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Abstract. Text summarization is an effective reading comprehension strategy.
However, summary evaluation is complex and must account for various factors
including the summary and the reference text. This study examines a corpus of
approximately 3,000 summaries based on 87 reference texts, with each summary
being manually scored on a 4-point Likert scale. Machine learning models lever-
aging Natural Language Processing (NLP) techniques were trained to predict the
extent to which summaries capture the main idea of the target text. The NLPmod-
els combined both domain and language independent textual complexity indices
from the ReaderBench framework, as well as state-of-the-art language models
and deep learning architectures to provide semantic contextualization. Themodels
achieve low errors – normalized MAE ranging from 0.13–0.17 with correspond-
ing R2 values of up to 0.46. Our approach consistently outperforms baselines that
use TF-IDF vectors and linear models, as well as Transfomer-based regression
using BERT. These results indicate that NLP algorithms that combine linguistic
and semantic indices are accurate and robust, while ensuring generalizability to a
wide array of topics.

Keywords: Natural language processing · Text summarization · Automated
scoring

1 Introduction

Scoring student writing, which in many cases consists of essays and summaries, is one
of the most time-consuming activities teachers have to perform. Yet, it is necessary
across the majority of grade levels, academic domains, and in many countries. Teach-
ers must carefully read and evaluate the piece of writing for spelling errors, cohesion
and coherence, alignment with the task requirements, plagiarism, and other norms and
requirements. Summary evaluation requires even further criteria, such as the faithfulness
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of the summary to the reference text, the degree to which the summary abbreviates the
original reference text, and the objectivity of the summary. The lack of sufficient time
for many teachers (who already have excessive burdens) can thus limit opportunities for
students to receive sufficient feedback on their summary writing.

In this work, we propose a method for automatically evaluating student summaries
to predict main idea coverage. Our aim is to build an Automated Summary Scoring tool
that can be used by both students and teachers. For students, the capability to have their
summaries evaluated before handing them in would enable an iterative learning process
wherein they could write a draft, have it automatically scored, and then work to improve
it before the final submission to their teacher. This would allow learners to improve
their summary writing skills through a more consistent and timely feedback loop. For
teachers, automated scoring canhelp lower theirworkload.AutomatedSummaryScoring
systems can support teachers by affording themmore time to focus on rhetorical aspects
of students’ writing, and in turn provide one-to-one assistance to individual students.

One challenge faced by Automated Summary Scoring systems considers their gen-
eralization capabilities across topics and target texts. Thus, we address the following
research questions:

1. To what extent do summary scoring models generalize across different reference
texts?

2. Does performance expressed asMean Average Error vary when using neural models
relying on textual complexity indices or BERT language models?

3. Can novel insights be gleaned about the underlying summary scoring process from
feature importance information extracted from the trained neural models?

To achieve these goals, we explored the use of three types of features to predict main
idea coverage in summaries: TF-IDF, hand-crafted linguistic and semantic features,
and latent contextualized representations computed with BERT [1]. We also examined
the efficacy of three types of machine learning models (Random Forest [2], Lasso [3],
Neural Networks including feed-forward networks on top of textual complexity indices
and BERT). Once trained, we analyze the most important features used by the two best
performingmodels to identify the most relevant information used for automated scoring.
In the remainder of this paper, we provide an overview of related work on the automated
evaluation of student writing.We then describe our methodological approach and results
of our analyses. We then conclude with a discussion of our findings and suggestions for
future work.

2 Related Work

There are two primary means through which student writing is automatically assessed
[4]:AutomatedWritingEvaluation (AWE) systems andAutomatedEssayScoring (AES)
systems. These two systems are commonly used to assess essays, but not summaries.
AWE systems offer targeted, constructive feedback to student users with the purpose of
helping them improve their writing, whereas AES systems are primarily focused on the
generation of a numerical score of writing quality (i.e., a summative score). Here, we
present an approach that falls under the category of AES systems.
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Various AES systems have been developed to assess multiple genres of writing.
e-Rater [5] was one of the first and relies on a wide range of features that measure
grammar, usage, mechanics, style, organization, development, lexical complexity, and
prompt-specificvocabulary usage.The initial versionof e-Rater offeredusers amethodof