the
prerequisite relationships grossly agree with each other, es-
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Table 2: Scores of the metrics LePPED, CPVD, and Nec on relationships that have been predicted as prerequisites according
to the CPVD and Nec predictors.

Order Relationship LePPED Relationship CPVD Relationship Nec
1 ASI → ASF 1 ASPD → MDPD 1 Root → Solve 1
2 Chart → Solve 0.85 Solve → Chart 1 MMD → MAS 0.89
3 ASI → MDI 0.72 Root → OR 0.92 Solve → CF 0.89
4 Root → OR 0.56 Root → Solve 0.92 Solve → Chart 0.89
5 Solve → Chart 0.54 MDI → ASI 0.83 ASF → DF 0.78
6 ASF → DF 0.49 ASI → ASF 0.83 E → ASI 0.78
7 MMD → MAS 0.45 FHCF → MLCM 0.83 MAS → MMD 0.78
8 PNPF → FHCF 0.44 PNPF → MLCM 0.83 ASPD → MDPD 0.67
9 VNP → MMD 0.42 VNP → MMD 0.75 MPDP → ASPD 0.67
10 MDI → ASI 0.34 ASF → DF 0.58 FHCF → MLCM 0.67
11 OR → Root 0.33 FHCF → PNPF 0.58 PNPF → MLCM 0.67
12 MMD → VNP 0.29 MAS → VNP 0.58 Root → OR 0.56
13 DF → ASF 0.28 Chart → CF 0.58 CF → Chart 0.56
14 ASF → MF 0.23 ASF → MF 0.5 ASF → MF 0.44
15 MAS → MMD 0.23 ASI → E 0.42 ASI → ASF 0.44

Table 3: Cohen kappa values obtained from measuring the
agreement of metrics LePPED, CPVD, and Nec on the ex-
istence and direction of the prerequisite relationships.

Existence Direction Ex. + Dir.
LePPED CPVD 0.133 0.325 0.111
LePPED Nec −0.071 0.55 0.117
CPVD Nec 0.053 0.55 0.778

pecially LePPED with Nec and CPVD with Nec. Finally,
when considering the two conditions in the predictor, we ob-
serve a strong agreement between CPVD and Nec, CPVD
andNec then suggest the same relationships to be part of the
prerequisite structure of the domain. On the other hand, we
observe a weak agreement (near random) between LePPED
and the other metrics.

This result suggests that RMSE is not sufficient to infer the
prerequisite relationships from data, even if it can be in-
terpreted as a first filter to determine the existence of the
prerequisite structure with LePPED. Nevertheless, even if
the relevance of CPVD and Nec have been confirmed by the
results, they should be compared with the predictions of ex-
perts, to assess that the joint agreement between CPVD and
Nec indeed corresponds to the correct prerequisite structure.

5. CONCLUSIONS AND PERSPECTIVES
In conclusion, this work presents a novel approach for lever-
aging the causal effect of prerequisite relationships to infer
students’ knowledge state over time. The E-PRISM frame-
work, which utilizes Dynamic Bayesian Networks (DBNs)
to predict student performance, is based on a set of inter-
pretable parameters that sense the causal effect of the learn-
ing process and the structure of prerequisite relationships in
a specific domain. Our study demonstrates the ability of
these parameters to compute metrics, such as CPVD and
Nec, which can infer the existence, direction, and strength
of prerequisite relationships. Our results, applied to the
domain of mathematics, indicate the existence of common
knowledge prerequisite relationships. However, further re-
search is necessary to verify the effectiveness of these pre-

dictions by examining each inferred relationship from an
expert’s point of view. In summary, this work presents a
promising approach for inferring prerequisite relationships
in educational data mining from analyzing an interpretable
learner model.
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A. KNOWLEDGE COMPONENTS IN THE

REAL-WORLD SUB-DATASETS
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Table 4: Studied couples of knowledge components for each real-world dataset

Dataset A B
ASSISTments12 Addition and Subtraction Integers (ASI) Multiplication and Division Integers (MDI)
ASSISTments12 Addition and Subtraction Fractions (ASF) Multiplication Fractions (MF)
ASSISTments12 Addition and Subtraction Integers (ASI) Addition and Subtraction Fractions (ASF)
ASSISTments12 Addition and Subtraction Positive Decimals

(ASPD)
Multiplication and Division Positive Decimals
(MDPD)

ASSISTments12 Addition and Subtraction Fractions (ASF) Division Fractions (DF)
ASSISTments12 Addition and Subtraction Integers (ASI) Exponents (E)

Eedi2020 Factors and Highest Common Factor (FHCF) Multiples and Lowest Common Multiple (MLCM)
Eedi2020 Factors and Highest Common Factor (FHCF) Prime Numbers and Prime Factors (PNPF)
Eedi2020 Multiples and Lowest Common Multiple (MLCM) Prime Numbers and Prime Factors (PNPF)
Eedi2020 Volume of Non-Prisms (VNP) Mental Multiplication and Division (MMD)
Eedi2020 Volume of Non-Prisms (VNP) Mental Addition and Subtraction (MAS)
Eedi2020 Mental Addition and Subtraction (MAS) Mental Multiplication and Division (MMD)
Kartable Determine the canonical form of a quadratic poly-

nomial (CF)
Give the roots of a quadratic polynomial (Solve)

Kartable Determine if a real number is a root of a quadratic
polynomial (Root)

Find an obvious root for a quadratic polynomial
(OR)

Kartable Give the roots of a quadratic polynomial (Solve) Determine if a real number is a root of a quadratic
polynomial (Root)

Kartable Determine the canonical form of a quadratic poly-
nomial (CF)

Give the sign chart of a quadratic polynomial
(Chart)

Kartable Give the roots of a quadratic polynomial (Solve) Give the sign chart of a quadratic polynomial
(Chart)

Kartable Find an obvious root for a quadratic polynomial
(OR)

Calculate the discriminant of a quadratic polyno-
mial given in the expanded form (D)
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reviews they receive, but they learn even more from provid-
ing feedback [11, 2, 9, 5, 13]. To make the peer-assessment
process more accurate and unbiased, each artifact is gen-
erally anonymized and reviewed separately by multiple re-
viewers [4]. Since peer reviewers assess fewer artifacts than
the instructor, they can afford to spend more time on each
[1]. However, peer reviewers do not always agree with each
other’s reviews. In Table 1, we have shown review comments
on a piece of work where reviewers had incoherent opinions.

Though it is important for reviews to be coherent, to our
knowledge, no classroom peer review process implements
a meta-review round to find disagreements among the re-
viewers. One reason is that in the peer-review process, the
number of reviews can be overwhelming for an instructor
to meta-review, causing far more trouble than simply re-
viewing the artifacts themselves. For example, r reviewers
review s students for c items, makes r × s × c reviews to
meta-review. An efficient way to identify disagreements is
by implementing cutting-edge NLP methods to group the
reviews expressing similar opinions together and locating
the disagreements using a clustering algorithm. However,
grouping the peers’ comments using a clustering algorithm
is not a straightforward task. Peer reviewers are often given
a rubric [12] and in ideal cases, reviewers are expected to find
the same issues in a piece of work, which makes the review
texts semantically similar. Empirically we observed com-
ments expressing disagreement might contain similar words
and structure, or conversely, similar ideas may be expressed
with completely different words. For example, in response
to a rubric item, “If there are functions in the agent con-
troller, are they handling one and only one functionality?”
two peer reviewers’ comments on the same piece of work
are, “All functions are handling one to one functionality”
and “They can handle multiple functionalities.” These two
comments are semantically very similar but clearly, the re-
viewers are in disagreement. It makes a difficult case for
a state-of-the-art language model to distinguish the differ-
ence. The accuracy of a text clustering model depends on
the feature vectors of the texts, i.e., similar texts should be
represented as similar feature vectors [10]. SBERT is a cur-
rent state-of-the-art sentence feature embedding model that
is designed to be fine-tuneable for a downstream dataset.

ABSTRACT
In the process of review for assessing a piece of work, agree-
ment or consensus among reviewers is vital to review qual-
ity. As classroom peer assessments are undertaken by naı̈ve 
peers, disagreement among peer assessors can confuse the 
assessees and lead them to question the review process. Al-
though there are methods like inter-rater reliability (IRR) 
to measure disagreement in summative feedback, in the au-
thors’ knowledge, there is no method for finding disagree-
ments within formative feedback. It may take more time and 
effort f o r t h e i n structor t o  r e view t h e f e edback t o  fi nd  dis-
agreements than it would to simply perform an expert review 
without involving peer assessors. An automated method can 
help locate disagreements among reviewers. In this work, we 
used a clustering algorithm and NLP techniques to find dis-
agreement in formative feedback. As the review comments 
are related by context and semantics, we implemented a 
semi-supervised approach to fine-tune t h e SentenceTrans-
former model to capture the context and semantics-based 
relation among the review texts, which in turn improved 
the comment clustering performance.

Keywords
Peer-review, disagreement, NLP, SentenceTransformer, fine-
tuning, clustering

1. INTRODUCTION
Peer review has long been an effective c o mponent o f  stu-
dents’ learning experience [15]. Previous studies showed that 
assessment by student peers could be as accurate as assess-
ment by the instructor [14]. Not only do students learn from
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Table 1: Table shows four peer-reviewers’ comments on a piece of work following a rubric item. Three of the reviewers are in
agreement, and one reviewer disagrees.

Rubric Item Student Reviewers Review Comments

Is the UI of the application neat and logical? Student 1
Rev 1 UI seems awesome, but lacks functionality and features.
Rev 2 Yes, Nav bar is very clearly implemented.
Rev 3 The UI is not particularly neat and logical.
Rev 4 UI is neat and I particularly liked the navigation bar.

In this study, we first compare the performance of four sentence-
feature-embedding methods and pick the best method to
fine-tune the model. We finally compare the clustering re-
sult using feature vectors of the pre-tarined and fine-tuned
sentence embedding models. While implementing these ap-
proaches, we will address three research questions:

• RQ1: Which pre-trained feature extraction methods for
context and semantically related sentences work best?

• RQ2: Can we fine-tune and improve the pre-trained
SBERTmodel’s sentence-feature extraction for our context-
dependent review text using a semi-supervised approach?

• RQ3: Does improving the sentence feature extraction
method improve clustering performance?

In this study, by “Disagreement” in peer assessors’ feedback
comments, we mean i) Comments that are opposing each
other and ii) Comments that relate to disparate issues. Com-
ments that agree partially with another comment are not
considered in to be in disagreement.

2. RELATED WORK
Hiray et al. [7] showed that neural network models can
be used to identify disagreement in online discussions. In-
stead of hand-crafted feature extraction they implemented
a Siamese inspired neural network architecture to generate
feature embedding of the texts. Guan et al. [6] discussed
different text clustering approaches and found that cluster-
ing algorithms’ performance depends on the quality of the
feature vectors. Peer-review data in the educational envi-
ronment is less available than product reviews or social-
media text. The length of peer assessments is often simi-
lar in length to product reviews. Studying methods used to
analyze short texts will give us some idea about analyzing
peer-review texts. Jinarat et al. [8] identified that a major
characteristics of short texts (e.g. facebook comments and
post, tweeter text, news headline, product review etc.) is
lack of context information and the presence of much jargon
and abbreviations. These affect the performance of tradi-
tional text-clustering algorithms.

3. METHOD
This section describes the data collection process, dataset
construction, and methods we used for the study.

3.1 Collecting Formative Feedback
We acquired data for this study from the Object Oriented
Design and Development course at North Carolina State
University for a period of three semesters (Spring 2021, Fall
2021, and Spring 2022). Before the review process started,

students were shown examples of how to write quality feed-
back. The assignments were submitted and reviewed using
the Expertiza system. We collected formative feedback com-
ments from the assignment named “Program 2”. The peer
reviewers wrote the review comments in response to 201 dif-
ferent rubric items. All the reviewers’ and reviewees’ iden-
tities were anonymized before the feedback comments were
collected for analysis, so the author of the assignment or the
review comment could not be determined.

3.2 Creating the Datasets:
We prepared three datasets from the review comments we
collected over the three semesters. The three datasets are
as follows:

1. Sentence-Embedding-Test Dataset: This dataset con-
sists of 3,000 annotated pairs of review comments. The
comment pair is annotated with “1” if the two review
comments express a similar idea (agreement) and “0 ”
if they express a different idea (disagreement). These
annotations were done by five experts who are famil-
iar with the Program 2 assignment, including its rubric
and review comments. Table 2 shows an example of
the dataset.

2. Fine-Tuning Dataset: This dataset consists of 11,000
pairs of review comments. They are not initially an-
notated. We used this dataset for the semi-supervised
approach to train the model. We annotated 1,600 pairs
during the fine-tuning phase of the sentence-embedding
generator model.

3. Clustering-Test Dataset: This dataset consists of 1,000
review comments for measuring clustering-algorithm
performance quality. In this dataset we grouped all
the review comments following the same rubric item
on the same piece of work.

3.3 Sentence Embedding
Sentence embeddings are a way of representing different-
length sentences with fixed-size vectors of numbers. In this
study, we compared the performance of four sentence-embedding
methods using accuracy on the Sentence-Embedding-Test
Dataset.

Global Vectors (GloVE) is a word vectorization technique
used to convert natural language text to feature vectors that
are suitable for machine-learning models to process. GloVe
incorporates the local statistics of a word in a sentence as
well as the global occurrence of the word in the document.

Pre-trained Bidirectional Encoder Representations from Trans-
formers (BERT) model produces word embeddings that has
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Table 2: Table shows a sample of Sentence-Embedding-Test dataset with paired comments, labeled for agreement (Label ”1”)
and disagreement (Label ”0”) in two comments. Each pair of comments is on the same piece of work following the same rubric
item

Comment1 Comment2 Label

1
Application to properties should be when reviewing a property, and the
application deployment is crashing hence not able to actibely test

All the required fields of student are enforced to be non-null. 0

2 Any required attributes can be null in property class. There is validation check for all necessary attributes 0
3 New property creation throws some application error, cannot test. Could not apply to a property, showing a crashing application. 1
4 Yes, validations seem to be enforced All fields were appropriately validated. 1

shown great success in finding contextual and semantic rela-
tions among words in a sentence. It is a multi-layer bidirec-
tional model based on the encoder mechanism of the trans-
former model. BERT learns the contextual relation of each
word by considering the other words in both directions in
a sentence. We can get embeddings from BERT by using
a mean-pooling method that averages the feature vectors of
each word or by the [CLS] [3] token available at the first
position of the BERT sentence embedding output.

Sentence-BERT (SBERT) utilizes a Siamese Neural Net-
work, where the neural network consists of two identical sub-
networks. The identical subnetworks have the same param-
eters and weights. The parameter updating is also mirrored
in both sub-networks. This model produces sentence embed-
ding in a way that the semantically similar sentences have
a very high cosine similarity. Unlike BERT, the Siamese
network does not require every possible pair combination
to find semantic similarity in sentences. As a result, the
computation time is reduced from O(n2) to O(n).

3.4 Active Learning
For this study, we used a semi-supervised approach known as
active learning to fine-tune the SBERT model. The key idea
for an active-learning algorithm is that a machine-learning
model can run faster and with less labeled data if it can
choose the data from which the model needs to learn. During
the iterative process of training models, an expert need to
annotate only the samples the model is uncertain of, and the
model can be trained with these annotations. Continuing
this approach iteratively helps the model learn faster with
few annotated samples.

3.5 Choosing the cosine similarity cut-off
We used the approach implemented by the SBERT authors
for choosing a cosine-similarity threshold [3]. This algorithm
picks the threshold that makes the most accurate prediction
for classifying both similar sentences and dissimilar sentence
pairs on the test dataset.

3.6 Clustering Algorithm
We chose the agglomerative clustering algorithm for our
study for the grouping task, as it does not require deciding
the number of clusters beforehand. This algorithm initially
assigns each sentence (embedding vector) to its cluster and
afterward repeatedly merges pairs of clusters until all the
clusters merge into a single cluster and form an agglomera-
tive tree.

3.7 Evaluation Metrics
For comparing the sentence-embedding generator model’s
performance on the Sentence-Embedding-Test dataset, we

Figure 1: Comparison of Sentence Embedding Approaches us-
ing Accuracy Score on the Sentence-Embedding-Test Dataset

used accuracy as a metric. For measuring the clustering
performance, we used the silhouette coefficient.

4. RESULTS AND DISCUSSION
This section presents the experimental results and discusses
the findings of the research questions mentioned in section
1.

RQ1: Which pre-trained feature extraction methods for con-
text and semantically related sentences work best?
We used accuracy as a metric to compare the performance of
different sentence feature extraction methods on the Sentence-
Embedding-Test dataset.

• Sentence pairs were identified as agreement or dis-
agreement from GloVe feature embeddings with an ac-
curacy score of 0.72. The classification accuracy score
was 0.73 using feature embeddings from the BERT
model’s [CLS] token and 0.75 using the mean-pooling
(average) method of BERT word embeddings. The
base SBERT model had an accuracy score of 0.79.
(Figure: 1)

• Considering the accuracy scores, base SBERT feature
extraction performed best.

RQ2: Can we fine-tune and improve the pre-trained SBERT
model’s sentence-feature extraction for our context-dependent
review text using a semi-supervised approach?
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Figure 2: Fine-tuning of SBERT increased accuracy for iden-
tifying sentence similarity or difference after each iteration

Based on the accuracy scores for classifying the review-comment
pair as agreeing or disagreeing, we picked the baseline Pre-
trained SBERT model for further fine-tuning. We used
the Fine-Tuning dataset and active-learning approach to
fine-tune the SBERT model. We compared the model’s
performance using accuracy scores on the test Sentence-
Embedding-Test dataset. Fine-tuning using active learn-
ing is an iterative method, so we continued the fine-tuning
for four iterations. The result showed that the fine-tuned
SBERT model improved accuracy after every iteration (Fig-
ure 2).

RQ3: Does improving the sentence feature extraction method
improve clustering performance?
To test clustering performance, we used the Clustering-Test
dataset. For each rubric item, this dataset has 2–5 review
comments for each piece of work. We measure the clus-
tering performance of both the baseline SBERT and fine-
tuned SBERT using the silhouette score. For every cluster-
ing threshold we experimented with, the silhouette score for
fine-tuned SBERT was higher than for the baseline SBERT
model (Figure: 3).

5. CONCLUSION
In this study, we aim to identify disagreements in peer as-
sessors’ formative feedback by implementing a clustering al-
gorithm. Our hypothesis is that reviews expressing similar
feedback on a piece of work will be contextually and seman-
tically similar, and that a clustering algorithm will be able
to identify the similarity and put the similar feedback in a
single group or cluster. On the other hand, feedback that
expresses different opinions will be identified by the cluster-
ing algorithm and should be separated from other feedback.
We showed that the performance of the clustering algorithm
depends on the quality of the feature vectors that express
the reviewers’ natural language as machine-readable num-
bers. We have experimented with several baseline feature-
vector extraction methods and fine-tuned SBERT sentence-
embedding methods to compare quality. We carefully con-
structed the datasets for our experiments from reviews in a
course that implemented the peer-assessment process. For

Figure 3: The clustering performance comparison using Sil-
houette Score with different thresholds for Agglomerative Hi-
erarchical Clustering shows that Fine-tuned SBERT using Ac-
tive Learning outperformed at every threshold point

fine-tuning the SBERT model, we implemented a semi-supervised
active learning approach using uncertainty sampling and
expert annotation. Our study showed that the fine-tuned
SBERT sentence-embedding model outperformed the base-
line SBERT model on our test dataset. Finally, we used the
base-case model and the fine-tuned model’s sentence embed-
ding with the agglomerative clustering algorithm. We exper-
imented with different thresholds and compared our results
using silhouette scores. The silhouette score and empirical
study of the clusters formed by the fine-tuned model show
that the clustering algorithm can identify disagreements in
peer-reviewers’ formative feedback.

The key findings of this study are that base SBERT model
outperforms other feature-extraction methods like Glove and
BERT on the task of finding semantic review similarities
on a peer-review dataset containing a high amount of soft-
ware jargon. Also, we show that fine-tuning SBERT on this
context-specific data further improves the model accuracy.
We also show that fine-tuning improves the clustering done
on the peer-review data to find disagreement in the review
comments.

Since disagreement among reviewers can confuse students
and lead them to question the review process, finding dis-
agreements can help resolve the confusion by engaging re-
viewers in discussion and suggesting that the instructor in-
tervene. In the future, we intend to extend this work to
implement a recommendation system for reviewers to con-
sider revising their feedback based on key points that other
reviewers have identified.
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ABSTRACT
One important function of e-learning systems is to sequence
learning material for students. E-learning systems use data,
such as demographics, past performance, preferences, skillset,
etc. to construct an accurate model of each student so that
the sequencing of educational content can be personalized.
Some of these student features are“shallow”traits which sel-
dom change (e.g. age, race, gender) while others are “deep”
traits that are more volatile (e.g. performance, goals, in-
terests). In this work, we explore how reasoning about this
diversity of student features can enhance the sequencing of
educational content in an e-learning environment. By mod-
eling the sequencing process as a Reinforcement Learning
(RL) problem, we introduce Diversity Aware Bandit for Se-
quencing Educational Content (DABSEC), a novel contex-
tual multi-armed bandit algorithm that leverages the dy-
namics within user features to cluster similar users together
when making sequencing recommendations.

Keywords
Reinforcement Learning, Contextual Multi-Armed Bandit,
Educational Sequencing

1. INTRODUCTION
Advancements in Artificial Intelligence (AI) have resulted
in vastly improved models of student learning [4, 11, 14,
19]. Algorithms that use these models rely on data that de-
scribes students’ online interactions, as well as their demo-
graphic information, previous academic performance, suc-
cess on diagnostic questions, etc. All of this data can be
collectively referred to as the context of the student, and
it is within such contexts that algorithms operate in order
to decipher how students are learning and how to best aid
them. How these varying contextual features collectively
model the complexities of human beings is of particular in-
terest in this work, an idea we refer to as human contextual
diversity. The advancement of e-learning technologies have
brought together students of varied backgrounds and learn-

ing behaviors into single platforms, and reasoning about the
diversity this creates when sequencing educational content
is critical. We hypothesize that combining insights from so-
cial science about diversity can enrich educational models
of students’ behavior and improve the performance of ed-
ucational sequencing algorithms. This work addresses the
following questions: How can a machine detect human con-
textual diversity in educational data? Can we leverage the
diverse and dynamic nature of this human data to improve
how we sequence educational content to students?

To address these questions, we present a novel reinforcement
learning algorithm, Diversity Aware Bandit for Sequencing
Educational Content (DABSEC). DABSEC is a “diversity
aware”[20] Contextual Multi-Armed Bandit (CMAB) algo-
rithm with three main steps: calculate the dynamics of the
underlying human contextual diversity in a group, form clus-
ters of users with similar feature dynamics, and utilize these
clusters and past student performance to sequence learning
content to students. We compare the performance of DAB-
SEC against LOCB [1], a state-of-the-art contextual bandit
algorithm, as a baseline on two public educational datasets.
Our results show that DABSEC achieves a higher average re-
ward than LOCB on each dataset when predicting students’
responses to questions.

2. BACKGROUND
We give an overview of CMAB algorithms and diversity.

2.1 Contextual Multi-Armed Bandits
Prior work has established that Bandit Algorithms, and RL
in general, are effective solutions to educational sequenc-
ing[6]. One type of Bandit Algorithm, the Contextual Multi-
Armed Bandit (CMAB) is a simplification of the full RL-
problem and an extension of the Multi-Armed Bandit (MAB)
problem where, at each timestep, the agent is presented with
a list of arms (possible actions). Additionally, and unlike the
original MAB setup, the agent is also presented with con-
text (additional data) about the environment. The goal of
the agent is to select a single arm, resulting in that action
being performed. The agent then receives a reward for that
arm only. Over time, the agent learns the underlying reward
distribution of each arm and how that distribution is influ-
enced by the context, and endeavors to maximize the total
reward received over time [22].

CMABs have been used to sequence instructional material
to students to increase overall learning [23, 15, 12], recom-

C. Botta, A. Segal, and K. Gal. Sequencing educational content us-
ing diversity aware bandits. In M. Feng, T. Käser, and P. Talukdar,
editors, Proceedings of the 16th International Conference on Edu-
cational Data Mining, pages 502–508, Bengaluru, India, July 2023.
International Educational Data Mining Society.
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mend news articles to readers [16], recommend the position
of e-commerce items to maximize the chance a user inter-
acts with them online [10], and many other use cases [3].
One recent work introduced the Local Clustering in Bandits
(LOCB) algorithm [1] which implemented a “soft” cluster-
ing approach, by which users are clustered together if their
preferences are within a certain threshold of each other. In
this work, we use CMAB to select questions that students
are most likely to get correct based upon their past question
answering sequence.

2.2 Diversity
The existence of differences between humans in a group is
one notion of diversity [2], with these differences often falling
into two distinct categories: surface-level differences and
deep-level differences [9]. Surface-level differences include,
for example, age, sex, ethnicity, and race and are generally
defined by their low-dynamics and ability to be observed
immediately [13]. Deep-level differences, on the other hand,
may include skills, values, preferences, and desires. These
are more volatile and can only be observed through pro-
longed interaction between people [9]. For our purposes, we
define surface-level diversity and deep-level diversity as dif-
ferences between humans with respect to their surface-level
and deep-level differences, respectively. One example of the
importance of this classification is highlighted by the WeNet
project, which places human diversity at the center of a new
machine mediated paradigm of social interactions [2].

3. DABSEC
This section details the Diversity Aware Bandit for Sequenc-
ing Educational Content (DABSEC) algorithm.

3.1 Problem Definition
Assume N = {1, ..., n} representing a set of n total users
and T = 1, ..., t representing a sequence of timesteps. At a
timestep, t, a user, it, is drawn such that it ∈ N . Alongside
it, the agent receives the context, Ct = {c1,t, c2,t, ..., ck,t}
with one context vector for each of k arms and each context
vector having dimension d such that ck,t ∈ Rd. The agent
chooses one context vector, ck,t, associated with arm xk,t,
to recommend to it and receives reward rt in return. We
assume that each user is associated with an unknown ban-
dit parameter θi,t that describes how it interacts with the
environment and can be thought of as a representation of
how user it behaves [1]. As in previous bandit settings [16,
1, 7], the goal is to minimize the total regret, RT given by:

RT =

T∑

t=1

[θ⊺i,t(argmaxck,t∈Ctθ
⊺
i,tck,t)− θ⊺i,tct] (1)

where, at each round, t, we compute the regret by taking
the reward achieved from the best possible arm choice, xk,t,
and subtracting the reward achieved from the agent’s chosen
arm, xt. We also assume that each user, i, has a set of
features, F, of length q such that at any time, t, there exists
Fi,t = {fi,1,t, fi,2,t..., fi,q,t}.

3.2 DABSEC Algorithm
The DABSEC algorithm has three main steps: calculate the
underlying feature dynamics of all users over time, form clus-
ters of users with similar feature dynamics, then utilize the

clusters and past student performance to sequence learning
content to students. DABSEC (Algorithm 1) is initialized
with the number of clusters to maintain (s), the frequency
with which to update the clusters (Tcluster), the frequency
with which to update the user feature dynamics (U), and
an exploration parameter (α). Then, all users are initial-
ized (Lines 2-4) and the algorithm begins iterating over all
timesteps sequentially (Line 5). In each round, t, a user it
is presented along with the set of context vectors Ct (Line
6). DABSEC begins without any user clusters. DABSEC
first checks if there are any clusters (Line 7), and if there are
none (length(G ≤ 0)), then the arm with the highest upper
confidence bound (UCB) is chosen. As is standard practice
[16] in bandit algorithms, UCB is computed using the esti-

mation of user it’s unknown bandit parameter, θ̂i,t (Lines
14-16) where A−1

i,t−1 is the covariance matrix and bi,t−1 is a
normalizing matrix for user i at timestep t−1 that are used
to compute the ridge regression solution of the coefficients
[16]. On the other hand, if a user clustering has been estab-
lished (length(G > 0)), then the cluster holding user it is set

as gs,t (Line 8) and DABSEC calculates θ̂gs,t , which repre-
sents the unknown bandit parameter for the entire cluster
(Line 9).

Finally, to choose an arm, we compare the UCB using the
user’s unknown bandit parameter, θ̂i,t to the UCB using the
average unknown bandit parameter of all users in cluster
gs,t, θ̂gs,t (Lines 10-12). The maximum of these two UCB
values is selected (Line 13). The reasoning behind this is
that previous work has established that clustering users by
unknown bandit parameter is an effective strategy for iden-
tifying users who behave similarly in a task, thus resulting
in a collaborative filtering effect [8, 7, 17, 18, 1]. In datasets
where changes in user features are not available or consid-
ered, these past works still represent the state of the art in
clustering bandit algorithms. Our approach, by comparison,
is to gain an advantage in datasets where user feature dy-
namics are available and changing. In these cases, we expect
the collective bandit parameter of the cluster where user it
resides, θ̂gs,t , to estimate expected behavior better than θ̂i,t.

With an arm chosen and pulled, we observe the reward, rt,
then update user parameters and cluster parameters for the
cluster that user it resides in (Lines 17-22). Then, any user
features, Fi,t are updated (Lines 23-24). This step will be
tailored to the specific implementation and dataset, as the
number, type, and sophistication of the user features will
be entirely dependent on the problem definition and setup.
The count for how many times user it has been considered is
also updated (Line 25). Finally, the most up to date clusters,
Gt, are calculated and returned by the CLUSTER function
(Line 26 - see Algorithm 2), which ends round t.

3.3 Clustering by User Feature Dynamics
The second component of DABSEC is clustering users based
upon the similarity of their feature dynamics. The CLUS-
TER algorithm (Algorithm 2) assumes that each user has
a set of features, F, of length q such that at any time, t,
there exists Fi,t = {fi,1,t, fi,2,t..., fi,q,t}. The values of each
individual user feature, fi,q,t may change over time, which
can be tracked to cluster users based upon the similarity
of their feature dynamics. To do this, one can observe the
value of a feature at some initial timestep, then again at a

503



later timestep, and calculate the absolute value of the differ-
ence between them. More formally, at some initial timestep,
Tinitial, we store the values of all features for a given user,
it: Fit,Tinitial . We also initialize a set Yt that contains one
value for each user such that Yt = {y1,t, y2,t...yi,t} and yi,t
represents the number of times that the agent has made a
recommendation to user it. Thus, each time user it is se-
lected by the algorithm, we can update Fi,t based upon the
observed user features at timestep t, and increment yi,t by
1. Once the agent has made a recommendation to a user
U times, say at time Tfinal, such that yi,t = U , the feature
dynamics for user i, δi, can be computed based upon how
the features have changed between Tinitial and Tfinal (Al-
gorithm 2 Line 2). The differences are summed over time to
compute δi, and U is a hyperparameter that controls how
often user feature dynamics are updated. After this calcula-
tion, Tinitial is set to Tfinal and yit,t is set to 0. The process
repeats when yit,t = U until all timesteps are complete.

By performing this operation for every user, we constantly
have access to δi which represents the current dynamics of
user i’s features. We use the similarity between user’s δ
values to cluster them together, rather than θi,t as done in
previous works [8, 7, 17, 18, 1]. To that end, we assume
that there exists a set of clusters G of length s such that
Gt = {g1,t, g2,t...gs,t}. For simplicity, we assume that each
user must appear in exactly one cluster and all users are split
evenly amongst the clusters. This results in each cluster
containing n

s
users. See Algorithm 2 for the full clustering

pseudocode.

DABSEC updates clusters after a period of timesteps have
passed Tcluster. This is because calculating the dynamics of
the user features requires observing changes in those features
over a period of time. To re-cluster after every timestep
would not allow sufficient time to observe any true dynamics,
so we update δi for each user after every U timesteps in which
that user is selected.

4. DABSEC ON EDUCATION DATA
In this section, we apply the DABSEC algorithm to two
large-scale educational datasets: Eedi [24] and EdNet [5].

4.1 Eedi Dataset
Eedi1 released a dataset that includes over 17 million inter-
actions of students answering multiple choice questions. It
was used for The NeurIPS 2020 Education Challenge [24]
and contains two identically structured halves: Eedi1 and
Eedi2. Each provides interaction logs of the student ID,
question ID, student answer (range a-d), and the correct
answer (range a-d). Every question has an associated list of
features including a question ID, and a list of subject IDs (a
list of IDs that correspond to mathematics concepts that are
covered by the question). Every student has an associated
list of features including gender, date of birth and a boolean
indicator if the student is financially disadvantaged or not.

4.2 EdNet Dataset
The EdNet dataset[5] was the largest publicly-available edu-
cation dataset when it was released in 2020. It contains over
131 million interactions from over 784,000 students who,

1https://eedi.com

Algorithm 1 DABSEC

Require: number of clusters to form s, cluster update fre-
quency Tcluster, user feature dynamics update frequency
U , exploration parameter α

1: Tinitial ← 0
2: for each i ∈ N do
3: Ai,0 ← I, bi,0 ← 0
4: yi ← 0
5: for t← 1, 2...Tfinal do
6: receive it ∈ N and obtain Ct = {c1,t, c2,t..., ck,t}
7: if length of G ≥ 0 then
8: gs,t ← Cluster where it resides at round t

9: θ̂gs,t ← 1
|gs,t−1|

∑
j∈gs,t−1

A−1
j,t−1bj,t−1

10: xcluster ← argmaxca,t∈Ct θ̂
⊺
gs,tca,t +CBr,gs,t where

CBr,gs,t ← 1
|gs,t−1|

∑
j∈gs,t−1

α
√
c⊺a,tA

−1
j,t−1ca,t

11: θ̂itt ← A−1
i,t−1bi,t−1

12: xuser ← argmaxca,t∈Ct θ̂
⊺
itt
ca,t + CBr,i where

CBr,i ← α
√
c⊺a,tA

−1
i,t−1ca,t

13: xt ← max(xcluster, xuser)
14: else
15: θ̂itt ← A−1

i,t−1bi,t−1

16: xt ← argmaxca,t∈Ct θ̂
⊺
itt
ca,t+CBr,i where CBr,i ←

α
√
c⊺a,tA

−1
i,t−1ca,t

17: pull xt and observe reward rt
18: Ai,t ← Ai,t−1 + xtx

−1
t

19: bi,t ← bi,t−1 + rtxt
20: if length of G ≥ 0 then
21: Ags,t,t ← Ags,t,t−1 + xtx

−1
t

22: bgs,t,t ← bgs,t,t−1 + rtxt
23: for fi,q,t ∈ Fi,t do
24: update fi,q,t according to information gathered

from problem setup and rt
25: yi,t ← yi,t + 1
26: Gt ← CLUSTER(U , Y, Tcluster, it)

over the course of two years, used the Santa2 platform to
study English for the Test of English for International Com-
munication (TOEIC) exam. The dataset is organized in a
4-level, hierarchical style, and we consider the KT1 version
for our analysis. The KT1 dataset is a collection of 784,309
CSV files, where each file contains the question answering
logs of one student. Each line represents a question that the
student answered, and includes the timestamp of the answer
submission, a solving ID, the ID of the answered question,
the student’s answer (from a-d), and the amount of time
spent answering the question. For each of the 13,169 ques-
tions in the dataset, the correct solution and the question
tags are provided. These question tags are identical to the
concept of subjects from the Eedi dataset described in sec-
tion 4.1. We refer to the tags as subjects for consistency.

4.3 Experiments
In this section we describe an educational setting where
an agent trained using DABSEC chooses personalized se-
quences of mathematics questions, based upon past student
performance, that are likely to be answered correctly by the

2https://www.aitutorsanta.com
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Algorithm 2 CLUSTER

Require: user feature dynamics update frequency U , user
update counts Y, cluster update frequency Tcluster, user
it

1: if yi == U then
2: δi =

∑Q
q=1{|Fi,t − Fi,Tinitial |}

3: Tinitial ← t
4: yi ← 0
5: if t % Tcluster == 0 then
6: δsorted ← sort δ in ascending order
7: Gt ← split(δsorted,s) where split(x,y) splits x into

length(x)%y groups each of size length(x)
y

+ 1 and the

rest of size length(x)
y

8: return Gt

student. We apply DABSEC to Eedi1, Eedi2 and EdNet,
by first obtaining the full list of unique questions that each
student answered, along with the subject categories, the stu-
dent answer, and correct answer for each question. At each
round where user it is selected, we randomly sample 10 ques-
tions that student it has answered. Because we are inter-
ested in building an agent that can identify questions that
each student should be able to answer correctly, we follow a
recent approach [1] of selecting 9 questions that the student
answered incorrectly in the past, and 1 question that the
student answered correctly in the past. The correct ques-
tion is not revealed to the agent. Not all students in the
dataset answered enough total questions to be considered
in this experimental setup, so we selected a subset: for the
Eedi datasets, we consider the 50 users with the most total
questions answered. For the EdNet dataset, we sample 50
users who have answered over 1000 questions. Thus, dur-
ing each round of DABSEC, the agent receives a user, it,
a list of 10 random questions that it has answered in the
past (9 incorrect, 1 correct) and a context vector that con-
tains the student’s past performance by subject. The agent
then chooses 1 question that it believes it is mostly likely
to answer correctly. The agent is given a reward of 1 if it
correctly selects the 1 question that user it did answer cor-
rectly in the past, and a reward of 0 otherwise. To compare
the performance across datasets and against the baseline, we
calculate and report the cumulative average reward achieved
over every sequence of 50 timesteps.

Using the above setup, we first applied the original LOCB
algorithm to both datasets. The creators released an open-
source implementation of LOCB3 which we extended and
adapted to operate on our datasets. After the base setup,
the algorithm continually forms and updates clusters based
on the similarity of student’s unknown bandit parameter,
θ, which is a proxy for student preferences and behavior as
discussed in Section 3. At each timestep, LOCB computes
the average θ of the current student’s cluster and uses it to
select the question that was most likely answered correctly.
In the original work’s main experiments, the authors con-
clude that setting the number of clusters to 20, gamma to
0.2 and delta to 0.1 would return good results on average,
so we use these values for our LOCB implementation.

3https://github.com/banyikun/LOCB

(a) Eedi1 Dataset (b) Eedi2 Dataset

Figure 1: A comparison of the performance of DABSEC,
DABSEC + static, and LOCB on both Eedi datasets based
on cumulative average reward.

We then applied DABSEC to all datasets, with clusters be-
ing continually updated every Tcluster timesteps based on
the average bandit parameter, θ, of a user’s cluster, where
clusters are formed based on similarity of feature dynamics
as discussed in Section 3. We set the following hyperparam-
eters for both datasets: Tcluster = 1000, U = 10, and s = 3,
as these produced the best overall performance. Additional
hyperparameter settings are described in Appendix A.

Finally, for the Eedi dataset only, we follow an identical
setup as DABSEC described above with the addition of the
static (low dynamic) student features: the age, gender, and
if they are financially disadvantaged. We call this DABSEC
+ static. We do not apply DABSEC + static to the EdNet
dataset because there are no demographic features.

5. RESULTS AND ANALYSIS
We compare the performance of DABSEC, DABSEC + static,
and LOCB on all datasets, and describe DABSEC’s poten-
tial educational applications.

5.1 Results
As shown in Figure 1a, both of the DABSEC variations out-
perform the LOCB baseline by nearly 30% with respect to
cumulative mean reward obtained over time on the Eedi1
dataset. Neither DABSEC variation seems to outperform
the other. Looking at Figure 1b, we see that both DABSEC
variations again outperform the LOCB baseline on the Eedi2
dataset - this time by about 25%. In this dataset, DABSEC
slightly outperforms DABSEC + static but the gap is nearly
closed by the time we reach the end of the rounds. Finally,
in Figure 2, DABSEC outperforms the LOCB baseline by
over 30% on the EdNet dataset.

Our experimental results confirm that DABSEC achieves
better performance than LOCB on the Eedi1, Eedi2, and
EdNet datasets. We found evidence that identifying and
extracting feature dynamics can improve RL algorithm per-
formance, and that clustering users based on their feature
dynamics, rather than estimated user preferences alone, is a
good starting towards improving clustering algorithms based
on human diversity. We argue that the reason for this im-
provement is that identifying the highly dynamic features
allows DABSEC to search the space of context-reward as-
sociations more completely and more quickly, thus leading
to better reward. The low dynamic, static features, on the
other hand, either exclude part of the search space or explore
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Figure 2: A comparison of the performance of DABSEC and
LOCB on the EdNet dataset based on cumulative average
reward. We ran 35,000 rounds until seeing evidence of sta-
bilization.

it more slowly than DABSEC is capable of learning, leading
to lower reward over the same timespan. This theory re-
quires further testing, but the results of applying DABSEC
to real data are promising, and further research into aug-
menting our clustering approach is planned for the future.

5.2 Implications for Education
We believe that a diversity aware approach to RL has high
potential in the education domain. Due to the amount of
individual behavioral data, one of the dominant use cases
of RL and Bandit algorithms is e-learning systems, where
students answer questions while the system attempts to ob-
serve, understand, and improve student knowledge based on
the responses [21]. This is an ideal environment where user
features are highly dynamic, as student performance across
subjects changes with each question answered. This is a
phenomenon we saw in our experiments in Section 4 and
were able to exploit to boost performance. We believe that
there is a potential for algorithms like DABSEC to further
improve e-learning technology.

6. CONCLUSION
In this work, we designed, implemented, and tested DAB-
SEC, a diversity aware RL algorithm that uses feature dy-
namics as a proxy for underlying human-contextual diver-
sity, then clusters users based on this metric. We hypothe-
sized that this technique could improve RL algorithms that
operate in environments where user data is highly dynamic,
and this proved true when applying DABSEC to two large-
scale educational datasets. DABSEC outperforms the LOCB
baseline by approximately 30% based on cumulative mean
reward earned over time, and we believe that extensions to
DABSEC can make it an ideal tool for building more per-
formant e-learning applications.

6.1 Limitations
Our approach is an initial attempt to develop a diversity
aware RL approach that leverages the dynamics of human
data over time. One major drawback is that if a dataset is
mostly comprised of features with low dynamics, the user
feature dynamics would always be calculated as near zero
and the clusters would be far less informative. Similarly,
our assumption that user’s could only be in one cluster may
fall short of fully capturing the most available data on every
student, as LOCB found by letting user’s reside in multiple

clusters simultaneously [1]. Similarly, by requiring all clus-
ters to include the same number of users, we may not be
forming the ideal clusters - for example, if the cluster size
dictates that each cluster should have 10 users, but there
are 3 users that are extreme outliers, then these 3 might
benefit from residing in their own cluster. Additionally, in
our definition of diversity, we assume that user features that
remain constant are likely surface-level, whereas more dy-
namic features are likely deep-level. Of course, this may not
hold in all situations; some people’s goals, personalities, and
values may never change, despite being classified as traits of
deep-level diversity. For the sake of this work, we make this
assumption based upon past sociology research [9, 13], but
acknowledge that it may not hold in all implementation use
cases. Finally, we followed the experimental approach that
LOCB[1] used by randomly selecting the data at each round
- we picked the student randomly, then randomly chose 9
questions that the student got incorrect and 1 that the stu-
dent got correct to serve as the arms. This assumes knowl-
edge of the entire dataset at the beginning, which would not
be the case in real-time e-learning systems which consider
student interactions as they occur.

6.2 Future Work
Further research should be conducted to improve upon our
initial findings. First, there is an opportunity to improve the
clustering algorithm to account for additional data about the
user. For example, users could be clustered using a combi-
nation of overall feature dynamics and the preferences of
users, represented by their unknown bandit parameter θ.
This technique may boost performance by clustering users
based upon both their preferences and how those preferences
are changing over time. Second, this work included run-
ning DABSEC on two real-world educational datasets, but
deploying DABSEC in the wild would offer further insight
into the usefulness of diversity-aware RL. We would like to
deploy DABSEC in a live e-learning platform so that it can
sequence learning content to students in real-time. Finally,
given that incorporating human data and diversity within
algorithms needs to be handled with care, an exciting exten-
sion of this work would be to consider if diversity-aware al-
gorithms have any implications on algorithmic fairness. For
instance, investigating whether or not algorithmic fairness is
more easily achieved with a diversity-aware algorithm, or if
diversity-aware algorithms are more or less transparent than
traditional algorithms are both important research areas to
explore.
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APPENDIX
A. HYPERPARAMETER VARIATIONS
Using the DABSEC algorithm on the EdNet dataset, we also
explored a few variations of the hyperparameters: the num-
ber of clusters to sort users into, s, the user feature dynam-
ics update frequency, U , and the cluster update frequency,
Tcluster. Like before, we measure the performance based
on cumulative mean reward achieved over time. Figure 3a
shows the effect of changing the frequency with which the
user feature dynamics are updated (U). We held the number
of clusters constant at 3 and the cluster update frequency
constant at 1000. We set U as 5, 10, 50, and 100, which rep-
resent how many questions need to be answered by a user
before we recalculate their current feature dynamics. We
can see that the performance of DABSEC is not effected
much by changing U , though the best performing variation
updated a user’s feature dynamics after every 100 questions
answered by that user. This makes sense, because a larger U
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forces a larger amount of questions to be answered between
feature dynamics calculations, meaning that there will be
far more data to consider than when U is smaller. However,
the difference in performance is not very significant.

Figure 3b shows the effect of changing the frequency with
which the actual global clusters are updated (Tcluster). We
held the number of clusters constant at 3 and the user feature
dynamics update frequency constant at 10. We set Tcluster
as 500, 1000, 2000, and 5000, which represent how many
rounds occur between every instance of reclustering. We can
see that the performance of DABSEC is not effected much
by changing Tcluster, though the worst performing variation
updated clusters every 500 rounds. This makes sense, be-
cause a smaller Tcluster would not be considering as much
data when forming new clusters, which may result in clusters
that are less indicative of true similarities between users. It
would make sense that a higher Tcluster would result in more
data being considered by the clustering algorithm, thus re-
sulting in better clusters and a better performing algorithm.
However, the difference in performance is not very signifi-
cant.

Finally, Figure 4 shows the effects of changing the number
of clusters that users are placed into. DABSEC achieves
better performance when the number of clusters is smaller
(3), with performance incrementally worsening as the num-
ber of clusters increases to 5, 10, and 15. This is in line with
our expectations, as we are only using 50 total users which
makes the size of the clusters quite small as the number of
clusters increases. In the future, running these experiments
with more total users would be interesting.

Figure 4: Cluster size varies (3, 5, 10, 15) while Tcluster
(1000) and feature dynamics update frequency (10 rounds)
remains constant.

(a) Frequency of calculating user feature dynamics, δ, varies (5, 10,
50, 100 rounds) while clusters (3) and Tcluster (1000 rounds) remain
constant.

(b) Frequency of calculating the global clusters, Tcluster, varies (500,
1000, 2000, 5000 rounds) while clusters (3) and feature dynamics
update frequency (10 rounds) remain constant.

Figure 3: Hyperparameter variations using DABSEC on the
EdNet dataset.
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ABSTRACT
This research study investigates the cognitive levels of the
questions used for assessment and evaluation purpose in
three national school board secondary school leaving exam-
inations in Mathematics and Science subjects, conducted
in Indian schools from 2011 to 2020. The research used
Bloom’s Taxonomy to identify the cognitive levels of 3071
board examination questions. The study addresses the gap
in the current literature on the non-availability of a compar-
ative study of national school board assessment practices in
India. The study provides a comparative analysis of three
English medium Indian school boards (ICSE, CBSE, and
NIOS) by analyzing what areas/topics the board exams test
and which ones they ignore. Based on this analysis, certain
trends were analysed which are present in boards/subjects
in the 10th standard national level exams in India. This
study will help school education stakeholders to get an in-
sight into the cognitive level trend/patterns of assessment
questions.

Keywords
Cognitive level, Assessment Questions, School Examination,
Indian School Boards

1. INTRODUCTION
A learning process can be segmented into three sections
[7]. First, the learning goals, which are also referred to as
instructional objectives / Learning Objectives (LO). They
specify the learning outcomes that mention the skills and
knowledge which is to be imparted to the learner. Second,
the selection of learning materials that meet the requirement
to achieve the learning goals. Third, assessment questions
that determine whether the learner is learning the necessary
skills and knowledge to solve the problem. In the educa-
tional domain, the Learning Objective refers to the state-

ment(s) of a course curriculum, specifically describing the
skills and knowledge that the student must gain after the
course is completed. If complemented by a similar cognitive
level of instructional techniques and tests, the learning out-
comes help the teachers determine whether the students are
achieving the expected skills and knowledge.

The Learning Objective also determines the performance
results by determining the conditions under which perfor-
mance will occur. It also defines the requirements (specific
skills, competencies, and attitudes) that the learners will
follow. “Learning outcomes are precise statements of what
faculty expects students to know and to be able to do in
some measurable way as a result of completing a program,
course, unit, or lesson” as stated in [3]. It was also observed
that “in addition to guiding, teaching, learning, and assess-
ment strategy, effective learning outcomes facilitate student
orientation to the subject and communicate expectations”
as reflected in this research [6]. For active learning to take
place, ‘there must be a constructive alignment of the cur-
riculum, which should ensure that in an education program,
the learning objectives, teaching and learning methodolo-
gies, and assessment techniques should complement each
other’.

Student’s ability to think for activities during instruction
and examinations are essential for improving their intellec-
tual abilities, performance execution, and professional growth.
As a result, exams should be designed to encourage students
to express their thoughts on the exam questions, develop cre-
ative answers, and connect the exam answers to their own
experiences and real-life situations [5]. Also, good questions
not only promote effective learning and assessment, but they
must also be consistent with curriculum and instruction, as
assessment has a significant impact on both learning and
teaching. The phenomenon is known as the ‘washback ef-
fect’, and it refers to how testing affects teaching and learn-
ing [17].

As a result, writing high-quality exams that include both
higher-level questions (HLQs) and lower-level questions (LLQs)
is critical in assisting students in achieving the desired learn-
ing outcomes and evaluating their level of proficiency in a
specific course. The HLQs help students dig deeper into the
learning materials while also encouraging critical thinking
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and creativity. A work by [2] stated that, schools must em-
phasise higher-order skills in order to develop critical think-
ing.

Therefore, the present study seeks to examine and compare
to what extent the questions of the tenth grade school board
examinations in Mathematics and Science subjects prepared
by three national level Indian school boards include both
higher and lower-order thinking levels. In the first place, it
is essential to assess how well students master the informa-
tion of the educational materials within the six levels of the
Bloom’s Taxonomy. Additionally, it is essential to analyze
whether the exam questions of the given examinations in the
Mathematics and Science subjects are based on both higher
and lower-order thinking levels.

2. LITERATURE REVIEW
2.1 Mapping Bloom’s Taxonomy Cognitive Lev-

els to Thinking orders
Bloom developed a taxonomy in this context that is used
to develop assessments that take into account each of the
six levels of hierarchy in the cognitive domain [14]. Knowl-
edge (recalling details), comprehension (description in some-
one else’s words), and application (using existing knowledge
to produce results) are examples of lower-order thinking
domains. Higher-order thinking domains include analysis
(discovering connections between facts and concepts), syn-
thesis (creating new original work), and evaluation (judg-
ing and demonstrating one’s position) [12]. Researchers
used Bloom’s Taxonomy’s two cognitive categories to anal-
yse and determine the levels of questions asked in exams, and
they established two types: lower-level questions (LLQs)
and higher-level questions (HLQs) [16]. The LLQs are de-
signed to test students’ recall of fundamental and universal
concepts and processes. The HLQs, on the other hand, are
more advanced and difficult because they require students
to engage in deeper and analytical thinking processes.

2.2 School Board Examination System in In-
dia

The work by [8] gives a comprehensive overview of Indian
school education system. The research article extensively
covers the Indian school education system, which is one of
the largest education system in the world. With both pub-
lic and private schools, the Indian school system can be di-
vided into four main categories – pre primary (consisting of
pre-school, lower and higher kindergarten), primary school
(standard one to five), middle school (standard six to eight),
secondary school (standard nine and ten) and high school
(standard eleven and twelve / or pre university standard).
The public schools are majorly either central government
schools (such as Kendriya vidyalayas, navodaya vidyalayas,
Sainik schools etc.) or state government schools of respective
states. The private schools are usually run by individuals,
trusts or societies and may or may not receive fund from
the government. Apart from these two major categories,
some other semi government type schools run by local gov-
ernment bodies also exist (e.g. Municipality schools). The
central government schools are usually affiliated to the Cen-
tral Board for Secondary Education (CBSE) supervised by
the National Council of Educational Research and Training
(NCERT) under the Ministry of Education. The Council of

Indian School Certificate Examinations (CISCE) is a semi-
private, non governmental education board in India. It con-
ducts the Indian Certificate for Secondary Education (ICSE)
examination (for tenth standard) and Indian School Cer-
tificate (ISC) examination (for twelfth standard) in India.
These two are the major all India based school examination
boards. Apart from the all India based school examination
boards, the state government affiliated school examination
boards constitute a major part of Indian school examination
system. All Indian school boards for the sake of collaborat-
ing and exchange of information with each other forms an
umbrella body called Council of Boards of School Educa-
tion in India (COBSE), a voluntary association of all the
boards of school education in India. There are more than
50 members with associate members from Nepal, Mauritius,
Bhutan, Pakistan and United Kingdom. Other than these
Indian school boards, foreign school boards such as Inter-
national Baccalaureate Organization (IBO) and Cambridge
International Examinations (CIE) are emerging as newer
school boards in urban areas. These schools boards offer
global school level examinations all over the world and fol-
lows universal curriculum. It must be noted that all school
boards in India are autonomous having their own syllabus,
curriculum, method of assessment and evaluation.

An elaborate research work on the quality of school educa-
tion in India has been done by Institute for Studies in In-
dustrial Development as mentioned in [9] for Quality Council
of India, New Delhi. Firstly, they have clearly defined the
distinction between syllabus and curriculum. Curriculum is
being defined as – “In formal education, a curriculum (plu-
ral curricula) is the set of courses, and their content, offered
at a school or university”, while syllabus is defined as “A
syllabus is an outline and summary of topics to be covered
in a course”. They have identified that in CBSE, the ad-
vantage is that the curriculum is same all over the country
and the continuity of education is not a problem if some-
one needs to change a school. They have also inferred that
ICSE syllabus is tougher than that of the CBSE and state
based school boards. Their research work showed that the
school boards are giving high importance to evaluation and
examination system which includes some additional forms
of evaluation such as (a) project work, (b) reading and writ-
ing skills, (c) participation in co-curricular activities, (d)
attitude and behaviours, etc. However major emphasis was
given on written examination by schools. IBO puts more
emphasis on project based and practical work compared to
the Indian school boards as it follows a global curriculum all
over the world. IBO assessment focuses on what skills the
students have learnt or what level of understanding can the
students demonstrate. British Council in India, in their re-
port [13] on the Indian school education system provides an
overall picture into this large and evolving school education
system of India. They remarked that “the present education
system in India is guided by different objectives and goals
but is based around the policies of yester years.” They claim
that two important policies of the Government of India—the
Sarva Shiksha Abhiyan (SSA) in 2001 and the Right of Chil-
dren to Free and Compulsory Education (RTE) Act, 2009
have made education priorities rise among common people of
India and have been responsible for improvements in educa-
tional performance. However, this report does not mention
about the challenges faced by the Indian school education
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system today. Also National Institute of Open Schooling
(NIOS) is not covered in these reports.

3. NEED AND SIGNIFICANCE OF THE STUDY
The objective of this research is to find the trends and pat-
terns of cognitive level in secondary school board examina-
tion questions. To the best of our knowledge, there is no
previous research on a comparative analysis of the cognitive
level of questions from three different school boards (with
respect to India) and in multiple subjects. This study tried
to address this gap through a comprehensive research and
provide an accessible and open dataset as a solution to the
problem and for future similar comparative research.

4. RESEARCH QUESTION
This study investigates the cognitive levels of the questions
used in the English medium school leaving examinations for
three national school boards in India administered nation-
wide from 2011 to 2020. It put forwards the following re-
search question: To what extent do Indian school board
school leaving examination questions cover the lower and
higher-order cognitive levels of Bloom’s Taxonomy?

5. DATASET DETAILS AND DESCRIPTION
5.1 Why are these data useful?
Every year, millions of students appear for the 10th board
(secondary exam) in India from various national and re-
gional state education school boards. In 2021, 21,50,608
students appeared in the 10th Board exam in Central Board
for Secondary Education Examination (CBSE) in India [1].
However, not much is studied about what Cognitive ar-
eas the board exams test, which sections of learning they
stress, and which ones they ignore. This research tries to
provide a comprehensive comparative analysis of three En-
glish medium national school boards – Indian Certificate
of Secondary Education (ICSE), the Central Board of Sec-
ondary Education (CBSE), and the National Institute of
Open Schooling (NIOS). The Indian Certificate of Secondary
Education popularly known as ICSE is an examination con-
ducted by the Council for the Indian School Certificate Ex-
amination (CISCE), a private board of school education in
India for Class 10. The CISCE board is headquartered in
New Delhi. The Central Board of Secondary Education
(CBSE) is a national-level board of education in India for
public and private schools, controlled and managed by the
Government of India. There are more than 27,000 schools
in India and 240 schools in 28 foreign countries affiliated
with the CBSE. The National Institute of Open Schooling
(NIOS), formerly National Open School was established by
the Ministry of Human Resource Development of the Gov-
ernment of India in 1989 to provide education to all seg-
ments of society with the motive to increase literacy and
aimed forward for flexible learning. The NIOS is a national
board that administers examinations for Secondary and Se-
nior Secondary examinations similar to the CBSE and the
ICSE. NIOS enrolls about 350,000 students annually which
makes it one of the largest open schooling systems in the
world.

5.2 Who can benefit from these data?
This data will help school education stakeholders to get an
insight into the cognitive level trend/patterns of assessment

Table 1: Dataset details

Sl.No. Board Years No. of Ques.

1 ICSE 2011-2020 838

2 CBSE 2011-2020 1274

3 NIOS 2011-2020 959

Total 3071

Figure 1: Types of Questions and Cognitive levels

questions.This data can be extremely useful and can be fur-
ther re-used for creating intelligent tools as mentioned in
similar research articles like [10] and [9]. The following ta-
ble, Table 1 shows the details of the dataset.

6. METHODOLOGY
The data was collected from the physical and digital copies
of the previous question papers. The text data of digital
copies were cleaned and curated in online spreadsheet sys-
tems (Google Sheets). Once compiled, all the questions were
segregated into individual sheets year and subject-wise1 .
Three annotators having sufficient domain knowledge about
Cognitive levels using Bloom’s Taxonomy action verbs [11]
annotated each question individually to identify the most
appropriate cognitive level. The inter-annotator agreement
for the appropriate cognitive level was in the substantial
agreement range (using Fleiss’s kappa) [4]. For data analy-
sis and visualization, Tableau [15] was used.

7. RESULTS
7.1 General Findings
Table 2 and Table 3 shows the top five Bloom’s Taxonomy
action verbs used for Science and Mathematics across all
the three boards. Figure 1 shows the various types of ques-
tions, based on their cognitive level and their frequencies.
Figure 2 shows various types of questions and their frequen-
cies against each board. Figure 3 shows Cognitive level with
respect to individual boards.

7.2 Patterns and Observations
7.2.1 General Question patterns

Figure 4 (Mathematics), 5 (Physics), 6 (Chemistry), and 7
(Biology) shows the comparison of the number of questions

1CBSE and NIOS takes a combined Physics, Chemistry and
Biology exam while ICSE have separate exams for the three
subjects.
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Figure 2: Types of Questions and School Boards

Figure 3: A complete overview of School Boards, Question
type and Cognitive levels

Table 2: Top 5 Most used Action Verbs (Maths)

Rank Verb f CBSE f NIOS f ICSE

1 Find 565 220 192

2 Prove 96 36 25

3 Draw 36 9 19

4 Construct 32 18 14

5 Solve 32 11 19

f denotes frequency of verb in respective board.

Table 3: Top 5 Most used Action Verbs (Science)

Rank Verb f CBSE f NIOS f ICSE

1 Name 31 31 188

2 Write 68 45 96

3 Explain 44 63 92

4 State 47 32 92

5 Draw 44 30 94

f denotes frequency of verb in respective board.

Figure 4: Question Pattern - Mathematics

Figure 5: Question Pattern - Physics

asked on behalf of different Cognitive levels of Bloom’s Tax-
onomy against each Board. Figure 8 shows an overall com-
parison of Boards, Question type and Cognitive levels. From
this analysis, it can be inferred which type of assessment
was most preferable for a specified cognitive level. As it
is observed, Application-level questions are most frequently
asked in all three types of questions (MCQ, Long, Short).

For the MCQ type of questions, there was no “create” and
“evaluate” type of questions asked. The reason can be that
MCQ questions are known as single marks questions, and
asking for creation and evaluation will be much more in

Figure 6: Question Pattern - Chemistry
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Figure 7: Question Pattern - Biology

Figure 8: Question Pattern - Overall

terms of time and effort required. In long and short type
questions, all Cognitive levels of Bloom’s Taxonomy ques-
tions can be found. It was also observed that lower cogni-
tive levels of Bloom’s Taxonomy questions are asked more
for the long answer types questions.

7.2.2 Board vs Subject vs Cognitive level
The highest number of application-level questions are asked
in Mathematics subject in all three boards. Physics also had
the highest frequency of Application level questions among
all three boards similar to Mathematics. For Biology sub-
ject most number of Knowledge level questions were asked
for CBSE and NIOS boards. At the same time, ICSE em-
phasises more on the understanding-type questions, as they
had the highest tally among all other cognitive levels. Sim-
ilarly for Chemistry, Knowledge level questions frequency
was highest among all three board subjects. For all three
boards for 9 years, there were no create level cognitive-type
questions asked in Chemistry.

7.3 Discussions
7.3.1 Analysis of the three boards for educational

and assessment practices
According to the study findings, lower order cognitive level
exam questions outnumber higher order cognitive level exam
questions by a wide margin. Such an imbalance in questions
based on the six cognitive domains in national examinations
may have a negative impact on instructional quality and stu-
dent learning. CBSE has two categories of papers in almost
every year, Delhi and Outside Delhi. These papers have

some differences in number of questions in each cognitive
level. In ICSE science, all questions have multiple subparts
(upto 5 or 6) each from different chapters as well as cog-
nitive levels. These can be very confusing for the student
and can cause ambiguities in their analysis. Maths papers
throughout the three boards have an abundance of applica-
tion level questions. Most of these have the somewhat am-
biguous Bloom’s Taxonomy Action Verb ‘Find’. In NIOS
papers (Mathematics), the questions for visually impaired
students are usually of lower cognitive level than the equiv-
alent for the other students. NIOS Maths asks students to
name and define terms in the form of MCQs (approximately
5%) that comes under memorization level and is absent in
CBSE. CBSE papers before 2018 only test concepts from the
second half of the syllabus, as was the case in Continuous
And Comprehensive Evaluation (CCE) pattern.

7.3.2 The impact of secondary school national board
exams on teaching and learning quality

The questions indicated that students are required to spend
more instructional time preparing for the exam or studying
past exams that are heavily lower cognitive thinking (LOTS)
driven and derived from curriculum books. As a result, stu-
dents will fail to master complex reasoning skills as required
by the curriculum. Students are more likely to face chal-
lenges in secondary and tertiary education, as well as in
their personal and professional lives, if primary education
does not include critical thinking instruction and long-term
assessment.

8. LIMITATIONS OF THE STUDY AND FU-
TURE WORK

The study, however, was limited to the English medium na-
tional school board examinations. With 30 or more state
boards in regional languages, data collection and annota-
tion would have been a real challenge. However, if it had
been implemented, it would have provided a more in-depth
understanding of the national education system by reflecting
on assessment approaches.

9. CONCLUSION
All the Indian school boards are similar in terms of mak-
ing students remember the facts, understand the concepts
and apply them to solve problems. Thus the questions for
evaluation and assessment also focus on these three major
aspects. The CBSE syllabus is comparatively “more easy”
on students in its approach as it has been designed for a
specific year and is divided into various segments. Every
segment is given a specific number of periods so that it can
be completely and thoroughly taught in one year. It empha-
sises on understanding of concepts and processes with their
application. The ICSE system stresses more in terms of
aptitude development and thoroughness by almost equally
focusing the syllabus on remembering facts, understanding
of concepts and application of the processes learnt. NIOS
being an open schooling option, do provide some relaxation
in terms of cognitive rigour when compared to the other two
national boards. In conclusion we can say, if the syllabus is
written considering the Bloom’s Taxonomy and knowledge
dimension, it will be lot easier to analyze and evaluate that
whether the learning objectives have been successfully sat-
isfied on completion of the curriculum.
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ABSTRACT
Student utterances in classrooms contain valuable informa-
tion related to learning. Researchers have employed artifi-
cial intelligence techniques, particularly supervised machine
learning, to analyze student classroom discourse and pro-
vide teachers and students with meaningful feedback. How-
ever, supervised models necessitate manual annotation of
data, which is both laborious and time-consuming. Recently,
OpenAI has released the pre-trained large language model,
ChatGPT, which can engage in conversations and provide
human-like responses to prompts. Therefore, this study ex-
amines the use of ChatGPT in automatically analyzing stu-
dent utterances and evaluates its capability in addressing the
challenge of manual data annotation. Specifically, we com-
pare the performance of ChatGPT with a Bert-based model
in identifying student talk moves in mathematics lessons.
The preliminary results indicate that while ChatGPT may
not perform as strongly as the Bert-based model, it demon-
strates potential in detecting specific talk moves, such as
relating to another student. Additionally, ChatGPT offers
clear explanations for its predictions, resulting in higher in-
terpretability compared to the Bert-based model, which op-
erates as a black box.

Keywords
Classroom discourse, talk move, ChatGPT, Bert.

1. INTRODUCTION
Student utterances in class contain rich information about
their communicative goals or actions [4], ideas [5], knowledge
states, and abilities [8], which are correlated to learning. To

assist teachers in understanding student utterances and pro-
viding adaptive teaching, studies have adopted artificial in-
telligence (AI) techniques to model student utterances. For
example, researchers have used Long Short-Term Memory
(LSTM) networks to estimate whether students have mas-
tered example questions based on their utterances [2]. How-
ever, most studies rely on supervised models, which have a
significant limitation. Supervised models typically require
researchers to manually label a large amount of data in ad-
vance, which is laborious and time-consuming. In addition,
the trained models may not be easily generalized to other
educational contexts.

With the advancement of natural language processing (NLP)
techniques, pre-trained large language models such as BERT [3]
and GPT-3 [1] have emerged and have demonstrated strong
performance on various downstream tasks. Recently, Chat-
GPT, the latest large language model from OpenAI, has also
gained popularity quickly across the whole world 1. Based
on GPT-3 [1] and InstructGPT [12], ChatGPT can engage
in conversations with users and generate human-like text
responses based on their prompts, such as debugging code
and writing essays, which shows exceptional ability in under-
standing language and indicates great potential in various
tasks.

Thus, this paper investigates the ability of ChatGPT to
automatically analyze student utterances in classroom dis-
course and explores whether it can address the challenge
of manually annotating data. Specifically, this paper com-
pares ChatGPT and a BERT-based model in automatically
detecting student talk moves (i.e., specific dialogic acts) in
mathematics lessons. The experiment results show that the
BERT-based model outperforms ChatGPT, but ChatGPT
demonstrates potential in detecting specific talk moves. In
addition, ChatGPT provides clear explanations for its pre-
dictions on student utterances, while the BERT-based model
operates as a black box and lacks interpretability.

1https://openai.com/blog/chatgpt/

D. Wang, D. Shan, Y. Zheng, K. Guo, G. Chen, and Y. Lu. Can
chatgpt detect student talk moves in classroom discourse? a prelim-
inary comparison with bert. In M. Feng, T. Käser, and P. Talukdar,
editors, Proceedings of the 16th International Conference on Edu-
cational Data Mining, pages 515–519, Bengaluru, India, July 2023.
International Educational Data Mining Society.
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2. RELATED WORK
2.1 Automated Models on Student Discourse
Recently, many studies have employed AI techniques to an-
alyze student discourse and provide feedback for learners
and teachers. This can be further divided into offline and
online learning based on their educational contexts. In of-
fline learning, researchers have not only explored the use
of AI chatbots to support students’ learning in multiple
subjects such as English [10] and engineering [23] but also
leveraged LSTM to detect breakdowns in students’ conversa-
tions with the chatbot in classrooms [11]. Additionally, they
have investigated building a convolutional neural network
(CNN) based model to automatically identify the semantic
content of student dialogue (e.g., prior knowledge, uptake,
and querying) in math, science, and physics lessons [17].
In online learning, researchers have used decision trees and
naive bayes to classify learners’ speech acts (e.g., statement
and request)[15], and utilized a Bert-based model to predict
learners’ dialogue acts (e.g., question, answer, and state-
ment) in science lessons[9]. Student dialogue in collabora-
tive learning is often analyzed to facilitate their learning.
For example, researchers have leveraged transformers to au-
tomatically classify the dialogue into cumulative, disputa-
tional, and exploratory talk [21], and built learners’ knowl-
edge graphs to estimate their knowledge [24]. Additionally,
students’ emotions (e.g., positive and negative) and their
behaviour (e.g., knowledge building and off-topic activities)
has also been modeled by Bert-based models [26].

2.2 ChatGPT
ChatGPT is one of the latest pre-trained large language
models developed by OpenAI, which has attracted over 1
million users within 5 days of its release in 2022. Com-
pared to previous language models (i.e., GPT-1 [13], GPT-
2 [14], GPT-3 [1]) that may generate harmful and untruthful
content, ChatGPT employs the reinforcement learning from
human feedback (RLHF) method [18, 12] that changes the
training objective from predicting the next token to follow-
ing human instructions safely, which enables it to generate
human-like answers to users’ questions. This makes it a pow-
erful tool for various applications, such as composing poetry,
commenting on news, and editing language. In the context
of education, ChatGPT demonstrates great potential in fa-
cilitating learning. For example, users have explored using
ChatGPT in language learning (e.g., translating language
and providing feedback on writing) [22, 7] and program-
ming learning (e.g., interpreting and debugging code) [20].
As ChatGPT is a relatively new model, there are limited
studies examining its use in education. In this paper, we in-
vestigate ChatGPT’s capability in identifying student talk
moves in classroom discourse, to evaluate its potential for
providing teachers with effective feedback.

3. METHOD
This section describes how this paper compares the perfor-
mance of a Bert-based model (i.e., BertForSequenceClassifi-
cation) and ChatGPT in detecting student talk moves in a
dataset.

3.1 Data
In this paper, we selected TalkMoves [19], a classroom dis-
course dataset on K-12 mathematics lessons as our data

Table 1: Distribution of student talk moves
Talk Move Number

Relating to Another Student 353
Asking for more Information 108

Making a Claim 1135
Providing Evidence 664

None 1781

Figure 1: An example of the prompt for ChatGPT and its
answer.

source. Due to the unavailability of an API interface from
OpenAI2, we were only able to repeatedly utilize ChatGPT
for predicting the talk move of a student utterance, which
was a time-consuming and challenging task. To address this
limitation, we selected a subset from from the TalkMoves
dataset. Specifically, we chose all primary school lessons in
2021, consisting of 34 transcripts with a total of 4041 student
utterances, each of which was annotated with a talk move
label. Talk moves refer to specific dialogic acts reflecting
the intention of an utterance and speakers’ communicative
goals [16], and accurately identifying student talk moves is
important for teachers to make appropriate response to stu-
dents. Student talk moves in the TalkMoves dataset include
relating to another student, asking for more information,
making a claim, providing evidence, and None[19]. The data
were not evenly distributed, which can be seen in Table 1.
For each type of talk move, we randomly selected 90% of the
data as the training set and used the remaining 10% as the
testing set. We compared the performance of a Bert-based
model and ChatGPT on the testing set.

3.2 Bert-based Model
In this paper, we selected a Bert-based model (i.e., Bert-
ForSequenceClassification) as a baseline because its train-
ing process (e.g., next sentence prediction) considered the
context information [3] and it showed strong performance in
text classification tasks [25]. For this specific task of student
talk move detection in the TalkMoves dataset, we treated it
as a 5-way sequence classification problem. To account for

2This work was conducted in December 2022, and the API
interface of ChatGPT was made publicly available by Ope-
nAI in March 2023.
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Table 2: Overall performance of the Bert-based model and
ChatGPT

Bert-based ChatGPT
accuracy 0.746667 0.582222
precision 0.651488 0.503348
recall 0.561072 0.519613
f1 score 0.599339 0.483108

the importance of dialogue context in identifying talk moves,
we set the input of the model as a student utterance con-
catenated with its preceding utterance. The representation
of the input, obtained from the BERT architecture, was fed
into a linear layer, and the softmax function was used to
predict the talk move. When training the model, we set the
learning rate, optimizer, batch size, and number of epochs
as 1e-5, AdamW, 32, and 6 respectively.

3.3 ChatGPT
The key to using ChatGPT to detect student talk moves is
to provide suitable prompts. We explored several different
prompts and selected a suitable one. Specifically, inspired
by the idea of few-shot learning from GPT-3 [1], we first
provided ChatGPT with the definition and an example of
each talk move based on their original description [19]. For
example, Relating to Another Student refers to using, com-
menting on, or asking questions about a classmate’s ideas,
such as “I didn’t get the same answer as her.”Then, we also
clarified the importance of context information, similar to
what we did in the Bert-based model. Finally, we asked
ChatGPT to predict the talk move of a student utterance.
We attempted to provide a batch of student utterances for
ChatGPT, but it outputted multiple predictions that did not
match the number of inputs in the batch. Thus, we asked
ChatGPT to identify the student talk move one utterance
by one utterance. An example of the prompt we gave to
ChatGPT and its answer can be seen in Figure 1. Consid-
ering that ChatGPT may generate inconsistent answers to
the same question, this preliminary study adopted the first
output as the prediction.

4. RESULT
4.1 Performance
The Bert-based model achieved 0.7523 in F1 score and 0.8164
in accuracy on the testing set. Considering the role of talk
moves in improving learning [6], we eliminated student ut-
terances tagged with None and only compared the perfor-
mance of the Bert-based model and ChatGPT in identifying
the other four meaningful talk moves, as seen in Table 2. It
is evident that the Bert-based model outperforms ChatGPT
in accuracy, precision, recall, and F1 score. For instance, the
accuracy of the Bert-based model in detecting the four talk
moves is around 0.747 while that of ChatGPT is only around
0.58.

Table 3 illustrates the performance of the Bert-based model
and ChatGPT in each type of the four talk moves. The
Bert-based model performs better in asking for more in-
formation, making a claim, and providing evidence while
ChatGPT achieves stronger performance in relating to an-
other student. Additionally, ChatGPT also shows potential
in asking for more information with 1.0 in the recall metric.

4.2 Interpretability
Despite the superior performance in detecting student talk
moves, the Bert-based model is limited in interpretability,
as it cannot provide the reason why the prediction is ob-
tained. By contrast, ChatGPT offers clear explanations for
each prediction. For example, given a student utterance,
”I did the same thing as Josh did”, the prior student utter-
ance of which is ”I did partial products, and I got it correct”,
ChatGPT annotates the utterance with Relating to Another
Student and gives the following explanations:

The student is using and commenting on a classmate’s
idea (Josh’s method, as mentioned in the prior utter-
ance). The student is indicating that they followed the
same process as Josh in solving the problem. This talk
move involves using, commenting on, or asking ques-
tions about a classmate’s ideas.

In this case, ChatGPT points out how the prediction follows
the definition of Relating to Another Student in the prompt.
Another example is that, given a student utterance, ”I’m
struggling all the steps in the process.”, the prior utterance
of which is ”Okay, we solve it separately and then we all talk
about how we each did it?”, ChatGPT labels the utterance
with asking for more information and gives the following
explanations:

This talk move is characterized by a student requesting
more information or asking for help. In this case, the
student is indicating that they are struggling with un-
derstanding the steps in the process, which is a request
for more information and assistance.

Similarly, we can see that ChatGPT explains how the predic-
tion is made by analyzing which part of the utterance follows
the definition. This feature demonstrates great potential in
addressing the interpretability issue of deep learning-based
classroom discourse models (e.g., the Bert-based model in
this study).

5. DISCUSSION AND CONCLUSION
To automatically analyze classroom discourse without labo-
rious and time-consuming manual annotation of data, the
work investigates the capability of the latest large language
model, ChatGPT, in identifying student talk moves in math-
ematics lessons. To achieve this goal, we compare ChatGPT
and a Bert-based model in the subset of a classroom dis-
course dataset. The preliminary results show that although
the BERT-based model achieves superior performance, Chat-
GPT demonstrates the potential in detecting specific talk
moves (e.g., relating to another student). Specifically, Chat-
GPT can effectively analyze student utterances that include
obvious indicators of talk moves as they align with the defini-
tion of the prompt. However, ChatGPT struggles to detect
talk moves that are hidden in complex classroom discourse.

In addition, ChatGPT has a significant advantage over the
Bert-based model, as it is able to provide detailed and clear
explanations for its predictions on student utterances. This
feature makes it more interpretable and can increase user
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Table 3: Performance of the Bert-based model and ChatGPT in each type of talk move

Model Relating to Another Student Asking for more Information Making a Claim Providing Evidence

precision
Bert-based 0.695652 0.888889 0.864078 0.808824
ChatGPT 0.727273 0.458333 0.64486 0.686275

recall
Bert-based 0.457143 0.727273 0.787611 0.833333
ChatGPT 0.457143 1.000000 0.610619 0.530303

f1 score
Bert-based 0.551724 0.800000 0.824074 0.820896
ChatGPT 0.561404 0.628571 0.627273 0.598291

trust. In contrast, the Bert-based model directly gives pre-
dictions without explanations, operating as a black box for
users.

As a preliminary study, this exploratory work has several
limitations. Firstly, because when the study was conducted,
OpenAI did not make the API interface public, the sample
size was limited to a relatively small scale, which may cause
a bias in the findings. Secondly, as ChatGPT is sensitive to
the prompts, changing the prompt may result in different an-
swers. Thus, the choice of prompts may also introduce a bias
in the findings. Additionally, it is difficult to determine the
optimal prompt for generating the most accurate responses.
Thirdly, even if ChatGPT is given the same prompt, it may
still generate different answers at different times, which may
lead to inconsistency in the results. Fourthly, the study only
examines the use of ChatGPT in identifying student talk
moves while classroom discourse also carries other valuable
information, not limited to talk moves. Besides, teachers’
dialogic approach in class can significantly affect teaching
and learning. Thus, promising research directions for Chat-
GPT in classroom discourse include evaluating its ability to
identify multiple meaningful characteristics of dialogues be-
tween teachers and students in a more extensive dataset with
well-crafted prompts and addressing its consistency issue in
gnerating answers.
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ABSTRACT
Learning Chinese character with multiple definitions is chal-
lenging for beginners, while images could help learners get
quick understanding and strengthen the memory. To solve
the problem, we design a multimodal language learning sys-
tem for Chinese character featured with AI-generated image
definitions. The images with desired semantic meanings are
generated by text-to-image foundation model ERNIE-ViLG
2.0. To improve learners’ understandings of Chinese charac-
ter definitions, the system could serve as a knowledge build-
ing environment. Learners are expected to contribute ideas
collaboratively by voting for the appropriate AI-generated
image definitions and choosing to add new qualified ones.
The system has been implemented on a mobile application,
and future works about estimating and optimizing the built
system are discussed.

Keywords
Text-to-image generation, Language learning, Knowledge build-
ing

1. INTRODUCTION
Through three thousand years of evolvement, each Chinese
character tends to have multiple definitions with original
and derived meanings, which is challenging for non-native
speakers or even young native speakers to understand and
remember. The language and linguistics study found that
images could be used as non-verbal mediators, which helps
learners build efficient connections between the information
and the concepts in memory [8]. In addition, psychologist
Allan Paivio proposed dual coding theory [9], which indi-
cates the equal importance of verbal and visual information

processing for human, and finds out that visual information
could contribute to better memory. Particularly, it has been
proved that learners could remember definitions of words
better when exposed to both visual and verbal information
in second-language learning [10].

We thus propose a multimodal language learning system
for Chinese character with both text and image definitions.
While the images can be retrieved online, it is hard to guar-
antee the proper images with the desired meanings could be
acquired from the massive online resources. To tackle the
issue, we utilize text-to-image generation method to pro-
vide the desired images directly from text definitions. Text-
to-image generation is one type of AI generation methods,
and the cutting-edge enabling technology is based on foun-
dation model (or called pre-trained model) [1]. The capa-
bility of foundation model covers language, vision, speech
and reasoning, etc. Generally, foundation models are pre-
trained on large-scale data and could be flexibly adapted
to different downstream tasks via transfer learning, so as to
achieve excellent performance. Especially, zero-shot transfer
is a feasible way to adapt the model to downstream tasks
without tuning parameters. With the help of prompt en-
gineering [7], the foundation model could be fixed and the
prompts are used to trigger the model. Conditioned on well-
designed text prompt, the text-to-image generation founda-
tion models could create desired and original images. In
addition to text-to-image generation, foundation models are
capable on many other tasks, such as text-to-text genera-
tion (e.g., GPT-3 [2]), image-to-text generation (also known
as image caption, e.g., BLIP-2 [6]), text-image pairing (e.g.,
CLIP [11]), text-to-video generation (e.g., CogVideo [5]),
etc.

By leveraging on the foundation model, the system could
encourage learners to develop ideas towards the generated
images. Specifically, for the same text input, the text-to-
image generation foundation model could randomly generate
various images. The system supports learners to vote for the
appropriate images from all the generated ones. The image
with the most votes would be shown at the top of the list for
the following learners. In addition, learners could choose to
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generate new images and decide whether to add them to the
image list as candidates. Based on learners’ collaboration,
the system could serve as a knowledge building environment
to help build community knowledge of Chinese character’s
definitions.

2. SYSTEM DESIGN
2.1 System Framework and Workflow
The system is a multimodal language learning system for
Chinese character featured with AI-generated image defini-
tions. As shown in Figure 1, learners could input query
Chinese character through user interface, and the system
would search Xinhua dictionary’s online library via request-
ing API. Xinhua dictionary, also known as modern Chinese
character dictionary, is one of the most authoritative refer-
ence books in China. The response is basic text information
of the character, including pinyin as phonetic symbol, rad-
ical partially indicating semantic meaning, structure rep-
resenting the stroke composition method, and its multiple
definitions. Each definition contains the description of the
meaning and its sample words.

Through the user interface, the designed system provides
several intelligent functionalities for learners. Firstly, learn-
ers could choose each text definition to show its image def-
inition. The image definition is directly generated from the
text definition by means of foundation model ERNIE-ViLG
2.0. To be specific, ERNIE-ViLG 2.0 [3] is a knowledge-
enhanced large-scale Chinese text-to-image diffusion model
with 24B parameters, developed by Baidu Inc., China. The
diffusion model [4] contains forward and reverse diffusion
processes. In forward process, the model gradually adds
noises to the image data. While in the reverse process, the
model is trained to learn how to denoise and reverse the
process to generate the desired image. Based on the basic
diffusion model, ERNIE-ViLG 2.0 integrates textual and vi-
sual knowledge into the training process to help model focus
on important elements, such as critical semantics of texts
and salient regions of images. In addition, ERNIE-ViLG 2.0
proposes the Mixture-of-Denoising-Experts (MoDE), which
contains multiple “experts” adjusting characteristics of dif-
ferent denoising steps in reverse diffusion process. The per-
formance of ERNIE-ViLG 2.0 is state-of-the-art on text-to-
image generation task of zero-shot FID-30K from MS-COCO
dataset.

Secondly, learners could also choose to generate more images
via ERNIE-ViLG 2.0 for the chosen text definition. The
newly generated image would show up to the user interface
and ask learners to judge whether it is appropriate enough to
add to the image list. All generated images would be saved
to the database as backup, while only the learners confirmed
ones could be displayed on the user interface.

Thirdly, learners are encouraged to develop ideas towards
the image definitions by voting like for the most suitable
one. The number of likes would be counted and saved as
a key feature of the generated image in the cloud database.
The image definitions of the chosen text definition would
be displayed on the user interface ranked by the number of
likes.

2.2 Text-to-Image Generation Performance

We demonstrate the text-to-image generation performance
with an example of Chinese character “Yuan” that has three
definitions. As mentioned before, each definition is com-
bined by the description of the meaning and its sample
words. The translations of the three definitions of character
“Yuan” are shown as the followings:

Definition 1. Description: A place where fruits, vegeta-
bles, flowers and trees are grown. Sample words: Garden.
Gardener. Gardening. Garden beds.

Definition 2. Description: Originally, it refers to the villa
and resting place, and now it refers to the public place for
people to play around and entertain. Sample words: The
Old Summer Palace. Park.

Definition 3. Description: Originally, it refers to the tombs
of emperors, princes, concubines and princesses of the past
generations. Sample words: Temple Garden (the ancestral
temple built in the graveyard of the emperor). Mausoleum
(the tomb of the emperor).

Since the text-to-image generation requires well pre-trained
foundation model and efficient computing resource for model
inference, we take advantage of Baidu ERNIE-ViLG 2.0
API, and build local server to pre-process text prompt and
request the API. The construction of the text prompt is im-
portant to the text-to-image generation model, which gen-
erally requires two main parts, namely painting object and
painting style.

For the painting object part, we investigate two categories
of text prompts with help of characters’ definitions, which
are description only and both description and sample words.
Taking the Definition 2 of character “Yuan” as an exam-
ple, we request the two categories of text prompt separately.
The results are shown in Figure 2, where Figure 2(b) shows
more proper results with both description and sample words
as text prompt. To be specific, the presentation of Figure
2(a) focuses on the non-critical word “villa” from the de-
scription, while Figure 2(b) gets well understanding of both
“park” from sample words and “public place for people to
play around and entertain” from the description. It may be-
cause the description tends to be abstract, while the sample
words could provide more specific hints.

For the painting style part, in addition to the realistic style
utilized in Figure 2, we also explore various artistic styles
like surrealism, conceptual art, impressionism, and differ-
ent production styles like computer graphic style, illustrator
style and pixel style, as shown in Figure 3. Considering
about the generalization issues for various Chinese charac-
ter, we set realistic style for all the image generation, but
the system designers or even learners could also make their
own choices if needed.

Finally, we identify both description and sample words for
painting object part and realistic style for painting style part
to construct the text prompt. Four exemplary generated im-
ages corresponding to Definition 1 and Definition 3 of char-
acter “Yuan” are shown in Figure 4.
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Figure 1: System Framework and Workflow

Figure 2: Image Generation with Different Painting Objects
of Definition 2 of Character “Yuan”

2.3 Collaborative Learning
Based on the text-to-image generation results of the founda-
tion model, the system supports learners to collaboratively
refine the image definitions. As shown in Figure 2(b) and
Figure 4, the image definitions of three text definitions of
character “Yuan” are equally important to learners, which
demands a high cognitive load to understand them all. To
improve the learners’ understandings of character defini-
tions, the system encourages learners to vote for the most
suitable images based on their understandings, and add new
images as candidates when none of the generated images are
favored. Ideally, the image with the most votes would be dis-
played at the top of the list on the user interface and would
be considered as the most appropriate image definition to
the text definition based on collective knowledge.

The voting and adding image processes require learners to
review the text definition carefully and figure out the key
semantic meaning of the AI-generated image. Comparing
the similarity between the text and image definitions in
mind, learners could strengthen the comprehension of the
character via verbal and visual dual-channels before making
the rational voting decision. When new learners searching
the same character, the previous work would support them

Figure 3: Image Generation with Different Painting Styles of
Definition 2 of Character “Yuan”

understanding the text definitions accompanied with most
relevant images ranked by others’ votes. Meanwhile, new
learners could also be inspired to progressively make contri-
butions to the system and work collectively to develop the
community knowledge.

3. USER INTERFACE
The user interface of the system is based on WeChat mini
program which is a mobile application accessed through WeChat,
the most popular social software in China, without extra
downloading. Learners could operate it on mobile devices
wherever in formal or informal learning environment. As
shown in Figure 5, learners could input the query Chinese
character in the search box and click on the search button.
The system would then return basic information with mul-
tiple text definitions of the query character.

After that, as shown in Figure 6, learners could click on each
text definition to show the corresponding image definitions,
where the generated images are ranked by the number of
likes voted by other learners. It requires learners to browse
the generated images from the top-ranked to the bottom,
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Figure 4: Generated Images of Definition 1 and 3 of Charac-
ter “Yuan”

Figure 5: User Interface of Character Querying

and make their own decisions to vote for the appropriate
images by clicking on the thumb up button.

When none of the generated images suitable for the text
definition, learners could choose to generate new image by
clicking on the “generate my image” button at the bottom
of the list, as shown in Figure 7. It takes around 10-20
seconds to generate an image with resolution of 1024× 1024
pixels. Before adding to the list, a popup would ask for
learner’s confirmation, which expects the learner to review
the text definition and make a deliberate decision for the
image definition.

4. CONCLUSION AND FUTURE WORK
We propose a multimodal language learning system for Chi-
nese character with the help of text-to-image generation
foundation model ERNIE-ViLG2.0. Based on the text-to-
image generation results, learners could help to improve oth-
ers’ understandings of Chinese character definitions by vot-

Figure 6: User Interface of Images Browsing and Voting

Figure 7: User Interface of Images Generation and Adding

ing and adding images to re-rank the images’ display order.
Consequently, learners could benefit from the top-ranked im-
ages for each character’s text definition and improve the cog-
nition through both verbal and visual channel.

In the future work, to estimate the effectiveness of the sys-
tem, we plan to design and conduct experiments by invit-
ing entry-level Chinese learners to evaluate their learning
achievement and attitudes towards the generated images and
the voting system. Especially, it is also worth to investigate
the effectiveness of various style images and how they pro-
vide improvement in the learning process. Besides, consid-
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ering about the quality of generated images, the trust of the
voting system requires further supervisions to correct typ-
ical mistakes from beginning learners and avoid unfriendly
attacks.

Additionally, more flexible functions could be added to the
built system. For example, in addition to “like” button, “dis-
like” could also be an option to express learner’s opinions on
the image. Further, to deepen learners’ understandings, it
also welcomes learners to make text comments on the im-
age and leave nicknames and avatars to improve community
awareness. Besides, since foundation models are pre-trained
on large-scale data by black-box method, it is also necessary
to require interventions to avoid risks of algorithm biases
and intellectual property issues.

Furthermore, the multimodal language learning system could
also be transferred to other languages learning with the sim-
ilar mechanisms of text-to-image generation and learners’
collaboration. Additionally, foundation models for AI gen-
eration are also powerful on text-to-text generation, image-
to-text generation, image modification, etc. It would be in-
teresting to investigate more possibilities of interaction and
integration with AI-generated content and learner-generated
content.
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could facilitate reading [1, 4]. Moreover, as an added bene-
fit, the recommendations could make reading more personal-
ized by encouraging students to explore readings related to
their interests. However, implementing Wikipedia recom-
mendations is not straightforward, since only some of the
“concepts” mentioned in a research paper are useful recom-
mendations in the context of a specific course. In this demo,
we present a course reading system for research papers that
uses advances in text mining to recommend the most rele-
vant Wikipedia pages for every page of assigned readings.
The system was tested in a full-term graduate course, where
we also collected student feedback on the relevance and dif-
ficulty of recommended Wikipedia articles.

2. A READING SYSTEM WITH WIKIPEDIA
RECOMMENDATIONS

To explore the opportunity to extend online reading with
Wikipedia articles, we modified an online digital textbook
reading platform, ReadingMirror [2], customizing it to re-
search paper readings. The modified system inherited sev-
eral useful features from the digital textbook platform, such
as a table of contents (now course reading plan), annota-
tions, and social comparison (Fig. 1). To extend the reading
system with the recommendations of Wikipedia articles, we
used text mining to extract entities from each reading page
(see Section 3). Page-level extraction was used to provide
recommendations on the page where the relevant concept
is mentioned. Recommendations are provided using an ex-
pandable tab on a page margin. Clicking on this tab reveals
a list of links to recommended articles which could be opened
next to the article page. For example, if a page of an assigned
article mentions “Allen Newell”, it is recognized as a useful
Wikipedia concept and a link to the Wikipedia article is of-
fered on Allen Newell, along with other recommendations
for further exploration and reading (Fig. 2).

To instrument the classroom study reviewed below, all stu-
dent work with recommendations (opening, scrolling, and
closing the recommendation tab) is logged. In addition, we
provide a simple interface for students to rate videos on the
relevance and difficulty of recommended Wikipedia articles
(bottom left in Fig. 2). To encourage ratings, the list of
Wikipedia articles that the student has rated or read ap-
pears in a separate tab above the Wikipedia links tab.

3. ENTITY EXTRACTION
Previous work on Wikipedia linking compared the content of
the page in the textbook that the student reads with the rel-

ABSTRACT
In this demo paper, we present an implementation of an in-
telligent digital textbook integrated with external readings 
for students, such as Wikipedia articles. Our system ap-
plies the ideas of concept extraction from a digital textbook 
on topics in cognitive psychology and computer science for 
a graduate class in a large US-based university to generate 
search terms that can link with Wikipedia articles. Finally, 
we integrate these articles into the textbook reading inter-
face, enabling students to quickly refer to Wikipedia articles 
in connection with the reading material of the course to un-
derstand a concept or topic that they struggle with or are 
interested in exploring further. With this demo, we present 
a system that can be utilized for data collection in a real-
world classroom setup.

Keywords
Intelligent Textbooks, Digital Reading Systems, Wikipedia, 
Concept Extraction, Data Collection

1. INTRODUCTION
The rapid development of science and technology created a 
problem for college instructors who want to ensure that stu-
dents receive up-to-date knowledge of the subject. While in 
the past, textbooks served as a predominant source of class 
readings, they frequently lagged behind the state-of-the-art. 
At present, many courses, especially at the graduate level, 
use a collection of recent research papers rather than text-
books as course readings. Unlike textbooks, which introduce 
domain knowledge gradually, taking care to explain critical 
concepts, research papers are written for audiences who are 
already familiar with core domain knowledge. Hence, re-
search papers are challenging to read for unprepared stu-
dents. Several authors have suggested that recommending 
relevant Wikipedia articles to explain complicated concepts
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Figure 1: The interface of the reading system, Reading Mirror, with the course reading plan on the left and a page of the
assigned reading on the right. A tab on the right of the reading page shows a list of recommended Wikipedia articles related to
this page.

evant Wikipedia articles [1, 4]. However, these approaches
could be noisy and generate relatively few recommendations.
Since one of the goals of our project was to explore the
feasibility of generating personalized recommendations that
could engage students with different interests, we attempted
to generate a somewhat excessive number of recommenda-
tions targeting the most relevant concepts mentioned on
each page. To achieve this goal, we combined automatic
concept extraction with heuristic filtering and embedding-
based ranking for each reading page.

The first step in this process is to find Wikipedia concepts
and entities mentioned on the target page. For each reading
page, we extracted the entities mentioned on the page using
the DBpedia Spotlight API 1. DBpedia Spotlight generates
a list of entities in the submitted text along with correspond-
ing Wikipedia pages linked to those entities. This list is usu-
ally large and noisy, so it requires post-processing. In the
first step of post-processing, we filtered this list based on the
semantic types of these entities, removing several irrelevant
types of entities such as ’Event’, ’Website’, ’Film’, ’Loca-
tion’, and ’Country’. We also removed entities that did not
have a corresponding Wikipedia page in English. After the
cleaning, we ranked the remaining entities. Since DBPedia
Spotlight does not rank entities according to their relevance
to the target page, we used the EMBED Rank [3]. For rank-
ing with EMBED rank, we generated embeddings of the text
on the page for which the recommendation is generated and
the first paragraph in the ranked Wikipedia page. Top-N
Wikipedia pages were recommended to the students.

4. A CLASSROOM DEPLOYMENT
To assess the usefulness of our idea and the quality of gener-
ated recommendations, we deployed the system as the course

1https://github.com/dbpedia/spotlight-docker

reading system in a graduate course on human information
processing in a large US-based university. In this lecture-
based course, students were requested to read one or two
assigned research articles prior to each lecture to prepare
for a discussion. In the earlier offerings of this course, the
articles were distributed to students in PDF form through
a learning management system. In our study, the same ar-
ticles were provided to students through the course read-
ing system, which allowed us to generate a large number of
page–level Wikipedia article recommendations for each as-
signed research article. The class had 11 lectures with a
total of 17 research articles assigned for the required read-
ings. The pages of these articles provided recommendations
for 1,238 concepts linked to Wikipedia articles. As part of
the learning process, we asked students to read at least 3
Wikipedia articles each week, selecting the most interesting
ones for them from the set of recommended articles. In turn,
to select these three most interesting articles, students were
instructed to examine and rate (by relevance and difficulty)
at least 10 recommended articles each week. For this work,
students could earn up to one course credit point.

5. PRELIMINARY RESULTS
We collected learning data from 42 students enrolled in the
class. In total, 772 out of 1238 recommended concepts linked
to Wikipedia articles were explored and rated by students.
An average of 12 students (mean = 12.73 , std = 8.73 ) rated
each concept for difficulty and 13 students (mean = 13.05,
std = 9.05 ) for relevance. The 10 most popular concepts
rated for relevance and those rated the most difficult are
shown in Table 1. Since the students were guided by their
interests, this list likely indicates the concepts in which the
students are most interested in the course. Analysis of stu-
dent rating data indicates that each student rated on average
242 concepts (mean = 241.87, std = 132.12) for difficulty and
242 (mean = 242.97, std = 130.07) for relevance throughout
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Figure 2: Once the student clicks on a link to a recommended Wikipedia article, it opens on the left side of the reading interface.
The rating bar at the bottom allows the student to rate the relevance and difficulty of the recommended article.

Table 1: 10 Most Popular Wikipedia articles by number of
students rating them as Relevant or Highly Relevant and as
Medium or Hard Difficulty

Relevance Difficulty
Change Blindness Cognitive Science
Cognitive Science Memory
Visual Perception Change Blindness

Cognitive Psychology Visual Perception
Saccade Flicker

Experimental Psychology Saccade
Cognitive Revolution Cognitive Psychology

Iconic Memory Distractions
Memory Metadata

Hybrid Image Mylifebits

the course duration. Note that it is considerably more than
110 ratings (10 per week) that the students were required
to make to get the full score. This data indicates that the
students were considerably engaged in examining and rating
recommended Wikipedia articles.

The distribution of relevance and difficulty ratings for rec-
ommended articles rated is shown in Figure 3. As the data
show, the majority of recommended articles were judged
easy or medium difficulty by the class, although a notice-
able number of articles were considered hard. From the
prospect of relevance, the majority of articles were rated
as relevant or highly relevant, although a good number were
rated somewhat relevant and even not relevant.

To examine the articles rated as relevant or highly relevant,
we counted the number of ratings for each of these articles
(i.e., the number of students who rated this article as rele-
vant or highly relevant) and plotted this data by ordering ar-

Figure 3: Distribution of Difficulty (left) and Relevance
(right) ratings for recommended Wikipedia articles.

ticles by the number of ratings (Fig. 4). The data show that
while a good number of concepts such as“Cognitive Science”
and “Memory” were universally popular, approximately half
of the relevant concepts such as “Probabilistic Reasoning”
and“Knowledge Visualization”covered in Wikipedia articles
were selected for examination by five or fewer students. This
confirms our hypothesis that students in the same class have
considerably different interests and opens up an opportunity
for personalized rather than class-level recommendations.

As Fig. 3 shows, a considerable number of recommended
Wikipedia articles were judged as not relevant. To under-
stand how we can improve the recommendation process,
we examined the concepts covered by these Wikipedia ar-
ticles. The analysis revealed several problems. The dom-
inant source of irrelevant recommendations was the PDF
source of research articles. First, hyphenation frequently
produces partial words such as “mecha” or “illus”, which
sometimes have perfectly valid Wikipedia articles unrelated
to the content of the course. Second, beyond their true con-
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Figure 4: Relevant or highly relevant Wikipedia articles ranked by the number of ratings

tent, all articles have publication data, including named en-
tities for publishers (“Princeton University Press”, “SAGE”,
“IEEE”) and places of publication (“Hershey”, “Princeton”),
which are usually present in Wikipedia. Another problem
was the result of our attempt to recognize the names of re-
searchers mentioned in the articles to offer students more in-
formation about them. Unfortunately, in a number of cases,
these researchers were not prominent enough to appear in
Wikipedia, while a different famous person with the same
name was listed (i.e., “George Eyser”, “Terry Crews”), which
resulted in referring to the wrong people. Finally, some
perfectly valid concepts such as “priming” (in psychology)
had different meanings in different areas and correspond
to Wikipedia “disambiguation pages” with links to different
meanings. Some students considered these pages irrelevant.
The analysis demonstrated that most of the observed prob-
lems could be resolved by adding additional heuristics to our
filtering process.

6. CONCLUSION
In this demo, we present a system that uses text mining
to expand student reading options in graduate classes by
recommending relevant Wikipedia articles for research pa-
pers assigned for mandatory reading. This approach en-
riches student course knowledge and allows students to per-
sonalize their readings by focusing on the most interesting
concepts covered in the recommended articles. The system
was used as a primary reading tool in a semester-long grad-
uate course, enabling us to gain several interesting insights
into student work with recommendations. In particular, we
observed that about half of the articles rated as relevant
or highly relevant were examined and rated by 5 or fewer
students. It confirms that different students might be inter-
ested in different aspects of the course and opens opportu-
nities for personalized recommendations. The current demo
used a relatively simple text mining approach to extract in-
teresting concepts mentioned in the text of the mandatory
readings, yet the majority of recommended Wikipedia arti-
cles (and their concepts) were judged as relevant or highly
relevant. The analysis of concepts judged as not relevant re-
vealed several heuristics that could be used to improve our
text-mining approach.
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ABSTRACT
The goal of this paper is to gain insight into the problem-
solving practices and learning progressions by analyzing the
log data of how middle school and college players navigate
various levels of Baba Is You, a puzzle-based game. In
this paper, we first examine features that can capture the
problem-solving practices of human players in early levels.
We then examine how these features can predict players’
learning progressions and their performance in future levels.
Based on the results of the current quantitative analyses
and grounded in our previous in-depth qualitative studies,
we propose a novel metric to measure the problem-solving
capability of students using log data. In addition, we train
artificial intelligence (AI) agents, particularly those utilizing
Reinforcement Learning (RL), to solve Baba Is You levels,
contrast human and AI learning progressions, and discuss
ways to bridge the gap between them.

Keywords
Baba Is you, Human Learning, Reinforcement learning, Problem-
solving, Learning progression

1. INTRODUCTION
1.1 Problem-solving & Log Data
There is ubiquitous agreement that problem-solving is an
important goal of STEM education [8, 4, 3]. However, there
is little agreement as to what features compose effective
problem-solving or how to teach and measure these features
[14]. Advancements in AI and human behavior analysis
introduce the possibility of identifying these features, cap-
turing problem-solving performance in rich detail, and con-
sequently providing problem-solvers with just-in-time feed-
back and scaffolding [16]. Several works have tried to ac-
complish this using log data generated from interaction with

∗kumiko.nakajima5221@gmail.com

a digital environment. For example, Wang et al. [17] have
examined how to engineer features from log data to cap-
ture the efficacy of problem-solvers’ data collection when
solving electric circuit problems. Bumbacher et al.[2] and
Perez et al. [13] have used log data to determine how de-
liberately a person engages in problem-solving related to
physics. Here we continue this line of work by using log
data of problem-solvers interacting with the puzzle-based
game Baba Is You. We also compare the problem-solving
processes of human problem-solvers with a standard rein-
forcement learning agent and discuss the potential underly-
ing causes of these differences.

1.2 Reinforcement Learning & Human Com-
parisons

It has long been noted human learning behaviors in game
environments differ significantly from those of standard Re-
inforcement Learning (RL) algorithms, with much attention
paid to the sample inefficiency of the latter [11]. Tsividis
et al. [15] study human learning behaviors in the Arcade
Learning Environment (commonly referred to as Atari [1]),
and hypothesize a range of mechanisms for their differences
with RL algorithms. Human and reinforcement learning be-
havior and attention [9] as well as neural activity [5] have
been also compared within the Arcade Learning Environ-
ment. Works have investigated the inclusion of object rep-
resentations [6] and linguistic grounding [10] so as to close
the gap between human and RL behaviors. Dubey et al.
[7] compare human and RL algorithm behavior in environ-
ments specifically designed to limit the usefulness of human
visual priors. Our work, while preliminary, eventually seeks
to characterize the sorts of representations and motivations
RL systems need in order to engage in human-like problem-
solving behaviors in challenging problem-solving environ-
ments.

2. METHODS
2.1 Baba Is You
Baba Is You is a puzzle game where players can change the
rules by which they play. In Baba Is You, players move
Baba, a small sheep-like creature, by pressing keys or but-
tons/joysticks on a controller to make Baba move up, down,
left, or right; players can also reverse their actions in a level
or restart the level completely. At every level, the rules
themselves are present as text blocks that players can inter-

H. Liu, F.-Y. Sun, F. Rong, K. Nakajima, N. Haber, and S. Salehi.
Characterizing learning progress of problem-solvers using puzzle-
solving log data. In M. Feng, T. Käser, and P. Talukdar, editors,
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Figure 1: Screenshots from the video game Baba Is You.
In this example, Baba can pass through the wall when the
“WALL IS STOP” rule is broken (right screenshot).

act with, and by manipulating them, they can change how
the level works (see Fig. 1).

The game has various levels, with similar levels grouped into
one map. In the beginning, there is a map with 7 tutorial
levels that players are required to finish at least 4 of them
in order to proceed. Players can then go to the Lake map,
which contains 13 normal and 2 extra challenge levels. For
all following maps, to unlock the next map, players have
to finish at least 8 levels. Map 1 (The Lake) can only be
followed by Map 2 (Solitary Island); Map 2 by both Map 3
(Temple Ruins) and Map 4 (Forest of Fall). Finally, after
Map 3, players can proceed to all the other maps.

2.2 Participants
Middle school students (n = 54) and college students (n =
113) were recruited via online flyers to participate in the
study. We recruited both groups of players to capture a
potential range of prior problem-solving expertise. All par-
ticipants had never played Baba Is You before. Each partic-
ipant was asked to play the game for three separate sessions.
Sessions last up to 150 minutes, and during these sessions,
players played as many levels as they wished. They were not
required to finish each level they attempted, and they did
not have to play a fixed set of levels. Both middle school and
college students finished all tutorial levels and some levels
from early maps.

2.3 Dataset
2.3.1 Log Data

We extracted game log data, which has the timestamps of all
player inputs, all game events (e.g., rule-add, rule-remove,
no-you) that happened because of player inputs (e.g., left,
right, down, up), and the number of the levels completed by
each student at any given timestamp.

2.3.2 Survey Data
We surveyed participants about their age, grade, and general
computer gaming experience, as well as self-reported scores
on factors such as approach toward failure and self-efficacy
via an online survey after all play sessions ended.

2.3.3 Aggregated Data
We created one large aggregated dataset that stores the IDs
of the students, their survey answers, the length of their
play sessions, the average amount of time they spent on
each level, as well as some simple aggregated count features

extracted from the log data such as the overall number of
restarts, undo.

3. ANALYSIS
3.1 Exploratory Data Analysis
Our goal is to develop a model that predicts student perfor-
mance on later levels from interpretable variables on earlier
levels — such interpretability is crucial for future scaffold-
ing interventions which use this model. Standard feature
selection methods from all log data features for this pre-
dictive problem may sacrifice such interpretability. Hence,
we first explore what features from aggregated data are most
predictive of a simplified overall problem-solving progression
proxy: the number of levels completed. Then, for predicting
future problem-solving performance, we layer in additional
level-based features.

3.1.1 Predicting Overall Problem-solving Progres-
sion

To predict overall problem-solving progression, the aggre-
gated features used are: the number of levels tried, the
number of undo inputs, the number of restart inputs, the
number of “no you” states (when the player has no control-
lable representation in the game due to having dismantled
”X IS YOU”for all objects X and has no possible moves other
than restart or undo), the average session time, the player’s
game experience level, and their school grade. To exam-
ine which features significantly predict the learning progress
of students as operationalized by the number of levels com-
pleted, we implement k-fold cross-validated linear regression
with intercept:

Y = β0 + β1X + ϵ

Here, X denotes any single feature after standardization,(mean
0, sd 1) and Y denotes the number of completed levels. For
this k-fold cross-validated linear regression, we use cross-
validated R2 to measure the goodness of fit. For this anal-
ysis, we took k = 10. We then choose the most important
features, as measured by goodness of fit in this analysis, for
predicting future problem-solving performance in the subse-
quent logistic regression analysis as described below.

3.1.2 Predicting Future Problem-solving Performance
Because of the small sample size and the distribution of stu-
dents who tried each level (shown in Fig. 2), we only extract
input features from the initial levels for which at least 150
students have attempted (all levels before Lake-9). Then,
we build models predicting future performance based on in-
put features from three groups of initial levels: all finished
levels before level Lake-9 (‘all-previous’), the eight hardest
levels finished before level Lake-9 (‘8-hardest’), and from the
first and last levels before level Lake-9 (‘first-and-last’). We
use features found to be predictive in the preceding linear re-
gression analysis (Section 3.1.1), and use the performance of
students in these features in the selected initial levels to pre-
dict students’ problem-solving performance in future levels.
We use the selected features from overall problem-solving
progression prediction as model inputs for this future per-
formance prediction in two different ways: using averages
across previous levels, labeled as average values, or includ-
ing separately all the values of the selected features from the
previous levels, labeled as progressive values.
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Figure 2: Number of students who attempted each level. Suc-
cessive levels were attempted less often.

To make future performance prediction tractable, we catego-
rize students into ‘high’ and ‘low’ performance and predict
these coarse-grained outcomes. To categorize students’ per-
formance in a given collection of future levels, we count the
number of those levels for which each student finishes within
the fastest 50%. We then cut the population along the 50th
percentile of this count distribution: students with a higher-
than-median count are labeled 1 (‘high’ performance), and
those with lower-than-median count are labeled 0 (‘low’ per-
formance). Note that these labels depend on the collection
of levels for which we predict performance.

We then use logistic regression on these inputs to predict
three future problem-solving performance measures sepa-
rately: performance in the immediate next level, perfor-
mance in all future levels in the same map, and performance
in all future levels in a different map. Logistic regression
is used in this analysis as it is a simple and interpretable
method that can be effective for binary classification prob-
lems, and it does not require any assumptions for the inde-
pendent variables. Hence, it is a good choice for this pre-
liminary attempt to gain insight into the prediction power
and weights of the features. Because of dividing both the
performance and the population by median, the random
performance of the model (performance by chance) would
be 50%. Therefore, we can compare our logistic regression
model accuracy relative to this 50% baseline performance.
We conduct a shuffle test to make this random prediction
rigorous. The shuffle test involves training a model to pre-
dict randomly permuted output labels (e.g., high vs. low
performance), giving us a “random” model baseline.

Overall, We have then 2 (average or progressive values) *
3 (all-previous, 8-hardest, or first-and-last initial levels) * 3
(to predict performance in the next level, all future levels in
the same map, or all future levels in a different map) = 18
fitted logistic regression models in total. For each of these 18
logistic regression models, we run a 10-fold cross-validation
on the data-set to estimate generalization of model accuracy.
We leave hyperparameters in the default settings for this
exploratory analysis.

Table 1: Mean R2 of linear regression on CV-dataset. no-
you count and tried-levels count seems useful for next step’s
feature extraction

Feature CV-R2

no-you count 0.317
tried-levels count 0.470

restart count 0.057
undo count 0.001

Game experience (hour) -0.187
Avg session time (hour) -0.159

Age group (Middle school=0, College=1) -0.136

3.2 Reinforcement Learning
We aim to compare the performance of Reinforcement Learn-
ing (RL) agents with human players. We selected three lev-
els (i.e. baba-is-you, out-of-reach, and volcano) with avail-
able human play data and trained RL agents on them. The
RL agents have a discrete action space of size 4, which in-
cludes left, right, up, and down. The state space, or map,
is represented by one-hot encodings. For instance, a 6 × 5
environment with 10 distinct tiles would be represented by
a floating point tensor in R10×6×5.

We implemented a DQN algorithm [12] with an epsilon-
greedy strategy to train the RL agents. The discount factor
gamma in the DQN algorithm is set to 0.99. The initial ex-
ploration rate epsilon is set to 0.9 and decays by a factor of
0.99 after every episode, with a minimum exploration rate
of 0.01. The neural network architecture consists of four 2D
convolutional layers, followed by batch normalization layers
and a linear feed-forward layer. We employed a batch size
of 128 and a replay buffer size of 10,000.

For the RL agents, an episode ends when the number of
actions taken exceeds 200, when no available action is left,
or when the level is solved. In the case of human players,
we considered the end of an episode when the player hits
the reset button, when no available action is left, or when
the level is solved. We devised a reward system to measure
the performance of both RL agents and human players. The
RL agents receive -100 points for failing to solve the level,
+200 points for completing the level, and -0.5 points for each
action taken, to incentivize the agent to find more efficient
solutions.

To compare human learning progress with the learning progress
of RL agents, we scored human play based on the same re-
ward system, even though such a scoring system is not vis-
ible to them. As human players typically only solve a level
once, we assumed that they can at least repeat their solu-
tions. In our visualizations, we maintained their scores at
their top scores after they stopped solving for a particular
level.

4. RESULTS
4.1 Important Features
The results of feature selection from aggregated data show
that (Table 1) while we initially hypothesized that the no-
you event is a major reason that students hit restart, the
count of no-you is more important than the count of restart
in predicting the number of levels completed. With R2 =
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Figure 3: Results (Accuracy) for 10-fold cross-validated logistic regression, with shuffle test baseline (red dash line). The six
bars on the right show that using the average performance from all-previous (levels before Lake level 9) completed levels or the
eight hardest levels to predict the performance of far levels is accurate. When predicting future-same-map levels’ performance,
the model that using first-and-last levels from the current map is more accurate

Figure 4: Results for the Reinforcement Learning experiment. The light-colored area shows the standard deviation of all the
rewards obtained by all human participants. We find that RL agents can only solve the first level (a), but fail to solve levels (b)
and (c), whereas human participants can solve all with much better sample efficiency.

0.317 < 0.5, no-you, as a single feature, has a weak predic-
tive power. Thus, we introduce more features directly from
the game’s log data that improve the model fit significantly,
including the count of rules added, count of rules removed,
count of a single undo, count of blocks of undos, average
time between inputs, maximum time between inputs, and
the count of input signals. Overall, the three features that
can significantly predict problem-solving progression and the
number of initial levels completed are no-you count, tried-
level count, and restart count.

4.2 Predicting Future Performance
The results of cross-validated logistic regression to predict
future problem-solving performance are shown in Fig. 3.
The model that used the features from the first and last

previous levels in the current map has reached the high-
est accuracy when predicting students’ future performance
in the next single level or all future levels in the same map.
Also, there is no significant difference between using average
values of the selected features and using progressive values
of the selected features. When predicting performance in
the levels in a new map, the accuracy of all 3 models (all-
previous, 8-hardest, first-and-last) decreases. In addition,
it is interesting that for the levels in a new map, using all-
previous and 8-hardest models are more accurate than using
the first-and-last model while making predictions using the
average values of the selected features.

4.3 Reinforcement Learning Comparison
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The results of the RL experiment are shown in Fig. 4. Three
levels of increasing difficulty (a — Tutorial1, b — Tuto-
rial2, and c — Tutorial3) were chosen for the experiment.
It was observed that RL agents were only able to solve level
(a), while human players could, on average, solve all lev-
els. Note that a positive reward always indicates that the
level has been solved since the only positive reward signal
is obtained from solving the level. For level (a), the RL
agent was trained to improve its policy, resulting in rewards
that increased with more training episodes. Human par-
ticipants, however, typically only solve each level once. To
visually compare the performance of humans with that of
the RL agent, we aggregate human performance curves as if
they were to continue playing their best score after play had
ceased — hence, the human reward curve is flat after episode
10, as most humans solved these levels within 10 episodes.
Note that we are plotting these reward curves as a func-
tion of episode; as noted in analysis, these definitions differ
slightly between human and RL agents. The above plot is
our best attempt to compare human learning progress with
RL learning progress despite this discrepancy.

5. CONCLUSIONS
Our exploratory regression analysis identifies significant fea-
tures of human problem-solvers that help them succeed over-
all in the game as well as help them perform in future levels.
We found that features like the number of no-you and un-
dos can predict the problem-solver overall progression. One
can hypothesize that the frequency of these features cap-
ture the extent that a player explores the game mechanics,
and hence impact their overall problem-solving progression
in the game. Furthermore, we can predict problem-solving
performance in future levels using performance in these fea-
tures in the hardest previously attempted levels as well as
only the first and the last previously attempted levels.

While the RL agent’s performance fares similarly to human
problem-solvers in an initial level, their performance falls
significantly behind in the more challenging levels, and they
exhibit significantly different sample efficiency in arriving at
solutions. This is entirely expected, as we are training stan-
dard RL methods from scratch on these data. One inter-
esting challenge we hope to make progress on is in closing
this gap: the sorts of pre-training experience, subsequent
representations, agent motivations, and inter-level transfer
mechanisms that lead to more human-like problem-solving
performance.
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ABSTRACT
Reading-Writing has a ubiquitous presence in almost all
kinds of learning. While measurement frameworks for self-
regulated learning exist, they are often very contextual and
do not guarantee generalizability over more than a specific
task. This doctoral project primarily aims to investigate
the applicability of a common SRL measurement framework
over a range of reading-writing tasks. The research also aims
to investigate whether integrating log data, peripheral data
like mouse clicks and keystrokes and eyetracking data reveal
more information and improve the measurement of SRL.
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1. INTRODUCTION
Writing is an essential part of thinking and learning, whether
it be in a school context, in higher education or in a pro-
fessional setting. Writing tasks is also a critical tool for
intellectual and social development [8]. Reading, compre-
hending, and writing are extremely ubiquitous requirements
for all kinds of learning setups. For this reason, develop-
ing self-regulation of learners in writing tasks has gained
prominence in educational research for a long time [8]. Self-
regulation in writing tasks has consequently been explored
greatly over the years [8, 12, 1]. But the inception of dig-
ital learning environments has opened up new possibilities
for understanding learners’ mental processes and support-
ing proper learning strategies through the collection of trace
data. Combining trace logs and other forms of multimodal
data can reveal more information about learners’ latent men-
tal processes and can improve the current state of research
[19].

There have been trace-based studies focusing on writing
tasks [9, 7, 16, 11, 2]. However, a large number of these stud-

ies are very contextual; they are conducted in their ad-hoc
learning environments and for their own specific reading-
writing task. This statement can actually be made for most
SRL-based studies, and rightly so because self-regulated learn-
ing is extremely contextual [18]. Most learning environments
are so specific that they do not allow generalizations across
multiple environments [15]. Researchers do adopt measuring
protocols from other studies, but that again raises questions
about the validity and reliability of such measurements as
such measurements were designed for a very specific learning
context.

A learner’s adoption of strategies can also depend on the
type of reading-writing task. There are three major kinds
of reading comprehension- literal, inferential and evaluative
[17]. There are four types of writing styles- persuasive, nar-
rative, expository and descriptive [10]. The goal of the as-
signment can determine the style or combination of styles
that a reader and writer may adopt. Despite these differ-
ences in reading and writing styles, writing tasks do have
their commonalities across tasks- most involve reading, com-
prehending, and writing. With this view, we put up our case
that creating a trace-based measurement protocol that can
be used across multiple writing tasks can ease the pain of re-
searchers who often have to conduct tedious controlled stud-
ies and manual coding to ascertain the validity of their trace
data-based studies in their own context. Developing such
a protocol can also help learning systems designers create
universal learning environments which can support learners’
self-regulation. Hence, we explore the possibility of generic
trace-based measurement protocol that can measure SRL
across multiple reading-writing tasks, and at the same time
is able to identify the differences in self-regulation in each of
these tasks.

In this doctoral project, we aim to investigate whether a
trace-based measuring protocol designed, developed, and
tested for one writing task can be used across multiple writ-
ing tasks. We also explore whether integrating multimodal
data like eye-tracking with the existing log channel can im-
prove the modeling of the learners.

2. RESEARCH QUESTIONS
The following are the research questions that we aim to an-
swer in this doctoral project:

1. RQ1: How do students’ SRL strategies change when

D. Nath, D. Gasevic, and R. Rajendran. A trace-based generalized
multimodal srl framework for reading-writing tasks. In M. Feng,
T. Käser, and P. Talukdar, editors, Proceedings of the 16th Inter-
national Conference on Educational Data Mining, pages 534–538,
Bengaluru, India, July 2023. International Educational Data Mining
Society.
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Figure 1: The Learning Environment

they engage in various reading-writing tasks with dif-
ferent goals?

2. RQ2: Do data from multiple sensors (like logs + eye-
gaze) improve the detection of SRL strategies in learn-
ers, as compared to a single channel (i.e., logs)?

3. RQ3: Do prediction models trained on task-independent
reading-writing multimodal data (data combined from
multiple tasks) perform equivalently as for that in a
specific reading-writing task?

3. THEORETICAL FRAMEWORK
Self-Regulated Learning (SRL) is a theoretical umbrella that
encompasses cognitive, metacognitive, behavioural, and af-
fective aspects of learning [14]. While different theoretical
models have large commonalities between them as they try
to capture alternate views of the same process, there exist
subtle differences based on the aspects on which their central
focus lies [14]. A large majority of these models view SRL
as a cyclic process comprising three phases- Preparatory,
Performance and Reflection. In the theoretical framework
that we use, theoretically-grounded patterns of atomic user
actions are mapped to higher-level SRL processes. Thus,
different SRL processes have been operationalised using pat-
terns of meaningful learner actions. A detailed description
of the theoretical framework along with the exact list of pat-
terns used to identify SRL processes is present in [5].

4. METHODS
Over the duration of the doctoral project, we aim to collect
data from two (or more) reading-writing tasks, both with
different content and different overall goals, and we aim to
investigate them with a single trace-based SRL measurement
framework. We will investigate whether the same framework
is sufficient to capture the differences between the tasks, and
what are the similarities as well. In the second year of PhD,
we have focussed on collecting the data for one reading-
writing task (specifically the one explained in section 4.2).

A schematic diagram of our study design is represented in
Fig 2.

4.1 Study Setup
The lab study is being conducted at the Department of Ed-
ucational Technology, IIT Bombay. English is not the first
language of the participants in the research study, but they
have studied or are currently enrolled in institutions where
English is the primary language of instruction. All the par-
ticipants are college-going students from diverse streams or
disciplines. The participants are a mix of undergraduates,
post-graduates or PhD students.

As part of the data, we are collecting their software logs, the
eye-tracking data of the students, their facial recordings and
screen recordings. The eye-tracking data is being collected
using Tobii Pro Nano screen-based eyetracker sampled at
60Hz. The data is exported using Tobii Pro SDK on Python
which offers an open-source solution to export the raw data
collected using Tobii eyetrackers.

4.2 Procedure
The study uses a pre-post test design which comprises of a
90 min reading-writing task the learners are required to go
through a set of reading materials pertaining to three topics
and compose a piece of writing. The three topics are: (1)
artificial intelligence, (2) differentiation in the classroom and
(3) scaffolding of learning. The goal of the task is to compose
an essay that gives an overview of the state of education in
the year 2035 within 400 words. The task has been designed
in a way that prompts the learner to use SRL skills and tools
like highlighter, notetaker in the learning environment.

4.3 Learning Environment
The task had been created in a Moodle-based learning en-
vironment, as shown in fig 1. The learning environment
consists of a catalogue and navigation area which contains
the list of reading materials and a way to navigate between
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Figure 2: The Study Design

them, and also to the general instructions and rubric of the
task. There is a reading area in the centre which displays
the contents of the selected reading material. The environ-
ment is integrated with tools like annotation, planner, timer
tools. There is a writing window that can be opened and
closed at any time for writing the essay. The planner tool
helped the learners to plan how much time they are go-
ing to spend on each part of the task, and the timer tool
displayed the time left for the task. The annotation tool,
based on the open web annotation tool hypothes.is, allowed
the learners to highlight, annotate and take notes, and they
can search for highlights, tags and notes they created ear-
lier as well. Within this learning environment, we collected
learners’ trace data that includes: 1) navigational log, which
stored the time-stamps for all page visits; 2) mouse trace
data, which stored mouse clicks on pages and mouse scrolls;
3) keyboard strokes.

4.4 Trace-based Measurement Protocol for Log
Data

For converting the raw logs into theoretical SRL processes,
we use a trace parser. The parser first converts the raw logs
into meaningful learning actions like RELEVANT READING,
PLANNER, GENERAL INSTRUCTION. These set of learn-
ing actions give rise to our action library. Specific theoreti-
cal patterns of these actions are then mapped to higher-level
SRL processes. The entire list of these SRL processes then
gives our process library. The entire process of parsing has
been detailed in [5]. The theoretical SRL processes that we
obtain in our learning task are also listed in Table 1. Each
of these processes is coded by experts from 2-action or 3-
action sequences. Our learning system also provides us with
the duration spent on each of these patterns of actions (and
hence the SRL processes). We can add the duration spent
on each of these SRL processes separately during the 90 min
learning period and also count their occurrences which gives
us the metrics such as those represented in Table 1.

4.5 Data Processing and Feature Extraction
from eye-gaze data

For cleaning and processing the raw eye gaze data, we will
be following the steps outlined for the Tobii I-VT Fixation
Filter [13]. The steps involve gap fill-in interpolation, eye
selection, and noise reduction among other steps.

We will extract two main features- fixations and saccades

and their derivatives from the eye-gaze data. For this pur-
pose, we aim to use PyTrack [6], which is an open-source
Python-based solution for analyzing eye-gaze data.

5. RESULTS
Table 1 represents the distribution of SRL processes within
each category of SRL processes/subprocesses for 9 learn-
ers. The distribution is comparable to that presented in [5],
where Elaboration/Organisation, First Reading and Moni-
toring emerged as the most prevalent SRL processes in the
learners for the essay-writing task. A point to note is that
the sample presented in [5] is from a population of learners
whose first language is Dutch over 45 min of reading-writing,
while the sample presented in this paper is from a popula-
tion whose native language is not English over a period of
90 min.

Table 1: Distribution of SRL processes in the participants
Main Categories Subcategories Count Duration (%)

Metacognition

Orientation 79 21.625
Planning 10 0.375

Monitoring 186 3.468
Evaluation 17 0.574

Low Cognition
First Reading 267 36.974

Re-reading 156 6.244
High Cognition Elaboration/Organisation 349 30.739

6. FUTURE WORK
As introduced earlier, the objective of our task can deter-
mine the style or combination of styles that a reader and
writer may adopt. To compare two examples, the vision es-
say in our learning task requires a learner to read and reflect
on three readings- Artificial Intelligence in Education, Dif-
ferentiation in Education and Scaffolding in Education and
write a vision of education in 2035. The learner is expected
to stay connected to the readings, but is also expected to
combine them, go beyond what is there in the readings and
imagine innovative scenarios in future where the informa-
tion from these topics could be relevant. To contrast with
this task, an argumentative task is a common form of aca-
demic writing where a learner is supposed to take a stance
and make a for/against argument for a situation and back
it up with evidences from the readings [4, 10]. Compared to
the earlier vision essay, this task is rather restricted and the
learner has to interpret the information, identify the rele-
vant pieces of information from the readings, strictly adhere
to facts and avoid misdirections in the text (if any) and put
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up a case for the argument. We hypothesize that such con-
trasting tasks can impact the self-regulatory behaviour of
the learners, even while going through the same content.

For the research questions that we aim to address, we will
continue our data collection. Once the data is collected for
the current reading-writing task, we will change the task in
terms of its goal and content, and collect data (most likely
from a classroom course). This will allow us to have a sub-
stantial amount of data to answer our research questions in
the ways described in brief below.

6.1 RQ1
To address RQ1, we aim to investigate the differences in the
SRL strategies of learners depending on different reading-
writing tasks using the following methods-

(a) Comparing the distribution of counts and duration spent
by the learners in the SRL process categories for each of the
tasks.

(b) Comparing aggregate process models of the learners for
each of the tasks.

(c) Sequential Pattern Mining to reveal dominant action pat-
terns in each of the task.

6.2 RQ2
To answer RQ2, we aim to combine log data (logs + mouse
and keyboard interactions) and eye-gaze information. We
plan to investigate whether sufficient attention was given
each page of the content during each of the SRL process,
and filter out the pages based on whether adequate eye-gaze
were pointed to them.

6.3 RQ3
RQ3 involves a problem of prediction, which involves the
prediction of the SRL process of the learner based on the
logs and eye-gaze data of the students. The problem can
be taken up either as a classification problem of predicting
the SRL process from the data or predicting the next SRL
process of the learner based on their current SRL state. We
will train and test independently for each task, and compare
the performance of our model when trained and tested for
all tasks combined.

Prior to combining them, we will abstract features from the
channels (features like count of mouse clicks, scrolls and
count of fixations and saccades in AOIs from eye-gaze data).

7. CONCLUSION
The doctoral project focuses on investigating whether a sin-
gle SRL measurement framework can be generalized for mul-
tiple reading-writing tasks. The outcome will provide evi-
dence for the applicability of SRL measurement frameworks
for multiple tasks and hopefully, it will prompt more re-
search toward building generic SRL models at least for a
certain set of tasks that have commonalities between them.
The SRL measurement frameworks are at this point very
contextual and restricted in nature.

The multimodal aspect of the project also aims to investi-

gate whether additional data channels can reveal more infor-
mation about the nature of self-regulation in learners. We
will explore whether the eye-gaze channel can inform the log
data channel better, or vice versa.

We have so far collected data for 16 participants, and have
presented a summary of the results of 9 participants after
consideration of the quality of the data. Going ahead we
aim to collect more data from participants engaged in this
task, and also collect data from learners in newer reading-
writing tasks with different content. Then we will be ready
to answer our RQs in ways described in the last section.

The approach is not without its limitations. The multimodal
aspect of the project (especially RQ2) is very investigative in
nature, and the methods will depend on the researcher. How
to fuse the data channels, which exact features to select, and
how to ensure its explainability is yet to be decided and are
challenges on their own. The data that we have collected so
far has been collected in a controlled lab environment, and
real-world data might not be as clean as ours. We aim to
collect data for our further reading-writing tasks from a real-
world classroom, and ensuring the quality of the data and
choosing appropriate technological solutions for multimodal
data collection are other challenges. We also need to ensure
that the content for our further new reading-writing tasks
is comparable in terms of their complexity to the current
reading-writing task.

The applicability of the research can be diverse and can
go beyond just the measurement of SRL in reading-writing
tasks. Although our major focus is on correct and valid mea-
surement, appropriate measurement can be used for scaffold-
ing learners’ self-regulation which is an area that has gained
momentum in recent years. Prediction models that we aim
to investigate can help in scaffolding further by telling re-
searchers which SRL processes the learner is going to enter
next at any instant of time, in realtime. This information
can be used to personalize the scaffolding process. Although
at this point we only aim to work with logs and eyetracking
data channels, more data channels like physiological sensors
(skin conductance, heart rate) and facial expressions could
be integrated to reveal more information about SRL [3].

8. ADVICE SOUGHT
The answer to the following questions will greatly help in
ensuring that my research progresses on the correct path:

1. What are the best methods for comparing event-based
processes? (other than sequential pattern mining, pro-
cess models and statistical differences of event occur-
rences)?

2. The events in an activity such as the learner actions
in our task occur at uneven intervals. Is there a pos-
sibility of using classic temporal prediction models in
such cases?

3. How to combine data from multimodal channels while
still keeping the temporal nature of the process intact,
especially when the sampling rates of the data channels
are uneven and one data channel (log data) is not even
periodic in nature?
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4. Are webcam eyegaze detection comparable to screen-
based eye trackers when detecting fixations within an
AOI?
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M. Bannert, and D. Gašević. Towards investigating
the validity of measurement of self-regulated learning
based on trace data. Metacognition and Learning, May
2022.

[6] U. Ghose, A. S., W. Boyce, H. Xu, and E. Chng.
Pytrack: An end-to-end analysis toolkit for eye
tracking. Behavior Research Methods, 52, 03 2020.

[7] A. Hadwin, J. Nesbit, D. Jamieson-Noel, J. Code, and
P. Winne. Examining trace data to explore
self-regulated learning. metacognition & learning, 2,
107-124. Metacognition and Learning, 2:107–124, 12
2007.

[8] L. A. Hammann. Self-regulation in academic writing
tasks. 2005.

[9] D. Jamieson-Noel and P. Winne. Comparing
self-reports to traces of studying behavior as
representations of students’ studying and achievement.
Zeitschrift Fur Padagogische Psychologie - Z
PADAGOG PSYCHOL, 17:159–171, 11 2003.

[10] R. JEFFREY. OPEN OREGON EDUCATIONAL,
2018.

[11] P. K., S. T., and K. R. Development of
computer-based learning system for learning behavior
analytics. Indonesian Journal of Electrical Engineering
and Computer Science, 25(1):460 – 473, 2022. Cited
by: 0; All Open Access, Gold Open Access.

[12] R. Nitta and K. Baba. Self-regulation in the evolution
of the ideal L2 self: A complex dynamic systems
approach to the L2 motivational self system, pages
367–396. 01 2015.

[13] A. Olsen. The tobii I-VT fixation filter- algorithm
description, Mar 2012.

[14] E. Panadero. A review of self-regulated learning: Six
models and four directions for research. Frontiers in
Psychology, 8, 2017.

[15] J. Saint, A. Whitelock-Wainwright, D. Gašević, and
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ABSTRACT
Makerspace has been growing as a major phenomenon since
2005. Learners’ participation in makerspaces has proved
useful in terms of their cognitive, affective and psychomo-
tor outcomes. Many studies have reported on improved out-
comes because of makerspaces, but how the learning process
actually occurs is not clearly known. One reason for this is
the makerspace setting itself which poses challenges for data
collection, as makerspaces generally involve teams coming
together and creating something. Capturing team dynam-
ics in a real-time setting where mobility is hugely a part
of it poses difficulty in multimodal data collection. To over-
come the above-mentioned challenges and to understand the
learning process in a makerspace, this thesis proposes mul-
timodal data collection in a makerspace using a camera and
eye tracker. Data will also be collected through surveys and
interviews to understand team cognition, combined efficacy,
and interests. Patterns will be identified and triangulated
will inform us of the learner model and the learning process
occurring in the makerspaces

Keywords
Makerspaces, multimodal data, team cognition, combined
efficacy, self-efficacy, interest

1. INTRODUCTION
An increasing number of individuals are participating in the
making of items in their daily lives and seeking ways to
share their methods and artifacts with others through both
physical and digital platforms [10]. The various learning
theories associated with the maker movement are Seymour
Papert’s “constructionism”, Jean Piaget’s “constructivism”,
and John Dewey’s idea of “learning by doing”. Understand-
ing these theories helps in designing and analyzing opportu-
nities for learners to participate in makerspaces, create per-
sonalized projects and products that are meant to connect
to students’ own lived experiences demonstrate authenticity,
and structure activities for enhancing teamwork and collab-

oration [4]. Literature signals strong links between inter-
disciplinary STEM (Science, Technology, Engineering, and
Mathematics) and making, particularly the skills and capa-
bilities utilized in projects, and opportunities to develop and
apply STEM knowledge [9]. The National Research Council
of the USA has recently identified makerspaces as learning
environments with the potential for helping students to learn
science and engineering concepts through investigation and
design [5].

The relatively recent rise of the Maker Movement is a direct
result of the widespread availability of low-cost digital fabri-
cation technologies, the development of the Internet as a tool
for sharing information, and an increase in media (e.g., Make
magazine) and events (e.g., Maker Faires—community gath-
erings celebrating the Maker Movement) related to making
[14]. In makerspaces collaboration is evident and the com-
plexity of design problems requires that makers from differ-
ent fields come together also a variety of scaffolds should be
available to them to solve the problem. Organizations turn
to teams in today’s complicated and dynamic work environ-
ment to solve issues quickly and effectively. Teams-based
organizational structures promote productivity, innovation,
and other crucial organizational outcomes across industries
[12].

The findings of the research also support the notion that
makerspaces can aid in the development of a wide range
of twenty-first-century skills [8]. Twenty-first-century skills
(for example, collaboration, problem-solving, and digital cit-
izenship) are a broad set of competencies that, when com-
bined, indicate that individuals are prepared to be produc-
tive members of the workforce [13]. Research has been done
to establish that there is some cognitive, affective and psy-
chomotor gain, but limited research has examined how these
skills and knowledge are developed. Even in those stud-
ies, qualitative methods such as observation, interviews, and
self-reported surveys are heavily used. This thesis aims to
address this gap by using multimodal data collection to un-
derstand the process of team cognition and also the role of
self-efficacy and interest in it.

2. BACKGROUND
The recent developments in physiological sensing techniques
technologies such as eye-tracker, EEG, wrist bands, etc.,
open ways to collect data in other modalities rather than fo-
cusing only on self-reports or questionnaires to understand
the process of learning. They also have advantages such as

N. S. K. Analyzing team cognition and combined efficacy in mak-
erspaces using multimodal data. In M. Feng, T. Käser, and P. Taluk-
dar, editors, Proceedings of the 16th International Conference on
Educational Data Mining, pages 539–542, Bengaluru, India, July
2023. International Educational Data Mining Society.
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less labour-intensive data collection over longer periods, al-
lowing for the measurement of team cognition in real-world
task contexts as opposed to simulated ones. Data can also
be collected and analyzed in real-time which is also scal-
able. Data from one channel may not be enough to cap-
ture knowledge sharing, especially in a group setting where
the focus is on team cognition and the combined efficacy
of the team. Hence, there is a need to use data from mul-
tiple sensors. Multimodal analytics in makerspaces refers
to the use of multiple types of data, or modalities, to gain
a more comprehensive understanding of learners’ activities
and behaviours. This might include data from video cam-
eras, sensor logs, and other forms of digital tracking, as well
as more qualitative data such as interviews, surveys, and
observations. By using multiple types of data, multimodal
analytics can provide a more holistic view of the learners’
experience in the makerspace and can help to identify pat-
terns and trends that may not be visible when using only
one type of data [2].

For example, sensor logs can provide data on the frequency
and duration of use of different tools and resources, while
video cameras can capture more detailed information on how
learners are using those tools and resources. Interviews and
observations can provide insight into learners’ motivations,
goals, and perceptions of their experiences in the makerspace
[6]. By integrating these different types of data, multimodal
analytics can help to identify patterns and trends that may
not be visible when using only one type of data. It is impor-
tant to note that multimodal analytics also involves a com-
bination of quantitative and qualitative data [2]. This allows
researchers to gain a deeper understanding of the learners’
experiences in the makerspace and to identify patterns that
may not be visible when using only quantitative data. For
a better understanding of how knowledge is shared among
team members and applied to solve problems, more research
is required in the areas of team cognition, combined effi-
cacy, and interest. Multimodal data analytics also has its
own challenges, such as difficulty in temporally aligning data
sources with different sampling rates and determining the
amount of data to be sampled. Other challenges include the
fusion of features from one modality to another for classifi-
cation tasks, co-learning between modalities, and the gen-
eration of new features from one modality to another. Ad-
dressing these challenges is crucial for the effective analysis
of multimodal data.

3. THEORETICAL FRAMEWORK
The suitable theoretical framework for understanding inter-
ests, beliefs, attitudes, and self-efficacy in makerspaces is the
Self Determination Theory (SDT) developed by [7]. SDT is
a framework that explains how individuals engage in activ-
ities and how that engagement is related to well-being and
motivation. SDT suggests that individuals have innate psy-
chological needs for autonomy, competence, and relatedness
and that when these needs are met, individuals are more
likely to engage in activities that are self-determined, intrin-
sically motivated, and lead to well-being. In the context
of makerspaces, individuals who feel autonomous in their
decision-making and have a sense of competence in their
abilities to create and innovate will be more likely to engage
in making activities.
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Figure 1: Overview of the proposed method.

Interest, belief, and attitudes are also important factors in
SDT. Interest is an intrinsic motivation for engaging in an
activity, and beliefs and attitudes can influence an individ-
ual’s perception of competence and autonomy in the activity.
For example, if an individual holds a belief that they are not
creative or do not have the necessary skills to participate in
making activities, they may be less likely to engage in these
activities [15]. Self-efficacy, or an individual’s belief in their
ability to perform a specific task, is also important in SDT.
In makerspaces, individuals who have a high level of self-
efficacy in their making abilities will be more likely to engage
in making activities and persist in the face of challenges [15].
Overall, SDT provides a theoretical framework for under-
standing the factors that influence individuals’ engagement
in making activities in makerspaces, and how these factors
are related to well-being and motivation [11].

4. RESEARCH OBJECTIVES
From the previous sections, we established that there is a
need to investigate the interplay between various factors that
influence students’ interest, identity, and self-efficacy (beliefs
in one’s capabilities to organize and execute the courses of
action required to produce given attainments) when they
work together to solve problems collaboratively. Addition-
ally, it is necessary to examine how each of these influences
team cognition. To do this, I intend to take advantage of the
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Table 1: Data Sources

Data type Data source Data

Qualitative data Interviews and observation They can provide valuable information about the resources and support
provided in the makerspace, as well as the ways in which students are
using the space and the impact it is having on their learning.

Quantitative data Bandura’s self-efficacy, in-
terest survey

Self-report on individual self-efficacy, combined efficacy, and interest.

Camera Detect facial expressions. The video can also be used for object track-
ing and analyzing the amount the time spent by a learner interacting
with different materials in the makerspaces.

Eye tracker Track the student’s gaze and infer their level of engagement or interest
in the task.

introduction of new technical tools like wearables and other
covert measurement methods, which will provide us with the
chance to advance our understanding of the science behind
team cognition. Because of these technical developments, it
is now possible for academics to evaluate data streams that
are far larger than they have ever been. Additionally, when
combined with conventional metrics, these tools can give
additional context for comprehending the level of cognition
among teams. Collectively, these efforts will

1. Inform researchers about how knowledge is shared in
team cognition, interest, and combined efficacy’s role
in it.

2. Understand and model participants’ learning processes.

3. Inform designers and developers to provide scaffolding
and feedback.

5. RESEARCH METHODOLOGY
5.1 Preliminary study
The preliminary study was conducted with fourteen partic-
ipants who were introduced to digital making – TinkerCAD
and Scratch. All participants identified themselves as fe-
male. Participants discussed the socio-environmental and
economic issues with their peers and came up with a crit-
ical making design plan to tackle the identified problem.
The plan or ideas submitted by them were the artifacts and
their responses to the survey questionnaire focusing on self-
efficacy, beliefs, and attitudes were the primary data sources.
This questionnaire was adapted from Bandura’s self-efficacy
scale [3]. This survey was administered after the workshop.
Their artifacts were analyzed using content analysis and the
survey results were mapped to the artifacts. This pilot study
helped in understanding the self-efficacy and interest of first-
time makers. The quality of artifacts and the statistical re-
sults of surveys had a correlation. Participants who reported
high efficacy had better artifacts in terms of their actionable
plan.

5.2 Participants and Data Collection
The future study will be conducted primarily amongst un-
dergraduate program students as individuals at this level are
young adults and usually are at the starting point of shaping
their lives based on their interests and have certain auton-
omy to do so. The data that will be collected and the data

Figure 2: Participants working on Scratch.

sources are mentioned in Table 1. Data collected from self-
reported surveys and interviews will be mapped with the
patterns and findings from multimodal data analytics. In
order to understand the learner’s behaviour a quantitative
approach will be used which will employ machine learning.

5.3 Data Analysis
The video can be used for object tracking with CVAT, which
can record the duration of interaction with a specific object
[1]. This information, combined with eye gaze data, can pro-
vide insight into a task’s level of engagement and interest.
The combined efficacy and interest questionnaire survey re-
sults can be statistically analyzed to provide additional data.
To identify patterns and understand the meaning of these
patterns in the context of the data, the interview data can
be coded and analyzed using grounded theory. The pat-
terns that emerge from the multimodal data can be used
to triangulate the qualitative analysis findings, providing a
more comprehensive understanding of the learning process
in the makerspaces. Using this method of study and analy-
sis will help in coming up with a more detailed and nuanced
understanding of the process. The triangulation with sur-
vey results and interview data will help us in explaining the
role of self-efficacy and combined efficacy in social learning
environments like makerspaces.
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6. ONGOING AND FUTURE WORK
The pilot study is completed and the next step in the re-
search process is to conduct data collection and analysis
of the primary study. The data collection should involve
gathering qualitative and multi-modal data from the mak-
erspaces, such as observations, interviews, and documents.
This data should then be analyzed in order to address the
research question and answer the study’s objectives. One
potential challenge when analyzing multimodal data is find-
ing a way to effectively combine and analyze data from mul-
tiple modalities, such as eye gaze, and video. This may
involve using specialized software or techniques and may re-
quire consulting with experts in the field of multimodal data
analysis.

7. CONCLUSION
Makerspaces are defined by groups of people getting to-
gether to create something in real-time, which requires a
lot of movement, making data collecting challenging. This
thesis proposes the use of multimodal data gathering to bet-
ter understand the learning process in makerspaces. While
the advantages of makerspaces for learners have been well
acknowledged, the specifics of how learning takes place in
this context have remained unknown due to data-gathering
issues. In addition to questionnaires and interviews, the
suggested use of a camera and eye tracker attempts to over-
come these limitations and give a more thorough knowledge
of the cognitive, emotional, and psychomotor effects of in-
volvement in makerspaces. The identified patterns will be
triangulated to inform a learner model and shed light on the
learning process occurring in makerspaces. This will provide
insight into group dynamics, learning processes, and help de-
signers in scaffolding and providing feedback for learners.
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ABSTRACT
Educational researchers have done remarkable work in an-
alyzing the impact of VR on education and measuring the
learners’ experience, engagement, motivation, etc of using
VR in education. Most of the studies conducted reveal that
VR in education has a positive impact as the learners immer-
sively experience the Virtual Reality Learning Environment
(VRLE) and interact with the virtual objects in the first-
person perspective. Certain experiments conducted with
VR also claim that using VR in education increases the
presence but decreases learning due to an overload of ex-
traneous cognitive load. Due to the contradictory claims
made by different authors on the use of VR in education, it
has become important to understand the learning processes
happening while using VR. The existing studies conducted
to understand the learning processes in VR have consid-
ered the cognitive factors, and affective factors leading to
the learning outcomes. Those studies have used the data
collected from pre-tests, post-tests, self-reported question-
naires, interviews, surveys, physiological devices, and hu-
man observers. However, no study has considered the data
related to the behavior of the learners due to interacting with
VRLE to understand the learning processes. This is due to
the non-existence of an efficient data collection mechanism
that is able to log all the interaction behavior of the learn-
ers. Hence, we developed a data collection mechanism that
is able to log automatically all the interaction behavior of
the learners in real time along with timestamps. We also
conducted a study with 14 participants by deploying the de-
veloped data collection mechanism in a VRLE. The purpose
of this doctoral thesis is to understand the learning processes
happening in VRLE from the lens of the interaction behav-
ior of the learners. The analysis done on the data collected
can also be further used to predict the learners’ performance
based on their interaction behavior.

Keywords
interaction behavioral data, behavioral pattern, pattern min-
ing, modeling learners, personalization, VRLE

1. INTRODUCTION AND RELATED WORK
Virtual Reality (VR), is the technology that can make the
users experience a 3D virtual world by immersing in it and
interacting with the virtual objects present there in a first-
person perspective similar to the real world. Virtual Reality
(VR) technology, due to its unique characteristics of im-
mersion, interaction, and imagination [15, 14, 10] has found
its application in various domains such as the Automotive
industry, Military, Healthcare, Sports domain, etc includ-
ing the education domain. In education, the learners use
VR to acquire knowledge and skills on the learning contents
that involve 1) invisible phenomena such as electricity, mag-
netism, etc [9], 2) microscopic concepts such as DNA [12], a
human artillery system [8], etc, and 3) dangerous and haz-
ardous procedures such as fire fighting, welding, etc [11]. As
the application of VR in education is increasing, the num-
ber of research being done on VR in education has also seen
an exponential increase in the last decade. The experiments
conducted in the research so far have used the data collected
from 1) pre-tests and post-tests to measure the impact of VR
on learning, 2) self-reported questionnaires, interviews, and
surveys [10] to measure the user experience, engagement,
and usability of the VR systems and to compare VR-aided
and VR-non-aided learning systems [1], 3) devices such as
i) physiological sensors to assess the affective state of the
learners while performing the tasks [3], ii) eye trackers to
assess the learners’ intended area of interest [13] iii) body
trackers to adapt the size of the virtual objects with respect
to the size of the users, and iv) orientation of the head-
mounted displays (HMD) and handheld controllers (HHC)
to assess the response time, and 4) human observers to un-
derstand the behavior and procedural performance of the
learners [8]. The learning outcomes measured in the exist-
ing studies using the existing data collection mechanism are
1) cognitive skills (knowledge acquisition, knowledge reten-
tion, and knowledge transfer), 2) affective skills (motivation,
satisfaction, etc), and 3) procedural skills (sequential execu-
tion, duration of completion) [10]. In spite of a lot of work
being done on measuring the learning outcomes, there is lit-
tle work done to understand the learning processes to know
about how the learners learn in Virtual Reality learning en-
vironment (VRLE). The limited works done to understand
the learning processes too have considered the cognitive fac-
tors, and affective factors [4, 2, 7]. However, the procedural
skills constituting one of the learning outcomes are not con-
sidered in understanding the learning processes. This could
be due to the fact that procedural skills are measured using
the data related to the behavior of the learners provided by
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human observers [8]. However, the data provided by human
observers can get biased and also need to satisfy interrater
reliability tests [7]. Hence there is no efficient mechanism
to collect behavioral data of the learners while they inter-
act with VRLE. Moreover, the studies conducted to under-
stand the learning processes have been done on a desktop
VR rather than in an immersive VR learning environment
[6]. The desktop VR system uses a mouse and keyboard
for interaction. Whereas, in immersive VR systems, inter-
actions happen through the buttons of hand-held controllers
(HHC). As there is no mechanism existing to collect inter-
action behavioral data (IBD) in immersive VRLE, there has
been no research done to understand learning processes in
immersive VR systems by considering the learners’ behav-
ior. Therefore, this research thesis aims to explore learn-
ing processes using IBD collected in a VR learning environ-
ment. To reach this aim, the research thesis will follow three
main phases. First, the development of a specialized IBD
collection mechanism and its deployment in an immersive
VRLE. Second, the collection of interaction behavioral data
from studies conducted in the VRLE to explore the learn-
ing processes. Third, the development of a VR-based adap-
tive tutoring system that can provide personalized adaptive
feedback, scaffolds, and VR learning content to the learners
based on their interaction behavior. The contributions of
the research project are:
1) Measuring the impact of VR on learning the subject area
of electronics engineering as VR studies in electronics engi-
neering are limited.
2) Deployment of the developed IBD collection mechanism
as there was no system existing to log the learners’ behavior
in real-time.
3) An approach to predict the learning using the IBD and
the performance of the learners by fitting them with a re-
gression model.
4) An approach to model the learners’ behavior using the
IBD logged and process mining techniques

2. CURRENT RESEARCH PROGRESS
The important works done in our research so far are 1. We
adopted and improvised MaroonVR [9], an open-sourced
VRLE used to learn the physics concepts of electromagnetic
induction. Electromagnetic induction is a phenomenon in
which the electromotive force (emf) is induced when a mag-
net is moved through a closed loop coil. We used two scenes
of MaroonVR viz Faraday’s law scene and the falling coil ex-
periment scene. The improvisations are done to the VRLE
by enhancing interactions in the Faraday’s law scene, con-
verting the simulated falling coil experiment scene into an
interactive scene, and including an embodiment-integrated
learning scene in the environment. In the embodiment scene,
the learners take the perspective of the magnet and through
their walking action the emf gets induced rather than due
to dragging the magnet in the other two scenes. The modi-
fications were made to MaroonVR to make the VRLE more
suitable for experiential learning [11] and embodied learn-
ing [5] to happen. The learners can feel the haptic vibration
when the emf gets induced due to the magnet dragging in
and out of the coil. The emf also gets plotted in real-time in
the virtual graph present in the VRLE. 2. We developed an
IBD collection mechanism that is able to log all the interac-
tion behavior of the learners in VRLE in real time along with
the time stamp. The process involved in the development

of the IBD collection mechanism contains two steps viz. i)
creation of a report folder to save the data file in .csv, and
ii) appending the log data into the created .csv report file
as shown in Figure 1. More details about the IBD collected
is discussed in section 3. 3. We deployed the IBD collection
mechanism in MaroonVR and conducted a study with 14
engineering undergraduate students and collected the IBD.

3. INTERACTION BEHAVIORAL DATA
We use Oculus Quest 2 from Meta, an immersive VR system
in which the learners view the VRLE using a head-mounted
display (HMD) and interact with the objects present in it us-
ing the buttons present in the hand-held controllers (HHC).
The interactive actions performed on the virtual objects of
VRLE by various buttons present in HHC constitute in-
teraction behavioral data (IBD) which are discussed in the
following sub-sections.

3.1 Interaction Behavioral Data Logger
The IBD collection mechanism deployed in the VRLE col-
lects information about the interaction made through the
HHC buttons, the virtual objects with which the interac-
tions happen, and the timestamp. As we employ the Unity
game engine to modify and program the interactions in the
VRLE, we wrote a c# code to create a folder in the desk-
top computer (to which HMD is tethered) in which all the
interaction behavior data can be logged in a .csv file. We
use the VR Tool Kit (VRTK) package of Unity to collect
all the actions done on HHC buttons. We wrote another c#
code in Unity to append the .csv file with information about
the virtual objects with which the interaction has happened.
The code is written so that the timestamp gets recorded in
a separate column corresponding to the respective rows to
which new data is appended. The IBD collection mechanism
is shown in Figure 1.

3.2 Buttons and Interactions
The buttons of the HHCs that involve in the interactions
are the trigger buttons, grip buttons, thumbstick, primary
buttons, and secondary buttons. The trigger buttons are
generally used to interact with the virtual interfaces such
as interface buttons, and interface sliders. In MaroonVR,
the interface buttons that are used to change the number
of turns in the coil, and to change the diameter of the area
enclosed by the coil can be interacted with using the trigger
button. The grip buttons are generally used to grab, drag,
and drop/throw virtual objects. In MaroonVR, virtual ob-
jects such as virtual magnets, iron bars, and door handles
can be interacted with using the grip button. Thumbstick
present in the HHC can be used to teleport from one place
to another place within the 3D world without actually mov-
ing in the real world. The primary button and the sec-
ondary button are used to switch to and switch back from
the embodiment scene in MaroonVR respectively. The HHC
buttons and the interactive actions performed by them are
tabulated in Table 1.

3.3 Action Logs
The interactive actions performed using various buttons of
HHC as mentioned in Table 1 are logged into the IBD logger.
The IBD logger contains information such as HHC used (left
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Figure 1: Interaction Behavioral Data Collection Mechanism in VR

Table 1: HHC Buttons and Interactive Actions
Controller
Buttons

Interactive
Actions

Virtual Objects Interacted

Trigger Select, Un-
select, and
Change val-
ues

Virtual user interfaces such
as virtual buttons to se-
lect between different coil
turns, different coil diam-
eters, play/pause buttons,
and sliders

Grip Grab, Drag,
and Drop

Magnet, Iron bar, door han-
dles, Perspective scene

Thumbstick Teleport -
Primary
Button

Switch to
embodiment
scene

-

Secondary
Button

Switch back
from embod-
iment scene

-

or right), buttons of the HHC used (refer to Table 1), but-
ton actions (pressed, released, clicked, etc), button pressure
(a value between 0 and 1), thumbstick axis (x and y co-
ordinates), and thumbstick angle (angle range between 0◦

and 360◦), objects interacted (refer to Table 1), and times-
tamp in different columns of the .csv report file. The actions
done by the learners can be identified from the buttons of the
HHC used, button actions, and objects interacted columns
of the IBD logger. The action logs identified from the IBD
logger such as reading instruction, coil interaction, magnet
interaction, iron bar interaction, scene switching, and non-
interactive actions are described in Table 2.

Table 2: Action Logs

Actions Description
Reading
instruction

Reading the instructions before starting the
interactions

Coil inter-
action

Changing the parameters of the coil such as
number of turns and diameter

Magnet in-
teraction

Grabbing, dragging, and dropping of the
magnet present in Faraday’s law experiment
lab, and falling coil experiment lab

Iron bar
interaction

Grabbing, dragging, and dropping of the
iron bar present in falling coil experiment
lab

Scene
switching

Moving from one scene to another scene
among three different scenes

Non-
interactive
actions

The learners look and walk around in the
VRLE rather than interacting with virtual
objects

3.4 Experimentation
We conducted a study with 14 participants who are under-
graduate engineering students from a non-electrical back-
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ground. The data relating to the participants’ self-efficacy
and self-regulated learning were collected from the responses
provided by the participants to the respective questionnaires.
A pre-test was also conducted to assess the participants’
prior knowledge of electromagnetic induction. The partici-
pants were then allowed to play a VR game known as “First
Steps” for 15 minutes to get familiarize themselves with the
VR system. Then they interacted with MaroonVR VRLE
for 30 minutes and the data related to their interaction be-
havior gets collected automatically in the IBD logger. After
the VR intervention, a post-test was conducted to assess the
learning outcome. The participants then answered a series
of self-reported questionnaires such as learners’ experience
(M=6.66, SD=0.47), and enjoyment (M=5.22, SD=0.48)
on a 7-point Likert scale and VR engagement (M=4.21,
SD=1.18) on a 5-point Likert scale. Also, no participant
reported any kind of motion sickness or nausea during or af-
ter the VR intervention as the movement of the participants
in the virtual world and real world is synchronized.

Table 3: Actions Frequency and Duration Calculated from
the IBD collected in the study

Actions Frequency
(number of
Occurrences)

Duration(in
seconds)

Reading instruction 14 4160
Coil interaction 67 -
Magnet interaction 118 1397
Iron bar interaction 30 97
Scene switching 29 -
Non-interactive actions - 17255

The details about the behavior of the participants with re-
spect to actions, frequency of occurrences of the actions, and
the duration of performing the respective actions during VR
intervention are shown in Table 3. The entries in the table
show the behavior of all 14 participants collectively. The
action of coil interaction involves the interaction of varying
the coil parameters such as turns, and diameter by click-
ing using the trigger button in HHC. Similarly, the action
of scene switching also involves clicking the door handle to
enter another scene. Hence, the number of occurrences of
these actions is evaluated rather than the duration of occur-
rences. Whereas, for non-interactive actions such as walking
and looking around the environment, duration is calculated
rather than frequency.

4. LEARNING PROCESSES ANALYSIS
We have developed an IBD collection mechanism, deployed
it in a VRLE, conducted a study with 14 participants, and
identified the actions done by the learners from their inter-
action behavior. All through these processes we used expe-
riential learning theory that has four components viz con-
crete experience, reflective observation, abstract conceptual-
ization, and active experimentation [11]. The existing stud-
ies on the learning processes in VR have considered only the
cognitive factors and affective factors [4] that are the aspects
of the first three elements of experiential learning theory.
Whereas, active experimentation which can be assessed by
the interaction behavior is not considered in understanding
the learning processes in VR. Therefore, we will extract the

temporal and spatial features of the actions identified from
the IBD collected and do pattern mining to find the behav-
ioral pattern of the learners leading to higher performance.
This would help us to find how learners learn in a VRLE
from the lens of interaction behavior. We also propose that
the results obtained would be further used to model the
learners’ proficiency. We also propose to develop an algo-
rithm to provide personalized adaptive feedback, scaffolds,
and learning content based on learners’ interaction behavior
and proficiency.

5. CONCLUSION
We conclude that IBD developed and deployed in the VRLE
is able to log all the interactive actions performed by the
learners. However, the experiment was conducted with a
small sample of 14 participants. Hence, to establish the
generalizability of the study the experiment needs to be con-
ducted with a larger number. As the learners experiencing
the VRLE are expected to see the virtual graph while they
interact with the magnet, the information related to their
seeing needs to be logged. However, the current data col-
lection mechanism is unable to provide information related
to the learners’ seeing. Hence, further work is required to
ensure that the learners see the intended area while they per-
form tasks in the VRLE and relevant information needs to
be logged. We will use the logged IBD to explore the learn-
ing processes in VR. Also, in the current experiment, the
learners interacted with the virtual objects and viewed the
virtual graph for the corresponding changes in the voltage
level. In the future, the VRLE will be modified to include
task-based challenges like glowing electric bulbs having dif-
ferent wattage ratings by interacting with virtual objects.
We also propose to develop a mechanism to provide person-
alized feedback, scaffolds, and VR learning content to the
learners based on their behavior in VRLE.

During the doctoral consortium, we expect to recommend
suggestions and feedback related to our current progress in
our research. We specifically expect the recommendations
on establishing the connection between the behavior of the
learners and the learning outcome, and personalization of
the learning system in the VR context.
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ABSTRACT 
Educational Robotics (ER) is a field of study that aims to promote 

active learning and engage students with the use of artifacts. An IIT 

BOMBAY project, “e-Yantra” uses Project Based Learning (PBL) 

approach to train students to be able to solve real-world problems 

through an Educational Robotics (ER) competition through one of 

its initiatives titled “e-Yantra Robotics Competition (eYRC)”. Stu-

dents participate in the competition to gain skills, knowledge, and 

hands-on learning experience. But due to lack of thinking skills, 

exposure to different domains and other constraints like academic 

commitments, students find it difficult to compete and eventually 

drop out of the competition. To address this problem, this project 

focuses on designing a data driven training program that will pre-

pare students to help gain skills required for Educational Robotics 

competition.  

 

Keywords 
Educational Robotics (ER), robotics competition, training program. 

1. INTRODUCTION 
Educational Robotics is a research field that positively impacts the 

students' learning experience by implementation of hands-on activ-

ities where robots play an important and active role [1]. Robotics 

activities can promote different learning outcomes such as problem 

solving, self-efficacy, computational thinking, creativity, motiva-

tion, and collaboration. Many robotics kits have been designed and 

developed for educational purposes that provide opportunities for 

students to explore, implement and receive feedback. To benefit 

students from a robotics competition, aspects such as design of 

competition, student training, mentor’s scaffolding, and teaching 

pedagogies are important [2]. 

e-Yantra conducts an online annual Robotics Competition for stu-

dents to implement solutions to the real-world problems on sectors 

like waste segregation, medicine delivery, road maintenance, soil 

monitoring etc. Competition comprises detailed problem statement, 

task documentation, self-paced video tutorials, robotics kits, dis-

cussion forum, live mentor interaction to help students to learn, 

compete, and resolve their queries [3]. 

Few of the popular international competitions such as World Robot 

Olympiad (WRO) – India [4], Micromouse, RoboGames, ABU Ro-

bocon [5], RoboCup (Robot Soccer World Cup), VEX Robotics 

Competition, Zero Robotics tournament, Robofest India, B.E.S.T 

Robotics Design Contest, Botball Educational Robotics Program, 

FIRST: Robotics Competition are designed for students of different 

age groups.   

2. CURRENT AND PROPOSED WORK 
The aim of my work is to create an online training program for un-

dergraduate students participating in the e-Yantra Robotics 

Competition. To attain this, following are the goals: 

Goal 1: Examine the need for an online training program using a 

data-driven approach. 

Goal 2: Define the structure of the training program. 

Goal 3: Determine the effectiveness of the training program. 

To address Goal 1, I did a thorough analysis of 11 well-known tour-

naments. The investigation included determining the competition's 

purpose and categories, target audience, mode of conduct, training, 

resources provided (before, during, and after the competition), 

mentor participation, and role. 

On the official website of competitions, information about the 

above factors was found but specific information about training and 

resources provided to students during competition and the role of 

mentors and other scaffolds made available was not found. On the 

other hand, competitions do provide some resources, notes, guides, 

rulebooks, certification courses for educators.  

From the studies [8] and [9], it is evident that a major attrition rate 

is seen especially after the initial task i.e., Task 0. Major self-re-

ported reasons include task difficulty, difficulty managing time, 

team coordination issues, beginners (participating for the first 

time), university exams clashing with competition task deadlines, 

participation in other events, and so on. To understand the issue 

further, data was collected in two ways: 

A. Semi-Structured Interviews 

B. Survey Form  

 

A. Semi-Structured Interviews: 

Interviews were conducted for students/teams of the ongoing com-

petition edition 2022. It was not feasible to conduct interviews for 

all the participating teams on each theme given the number as high-

lighted in Table 1 below.  

 

Table 1. e-Yantra robotics competition theme details 

Theme name No. of teams 

Sentinel Drone (SD) 374 

Functional RoadBot (FB) 376 
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Theme name No. of teams 

Swatchhta Bot (SB) 372 

Delivery Bike (DB) 372 

Krishi Bot (HB) 372 

Pharma Bot (PB) 372 

HolA Bot (HB) 372 

Total 2610 

 

Though eYRC is a collaborative competition, it was also important 

to know individual insights which might be missed in a team inter-

view. Individual interviews were decided for the following two 

reasons: 

• If there are ongoing team clashes, the student may share 

without being judged or feared by other team members 

• For a particular question, if one student shares some insight, 

another team member might not take the effort of thinking 

and would end up saying the same thing. 

To calculate the number of interviews considering different factors, 

the following was planned: 

Table 2. Interview preparation details 

Total themes 7 

Level Low, Medium, High scorers 

Categories Individual Team 

No. of teams to be in-

terviewed/theme 

1 1 

Total members/team 2-4 2-4 

Total no. of students 

to be interviewed 

2-member team: 14 

4-member team: 28 

NA 

Total no. of teams to 

be interviewed 

NA 7 

Total 14-28 students Team 

Random sampling was done to choose low, medium, and high 

scorer teams for 7 themes as shown in Table 3: 

Table 3. Interview categories 

Score/Level Individual Team 

Low HB, PB FB, SB, DB 

Medium SD, SB, DB KB, PB 

Top KB, FB SD, HB 

The objective of the interview was to understand challenges faced 

by participants, resources availability, and need for additional train-

ing. After 11 interviews, I started getting similar responses so no 

more interviews were conducted. The interview details are stated in 

Table 4. 

 

 Table 4. Interview details 

Interview Time ~ 40 mins each 

Platform Webex 

Data collection Audio and Video recording 

Figure 1 and Figure 2 shows few instances from interview tran-

script analysis: 

 

Figure 1. Screenshot of interview transcript done for individual 

interviews. S1 - Student 1, S2 - Student 2, S3 - Student 3, S4 - 

Student 4. 

Following are few overall interview findings or insights: 

• Low scorer teams lack knowledge so need training pro-

grams to learn basics. 

• Top scorer teams either have learnt about domain 

knowledge through previous competition participation or 

done some courses so are able to submit the tasks. 

• Training programs should contain theme-specific topic, 

coding. 

• The training program should cover basics and should not 

clash with academics. 

• The training program will be good for newcomers.  

 

 

Figure 2. Screenshot of interview transcript done for team in-

terviews. T1 - Team 1, T2 - Team 2, T3 - Team 3, T4 - Team 4. 

B. Survey Form: 

Apart from interviews, a survey form was designed to collect data 

from larger groups of participants. It was to understand the need, 

topics, and duration of the training program. Total 2012 responses 

were received. Following are few insights: 

1) Students were asked if there is a need for a training pro-

gram before the start of competition. Figure 3 shows that 

1645 (81.75%) students out of 2012, expressed the need 

for a training program. This resembles the responses re-

ceived through interview. Students esp. from low and 
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medium scorer teams expressed that they are completely 

new to the topics introduced in the competition. As they 

lack basics, most of their time is invested in going 

through the resources and learning and less time is left to 

work on the tasks which leads to missing out on dead-

lines.  

 

Figure 3. Need of training program 

2) Students were also asked to rate if they referred to a lot 

of external resources while working on the tasks during 

competition.  

 

Figure 4. Referred external resources 

Figure 4 shows that 1326 (65.90%) students felt that provided re-

sources were inadequate and that made them refer to additional 

resources. This may be because as students lack basics they look 

out for more information. 

3) Students were further asked if the training program at the 

start of competition would help them and how it would 

help them. Figure 5 shows the result for the former part 

where 1687 (83.84%) students responded that it would be 

helpful.  

 

Figure 5. Help of training program 

For the latter part of the question, text responses were analyzed. Out 

of 2012 responses, 512 were read thoroughly. Major responses 

stated the training program would help them to understand basics, 

gain knowledge, understand tasks better in competition, would be 

beneficial for newcomers, preparation before the competition 

would save time during competition which will help them to meet 

deadlines and not drop out and few responses were related to think-

ing and problem-solving skills. Above data collection and analysis 

helped me understand that students do need a training program and 

would be beneficial for reasons stated above. 

To address Goal 2, further analysis of the survey responses was 

done. Following are the few insights: 

1) Figure 6 shows the results for the duration of the training 

program. Student responded that the training program 

should either be less than or equal to 4 weeks. This may 

be because the competition is already 7-8 months long 

competition. Having a program more than 4 weeks will 

make it difficult for the students to manage their other 

activities. As per interview response from few teams, 

having the training program before the competition 

would be beneficial for them as they have summer break 

during that slot. So, a four-week program will not inter-

fere with their academics. 

 

Figure 6. Duration of the training program 

 

2) When asked if students would like to attempt a training 

program, the results obtained are as shown in Figure 7. 

 

 

Figure 7. Attempt Training program 

 

3) Students were also asked about what they think which 

topics should be covered in the training program. They 

responded with varied domains with most frequently 
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occurring Robotics and Embedded System (17.59%), Im-

age processing (6.46%), Python (4.72%) and others were 

more theme specific topics. Student response is like the 

analysis done for domains covered in past years of e-

Yantra Robotics Competition. 

Above analysis leads to the conclusion that it is essential for stu-

dents to get acquainted with different robotics concepts and 

research says that it should be taught through problem solving ac-

tivities. According to ABET-mapped competencies (problem 

solving, communication, teamwork, ethics, life-long learning, 

math, science, engineering knowledge; engineering tools; experi-

ments and data, design, contemporary issues, understand impacts), 

problem solving is an essential competence for undergraduates in 

engineering domain [6]. Authors have also identified problem solv-

ing as one of the important learning outcomes for Educational 

Robotics competition [2]. Various authors like Jonassen, Polya, Si-

mon, Bransford and Stein, Hayes and Sternberg have proposed 

different problem-solving strategies that can be used while design-

ing problem solving activities for the training program. Technical 

paper [7] states different principles that form the basis of problem 

solving in classroom or computer-based settings. 

Work for Goal 3 is in the planning stage. We are planning to design 

an online training program that will be made available in the online 

mode and would include video tutorials, problem solving activities 

based around robotics and quiz. 

3. ADVICE SOUGHT 
Out of the above three stated goals, work for goal 1 is accomplished 

whereas for goal 2 is in progress. I need feedback on the work done 

towards two goals. For goal 3, I aim to design and implement the 

training program. I plan to collect the following data at three differ-

ent instances through the training program:  

1) Start: Pre-Questionnaire (this will give me an under-

standing of their prior knowledge) 

2) During: Videos watched, problem solving activities, quiz 

attempted (this will give me feedback on the module wise 

content) 

3) End: Semi-structured interviews, Post Questionnaire 

(feedback to their experience to further improvise the 

program) 

This data will give feedback for the training program. The effec-

tiveness of the program will be measured in competition with two 

groups (control and experimental). Research is at the early stage, 

and I hope the consortium can provide suggestions on following 

two questions: 

1) What more data can be collected through the training pro-

gram? 

2) What are the analysis techniques that can be used? 
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ABSTRACT 
In collaborative project-based learning environments, students 

handle ill-structured challenges and practice socially shared meta-

cognitive regulation (SSMR). Transactivity refers to the degree to 

which students demonstrate a shared engagement and build on 

each other’s knowledge contributions. Prior research has high-

lighted the need to investigate SSMR and transactivity 

systematically. Putting learners in a team and assigning project 

does not guarantee the success of the collaboration. Collaborating 

team members may face cognitive and metacognitive issues due 

to different levels of metacognitive capabilities. To support SSMR 

and to have teams with a high level of transactivity, we need to 

understand the shared regulation behavior of team members.  

Interestingly, the lack of studies in this domain directed us to  

understand the shared regulation behavior of team members and 

their transactive interactions. We have conducted two studies 

which are primarily focusing on qualitative data. To validate and 

triangulate the claims using another mode of data, we are propos-

ing an additional mode of data i.e. system interaction data. Based 

on our understanding, further in our research goals, we are pro-

posing a computer-supported learning environment to foster 

SSMR and a higher level of transactivity. We will try to achieve 

this through metacognitive prompts as scaffolds for team mem-

bers. We present the initial work done in this direction and we 

proposed one additional mode of data. Currently, most of the 

learning environments are focusing on individual learners, so we 

are trying to bridge this gap through the proposed system, sup-

porting SSMR & transactivity in a project-based CSCL context. 

We intend to seek advice on the validity and reliability of our 

approach to understand SSMR & transactivity and further meas-

ure its impact on collaborating teams.                                                                                                        

Keywords 
Socially shared regulation of learning (SSRL), Socially shared 

metacognitive regulation (SSMR), Transactivity, CSCL, Project-

based learning, open-ended problem, collaborative problem  

solving (CPS). 

1. INTRODUCTION 
Computer-supported collaborative learning environments (CSCL) 

facilitate interactions among learners to acquire knowledge, skills, 

and attitudes [2, 7, 8]. As learners are coming from diverse socio-

cultural backgrounds, they bring diverse goals, approaches, atti-

tudes, and experiences which become an important and dynamic 

element in collaborative learning environments. Handling the 

dynamic nature of the team and simultaneously achieving pro-

gress in a given task needs many socially shared regulation 

strategies amongst the collaborating members [6]. While collabo-

rative learning looks attractive for facilitating collective 

knowledge construction, it’s not easy to orchestrate [10]. While 

working collaboratively on the set of tasks, some cognitive and 

metacognitive issues may arise due to differences in task and con-

tent understanding or different interpretations of the task by 

different learners [5].  

To ensure the success of collaboration, learners must develop a 

shared mental model and a collective scheme of cognitive inter-

dependence for communication and coordination to derive the 

high-quality participation of each team member in the shared task 

[6]. Metacognition plays a vital role in collaboration to make 

members aware of the challenges and need for regulation. Socially 

shared metacognitive regulation (SSMR) is an important process 

in collaborative learning which refers to participants’ goal-

directed, consensual, egalitarian, and complementary regulation of 

joint cognitive processes in the collaborative learning context [3, 

4]. SSMR ensures the appropriate direction of the groups’ cogni-

tive activity using constant monitoring and controlling of the 

cognitive process. 

A recent study illuminates that SSMR has some relation with idea 

of transactivity which refers to reciprocity and interdependence in 

the transactions between learning partners and between those 

partners and the task [1].Transactive discussion refers to a type of 

verbal interaction in which each learner uses own conversational 

turn to operate on the reasoning of the partner or to clarify his or 

her own ideas [12]. The scale of transactivity comprises different 

social modes of co-construction and represents different degrees 

of transactivity. On this scale, externalization and quick consensus 

building is regarded as the least transactive social mode, whereas 

conflict-oriented consensus building is the most transactive social 

mode [12].  

In the interconnected and interdisciplinary knowledge-driven 

professional environment, the ability to work collaboratively on 

ill-structured long-term project goals (e.g Global Goals - 

https://www.globalgoals.org/) and engaging in socially shared 

regulated learning throughout the process have become vital 

skills. In this context, we explore project-based learning for  

fostering such socially shared regulation of learning (SSRL). Pro-

ject-based learning pedagogy has six features - (a) learning goals, 

(b) collaboration, (c) focus question, (d) engagement in scientific 

practice, (e) scaffolding with learning technology, and (f) creation 
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of tangible solutions useful for addressing real-world problems 

[9]. In project-based learning, learners engage with the problem, 

learn by doing, discussing, applying ideas and try to solve the 

problem given to them, which increases learners’ engagement and 

helps them to develop a deeper understanding of important ideas 

by facilitating them opportunities for problem-solving, decision-

making, and explaining their ideas [9].  

To ensure success of project-based learning in the CSCL  

environment, we are focusing on with socially shared regulation 

for team members while working collaboratively. Team members 

use cognitive and metacognitive strategies while working, so we 

have investigated their SSRL & SSMR strategy application and 

level of transactivity in two studies. Understanding the shared 

regulation processes is important in order to support their regula-

tion in the context of project-based learning in the CSCL 

environment. Following are our research goals (RGs) 

•RG1: Conduct studies to understand learners’ socially shared 

regulation behavior in project-based CSCL environments.  

•RG2: Design and develop a learning environment to foster so-

cially shared metacognitive regulation (SSMR) using 

metacognitive prompts in a project-based learning context. 

•RG3: Measure and validate the impact of metacognitive prompts 

given in the learning environment to foster SSMR and transactivi-

ty in a project-based CSCL  

2. RESEARCH PROGRESS 
The research progress till now is given in this section. We have 

explained each research progress with respect to each research 

goal as follows: 

RG 1: Conduct studies to understand learners’ socially shared 

regulation behavior in project-based CSCL environments.   

In order to address this research goal, we conducted two research 

studies as detailed below.  

Study 1: The objective of this study was to understand the Social-

ly shared regulation of learning (SSRL) strategy application by 

teams. In the first study, the differences in application of SSRL 

strategies were studied for high and low performing teams in pro-

ject-based learning settings having open-ended problems (tasks). 

We have found considerable differences in the application of 

SSRL strategies between high and low-scoring teams, those dif-

ferences were represented by using quantitative and thematic 

representations. For analyzing the data, we have used the frame-

work given by  [10]. 

Study 2: The first objective of this study was to understand the 

socially shared metacognitive regulation (SSMR) which is a sub-

component of SSRL and one type of regulation learners use in 

SSRL context.  The second objective of this study was to under-

stand the relation between SSMR & transactivity. We found a 

considerable difference in application of SSMR strategies by 

teams, which highlight some important aspects of the relationship 

between SSMR and transactivity. Findings about this dynamic 

relationship are reported through quantitative and thematic  

representations. To analyze the SSMR strategy, we have used the 

framework given by [4] and for analyzing the transactivity  

externalized through verbalized interactions, we have used the 

frame-work given by [12]. Two Studies were conducted as part of 

12 weeks of a graduate-level face-to-face semester-long course 

having an open-ended problem statement. Participants were divid-

ed into teams consisting of 4 members each; each team consisted 

of Master’s, Ph.D., and Bachelor’s level learners. The course fol-

lowed a project-based learning approach and was divided into 

major milestones leading to the final solution. For each week, 

learners were given one hour for teaching by an instructor and two 

hrs for teamwork. At the start of each milestone, each team collec-

tively responded to the OurPlanner tool and at the end of each 

milestone, each team collectively responded to the OurEvaluator 

tool. At the end of each milestone, teams were asked to present 

their team progress to the entire class. Teams were instructed to 

log their progress in shared group journals asynchronously. Group 

interactions were video recorded. To investigate the SSMR and 

degree of transactivity in those contrasting teams, we analyzed the 

video data (15 hours) from a synchronous face-to-face classroom. 

The content analysis approach was followed to analyze students’ 

verbalized interactions in high and low-performing teams to see 

emergent relationship between SSMR and transactivity. The 

team’s performance was evaluated by a predefined   rubric. The 

video was segmented into episodes that map to multiple conversa-

tional turns by multiple students while they were working on 

various topics. Those episodes were considered SSMR episodes if 

verbalizations were referred to as monitoring and controlling cog-

nitive processes [1]. 

In both studies, we tried to investigate  

the SSRL & SSMR strategy applications of learners from high 

and low performing teams. Along with that we have investigated 

the relationship between SSMR & transactivity of teams while 

working in project-based learning settings having open-ended 

problems (tasks). In proposed research, three major parameters of 

SSMR are considered to quantify the SSMR episodes. a) Meta-

cognitive regulation skill used in SSMR episode (orienting, 

planning, monitoring, reflection), b) Focus of SSMR episode 

(Fundamental, organizational, surface level), c) function of SSMR 

episode (Facilitate or inhibit the current metacognitive activity). 

The data from both the studies were mostly qualitative in nature 

and were analyzed by manual method (ground root) using estab-

lished frameworks. We have reported the differences between 

teams using Quantitative and thematic representations.  

So far the modes of data we have collected were a) video & audio 

data of teams while working collaboratively b) Self-reported data 

by team members, and c) performance of teams. The evidence we 

have collected to support the claims were based on these data 

sources. As per the existing literature, most of the studies have 

investigated SSMR for mathematics domain, so they have used 

mathematics word problem specific parameters while investigat-

ing SSMR. Some studies have collected gesture and GSR data to 

investigate, but these methods are mostly used in small duration 

studies. As proposed study was face-to-face and longitudinal in 

nature hence it was not feasible to use these data modes because 

learners were supposed to move physically and interact with other 

participants. The proposed study design intends to investigate 

SSMR for collaborative programming tasks (using open-ended 

project based learning pedagogy) using verbal interaction data and 

some extent of self-report data such as surveys and interviews. 

Hence as of now verbal interaction data and self-report data are 

two most feasible modes available for investigating SSMR for 

collaborative programming tasks.  

The existing study design followed for above two studies is repre-

sented in the fig 1 which shows different data modes. For the 

teams working in project-based learning settings and having open-

ended problems (tasks), we have derived understanding about the 

teams’ SSMR strategy application and level of transactivity teams  
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Figure 1. Existing study design with proposed mode of data 

attain. The proposed project is intended to model the SSMR be-

havior of team members while working on open-ended 

collaborative programming projects. The SSMR model will in-

form collaborative system developers for programming tasks and 

teachers who use project based learning pedagogy in program-

ming projects in course. On the basis of the understanding, we are 

proposing a framework of learning environment. 

RG2: Design and develop a learning environment to foster social-

ly shared metacognitive regulation (SSMR) using metacognitive 

prompts in a project-based learning context. 

To provide a prompt as a scaffold for a learner (based on what we 

learned from above 2 studies), we searched for existing learning 

environments which provide prompts as scaffold for learners in 

project-based CSCL context. Since there is not much extensive 

research available on such learning environments to foster learn-

ers’ SSMR, we propose to design and develop a learning 

environment. The proposed learning environments will also try to 

overcome the limitation of not having multiple modes of data. 

Currently the data source is mainly video and audio collected 

through manual way.  

In order to validate our findings from research studies we propose 

to collect data from the learning environment and triangulate the 

findings. The data collected from the learning environments will 

be used to support our claims regarding teams while they are ap-

plying SSMR strategies. In our learning environment, we will 

record the learners’ interaction data generated from click-stream. 

So while team members will be working collaboratively on open-

ended problems in project based learning, they will be  

contributing to the shared goal from their own system. The learn-

ing environment will help us in collecting multimodal data in 

addition with the video and audio data. We plan to develop a sys-

tem that  

captures the learners' interaction behavior. The learners actions 

along with timestamp will be analyzed to understand the SSMR. 

We propose to use Process mining tools like ProM to analyze the 

data. In order to support the SSMR in collaborative learning  

environment, we are willing to use ML algorithms to detect the 

place in SSMR to provide scaffold. We are trying to achieve tri-

angulation while establishing our claims through multiple modes 

of data. The proposed mode of data is also highlighted in fig 1.  

RG3: Measure and validate the impact of metacognitive prompts 

given in the learning environment to foster SSMR and  

transactivity in a project-based CSCL context. 

This is the final research goal after conducting studies with a 

learning environment. The major focus here will be to measure 

and validate the impact of metacognitive prompts given in the 

learning environment to foster SSMR and transactivity in a pro-

ject-based CSCL context. 

3. ADVICE SOUGHT  
Question 1: Is the study design with proposed mode of data  

capable/suitable for validation/triangulation of research claims?  

Question 2: Is the proposed mode of data (system interaction) 

aligned with existing modes of data? If not what are the ways to 

make it aligned for given research goals?  

Question 3: How to handle overlapping areas of two different 

modes of data (i.e. audio-video and system interaction)? 

4. CONCLUSION 
On the basis of understanding about SSRL, SSMR and transactivi-

ty of teams while working in project-based learning in CSCL 

context, we intend to add one more mode of data channel (i.e. 

System interaction data from proposed learning environment). 

This will help us to validate and triangulate our claims with evi-

dence from multiple modes. In order to make collaborative 

project-based learning successful, we need to understand the 

(SSRL) SSMR process and teams’ transactivity in detail using 

data from multiple channels. Here, we are proposing that we need 

a learning environment to collect multi modal data to understand 

teams’ regulation behavior and ultimately to support collaborating 

teams with metacognitive prompts. As there is not much intensive 

research that has happened on supporting teams’ regulation while 

working in project-based CSCL environments, our proposed 

learning environment may help teams to regulate better and have a 
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high level of transactivity.  Because we have understood from our 

studies, applying maximum (SSRL) SSMR strategies and attain-

ing a high degree of transactivity have high correlation with high 

performance.  

Though we have some understanding from previous studies, it's 

based on some assumptions like, a) team members may have ex-

ternalized their potential metacognitive strategy application 

capability while working collaboratively, b) team members may 

have worked on problem statements in project-based learning in 

class, when data was collected etc. Considering the assumptions, 

those are limitations for this research. We feel that this research 

process is at the defining moment of its journey and seeking some 

advice for the future discourse with respect to some challenges. 

We request feedback from experts in this community to over-

come/handle challenges so that the proposed learning 

environment can be developed and impact the teams’ (SSRL) 

SSMR and transactivity in an effective way. 
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ABSTRACT 

 
Interaction is the key driving force behind the critical processes 

involved in collaborative learning. But novice learners find it dif-

ficult to effectively interact during collaborative tasks and need 

support. Speech data from the collaborative discourse is signifi-

cantly used to monitor and assess the interaction among students. 

Our research goal is to foster interaction in computer supported 

collaborative learning environment. The initial plan is to design 

and develop a system for capturing speech data from collabora-

tive discourse in real-time, and derive various verbal and non-

verbal features from speech data to automatically detect and as-

sess the collaboration quality. Also, we are planning to design 

and implement the real-time automated feedback based on the 

data captured and investigate the impact of the feedback pro-

vided. 

Keywords 

 
Collaborative Learning, Automatic detection of collaboration, 

Speech 

1. INTRODUCTION 
Collaborative learning is one of the 4C skills, considered to be 

the most important 21st-century learning skill. Much emphasis is 

being provided on enhancing collaborative learning skills in stu-

dents and the workforce [1, 2]. The construction of shared 

knowledge, negotiation/coordination, and maintaining team 

function are critical processes involved in collaborative learning. 

Interaction among students is the driving force behind these 

meaning-making processes [3, 4, 5]. Collaboration is key to 

learning but it is not easy for novice learners to effectively inter-

act in a collaborative task. Lack of interaction is due to challenges 

like students not being open in accepting opposing views, asking 

for help, building trust and giving elaborate explanations or 

providing feedback [6]. Cognition, affect, motivation, and meta-

cognition of individual participants and group members also 

plays a role in interaction [7]. Interaction in collaborative learn-

ing is also influenced by factors such as group dynamics, 

pedagogy, task design, and process of evaluation as well [8]. To 

address the lack of interaction, appropriate support needs to be 

provided to the students. And such support can be provided only 

after a timely and accurate diagnosis of the challenges faced by 

students [4, 8, 9, 10, 11].  

Generally, the quality of collaboration is measured across five 

aspects as follows,1) communication/appropriate use of social 

skills; 2) joint information processing/group processing; 3) coor-

dination/positive interdependence; 4) interpersonal 

relationship/promotive interaction; and 5) motivation/individual 

accountability. These five aspects are further mapped to the nine 

dimensions of collaboration, those are expertise, dominance, 

coupling, reflection, roles, engagement, coherence, misconcep-

tion and uncertainty. These dimensions are measured largely 

using self-reports or conducting tests. But it has its own limita-

tions. Quality assessment based on observation can be leveraged 

to address these limitations. Monitoring students’ discourse can 

give clarity on student understanding and challenges faced by 

them while working on collaborative tasks [12]. To monitor the 

collaborative discourse, the existing researchers are largely de-

pendent on manual observation, transcription, and analysis to 

identify challenges faced by learners. This is a time-consuming 

and laborious process that also causes delays in feedback. More-

over, it puts limitations on scaling collaborative learning 

activities [13, 14].  

Recently there are a lot of research studies focused on providing 

adaptive support in computer-mediated/online collaborative ac-

tivities by monitoring discourse from forum posts, chats, and log 

data [15]. Some researchers also have used multimodal data from 

online meetings to assess collaboration and provide feedback 

[16]. However, research in automated monitoring of collabora-

tive discourse in physical spaces (collocated collaboration) to 

assess collaboration dynamically in real-time and provide adap-

tive feedback [17] is still in a nascent stage and emerging rapidly 

with the advancement in sensor technology and in the field of 

multimodal learning analytics. Multimodal data like gestures, 

posture, eye gaze, content, log data, self-reports, spatial data, fa-

cial expressions, and physiological indicators [18] can help us 

measure important collaboration indexes such as synchrony in  
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members of the group, equality of contribution, information 

pooling, and so on. For example, the rise and fall of average 

pitch, intensity obtained from the audio signal; body position, 

head direction, pointing, using both hands, joint visual attention, 

etc.; these indicators can be used to measure synchrony. High 

synchrony indicates good collaboration. Total speaking time and 

the number of ideas and questions raised can tell us about equal-

ity in participation, which is indicator of good collaboration. Web 

search is the indicator for information pooling, similarly, differ-

ent multimodal indicators are mapped to different collaboration 

indexes. These indexes can further help us understand high-level 

collaboration parameters like expertise, dominance, coupling, 

coherence, roles, reflection, uncertainty, misconception, and en-

gagement. It is also evident that all these aspects of collaboration 

can be significantly detected using speech modality [18]. Map-

ping of audio indicators with different parameters of 

collaboration is shown in Table 1. 

 

Table 1. Mapping of audio indicators to collaboration param-

eters [18]. 

Collaboration pa-

rameters 

Collabora-

tion 

Indexes 

Audio Indicators 

Expertise, 

Dominance,Cou-

pling,Reflection,Rol

es,Engagement,Co-

herence,Misconcept

ion,Uncertainty 

Synchrony 

rise and fall of average 

pitch,intensity, ampli-

tude 

Equality 
jitter,total speaking 

time 

Mutual Un-

derstanding 

dialouge manage-

ment,verbal 

discourse,state-

ments,questions 

 

In the speech, the existing works used verbal and non-verbal fea-

tures to understand various aspects of collaboration. It is clear 

that cognitive and socio-emotional interaction can be analysed 

significantly using speech. There are works related to under-

standing the semantics of the interactions and the automation of 

the same is not explored much in the literature. Moreover, cap-

turing multimodal data in a live classroom to assess the quality  

 

of collaboration dynamically in real-time and providing adaptive 

feedback is a challenging task. Such feedback can help students 

collaborate better in face-to-face settings [19]. Also, it will help 

in reducing the cognitive load on teachers/facilitators and enable 

them to effectively conduct collaborative classes on a large scale 

[16, 19, 20]. From the existing studies, we observe that very few 

works attempted automatic detection of collaboration using mul-

timodal data and specifically using speech alone. And those are 

limited to very few aspects of collaboration. There are a lot of 

scopes to leverage non-verbal and verbal features of speech in 

the detection and assessment of collaboration. Non-verbal fea-

tures like duration of speech, pause, turn-taking, pitch, jitter, 

intensity etc. can be used to detect low level collaboration in-

dexes like equality and synchrony. 

Non-verbal features extracted from speech can help in assessing 

collaboration quality in diverse contexts and tasks, while preserv-

ing the privacy of participants [28, 29]. On the other hand 

verbal/lexical features extracted from speech data captured dur-

ing student collaborative discourse can be effectively used to 

create knowledge graphs and analyse them deeply to understand 

conceptual knowledge and transactivity between concepts [22, 

23]. This understanding can lead to the design of effective feed-

back to foster cognitive interaction in the collaborative learning 

task. We are planning to address a few of these gaps in our pro-

posed work. The conceptual framework of the proposed work is 

shown in figure 1.  We are planning to design a system for cap-

turing speech data from collaborative discourse in real-time, and 

derive various verbal and non-verbal features from speech data 

to automatically detect and assess the collaboration quality. Also 

to design and implement the feedback based on the data captured 

and investigate the impact of the feedback provided. 

2. METHODOLOGY AND PROGRESS 

In order to understand how students collaborate and also to learn 

the processes involved in our proposed framework, we conducted 

a study to capture speech data from a collaborative learning en-

vironment. We used data from 12 participants solving a 

programming problem with a shared screen using a python pro-

gramming teaching environment. Students worked in dyads. 

Figure 1. Conceptual representation of the proposed work. 
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There were six groups in total. Before the study test was con-

ducted to check the knowledge of participants of basic Python 

Programming. It had 12 multiple choice questions and 2 ques-

tions, for which they were required to write complete code. This 

study was conducted in a technology-enhanced collaborative 

learning classroom. (Refer to section 5.2) 

 

2.1 Data Collection and Automated Speech 

Transcription 
 

Introduction to the learning environment and all task-related in-

structions were provided by the instructor. Students had access to 

the study material while solving the task. Students' video and 

speech and log data were captured using the Open Broadcaster 

Software (OBS) installed on the computer they were using. Stu-

dents’ speech data captured using the OBS tool, is then converted 

into transcripts using a web-based tool for transcription, i.e., Ot-

ter.ai. Each group's audio files were automatically transcribed using 

the web-based Speech to text service. The service generates a tran-

script with a timestamp for every utterance spoken along with 

speaker diarization. It also provides a summary of keywords and 

the total speaking time of each speaker in percentage. It is observed 

that automated transcription has some limitations like, not captur-

ing overlap between two speakers, jumbling with similar 

pronouncing words, and not fully transcribing long sentences. 

However, as we are interested in knowing who the speaker is and 

what topics are discussed, these errors will not have a significant 

impact [5]. We generated a transcript for an audio file containing 

spoken interaction between dyads. It was a 50 minutes collabora-

tive problem-solving (Python Programming) activity. Further, we 

have coded the transcripts by marking co-occurrences of keywords 

in each utterance. We divided transcripts based on its timestamp 

into 5 scenes and compared the data for each speaker. In our study, 

we focused on the semantics/content of verbal data. We looked at 

the contribution of each group member in terms of keywords/con-

cepts discussed by them, Speaker identification and timestamp in 

order to map turn-taking and overlap of speech. The Epistemic Net-

work model for this data is created using web-based tool [21, 22, 

23, 24]. Creating knowledge graphs to understand unfolding col-

laboration automatically in real time is a challenging task. Speech 

data needs to be converted into text/transcripts using NLP to under-

stand the semantics of data. We will be using speaker diarization 

and text data mining to understand who is speaking, when they are 

speaking and most importantly what they are speaking- the con-

cepts and linkages between the concepts. We are exploring how 

epistemic network analysis can be effectively used for this task and 

the need to incorporate social network analysis. 

2.2 Audio signal processing for feature ex-

traction 
 

In order to detect collaboration indexes and asses collaboration 

quality based on speech interaction, we have extracted acoustic 

features like fundamental frequency, Mel-frequency cepstral co-

efficients (MFCCs) and pitch from audio file (wav file). This 

audio file contain 45 minutes of speech data captured during col-

laborative design task, in which 4 students are working on 

concept map and facilitator is providing the instructions. Audio 

signal is pre-processed by sampling it at the rate of 44 KHZ [30]. 

Then it is segmented for fixed time window and features are ex-

tracted using librosa, package in python for audio analysis. We 

have also clustered the data for different speakers using extracted 

features. Our aim is to use automated speaker recognition in mul-

tiparty audio files, segment the audio file for each turn of the 

speaker, extract acoustic and verbal features from the segments, 

and use these features to detect collaboration indexes. 

  

3. CONTRIBUTION AND FUTURE 

WORK 
 

We explored several studies that collect multimodal data from 

collaborative learning environments, we observe that most exist-

ing works analyse the quality of collaboration and some of them 

also provide feedback based on the assessment. After analysing 

the current literature we have identified certain gaps. Very few 

studies provide real-time dynamic feedback to the learners or fa-

cilitator, especially in the collocated collaborative learning 

environment. Most studies using speech modality to assess col-

laboration quality and provide feedback consider acoustic and 

non-lexical/ non-verbal features to classify/ detect collaboration 

using machine learning. This can lead to concerns about the reli-

ability of the results. There exist no studies that provide real-time 

feedback based on learners’ verbal cues and their interaction log 

data. Most of the studies focus on detecting and supporting dom-

inance or coherence. There is no existing work to automatically 

detect other collaboration indexes such as uncertainty, miscon-

ceptions, etc. which can be better mapped using verbal features 

of speech. Current studies are providing feedback to foster socio-

emotional interaction in collaborative learning. To address the 

research gaps, we aim to develop a system to automatically as-

sess the collaboration quality in real-time. This system will 

capture speech data from collaborative discourse in real-time, 

and derive various verbal and non-verbal features from speech 

data using state-of-the-arts methods. Further it will segment and 

annotate the stream of data automatically to map it with different 

collaboration assessment indexes. Also we aim design and im-

plement the feedback based on the real-time assessment and 

investigate the impact of the feedback provided. 
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5. APPENDIX 

In this section we have provided additional information which is 

important to understand the background and scope of the pro-

posed work. 

 

5.1 Definition of collaborative learning 
Collaborative learning is a broad term applied to diverse learning 

situations. Inclusive definition of collaborative learning is as fol-

lows: "It is a situation in which two or more people learn or 

attempt to learn something together” [8].  This definition can be 

interpreted in many different ways. We created visual represen-

tation of the elements of the definition of collaborative learning 

as shown in figure 2. 

 

Figure 2. Definition of “Collaborative Learning”- visual rep-

resenta-tion. 

 

Another popular definition of collaboration is: "... a coordinated, 

synchronous activity that is the result of a continued attempt to 

construct and maintain a shared conception of a problem" [25].  

The PISA 2015 collaborative framework defines collaboration as 

“a process whereby two or more agents attempt to solve a prob-

lem by sharing the understanding and effort required to come to 

a solution, and pooling their knowledge, skills, and efforts to 

reach that solution” [2]. 

 

5.2 Collaborative learning spaces 
Technology-enhanced collaborative learning classroom used for 

conducting the study is shown in figure 3. 

 

 

Figure 3. The technology-enhanced collaborative learning 

classroom. 

The major benefits of creating technology-supported physical 

learning spaces are more frequent and higher quality teacher-stu-

dent and student-student interactions, increased student usage of, 

and satisfaction with, the learning space, and authentic learning 

experiences [26]. It is also observed that, the type of space in 

which a class is taught influences instructor and student behavior 

in ways that likely moderate the effects of space on learning [27]. 
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ABSTRACT 
The computer-based learning environment (CBLE) is designed for 

instructional purposes and to support the learner to understand chal-

lenging and complex topics that are difficult to describe or 

comprehend. In CBLE, learners can access information in various 

formats such as text, diagrams, graphs, audio, video, etc. to learn. 

To successfully interact and learn from CBLE, the learners should 

plan their learning strategy, identify all the learning paths to achieve 

their learning goal, and select the most suitable one. However, nav-

igating in such an environment can overwhelm learners’ working 

memory, leading to cognitive overload, and disorientation which 

makes hurdles in learning. Several empirical studies have investi-

gated overcoming the above challenges. They have reported, that 

the learners should be provided with metacognitive support. Meta-

cognition is one of the strategies for encouraging self-regulated 

learning (SRL) in CBLEs. Hence, in our research, we propose to 

provide metacognitive prompts to learners while they interact with 

the CBLE and analyze the impact of metacognitive prompts. 

Keywords 
Metacognition, Metacognition prompts, Self-regulated learning, 

CBLE. 

1. INTRODUCTION 

The Computer-Based Learning Environment (CBLE) aims to sup-

port learners in achieving their objectives across a range of 

disciplines [1]. It incorporates multimedia, text, images, anima-

tions, simulations, audio, and video representations, among other 

things [6] for learners to access information [5]. Although CBLE 

provides excellent resources, it can also present challenges for 

learners. Since these environments give learners a high degree of 

control [6], they can follow their instructional path and access nu-

merous representations of information as well as opportunities to 

manipulate them [5]. However, managing such an interactive and 

complex system actively can overwhelm learners' working 

memory, leading to cognitive overload, disorientation, and imped-

ing the learning process [5]. Moreover, it has been reported that to 

acquire conceptual knowledge of a complex topic, learners should 

be able to constantly identify relevant information, track progress 

toward the goal, and sub-goals, and make judgments about their 

learning as per their learning progress [6] [9].  

Recent studies have found that most learners are unable to manage 

their learning and they struggle to regulate multiple learning pro-

cesses and as a result, learn less conceptually [1]. Students who can 

self-regulate their learning effectively are likely to acquire a con-

ceptual understanding of complex topics [6]. Several empirical 

studies have investigated that to overcome the challenges provided 

by the environment, it is necessary to use metacognitive skills like 

monitoring, planning, and reflecting [5]. In order to engage in the 

planning, strategy usage, and monitoring processes, learners who 

do not self-initiate effective SRL processes should be assisted in 

identifying the metacognitive processes that are most effective for 

them [6]. Metacognitive support is one strategy for encouraging 

self-regulated learning [4]. The use of prompting as an instructional 

strategy is becoming more popular, particularly in the area of com-

puter-based learning environments where prompting is simple to 

implement [6]. Several studies have revealed that metacognitive 

prompts direct the learners’ awareness and monitor their learning 

activity which led to improvement in the planning, monitoring, and 

reflection activities in addition to learning outcomes [2] [7] [8]. In 

our study, we are intended to investigate the impact of metacogni-

tive prompts on learning gain in CBLE. And also investigate 

possible factors that may have influenced the effectiveness of met-

acognitive prompts. 

2. RESEARCH QUESTIONS 
The focus of this study lies on metacognitive prompts, a topic that 

has been extensively investigated in the literature [3] [1] [4]. Draw-

ing upon prior research metacognitive prompts can be categorized 

based on aspects such as modality, adaptability, and specificity. 

Mode of delivery is one such aspect, with prompts being classified 

as on-screen text, pop-up windows, virtual images, and auditory 

narration. Additionally, prompts can be tailored to the task at hand 

or learning situation, with adaptive prompts tailored to the individ-

ual needs of each student, while fixed prompts remain the same for 

all students. The effects of these prompts on metacognitive strate-

gies and learning outcomes have been found to vary depending on 

the moderator variable [7]. However, most studies in this area have 

been conducted in the fields of social science (e.g., education, psy-

chology) and science (e.g., math, biology, physics). Fewer studies 

have been conducted in the domain of engineering and technology, 

and even fewer have focused on problem-solving learning. While 

several studies have examined the impact of personalized metacog-

nitive prompts and feedback on learning performance, there is still 

insufficient data on the performance of transfer and retention tasks, 

which would provide a clearer picture of the long-term effects of 

these prompts. Therefore, further research is needed to address 

some of the key research questions outlined below.  

1. Do domain-specific, personalized metacognitive prompts 

with feedback help in enhancing the performance of 

transfer and retention tasks? 
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2. Do domain-specific, personalized metacognitive prompts 

with feedback help in enhancing metacognitive strate-

gies?  

3. PROPOSED CONTRIBUTION 
To achieve our research goals, we propose to implement Design-

based research (DBR) for the design and development of a CBLE 

aimed at promoting metacognition and improving learning perfor-

mance among undergraduate engineering learners. Our study aims 

to investigate the impact of metacognitive prompts on learning 

gains in the CBLE and factors that may influence their effective-

ness. The CBLE environment will feature the integration of 

concepts, practices, videos, text, simulations, and personalized 

prompts with feedback. A tentative plan outlining the research tasks 

to be undertaken is presented for further exploration. 

Step 1 - Literature review in the context of undergraduate engineer-

ing classroom 

The primary aim of this literature review was to examine the dif-

ferent interventions used to foster metacognition and different 

methodologies were used to measure the impact of the intervention 

on student performance. We identified primarily three intervention 

methods that were used to foster metacognition and train the pur-

pose and strategies of metacognition like workshops, reading 

materials, and rubrics to guide learners. However, we identified 

three different methods to measure metacognitive awareness, re-

flection journals on their learning, metacognitive awareness 

questionnaires, and semi-structured interviews. 

Step 2- Conduct a study to identify and assess the metacognitive 

awareness of undergraduate engineering learners 

On the basis of the literature review, we conducted a research study 

with engineering students to understand the metacognitive process. 

We found that students mostly use control and regulation while us-

ing an open-ended learning environment. The low-scoring students 

often don’t perform monitoring and reflection phases. 

Step 3- Design and develop a system to foster engineering learners’ 

metacognition 

The proposed CBLE system is designed to help learners learn about 

electrical circuits. This CBLE environment will integrate concepts, 

practices, videos, text, simulations, and personalized prompts with 

feedback. The simulator will be designed to be user-friendly, with 

a variety of tools and features to help students build and analyze 

circuits. In addition to the simulator, the system will include a va-

riety of video content that covers the key concepts and principles 

of electrical circuits. The videos will also provide step-by-step in-

structions on how to use the circuit simulator, so students can 

quickly get up to speed. It will also include text content that covers 

the same topics as the videos. The text content will be designed to 

be comprehensive and easy to understand, with clear explanations 

and examples. The text content will be organized into a list of topics 

to learn, so students can navigate and find the necessary infor-

mation. The system will monitor the learner's progress and 

performance within the CBLE, and provide personalized metacog-

nitive prompts to the learner when they are struggling or when they 

have made a mistake. Figure 1 shows our proposed study design 

and expected outcome 

Step 4-Design the study to collect data and then analyze the data 

 

Figure 1. Proposed Study Design and expected outcomes 

 

Figure 2. Study design and data collection 

To address the research questions, we are targeting undergraduate 

students. Figure 2 shows the study design and data collection. The 

proposed CBLE system will have two versions, the Experimental 

Group (EG) will use the CBLE system with personalized metacog-

nitive prompts and feedback, while the Control Group (CG) will 

use a CBLE system without personalized prompts and feedback. 

Participants will be randomly assigned to either experimental or 

control groups.   

Data Collection: We plan to collect both groups' log data like learn-

ers’ activity logs which track the actions taken by learners within 

the CBLE system, such as viewing content, completing exercises, 

and interacting with the simulation tools. And the time spent on 

each activity. This log data can provide insights into how learners 

engage with the system. Log data will be used to track the use of 

metacognitive prompts, these logs will provide insight into when 

and how often prompts are being used by students. Along with logs 

we have planned to collect pre-test, and post-test scores, and learn-

ers’ reflections to analyze learners’ performance. The pre-and post-

tests will consist of multiple-choice questions and open-ended 

questions that assess students' understanding of the concepts cov-

ered in the CBLE system.  

A delayed post-test will be administered a few weeks or months 

after the completion of the course to measure retention of learning. 

A transfer task can be administered to measure the extent to which 

students can apply what they have learned in a new context. 

To analyze the learning strategies, the Motivated Strategies for 

Learning Questionnaire (MSLQ), a metacognitive questionnaire 

will be used. MSLQ can provide insights into the impact of person-

alized metacognitive prompts and feedback on students' learning 

strategies data and learners’ reflections. Along with this, we will 

collect qualitative data through interviews. 

Data Analysis: Data will be analyzed using both descriptive and 

inferential statistics. Descriptive statistics will be used to summa-

rize the data and to identify any patterns or trends. Inferential 

statistics will be used to determine whether there are significant dif-

ferences between the experimental and control groups in terms of 

student performance. 

4. CONCLUSION 
In conclusion, this research paper proposed the use of Design-based 

research (DBR) to design and develop a Computer-Based Learning 

Environment (CBLE) aimed at promoting metacognition and 
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improving learning performance among undergraduate engineering 

learners. The study aimed to investigate the impact of metacogni-

tive prompts on learning gains in the CBLE and factors that may 

influence their effectiveness. Based on a literature review, a study 

was conducted to identify and assess the metacognitive awareness 

of undergraduate engineering learners. A CBLE system was de-

signed and developed, integrating concepts, practices, videos, text, 

simulations, and personalized prompts with feedback. A study de-

sign was proposed to collect data, including pre-tests, post-tests, 

and delayed post-tests, along with qualitative data through inter-

views. Data analysis will be conducted using both descriptive and 

inferential statistics. The expected outcomes of this research are to 

contribute to the understanding of the impact of metacognitive 

prompts on learning gains in a CBLE and factors that may influence 

their effectiveness. This research has implications for the design 

and development of effective CBLEs that can promote metacogni-

tion and improve learning outcomes. 
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ABSTRACT 
In an era of digital media and hyperconnectivity, individuals are 

frequently flooded with an abundance of information, much of 

which they are unable to effectively process and are thus vulnerable 

to misinformation. One particularly harmful form of misinfor-

mation is the proliferation of "fake news," which can have a 

damaging effect on the social cohesion of communities. In response 

to this issue, educational practitioners in various nations are striving 

to empower learners with the ability to identify and refute such mis-

information. The present author is also contributing to this effort 

through the development of a technology-enhanced learning envi-

ronment that is intended to foster critical thinking in learners. 

Keywords 
fake news, digital literacy, critical thinking, learning environment 

1. INTRODUCTION 
In contemporary society, individuals are frequently overloaded 

with an abundance of information. However, this flood of infor-

mation can often prove overwhelming, resulting in a vulnerability 

to misinformation. The internet serves as the primary means 

through which individuals access information. However, the 

knowledge readily available through this medium possesses dis-

tinct characteristics as compared to that traditionally provided by 

educators and educational texts [6]. Internet search results often 

comprise multiple accounts with varying scopes, arguments, and 

levels of support. Furthermore, online sources may vastly differ in 

terms of authorship, purpose, perspective, legitimacy, and justifica-

tion techniques. 

As previously discussed, the proliferation of misinformation in 

contemporary society has resulted in an increased risk of the for-

mation of false beliefs among citizens. The inability to differentiate 

between legitimate and illegitimate information can lead to the ac-

ceptance of both as factual. To combat this, citizens must possess 

specialized skills that enable them to effectively navigate and eval-

uate the credibility and reliability of the vast amount of information 

available online. In light of this, there is a pressing need to under-

stand and foster critical data literacy within the fields of educational 

research and practice. The objective of the present research is to 

facilitate the development of these skills among students, enabling 

them to proficiently analyze and scrutinize the reliability of com-

plex online information. 

2. BACKGROUND 
In this background section, the author will first attempt to arrive at 

a working definition of critical thinking. In the next subsection, a 

number of organizations working to combat misinformation will be 

discussed. This will be followed by a discussion of academic re-

search on misinformation and critical thinking in the next 

subsection. Finally, the author will discuss the current status of 

work in this area and how their own proposed research study will 

add to the existing knowledge. 

2.1 Critical Thinking 
Dwyer, Hogan, & Stewart define critical thinking as “a metacogni-

tive process that, through purposeful, reflective judgment, increases 

the chances of producing a logical conclusion to an argument or 

solution to a problem” [7]. For the purpose of this paper, the author 

will use this definition as a working definition. However, it is nec-

essary to also understand the broader meaning of critical thinking. 

To start with, Ennis has outlined abilities such as analyzing argu-

ments, claims, or evidence, making inferences using inductive or 

deductive reasoning, judging or evaluating, and making decisions 

or solving problems as essential parts of critical thinking [8]. He 

has further identified behaviors relevant to critical thinking such as 

asking and answering questions for clarification; defining terms; 

identifying assumptions. Thus, critical thinking consists of a cluster 

of skills and behavior to analyze complex information. Looking at 

these aspects of critical thinking, it seems to be an effective tool for 

combating misinformation. However, fighting misinformation at an 

individual level is not enough. Fortunately, several organizations 

are also currently working on fighting misinformation, the details 

of their work are covered in the next section. 

2.2 Misinformation Bunking Initiatives 
Top universities and SMEs from seven different European nations 

are partners in the EU-funded initiative Co-Inform. The goal is to 

develop tools that promote digital literacy and critical thinking for 

a more informed society [5]. Their objective is to give individuals, 

journalists, and politicians the resources they need to recognize 

"fake news" online, comprehend how it spreads, and access reliable 

information. Co-Inform offers two main tools to combat misinfor-

mation. First is a browser plugin to increase citizens' awareness of 

content that is entirely or partially inaccurate, relevant fact-check-

ing articles and remedial information, how ordinary citizens see this 

content, and important comments from fellow citizens that are both 

in favor of and against it. Second is a dashboard for fact-checking 

journalists and policymakers that displays discovered misinfor-

mation, its source, how and where it spreads and will spread in the 

future, the public's impression of it now and in the future, and the 

most important comments made by the public. 
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There are also dedicated websites both at the global level and in 

India to track and debunk fake news and misinformation. Snopes, 

formerly known as the Urban Legends Reference Pages, is one such 

fact-checking website [20]. Snopes seeks to disprove or validate 

widely circulated urban legends. Similarly, Alt News is a fact-

checking website based out of India that works to dispel the false-

hoods, lies, and misinformation that people often come across in 

both mainstream and social media [2]. Politics, social media ru-

mors, mainstream media misinformation, and bias are just a few 

examples of the inaccurate information that Alt News fact-checks. 

Apart from these initiatives for combating misinformation, there 

has also been a fair amount of academic research conducted in this 

field, the next section elaborates on that. 

2.3 Digital Literacy Research 
Digital literacy has been defined as the ability and knowledge re-

quired to effectively navigate the complex and fragmented world 

of information available online. In simpler terms, it means having 

the skills needed to find, understand, and use information on the 

internet.  [9]. Three types of digital skills have been identified by 

Ng: technological (using technology tools); cognitive (using criti-

cal thinking while handling information); and social 

(communicating and socializing) [18]. In the context of the educa-

tional process, thinking skills have been recognized as an important 

component of digital literacy, along with technical abilities [13]. 

Sulzer asserts that digital thinking will include identifying misin-

formation, echo chambers, and fake news [21]. Thus, it can be 

argued that digital thinking is the term used by digital literacy prac-

titioners to refer to critical thinking while engaging with 

information online. 

Students engage with online information through their personal 

epistemology. This ability is related to their perspectives about 

knowledge and knowing. Kuhn and Park have characterized epis-

temological understanding at four levels [16]. At the first level, 

realists consider knowledge to be definite and to emanate from an 

outside source. They think it's not vital to use critical thinking. At 

the second level, absolutists think knowledge is certain and ema-

nates from a distant source that is inaccessible. Thus, critical 

thinking serves as a means for people to evaluate claims in light of 

reality and decide whether they are true or not. Multiplists, who 

consider knowledge to be created by human minds and hence un-

certain, are found at the third level. As a result, they believe that 

critical thinking is useless. The fourth level is where evaluativists 

reside, who think that knowledge is created by human minds, and 

is unclear, yet subject to review. They consider critical thinking as 

a tool for supporting reasonable claims and advancing understand-

ing. In order to better understand the relationship between students' 

individual epistemologies and their online learning practices, Bar-

zilai and Zohar studied 38 sixth-graders [4]. The results 

demonstrate the significance of epistemic thinking in online inquiry 

learning. Students who were more familiar with evaluation strate-

gies and criteria performed more frequent and thorough website 

evaluations. Students who were more conscious of the potential for 

discrepancies between online accounts and the necessity of con-

structing knowledge by integrating several viewpoints were more 

likely to identify discrepancies between the points of view of vari-

ous websites, compare them, and build an argument based on a 

variety of online sources. Even though personal epistemology can 

account for a fair portion of the processes people use to process 

information, it also involves other factors like cognitive biases and 

epistemic emotions. Fig 1 explains the various factors involved in 

this process. 

 

Figure 1. Factors affecting complex information processing in 

individuals 

Different research groups over the years have tried to design strat-

egies to teach students how to use critical thinking to spot fake 

news. The Association of College and Research Libraries (ACRL) 

introduced its Framework for Information Literacy for Higher Ed-

ucation in 2015, which was officially adopted by the ACRL Board 

in January of the following year. This framework emphasizes the 

importance of learners utilizing research tools and evaluating the 

credibility of sources in order to develop their information literacy 

skills [3]. One tool that can assist students in this process is the use 

of LibGuides, which are web-based applications that allow for the 

creation and organization of electronic guides. These can be easily 

embedded in course and library websites and accessed by students 

online. An example of a useful LibGuide in this context is the 

"Fake" News guide created by librarian Eric Novotny in 2017 at 

The Pennsylvania State University. The guide covers various forms 

of fake news, such as satire, bias, and clickbait. Another helpful 

tool is the use of worksheets, such as the CRAAP (Currency, Rele-

vance, Authority, Accuracy, and Purpose) worksheet developed by 

California State University, Chico in 2010. In contrast, The Global 

Digital Citizen Foundation (2015) promotes a different approach to 

critical thinking by using a "Who, What, Where, When, Why, and 

How" method. 

In spite of the above efforts, a recent intervention study focused on 

teaching students to evaluate search results and select websites to 

open revealed that students frequently resorted to less effective tac-

tics when analyzing results, using their familiarity with a website 

and its top-level domain to determine its reliability, despite teach-

ers' best efforts to teach them strategies for evaluating results 

modeled on fact checkers’ approaches [17]. This means that just 

informing students about strategies is not enough. Critical thinking 

is not just a bunch of skills but also an attitude which can only be 

inculcated through practice. A better strategy would be to provide 

opportunities to students to practice critical thinking abilities in 

context of actual problems in a learning environment. In this envi-

ronment, they can practice their critical thinking abilities for long 

durations and hone them over time with proper support. Agesilaou 

& Kyza designed and implemented a Learning Environment to fos-

ter critical data literacy [1]. Their work describes the design-based 

research process of designing an educational intervention to foster 

critical data literacy through the use of self-tracking devices. While 

their work focused on the issues of privacy and digital data, the au-

thor of this current paper plans to design a learning environment to 

foster critical thinking skills among students in order to specifically 

deal with misinformation present on the internet. The research goal 

will be to help students to develop effective critical thinking strate-

gies to deal dealing with complex online information. 
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This background section helped define critical thinking as a meta-

cognitive process that involves analyzing arguments, claims, and 

evidence, making inferences, solving problems and asking ques-

tions for clarification and identifying assumptions. It also helped to 

understand the work being done in both academic and non-aca-

demic spheres to counter the spread of misinformation online. It 

explained how the information transfer techniques used by teachers 

fall short in equipping students with critical thinking abilities and 

established the need for a learning environment which offers pro-

longed opportunities for students to practice and hone their critical 

thinking skills on authentic scenarios where they are also provided 

continuous support in terms of active scaffolds. In the next section, 

the author will elaborate on their proposed plan for the learning en-

vironment. 

3. PROPOSED SOLUTION 
In order to build a coherent and credible learning environment to 

foster critical thinking, the author needs to use some theoretical per-

spectives to provide the foundation for such an intervention. One 

prominent theory is the dual processing theory, which proposes that 

individuals use two primary modes of thinking - System 1, which 

is intuitive and automatic, and System 2, which is more analytical 

and deliberate [10]. This theory is particularly relevant for this in-

tervention design because it has been observed that many a times 

users fall prey to misinformation because they have not spent 

enough time on a piece of information and respond too quickly 

[11]. The author is aware that dual processing theory has faced crit-

icism in recent years. However, there is still substantial evidence in 

cognitive science to support the dual-processing distinction [12]. 

The theory remains valid and useful in understanding the interplay 

between automatic and deliberate thinking processes. 

In order to provide an authentic learning experience to the students, 

a problem-based learning (PBL) approach can be used, where stu-

dents work in pairs to develop solutions to real-world problems 

related to misinformation [14]. In order to ensure a smooth collab-

oration between the student pairs, collaboration scripts will be used. 

Collaboration scripts are instructional tools that guide learners on 

how to interact with each other during learning activities [15]. They 

provide a sequence of learning activities and roles for learners to 

follow in order to promote collaborative learning. In this learning 

environment, the author plans to use a type of driver-navigator 

script where one partner searches for the information on the system 

while the other person guides them. The main motive behind this 

peculiar pairing is that it will require the learners to discuss and 

debate the entire time while they are searching for credible infor-

mation because they will have their biases and beliefs. 

A theory that can be leveraged to better understand this social in-

teraction is the social judgment theory, which suggests that people's 

attitudes and beliefs are influenced by their perception of what oth-

ers think [19]. By encouraging students to engage in discussions 

and debates with their peers, the learning environment can foster 

critical evaluation of information by considering multiple perspec-

tives and identifying potential biases. Introducing the social 

learning aspect is particularly important for the students to learn to 

argue logically and identify fallacies and biases in other’s and their 

own opinions. 

Also, as discussed in the background section above, different learn-

ers tend to use different ways of engaging with information online. 

There is also this idea of the behavioral pattern displayed by pro-

fessional fact-checkers when trying to determine the authenticity of 

a piece of online media. The best way to measure these various 

techniques will be to use learning analytics to capture the 

interaction of learners with the learning environment using log data. 

Primarily, two kinds of interactions will be captured, first will be 

the frequency of user interaction with various com-ponents in the 

environment, and second will be the duration of those interactions. 

This will help the researcher categorize the various patterns, for ex-

ample, one cohort of users might be clicking on a number of 

resources and spending little time on each of them while another 

cohort might be accessing only few resources but spend significant 

time on each resource. Later, the various cohorts would be analyzed 

in relation to their demonstration of critical thinking behaviors. In 

the next sub-section, the author will provide a sample learning task 

that they might use in their learning environment. 

3.1 Sample Learning Problem 
This scenario is designed to help students practice critical thinking 

skills in the context of evaluating claims made about a dietary sup-

plement marketed as a weight loss aid. Two students as a pair will 

work to evaluate the claims made about the supplement and pro-

nounce their verdict on whether it is a weight loss solution or not. 

They will also be asked to back up their verdict with proper evi-

dence. The students will be given the following sources of 

information: 

1. An advertisement that claims the supplement is a "mira-

cle weight loss solution" and features testimonials from 

people who have lost weight while taking the supple-

ment. 

2. A medical study that reports on the potential health risks 

associated with the supplement, like organ damage and 

other serious side effects. 

3. A warning from a (government) health agency that ad-

vises consumers to avoid the supplement due to its 

potential health risks. 

To help students evaluate the information provided, they will be 

given the following questions: 

1. What are the claims being made about the effectiveness 

of the dietary supplement as a weight loss aid? 

2. What evidence is provided to support these claims, and 

how strong is this evidence? 

3. What are the potential health risks associated with the 

supplement, and how serious are these risks? 

4. What are the recommendations of (government) health 

agencies with regards to the supplement? 

5. What are the potential biases or conflicts of interest that 

may be present in each source of information? 

This scenario is designed to help students develop critical thinking 

skills related to evaluating the claims made about dietary supple-

ments and to identify potential biases or conflicts of interest in the 

sources of information provided. This is just a single sample prob-

lem and similar other problems from socio-scientific domain would 

be developed to be used in the learning environment. 

4. RESEARCH QUESTIONS 
The study will attempt to answer these four primary research ques-

tions. 

1. To what extent does training in critical thinking skills 

help students identify fake news more effectively? 

2. To what extent does collaborative learning help improve 

critical thinking skills among students while processing 

complex online information? 
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3. What are the various categories of learners in terms of 

their behavior while processing complex online infor-

mation? 

4. How do these various categories of learners differ in 

terms of use of critical thinking skills? 

5. METHOD 

5.1 Methodology 
This research study will use a mixed-method approach with a heavy 

tilt towards the qualitative side. To answer the first two research 

questions, qualitative data would be required and this is the primary 

focus of this study. In order to understand the learner behavior and 

answer the last two research questions, a quantitative approach will 

be used which will employ learning analytics technique. 

5.2 Target population and sampling 
Even though digital literacy is a skill that is helpful at all ages of 

life, this study will be conducted primarily amongst undergraduate 

and postgraduate program students as individuals at this level are 

young adults and misinformation can lead them to take faulty steps 

at this critical juncture of life. Based on this misinformation, they 

might develop faulty beliefs which might get stay with them 

throughout their life. 

5.3 Data Collection Tools 
For the purpose of this study, multiple data sources will be utilized. 

While the students work in groups, the audio and video of their dis-

cussions will be recorded, along with screen recordings of their 

system and any notes they have created during the discussion. This 

will be followed by a follow-up interview to further probe their ep-

istemic strategies. 

The log data of the students while they interact with the system will 

also be collected. As explained in the proposed solution section, the 

log data from the system will contain time stamps which corre-

spond to specific user activities in the system. This log data can be 

exported in the form of an excel data sheet which can be further 

processed to find user behavior patterns. 

Finally, in order to measure the effectiveness of the learning envi-

ronment on the critical thinking abilities of the students, a pre and 

posttest will be conducted. This test will present learners with var-

ious scenarios involving fake news. 

5.4 Data Analysis 
A rigorous and systematic methodology in the form of inductive 

coding strategy will be implemented in order to systematically ex-

amine and interpret the qualitative data that has been meticulously 

gathered through the various data collection tools. This approach 

will involve the identification of meaningful patterns, themes, and 

categories within the data, in order to uncover underlying meaning 

and to gain a comprehensive understanding of effectiveness of crit-

ical thinking in identifying fake news. The utilization of an 

inductive coding strategy will allow for the development of an in-

ductive theory that is grounded in the data, and which can offer 

insight into the complex phenomena of critical thinking and fake 

news identification. 

The log data, comprising of time-stamped information, will be sub-

jected to a process of sequential pattern mining. This process will 

enable the identification of recurring patterns and sequences within 

the data, and the generation of clusters of users who exhibit similar 

patterns of behavior within the learning environment. By utilizing 

this approach, it will be possible to gain a deeper understanding of 

the usage patterns and behaviors of the users within the learning 

environment, which in turn can be used to understand the relation 

of certain behavioral patterns to demonstration of various critical 

thinking levels. Thus, the results generated by the sequential pattern 

mining algorithm will be used to model the behavior of users in 

terms of their display of critical thinking skills. This user behavior 

can be compared to the patterns displayed by professional fact 

checkers. In this way, desirable patterns of use of critical thinking 

skills can be identified which can be used for improving the critical 

thinking training aspects of the learning environment. This data can 

also be used to test new users and predict what kind of learning 

interventions would be required to help them develop necessary 

critical thinking abilities. 

6. DISSERTATION STATUS AND NEXT 

STEPS 
The current research is a continuation of the work being done at the 

author’s organization in the field of technology enhanced learning 

of thinking skills. The organization in the past has conducted nu-

merous studies ranging on various thinking skills from historical 

thinking, design thinking to estimation and more. There are also 

ongoing research projects that explore certain thinking skills like 

systems thinking. This current thesis research is a continuation of 

this work in terms of addressing more social problems like fake 

news and misinformation. This work draws from and builds on pre-

vious work done in the form of question posing and hypothesis 

testing skills amongst students. 

The current author is currently in the early years of their PhD re-

search and so the research plan is in in its nascent stage. Thus, a 

major reason for writing this paper is also to get helpful guidance 

from the members of the research community. Currently, the author 

has two immediate tasks in front of them. First, they plan to conduct 

a thorough literature review of critical thinking as a digital literacy 

skill, particularly in the educational context. The second task is to 

conduct a preliminary research study to explore how social interac-

tion affects students' epistemic thinking in online inquiry learning. 

The author plans to use the following conjecture for this prelimi-

nary study: when working in groups, students' personal 

epistemologies will interact with each other and help to reflect on 

each other's cognitive biases and epistemic emotions. 

7. EXPECTED CONTRIBUTIONS 
The present study is situated in a broad context of combating online 

fake news and equipping citizens with skills to process information 

overload. However, the novel contribution of this study will be to 

explore the effects of social interaction, in terms of collaborative 

work, on critical thinking abilities of students. This line of argu-

ment is rooted in the concept of democracy where vigilant citizens 

hold each other accountable in terms of their beliefs and practices. 

The research also has more immediate contributions in terms of un-

derstanding how different groups of people employ critical thinking 

while processing complex information online. This can help to cre-

ate better resources for supporting people in spotting 

misinformation and debunking fake news. This whole process will 

affect society on two levels, at individual levels, people can become 

more conscious of their own biases and logical errors and a at a 

societal level, people can have more fruitful conversations across 

different thought camps as they will have a more solid ground of 

information to engage in discussion. 
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8. ASPECTS OF THE RESEARCH ON 

WHICH ADVICE IS SOUGHT 
Since the author is in their preliminary stage of research, they 

would be open to suggestions on almost every aspect of the study. 

However, the author is particularly interested in discovering more 

effective ways to capture critical thinking behavior of participants. 

As of now, the author is using a mixed-method approach and is re-

lying on log data in terms of frequency and duration for capturing 

interaction. The author would like to receive more suggestions on 

how this aspect can be made more effective. 
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ABSTRACT 
With the advance of computerized assessments, response process 
data (RPD) become available. RPD has been increasingly gaining 
popularity because it can help to understand and study the cognitive 
processes of test takers. We aim to conduct a scoping review to 
provide a comprehensive overview of the common practice and ma-
jor findings with a focus on the theoretical framework and 
analytical methods applied in RPD studies. This review can help 
researchers understand the advantages and challenges of using RPD 
in both educational and psychological fields. Our findings provide 
guidance to researchers who are interested in RPD applications.  

Keywords 
scoping review, response process data, log file data, assessment 

1. INTRODUCTION 
With the recent development of computer technology, response 
process data (RPD) are widely collected in computerized assess-
ments [1]. RPD reflect the thinking processes, strategies, and 
behaviors of test takers when they read, interpret, and formulate 
solutions to assessment tasks [2]. RPD can document test-taking 
behaviors that may not be observed directly from test scores, which 
can show response patterns and thinking processes and may possi-
bly provide learners and other stakeholders with more meaningful 
feedback [3]. Given the importance of RPD, the purpose of this 
scoping review is to examine the extent, range, and characteristics 
of RPD, to summarize analytical methods used as well as the find-
ings obtained from application studies, and to identify gaps in the 
literature [4]. 

2. RESPONSE PROCESS DATA 
RPD can be traced back to the log files, which record events that 
occur in a computer system [5]. RPD is one type of log-file data, 
also known as (response-related) paradata in survey research [6], 
recording the interactions between the test takers and the computer 
[7]. In computer-based assessment contexts, both the test takers’ 
actions to the stimulus materials and the ordered sequence (i.e., the 
timestamps) of these actions are stored in RPD [2], [3], [8]. 

RPD are usually stored in a structured format, such as XML and 
JSON, and RPD need to be parsed and converted into a tabular data 
frame for further analysis [9]. Table 1 is an adapted example from 
a problem-solving task in Programme for International Student As-
sessment (PISA) 2012. The first column contains the type of event, 
including system-generated events (start item, end item) and stu-
dent-generated events (e.g., ACER_EVENT, click). The second 
column records the event time, given in seconds from the beginning 
of the assessment. The third column is the event sequence number. 
The fourth column provided detailed information (i.e., properties) 
about the event. 

Table 1. Process Data from PISA 2012 Problem Solving 

event time event_num-
ber event_value 

START_ITEM 0.10 1 NULL 

ACER_EVENT 43.4
0 2 '0000000000001000

0000000 

click 43.4
0 3 hit_nowhereSakha-

rov 

ACER_EVENT 44.9
0 4 '0000000000000000

0000000 

3. STUDY PURPOSES 
3.1 Scoping Review 
Although RPD is an emerging topic and there are a number of em-
pirical studies that have been conducted, there is no review that has 
been carried out to offer insights into the current applications re-
lated to RPD according to our best knowledge. A scoping review 
maps the key concepts behind a research topic and different sources 
of evidence, and the scoping review can be conducted as a stand-
alone study, especially for a complex and emerging topic [10]. Con-
ducting a scoping review will contribute to an overall 
understanding of the current application of RPD across different 
research areas in educational and psychological assessment.  

Specifically, we will undertake the scoping reviews for examining 
the extent and characteristics of research with RPD. It is important 
to gain insights into how RPD are being applied and analyzed as a 
gold mine in educational and psychological assessment. By sum-
marizing the current research, theoretical and analytical 
frameworks for RPD will be identified and examined for providing 
a broader overview of these indicators, methods, and findings. Fi-
nally, this scoping review could also be used to guide further 
research and practice. 

3.2 Review Objects 
RPD present a challenge to researchers as the underlying cognitive 
mechanisms of test takers are not always clear. Additionally, the 
format of RPD is not consistent with the traditional data format uti-
lized in psychology and education, and analyzing them involves 
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managing a large volume of raw data without an established meth-
odology to generate meaningful variables. Consequently, this 
scoping review aims to explore the use of RPD in educational and 
psychological assessments, taking into account the theoretical 
framework, meaningful indicators, and analytical methods em-
ployed. Specifically, this review addresses four key questions:  

(1) What theoretical frameworks are used in the analysis of RPD? 

(2) How are suitable indicators extracted and generated from raw 
RPD, and what kinds of indicators have been utilized in current 
practice?  

(3) What analytical methods have been employed in the study of 
RPD?  

(4) Based on the indicators and corresponding methods utilized in 
existing studies, what inferences have been made, and what are the 
associated research purposes and findings? 

4. METHODS 
4.1 Study Design 
We adapted Arksey and O’Malley's framework [10] and the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses 
Extension for Scoping Reviews (PRISMA-ScR) [4], [11] for con-
ducting a scoping review. The six-stage framework proposed by 
Arksey and O’Malley includes identifying the research question, 
identifying relevant studies, study selection, charting the data, col-
lating, summarizing and reporting the results, and consultation 
exercise. This framework helps ensure that the review is conducted 
in a comprehensive and transparent manner, providing a structured 
approach to identifying relevant studies and synthesizing the find-
ings. After conducting the scoping review, PRISMA-ScR provides 
a standardized checklist for reporting scoping reviews, ensuring 
that important information is included in the final report. Following 
PRISMA-ScR guidelines helps ensure that the review is conducted 
in a rigorous and transparent manner, making it easier for readers 
to evaluate the validity and reliability of the study.  

In sum, using Arksey and O’Malley's framework and PRISMA-
ScR for scoping reviews is important as they provide a structured 
approach to identifying and synthesizing relevant literature and en-
sure that increases the validity and reliability of the study findings 
and makes it easier for readers to evaluate the review. 

4.2 Search Strategy 
The search query for the Web of Science was provided here with 
the consideration of the Peer Review of Electronic Search Strate-
gies (PRESS) checklist [12]: 

TS = ((paradata OR “process data” OR “log data” OR “log-file data” 
OR “logfile data” OR “mouse click” OR keystroke OR keypress) 
AND (survey OR questionnaire OR “test batter*” OR assessment 
OR PISA OR PIAAC OR NAEP OR TIMSS OR PIRLS)) AND 
PY = (2000-2022)  

The query returned 1904 records in Web of Science and around 
5000 records from all databases, including ERIC, Education Source, 
PsycInfo, ProQuest Dissertations & Theses Global, Web of Science, 
and Scopus. 

4.3 Inclusion and Exclusion Criteria 
As a scoping review, we include all types of empirical research, 
including gray literature from ProQuest Dissertations & Theses 
Global. Most of the studies use RPD as a secondary data analysis. 
Thus, we expect very few experimental studies, and most of the 

studies will be observational studies. As mentioned in Research 
Question Section, we focused on the theoretical and analytical 
frameworks of RPD in practice. Hence, we excluded methodologi-
cal studies which focused on the simulation or algorithm. Review 
studies will be considered, and the empirical studies included in re-
view studies will be retrieved and reviewed. However, we can only 
include full-text and English articles for conducting the full-text re-
view according to the background of reviewers. Finally, this 
scoping review includes all human populations in any context as 
long as their interactions with computers were recorded. 

4.4 Study Selection 
Study selection is an iterative, rather than linear, stage involving a 
process of searching the literature, refining the search strategy, and 
reviewing articles for study inclusion and exclusion criteria [13]. 
At least two independent reviewers were asked to perform the study 
selection for the title and abstract screening and full-text screening. 
Another content expert was invited to solve the disagreement be-
tween the reviewers. Some pilot tests were recommended before 
the formal selection for refining this study selection process [11]. 
We will choose a sample of 50 articles, review these articles with 
eligibility criteria, discuss the discrepancies, and modify the search 
query and eligibility criteria. 

We will use a flowchart of the review process from PRISMA-ScR 
to describe the whole scoping review process, including the data-
bases, duplications, screening, full-text retrieval, and additional 
search from reference lists and relevant organizations. Covidence 
will be used for data management and screening. 

5. EXPECTED RESULTS 
5.1 Data Extraction 
Google Forms will be used for developing the data charting form 
to collect the information for answering research questions. A se-
ries of key information will be recorded, such as: 

(1) Citation information: author(s), publication year 

(2) Indicators: generation, definition, type, theoretical framework 

(3) Methods: name, category 

(4) Inferential framework: aim of the study, findings 

Note that additional information will be included during the review, 
and the chart form will be continually updated. After the review 
team discusses and trials the chart form and the chart form, two 
independent reviewers will extract the information to ensure the ac-
curacy of data extraction. 

5.2 Data Synthesis 
To clarify our results, we will break our data synthesis into three 
steps [13]. First, we need to conduct the data analysis. The fre-
quency counts of indicators, methods, and findings are used for 
depicting the extent, range, and characteristics of the studies in-
cluded in the scoping review [10], [14]. Moreover, to provide in-
depth analyses, descriptive qualitative data analysis, such as the-
matic analysis with human coding [15], will be used [11]. Thematic 
analysis can summarize the data into a particular category (i.e., 
classifying the statistical methods into descriptive statistics or in-
ferential statistics). Then, according to the research questions, we 
will report the results and produce the findings. A small table in-
cludes the characteristics of all the studies under a specific topic, 
(i.e., indicators, methods, and inferential frameworks in this re-
view). Finally, the implications of our results will be considered 
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with the overall research purpose and the specific research question 
and extended to the broader context for future research, policy, and 
practice [13]. 

6. DISCUSSION 
RPD is an emerging and developing research topic in the fields of 
psychology and education. With the wide use of computer-based 
assessment, RPD becomes more and more available. However, the 
significantly increased volume, velocity, and variety of RPD raise 
new challenges for researchers to handle, analyze, and interpret 
them in order to materialize the value [1]. As there is a lack of scop-
ing review to provide a comprehensive overview of the current 
theoretical and analytical frameworks to guide future research and 
practice. Even though a variety of analytic methods were used for 
different indicators, this scoping review will provide a systematic 
summary of common indicators, methods, and findings.  
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ABSTRACT 
The success of vaccine development and distribution has high-

lighted the importance of immunology as a practical and relevant 

science. However, studying immunology can be challenging for 

college students as it requires them to engage with new vocabulary 

and advanced biological concepts. Due to this, many learners find 

it difficult to integrate the new material with their prior knowledge 

and lose interest in the subject when taught through a traditional 

didactic approach, which can decrease their engagement in the 

class. Lack of engagement and misinterpretation of instructions are 

a few of the reasons why learners develop alternative conceptions 

adding to their learning difficulties. There are various methods a 

teacher might use in a classroom to identify these alternative con-

ceptions. Analogical reasoning is one such method to understand 

learners’ alternative conceptions. Along with learners’ reasoning, 

log data of learners’ interactions can provide insights that can be 

useful to model learners’ behavior. This will enable us to scaffold 

their learning. This study proposes the development of a technol-

ogy-enhanced learning environment based on the theories of 

analogical reasoning through which learners’ interaction patterns 

can be captured and studied with the help of different data sets.  

Keywords 
Immunology, Human Immune System alternative conception, An-

alogical reasoning, interaction pattern, log data, Eye gaze  

1. INTRODUCTION 
Biological education consists of learning many complex systems 

which are integrated into each other. Learners as well as teachers 

struggle while learning and teaching respectively about different 

systems, components, functions, and mechanisms. Human Immu-

nology is one of such complex biological systems made up of sub-

systems like the lymphatic system, blood cells, and antibodies. This 

system is divided into three components 1) the First Line of De-

fense 2) the Innate Immune system 3) the Adaptive Immune 

system. The human immune system works at different levels of the 

organization including cells, organs, tissues, and symptoms at the 

organism level. Traditional classroom method of teaching typically 

focuses on the transmission of information, due to which learners 

face a challenge in the understanding of human immunology. The 

processes and relationships between many lines of defense are more 

abstract than other biology topics, and learners typically lack the 

necessary background knowledge when they first meet the field [3]. 

Sometimes they misunderstand the concepts [4]. Alternative con-

ceptions and misconceptions about human biology pose a serious 

challenge to medical education's emphasis on precise scientific and 

clinical reasoning 

For enhanced comprehension, improved critical thinking, 

and learner engagement, various pedagogical techniques have been 

adopted, including case-based learning, team-based learning, and 

learning through tales and games [8].  Numerous studies demon-

strate the usage of simple real-life analogies and metaphors that 

map to abstract concepts of immunology. In general, a comparison 

of two objects, or systems of objects, that focuses on the similarities 

between them is called an analogy [1]. Analogies have been used 

in many studies to address learners’ misconceptions and alternative 

conceptions. Analogies have been largely used in topics such as 

protein synthesis, the nervous system, and the immune system. [2]. 

Analysis of analogical reasoning to understand alternative concep-

tions has been done using rubrics, frameworks, and interviews [9].  

The majority of current research uses multiple-choice pre- and post-

tests along with qualitative data to monitor participants' perfor-

mance or comprehension [10].   However, we would like to 

triangulate our research investigations using eye gaze data and log 

data of the interaction. To do this, we have proposed a learning en-

vironment based on the analogical process model framework [7]. 

In this environment, we have designed certain activities which 

would capture learners’ interaction log data. The learning environ-

ment will enable learners to interact with different components 

such as “Stage 1” where the learner will go through a reading task. 

At this stage eye gaze data will be collected as research in reading 

can contribute to our knowledge of how learners interpret the edu-

cational text. At “Stage 2” we will collect log data to interpret 

learner interaction. And at the last stage we will collect reasoning 

in the form of text data. Interviews will also be collected. All this 

information will help understand the learners learning process and 

help teachers to develop scaffolds for learning.  

2. BACKGROUND 
Children come to class already having thought about a variety of 

events and subjects related to the natural world and try to make 

sense of their surroundings by constructing mental models. Many 

researchers use the term "alternative conceptions" since it is value-

neutral and express respect for learners’ perspectives [6]. There are 

also other names that have been suggested, ranging from "naive 

ideas," "prescientific concepts," "preconceptions," and "conceptual 

primitives," to the complex "limited or inappropriate propositional 

hierarchies," or LIPHS [11]. One example of an alternative concep-

tion in biology is:  Because plants cannot move, young children 

frequently believe that they are not living, and many older learners 

believe that life forms like seeds are not living [6]. There are a num-

ber of reasons why learners may have these different conceptions, 

one of which is that they attempt to relate newly learned concepts 
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to existing real-world situations which is by using analogies. In or-

der to comprehend how they link two separate situations, it is 

important to understand learners’ reasoning and thought processes. 

The task of understanding and addressing learners’ alternative con-

ceptions often falls on teachers. Even while some modern teaching-

learning approaches place a strong emphasis on self-learning tech-

nologies, teachers still play a crucial role in monitoring, 

scaffolding, and inspiring learners even while using self-learning 

resources. Being aware of learners’ thought processes through their 

analogical reasoning will help teachers in understanding their alter-

native conceptions. Eye gaze data and log data of learner 

engagement with the system will provide nuanced insights like the 

specific area where the learner has spent more time.  This can in-

form possible learning difficulties that the learner might be facing, 

like confusion about a concept. This would otherwise be impossible 

to capture with merely classroom discussion. 

3. THEORETICAL FRAMEWORK  
 A comparison of two objects, or systems of objects, that focuses 

on the similarities between them is called an analogy [1]. In biol-

ogy, the analogy is a similarity in function between parts dissimilar 

in origin and structure. Analogies can be effective teaching aids 

since they are believed to aid learners in building new knowledge 

by connecting it to existing knowledge structures [5]. Analogical 

reasoning is a cognitive process that involves comparing two or 

more objects to find their commonalities and differences. The ac-

tivities in the learning environment will be developed on the basis 

of an analogical reasoning framework known as the Analogical 

Process Model (APM). Holyoak and Thagard created this frame-

work for using analogies in reasoning. Finding the source analogy, 

mapping the analogy's structure, and transferring knowledge from 

the source analogy to the target problem are the three steps of this 

method [7]. Fig. 1 shows the steps of the framework.  

 

Fig. 1 Three steps of analogical reasoning 

 

4. RESEARCH OBJECTIVE 
The objective of this study is to understand learners’ analogical rea-

soning through interaction with the proposed learning environment. 

The primary research questions to investigate are as follows.  

RQ1. What do learners’ interaction patterns in the Tech-

nology Enhanced Learning environment inform us about 
their analogical reasoning? 

RQ2. What are learners’ different alternative conceptions 

as they reason through different analogies? 

 

5. DESIGN OF THE LEARNING ENVI-

RONMENT  
Considering that this study is still in its early developmental phase, 

the suggested learning environment will be divided into three main 

stages. The suggested organization of the learning environment is 

shown in Fig. 2, along with a description of what the teachers and 

learners would be doing. Stage 1 of the learning environment will 

be a reading section where learners are supposed to read the content 

about a particular concept example such as wound healing. The sec-

ond stage will be designed on the basis of the Analogical Process 

Model. One scenario for each concept will be designed with activ-

ities based on the three steps of APM. The last stage is the reasoning 

stage where learners will be asked a few questions and they have to 

write the reasoning behind their actions in stage 2. All the stages 

will include reflection spots and scaffolding prompts to complete 

the activates.  

 

Fig. 2 Study design 

6. METHODOLOGY 

6.1 Target population and sampling 
The study participants would be undergraduate bioscience learners 

who are taking immunology courses. The first concept introduced 

in this grade is human immunity. About 10 learners will take part 

in the pilot trial with the learning environment.  

6.2 Data Collection and Data Analysis 
In this study, a mixed-methods strategy will be applied. Data of two 

kinds will be gathered. Utilizing click stream data, text-formatted 

data, and eye gaze tracker, quantitative data will be gathered. The 

eye-tracking data will reveal which passages in the text the reader 

spent the most time reading, missed, or skipped. They will engage 

with the system in a way that is informed by log data. Additionally, 

textual data can be handled via keyword search. Collectively, these 

data can be used to comprehend the patterns of various learners. 

Additionally, after the study, interviews will be conducted to gather 

additional data that can be used to support interaction patterns. 

7. EXPECTED CONTRIBUTIONS 
The proposed study will shed insight into individual learners’ rea-

soning. This will inform us about different alternative conceptions 

of learners in biologically complex systems, such as the human im-

mune system. Alternative conceptions of learners that 

teachers might have missed or would miss in the classroom can be 

informed by the study. It will be easy and beneficial for the teacher 

to provide tailored feedback to one learner or a group of learners 

and modify their teaching methods once they have learned where 

and why their learners have alternative conceptions. 
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8. ASPECTS OF THE RESEARCH ON 

WHICH ADVICE IS SOUGHT 
The suggested research is still in the planning stages. Advice on 

how to use and analyze the data gathered to determine how various 

components of learning might be effective. 
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ABSTRACT
This tutorial will examine the use of Wikipedia and gen-
erative AI technologies in asynchronous learning environ-
ments. Participants will learn about the research on ac-
countable talk and its impact on student learning, as well as
the challenges of implementing the learning principles using
Wikipedia in an asynchronous setting. The tutorial will also
showcase the potential of generative AI technologies, such as
chatbots and language models, to facilitate accountable talk
and support student-led discussions in asynchronous learn-
ing environments.

By the end of the tutorial, participants will have a solid
understanding of the potential of generative AI technolo-
gies to enhance student learning and scale accountable talk
in asynchronous learning environments. This study con-
ducts a comprehensive analysis of three distinct yet intercon-
nected components that shape contemporary learning envi-
ronments: Accountable Talk, integration of Wikipedia, and
the utilization of generative AI technologies. This investiga-
tion aims to highlight the immense potential these elements
possess in transforming educational landscapes, particularly
within asynchronous learning contexts and in the democ-
ratization of knowledge. Additionally, the study explores
the societal implications of deploying these methodologies
within classrooms, underlining their potential contribution
towards the creation of an equitable, knowledgeable, and
socially aware society.

Keywords
Asynchronous Learning, Accountable Talk, Wikipedia, LLM

1. INTRODUCTION
In response to the swift transformation of the educational
sector, pioneering teaching methodologies that can adapt to
various learning environments are of the essence. This study
endeavors to offer a comprehensive understanding of three
core components: Accountable Talk, the educational role of

Wikipedia, and the implementation of generative AI tech-
nologies. An exploration of these critical elements facilitates
in-depth insights into their influence on learners’ communi-
cation, social, emotional, and cognitive development, and
their capacity to enrich personalized learning experiences.

2. THEORETICAL FOUNDATIONS
This research leans on three primary theoretical founda-
tions: the concept of Accountable Talk, the integration of
Wikipedia in academic environments, and the application of
generative AI technologies within learning contexts.

Accountable Talk, an instructional approach designed to en-
hance learning by sparking critical thinking and promot-
ing collaborative discourse, is a cornerstone of the research.
[4] This pedagogical methodology centers around students
holding themselves responsible for the accurate dissemina-
tion of knowledge, sound reasoning, and active community
participation, thus boosting their cognitive abilities. The
primary objective of Accountable Talk is to refine students’
reasoning skills, a competence that is transferable across
various academic disciplines. Building upon this concep-
tual groundwork, the theory of Accountable Talk empha-
sizes that a community-focused engagement model signif-
icantly enhances comprehension and enriches educational
outcomes. Implementing this educational strategy requires
the creation of a set of ground rules fostering an inclusive
learning environment and prompting active intellectual dis-
cussions. This context fosters the public exchange of diverse
ideas and thoughts, facilitating advanced learning and allow-
ing the identification of misconceptions within the learning
community.

2.1 Accountable Talk in Education
1. Maximize Learning Outcomes: Deploying Accountable

Talk undoubtedly elevates students’ understanding and
recall, yielding notable enhancements in their academic
performance.

2. Elevate Critical Thinking Skills: Accountable Talk is
an exceptional tool for promoting critical thinking. It
compels students to delve deeply into subjects, criti-
cally dissect assumptions, and construct coherent ar-
guments. Paul and Elder’s concept of ”strong sense”
critical thinking strongly supports this assertion. [2]
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3. Promote Active Engagement: By employing Account-
able Talk, students are converted from passive absorbers
of information into dynamic participants in their learn-
ing journey, significantly boosting engagement and com-
prehension of subjects. This principle aligns with di-
alogue on the crucial role of classroom dialogue and
active participation in improving understanding and
engagement. [5]

4. Strengthen Communication Skills: Accountable Talk
is instrumental in refining students’ communication
abilities, empowering them to express their thoughts
clearly, listen actively, and respond respectfully to di-
verse viewpoints. Mercer and Littleton’s (2007) view-
point on dialogue’s role in refining reasoning, collabo-
ration, and communication skills further endorses this
perspective. [3]

5. Facilitate Collaborative Learning: Accountable Talk
offers a well-structured platform for collaborative learn-
ing, directing students to collaborate effectively, honor
diversity, and expand upon one another’s ideas. John-
son and Johnson’s (2009) research emphatically backs
up the benefits of collaborative learning. [1]

6. Boost Social and Emotional Skills: Accountable Talk
plays a crucial role in advancing empathy, respect,
and understanding of different viewpoints, hence sig-
nificantly contributing to the maturation of students’
social and emotional capacities.

7. Build a Learning Community: Accountable Talk is
a potent tool in fostering an inclusive community of
learners. It forms a supportive learning environment
that significantly enhances engagement and academic
results for all students.

8. Promote Higher-Order Thinking: Accountable Talk is
a powerful medium that stimulates students to partake
in higher cognitive processes as detailed in Bloom’s
taxonomy, including analysis, synthesis, and evalua-
tion, instead of mere information memorization. So,
make Accountable Talk your standard teaching ap-
proach and watch your students thrive!

Integrating Wikipedia assignments into curricula illustrates
the practical application of knowledge, thereby refining di-
verse learner skills. Student contributions to Wikipedia, un-
der instructor guidance, foster research skills and sophisti-
cated understanding of writing for a broad, international
readership. The utilization of generative AI technologies,
specifically Large Language Models (LLMs), represents a
transformative approach to education. With their ability
to customize learning experiences and mimic human-like in-
teractions, LLMs hold considerable potential in deepening
learning and enhancing teaching methodologies.

3. PRACTICAL IMPLEMENTATION
In leveraging the capabilities of advanced artificial intel-
ligence (AI) systems, this study introduces an innovative
pedagogical methodology incorporating Language Learning
Models (LLMs), such as GPT-4. The primary purpose is
to foster accountable talk and promote information literacy
skills among students. Furthermore, this study explores the

applicability of such learning models in a practical task: the
creation of content for Wikipedia.

The study presents a distinct delineation of roles for both
the LLM and the students. The LLM is positioned as a facil-
itator of knowledge, delivering subject matter expertise, and
also as an evaluator of student work. This AI model adheres
to protocols of accountable talk, promoting an environment
that encourages respectful and evidence-based dialogue. On
the other hand, students engage as active participants in
the learning process, synthesizing the knowledge provided
by the LLM and other reliable sources, and eventually pro-
ducing content suitable for Wikipedia. A noteworthy aspect
of the methodology is the emphasis on the development of
information literacy skills.

The pedagogical framework encourages students to conduct
their own research, augmenting the knowledge provided by
the LLM. In this process, students learn to differentiate be-
tween reliable facts and misinformation, and identify poten-
tial biases, enhancing their capacity to critically evaluate
information. The LLM also plays a crucial role in the con-
tent creation process.

Using the information gained through interactions with the
LLM and their independent research, students draft Wikipedia
articles. The LLM offers support during this process, pro-
viding suggestions, refining language and style, and ensur-
ing compliance with Wikipedia’s content guidelines. The AI
model also evaluates the students’ drafts, providing evidence-
based feedback in line with accountable talk principles.

This study proposes an educational approach that effec-
tively blends AI technology with pedagogical practices. By
integrating LLMs in the learning process, there is poten-
tial for enhanced accountable talk and information literacy
skills, ultimately fostering an environment conducive to ac-
tive learning and knowledge synthesis. Future research could
further explore the integration of AI in educational settings
and evaluate the impacts on student learning outcomes.

4. CONCLUSIONS
By examining Accountable Talk, Wikipedia integration, and
the deployment of AI in educational contexts, the study
sheds light on potential societal transformations. Imple-
menting these strategies could significantly influence asyn-
chronous learning environments and the democratization of
knowledge, ultimately affecting societal outcomes. Promo-
tion of Accountable Talk encourages learners to partake in
intellectual dialogues, enhancing critical thinking and col-
laboration skills. The integration of Wikipedia in educa-
tional settings democratizes learning by empowering stu-
dents worldwide to contribute to a communal knowledge
base. Finally, the deployment of generative AI technologies
provides individualized learning support, thereby enhancing
inclusivity and minimizing educational disparities.

The societal impacts of these strategies reach beyond indi-
vidual classrooms, signaling towards a future where learning
is universally accessible. By optimizing asynchronous learn-
ing environments and democratizing education, this study
contributes to the cultivation of a society in which equity,
digital citizenship, and mutual respect are emphasized.

576



5. REFERENCES
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ABSTRACT
In this half-day tutorial, participants first explore the funda-
mentals of feed-forward neural networks, such as the back-
propagation mechanism; the subsequent introduction to the
more complex Long Short Term Memory neural networks
builds on this knowledge. The tutorial also covers the ba-
sics of the attention mechanism, the Transformer neural net-
works, and their application in education with Deep Knowl-
edge Tracing. There will be some hands-on applications on
open educational datasets. The participants should leave
the tutorial with the ability to use neural networks in their
research. A laptop capable of installing and running Python
and the Keras library is required for full participation in this
half-day tutorial.

Keywords
Neurons, Neural networks, LSTM, Attention mechanism,
Transformers

1. INTRODUCTION
Neural networks (NN) are as old as the relatively young his-
tory of computer science: McCullogh and Pitts already pro-
posed nets of abstract neurons in 1943 as Haigh and Priest-
ley report in [7]. However, their successful use, especially
in the form of convolutional neural networks (CNN), Long
Short Term Memory (LSTM), or Transformer neural net-
works, in areas such as image recognition, language trans-
lation, or chatbot in the last years has made them widely
known, also in the Educational Data Mining (EDM) commu-
nity. This is reflected in the contributions that are published
each year in the proceedings of the conference.

In [11], we counted the percentage of the contributions in the
EDM proceedings of the Educational Data Mining (EDM)
conference from the beginning of the conference in 2008 till
2019 (long and short papers, posters and demos, young re-
search track, doctoral consortium, and papers of the indus-
try track) that have used some kind of neural networks in

their research. While the percentage stayed below 10% till
2015, it started to increase in 2016 to reach 28% in 2019.
This trend has continued since then with 14 long papers
from 26 mentioning some kind of neural networks in their
research in the EDM proceedings of 2022.

Recognizing the growing importance of neural networks in
the EDM community, this tutorial aims to provide 1) an in-
troduction to neural networks in general and to LSTM neu-
ral networks with a focus on the attention mechanism and
the Transformer neural networks and 2) a discussion venue
on these exciting techniques. Compared with our prece-
dent tutorial [11], the main difference is the introduction to
Transformer neural networks. This tutorial targets 1) par-
ticipants who have no or very little prior knowledge about
neural networks and would like to use them in their future
work or would like to better understand the work of others,
and 2) participants interested in exchanging and discussing
their experience with the use of neural networks. A simple
kind of neural network is a feedforward neural network also
often called a multilayer perceptron. It propagates the cal-
culation of each neuron from its inputs through all layers in
a directed way forward to its outputs. In education, such a
NN has been used, for example, to predict the performance
of students. The work of Romero et al. [18] presented at
the first EDM conference in 2008 uses it to predict the final
mark of students in a course taught with the support of the
learning platform Moodle. while the work of Wagner et al.
[24] uses it to predict whether students will drop out of a
study program.

While their primary use was in Natural Language Processing
(NLP) Tasks, LSTM neural networks have been extensively
used in education and have achieved remarkable results [22,
20, 6]. Unlike feedforward neural networks that cannot re-
member the past, LSTM have cycles and are recurrent neu-
ral networks. The LSTM [9] architecture can learn long-term
dependencies using a memory cell that can preserve states
over long periods. It is suitable for contexts where sequen-
tial information and temporal prediction is important such
as in education, where we are interested in predicting stu-
dents’ outcome based on past behavior. Deep Knowledge
Tracing [14] is probably the best example of using LSTM to
track a student’s state of knowledge while interacting with
a tutoring system. Numerous variants of LSTM have been
proposed, such as the Gated Recurrent Unit (GRU) [4] or
the LSTM combined with the attention mechanism, espe-
cially the Transformer neural networks [23].
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Attention [3] in machine learning refers to a model’s ability
to focus on specific elements in data. It helps the LSTM to
learn where to look in the data. It was initially designed
in Neural Machine Translation using sequence-to-sequence
(Seq2Seq or encoder-decoder) [19] models. However, since
the attention mechanism can improve the prediction results
of NN models, it is now widely used in text mining in gen-
eral. Especially in the education domain, it has been used
for question-answering tasks, sequential modeling for stu-
dent performance prediction, or to predict essay or short
answer scoring [25, 17]. Transformer neural networks aim to
solve sequence-to-sequence tasks while handling long-range
dependencies. It uses the attention mechanism and GPU
(Graphics Processing Unit) computing. The input sequence
of the Transformer neural network can be passed parallelly,
which speeds up the training. It can also overcome the
vanishing gradient issue thanks to its multi-headed atten-
tion layer. The use of transformers in education is only in
its infancy. However, given its notable results (e.g., Gener-
ative Pre-trained Transformer (GPT)[2], Bidirectional En-
coder Representations from Transformers (BERT)[10]), we
think that we will see an increasing number of research pa-
pers using this architecture in EDM.

2. PROPOSED FORMAT
Table 1: Timeline and activities

Time Item

45 minutes
Presentation: introduction - Feedfor-
ward neural networks and backpropa-
gation

45 minutes Application - Discussion - Hands-on
30 minutes Break

60 minutes
Presentation: LSTM, Attention Mech-
anism, and Transformer

60 minutes
Application - Implementation of a
LSTM for student performance predic-
tion - Discussion

3. DESCRIPTION OF THE TUTORIAL
3.1 Introduction to feed-forward neural net-

works
This part begins with artificial neurons and their structure
- inputs, weight, output, and activation function - and the
calculations that are feasible and not feasible with one neu-
ron only. It continues with feedforward neural networks or
multi-layer perceptrons (MLP). A hands-on example taken
from [8] illustrates how a feedforward neural network calcu-
lates its output. Further, this part introduces loss functions
and the backpropagation algorithms and makes clear what
a feedforward neural network learns. Backpropagation is
demonstrated with the hands-on example introduced before.

3.2 Application of feedforward NN
This part discusses the use of feedforward neural networks
in EDM research. These networks are often used to predict
students’ performance and students at risk of dropping out,
see for example [5, 1, 24]. It must be noted that feedforward
neural networks do not necessarily give better results than
other algorithms for this kind of task. Other uses emerge.
For example, Ren et al. use them to model the influence on

the grade of a course taken by a student on all other courses
that the student has co-taken [16]. As another example,
Or and Russel [13] uses intentionally a feedforward “neural
network model to both automatically assess the design of
a program and provide personalized feedback to guide stu-
dents on how to make corrections”.

It must be noted that neural networks are considered not
interpretable, see [12]. When explanations are crucial, it
might be worthwhile to evaluate whether interpretable al-
gorithms might be used instead; another way is to generate
explanations with other algorithms, see [20] for challenges
in doing so.

The main activity of this part is for participants to solve
a classification task on an educational dataset; participants
will create, inspect and evaluate a feedforward neural net-
work with Python and relevant libraries.

3.3 LSTM
In this part of the tutorial, basic concepts of LSTM are
covered. We will focus on how the architecture of different
elements (cell, state, etc.) works. Participants will learn how
to use an LSTM for the prediction of learners’ outcomes in
an educational system. Concepts such as Deep Knowledge
Tracing (DKT) will also be covered.

3.4 Attention Mechanism
In this part, the attention mechanism is introduced. Partic-
ipants will learn how this mechanism works and how to use
it in different cases. We will explore concepts such as global
and local attention in neural networks.

3.5 Transformer neural networks
This part introduces the Transformer neural network archi-
tecture. Concepts such as multi-headed attention layer and
parallel inputs with the use of GPU will be covered.

3.6 Application
This hands-on part will explore existing real-life applications
of LSTM (especially Deep Knowledge Tracing and Knowl-
edge tracing with transformer) in education. We will also
explore the combination of LSTM with Expert Knowledge
(using the attention mechanism) for Predicting Socio-Moral
Reasoning skills [21, 22]. Participants will implement an
LSTM, especially a Transformer, with an attention mech-
anism for the prediction of students’ performance in a tu-
toring system [15]. We will use Keras (Python) library for
coding and also use open educational datasets (e.g., Assist-
ments benchmark dataset).

3.7 Objectives and outcomes
The objectives of this tutorial are twofold: 1) introduce the
fundamental concepts and algorithms of neural networks to
newcomers and then build on these fundamentals to give
them some understanding of LSTM and the attention mech-
anism, especially the Transformer neural networks; 2) pro-
vide a place to discuss and exchange about experiences while
using neural networks with educational data. Newcomers
should leave the tutorial with a good understanding of neu-
ral networks and the ability to use them in their own re-
search or to appreciate better research works that use neural
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networks. Participants already knowledgeable about neural
networks get a chance to discuss and share about this topic
and connect with others. A website will be created to dis-
play important information to participants: schedule, slides,
data, and software to download and install.

4. SHORT BIOGRAPHIES
Agathe Merceron is a Professor of Computer Science at
Berlin University of Applied Sciences teaching courses such
as machine learning. She was head of the online study pro-
gram “Computer Science and Media” (Bachelor and Master)
till March 31, 2022. Her research interest is in Technology
Enhanced Learning with a focus on Educational Data Min-
ing and Learning Analytics. She has served as a program
chair for national and international conferences and work-
shops, in particular for the international conferences Edu-
cational Data Mining and Learning Analytics and Knowl-
edge. She is Editor of the Journal of Educational Data Min-
ing and member of the board of the Journal “Sciences et
Technologies de l’Information et de la Communication pour
l’Éducation et la Formation“ (STICEF).

Ange Tato is a Senior Lecturer in computer science at École
de Technologie Supérieure de Montréal. She has worked as
a research scientist in machine learning at Bem Me Up Aug-
mented Intelligence Montreal for 4 years. Her research in-
terest is in the fundamentals of machine learning algorithms
applied to user modeling in intelligent systems. Some of her
notable works focus on improving first-order optimization
algorithms (with gradient descent); improving neural net-
work architectures for multimodal data to predict or classify
user behaviors (players, learners, etc.) in adaptive intelligent
systems; and integrating expert knowledge into deep learn-
ing models to improve their predictive power and for better
traceability of these models. She has served as Poster and
Demo Track Co-Chair for Educational Data Mining 2021,
Program Committee Member of international conferences
such as ICCE, or AIED.
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ABSTRACT
Across the past decade, open science has increased in mo-
mentum, making research more openly available and repro-
ducible. Educational data mining, as a subfield of education
technology, has been expanding in scope as well, developing
and providing better understanding of large amount of data
within education. However, open science and educational
data mining do not often intersect, causing a bit of diffi-
culty when trying to reuse methodologies, datasets, analy-
ses for replication, reproduction, or an entirely separate end
goal. In this tutorial, we will provide an overview of open
science principles and their benefits and mitigation within
research. In the second part of this tutorial, we will provide
an example on using the Open Science Framework to make,
collaborate, and share projects. The final part of this tuto-
rial will go over some mitigation strategies when releasing
datasets and materials such that other researchers may eas-
ily reproduce them. Participants in this tutorial will gain
a better understanding of open science, how it is used, and
how to apply it themselves.

Keywords
Open Science, Reproducibility, Preregistration

1. BACKGROUND
Open Science is a term used to encompass making method-
ologies, datasets, analyses, and results of research publicly
accessible for anyone to use freely[6, 14]. This term started
to frequently occur in the early 2010s when researchers be-
gan noticing that they were unable to replicate or reproduce
prior work done within a discipline[13]. There also tended to
be a large amount of ambiguity when trying to understand
what process was followed to conduct a study or whether
a specific material was used but not clearly defined. Open
science, as a result, started to gain more traction to provide
greater context, robustness, and reproducibility metrics with

each subtopic encompassed under the term receiving their
own formal definition and usage. The widespread adoption
of open science began to explode exponentially when large
scale studies conducted in the mid 2010s found that nu-
merous works were difficult or impossible to reproduce and
replicate in psychology[2] and other disciplines[1].

Some principles commonly referred to as part of open science
and its processes: open data, open materials, open method-
ology, and preregistration. Open Data specifically targets
datasets and their documentation for public use without re-
striction, typically under a permissive license or in the public
domain[8]. Not all data can be openly released (such as with
personally identifiable information); but there are specifica-
tions for protected access that allow anonymized datasets
to be released or a method to obtain the raw dataset it-
self. Open Materials is similar in regard except for target-
ing tools, source code, and their documentation[5]. This
tends to be synonymous with Open Source in the context
of software development, but materials are used to encom-
pass the source in addition to available, free-to-use technolo-
gies. Open Methodology defines the full workflow and pro-
cesses used to conduct the research, including how the par-
ticipants were gathered, what was told to them, how the col-
lected data was analyzed, and what the final results were[6].
The methodologies typically expand upon the original pa-
per, such as technicalities that would not fit in the paper
format. Finally, Preregistration acts as an initial methodol-
ogy before the start of an experiment, defining the process
of research without knowledge of the outcomes[10, 11]. Pre-
registrations can additionally be updated or created anew
to preserve the initial experiment conducted and the devel-
opment as more context is generated.

2. TUTORIAL GOALS
Open science principles and reproducibility metrics are be-
coming more commonplace within numerous scientific dis-
ciplines. Within many subfields of educational technology,
such as educational data mining, however, the adoption and
review of these principles and metrics are neglected or sparsely
considered[9]. There are some subfields of education technol-
ogy that have taken the initiative to introduce open science
principles (special education[3]; gamification[4], education
research[7]); however, other subfields have seen little to no
adoption. Concerns and inexperience in what can be made

A. Haim, S. Shaw, and N. Heffernan. How to open science: Promoting
principles and reproducibility practices within the educational data
mining community. In M. Feng, T. Käser, and P. Talukdar, editors,
Proceedings of the 16th International Conference on Educational
Data Mining, pages 582–584, Bengaluru, India, July 2023. Interna-
tional Educational Data Mining Society.
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publicly available to how to reproduce another’s work are
some of the few reasons why researchers may choose to avoid
or postpone discussion on open science and reproducibility.
On the other hand, lack of discussion can lead to tediousness
and repetitive communication for datasets and materials or
cause a reproducibility crisis[1] within the field of study. As
such, there is a need for accessible resources and understand-
ing on open science, how it can be used, and how to mitigate
any potential issues that may arise within one’s work at a
later date.

Admitting our own initial lack of proper adoption and re-
producibility first, in this tutorial, we will cover some of
the basic principles of open science and some of the chal-
lenges and mitigation strategies associated with education
technology specifically. Next, we will provide a step-by-step
explanation on using the Open Science Framework to create
a project, collaborate with other researchers, post content,
and preregister a study. Using examples from the field of ed-
ucational technology, we will showcase how to incorporate
open science principles, in addition to practices that, when
implemented, would improve reproducibility.

This tutorial will build and expand on a prior, successful
tutorial at the 15th International Conference on Educational
Data Mining in 20221[12] and an accepted tutorial to be
presented at the 13th International Conference on Learning
Analytics and Knowledge in 20232.

3. TUTORIAL ORGANIZATION
The tutorial will occur over half a day and focuses on intro-
ducing some common open science principles and their usage
within education technology, providing an example on using
the Open Science Framework to create a project, post con-
tent, and preregister studies, and using previous papers to
apply the learned principles and any additional reproduc-
tion mitigation strategies. An outline of this tutorial can be
found below:

• First, we will provide a presentation on an overview of
a few problems when conducting research. Using this
as a baseline, we will introduce open science and its
principles and how they can be used to nullify some of
these issues and mitigate others. In addition, we will
attempt to dispel some of the misconceptions of these
principles.

• Second, we will provide a live example of using the
Open Science Framework (OSF) website to make an
account, create a project, add contributors, add con-
tent and licensing, and publicize the project for all to
see. Afterwards, we will provide a guide to creating a
preregistration, explaining best practices, and identi-
fying how to create an embargo. Additional features
and concerns, such as anonymizing projects for review
and steps required to properly do so, will be shown.

• Third, we will discuss reproducibility metrics within
work when providing datasets and materials. This will
review commonly used software and languages (e.g.

1https://osf.io/m7cnr/
2https://doi.org/10.17605/osf.io/kyxba

Python, RStudio) and how, without any steps taken,
most work tends to be extremely tedious to reproduce
or are not reproducible in general. Afterwards, we will
provide some mitigation strategies needed to remove
these concerns.

• Finally, we will take some existing papers either from
the author’s own research or from prior education tech-
nology conferences that do not meet some open science
principles or cannot easily be reproduced and apply
what has been learned across the entire tutorial. We
will use a few papers, each containing different issues,
and apply the necessary steps needed to reproduce the
results within the paper.

3.1 Dissemination of Information
The dissemination of information for this tutorial will be
provided before and after the conference. Before the con-
ference, information about the tutorial itself will be stored
on an OSF project, containing references to the papers used
within the final part of the tutorial, any slides to be used
within the conference, and additional resources that could
provide better understanding of the issues and nuances of
avoiding open science and reproducibility metrics. A website
separate to the OSF project will also be set up containing
the following information for ease of consumption; however,
this will only be used as an alternative to the project in case
the website disappears at some point in the future.

After the conference, any resources created or recordings
taken will be uploaded to the project for preservation. Alter-
native links will be provided to separate sites for more formal
hosting (e.g. videos on YouTube). As this tutorial wants to
repeat and expand upon open science and reproducibility
at prior workshops across conferences, an additional project
will be created on the OSF website containing components
pointing to all previous conferences and resources discussed.

3.2 Organizers
Aaron Haim3 is a Ph.D. student in Computer Science at
Worcester Polytechnic Institute. His initial research focuses
on developing software and running experiments on crowd-
sourced, on-demand assistance in the form of hints and ex-
planations. His secondary research includes reviewing, sur-
veying, and compiling information related to open science
and reproducibility across papers published at education
technology and learning science conferences.

Stacy T. Shaw4 is an Assistant Professor of Psychology and
Learning Sciences at Worcester Polytechnic Institute. She
is an ambassador for the Center for Open Science, a cat-
alyst for the Berkeley Initiative in Transparency in Social
Sciences, and serves on the EdArXiv Preprint steering com-
mittee. Her research focuses on mathematics education, stu-
dent experiences, creativity, and rest.

Neil T. Heffernan5 is the William Smith Dean’s Professor
of Computer Science and Director of the Learning Sciences
& Technology Program at Worcester Polytechnic Institute.

3https://ahaim.ashwork.net/
4http://stacytshaw.com/
5https://www.neilheffernan.net/
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He is the founder of ASSISTments, an online learning plat-
form which provides immediate feedback for students along
with actionable data for teachers. Heffernan has been push-
ing open science with his graduate students in recent years.
He has also started to push the Educational Data Mining
committee to broaden their promotion and support of open
science.
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ABSTRACT
Machine Learning has revolutionized education by offering
numerous practical applications. One such application is
Neural Machine Translation (NMT) systems in the field of
education, which hold immense social importance. These
systems have the potential to make information accessible to
diverse users in multilingual societies. By effectively trans-
lating audio, video, and textual content into vernacular lan-
guages, NMT systems greatly assist both students and teach-
ers. However, when it comes to translating higher education
or technical textbooks and courses, it becomes crucial for
MT systems to adhere closely to the specific lexicon of the
source and target domains. In this tutorial, we present our
approach and framework to enable domain-aware transla-
tion without the need for parallel domain corpus. We will
demonstrate several use-cases and applications that is widely
used by hundreds of translators. We will also present our
post-editing tool that assists translators in quickly correct-
ing the machine translated text and reduce the cognitive
load of users.

Keywords
neural machine translation, OCR, dictionary generation, human-
in-the-loop learning, data efficient machine learning

1. INTRODUCTION
The field of Neural Machine Translation (NMT) has achieved
remarkable success in achieving state-of-the-art translation
capabilities across various language pairs [1]. However, in
domain-specific scenarios such as technical content trans-
lation, the generic NMT pipeline falls short in guarantee-
ing the inclusion of specific terms in the translation output.
Inclusion of a pre-specified vocabulary becomes crucial for
ensuring practical and reliable machine translation (MT).
While incorporating domain-specific terms has been rela-
tively easier in phrase-based statistical MT, it poses a chal-
lenge in NMT due to the complexity of directly manipulating
output representations from the decoder [8]. As an alterna-

tive, domain-specific NMT systems have been proposed to
generate translations that are aware of the domain by fine-
tuning generic NMT models using domain-specific parallel
text. However, this approach requires curating translation
pairs for each domain, which demands significant human ef-
fort and increases the cost of maintaining separate models
for each domain. Therefore, it is essential for the MT output
to adhere to the source domain by adopting domain-specific
terminology, thus reducing and potentially guiding the post-
editing effort in translation.

To address this issue, lexically constrained techniques have
been employed in NMT, incorporating pre-specified words
and phrases in the translation output [4, 3, 2]. In addition
to the source sentence, word or phrasal constraints in the
target language are provided as input. These constraints
can be derived from in-domain source-target dictionaries or
can be user-provided source-target constraints during inter-
active machine translation. Often, these constraints may
encode multiple potential translations for a given source
phrase. For example, the word ‘speed’ can be translated into
5 different Hindi phrases teja, daud. a, gati, raphtār, cāla in
the physics domain. However, existing constrained transla-
tion approaches do not accommodate such ambiguity in the
constraints.

2. IMPACT OF THE WORK
The project https://udaanproject.org is an end-to-end
Machine Translation Framework that includes extensive use
of OCR, lexical resources, data efficient learning (open sourced
at https://decile.org) and a human-in-the-loop machine
learning based post-editing platform. This project is an out-
come of our Data Efficient Machine Learning[5, 6] (https:
//decile.org) and Natural Language Processing from our
group at IIT Bombay. The Udaan project is being used ex-
tensively by several, including AICTE (https://www.aicte-india.
org) for speedy translation of 100s of textbooks into mul-
tiple Indian languages. MoUs are also being signed with
several state governments - Govt of Maharashtra entered
into agreement for usage of https://udaanproject.org in
the presence of Governor, Education Minister and Direc-
tor IITB (see https://udaanproject.org/MediaCoverage?

type=mou)

In this tutorial, we provide insights from our translation
ecosystem (https://udaanproject.org) that has helped in trans-
lating 100s of diploma and engineering books each in more
than 11 Indian languages. We will provide the audience with
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the holistic view of:

1. How to build a domain-specific lexicon in 11 Indian
languages using a small seed dictionary by utilising
the innate connection across languages

2. How to build an multilingual NMT model that ingests
domain-specific lexicon without affecting the fluency
of the predicted sentence

3. How to build a human-in-the-loop AI post-editing tool
that benefits from complex OCR (Optical character
recognition) and layout analysis to preserve bounding
boxes in the source document. and that learns from
the user edits and calibrates the output for subsequent
occurrences.

4. What are the insights gathered from translating sam-
ple 50 books across 11 languages?

The ecosystem at https://udaanproject.org that will be
presented as a tutorial is fueled by several peer reviewed
publications (https://udaanproject.org/Publications).

3. UDAAN POST EDITING TOOL
We present UDAAN, an open-source post-editing tool de-
signed to streamline the manual editing process and facil-
itate the production of high-quality documents in multi-
ple Indic languages[7]. Post-editing lengthy documents that
have been translated is often a laborious task, as editors face
difficulties in maintaining consistency between the trans-
lated and source texts within the document. Existing tools,
although retaining source-target user edits through trans-
lation memory (TM), fail to provide consistent suggestions
throughout the document.

UDAAN offers an end-to-end Machine Translation (MT)
plus post-editing pipeline, allowing users to upload a docu-
ment and obtain raw MT output. Subsequently, users can
utilize our tool to edit the raw translations. UDAAN incor-
porates several advantageous features:

1. Domain-aware, vocabulary-based lexical constrained
MT.

2. Source-target and target-target lexicon suggestions for
users, employing lexicon alignment between the source
and target texts for replacements.

3. Translation suggestions based on user interaction logs.

4. Source-target sentence alignment visualization, reduc-
ing cognitive load during the editing process.

5. Translated outputs available in multiple formats, in-
cluding docs, LaTeX, and PDF.

Our tool offers several advantages: Firstly, it generates domain-
aware raw MT by applying lexical constraints to the transla-
tions using domain-specific vocabulary. Secondly, users can
incorporate lexicons from both the source-target language
and the target-target language. Lexicon-based replacements
are determined through alignment between the source and

target texts. Additionally, the tool continuously records
target-target edits made by users, which can be utilized as
suggestions within the tool. Thirdly, the tool leverages user
edits to improve translation suggestions. Fourthly, the rich
text editor of UDAAN includes sentence alignment visual-
ization between the source and target texts, simplifying the
editing process and reducing cognitive load. Lastly, users
can download the output document in various formats, in-
cluding docx, LaTeX, and PDF.

Furthermore, UDAAN provides access to approximately 100
in-domain dictionaries to facilitate lexicon-aware machine
translation. Although our experiments are limited to English-
to-Hindi translation, the tool is language-agnostic. Based on
user feedback and experimental results, UDAAN has demon-
strated a significant reduction in translation time, approxi-
mately three times faster than the baseline method of trans-
lating documents from scratch. UDAAN is available for
both Windows and Linux platforms, with its source code
accessible on our website at Our tool is available for both
Windows and Linux platforms. The tool is open-source un-
der MIT license, and the source code can be accessed from
our website, https://www.udaanproject.org. Demonstra-
tion and tutorial videos for various features of our tool can
be accessed here. Our MT pipeline can be accessed at
https://udaaniitb.aicte-india.org/udaan/translate/.
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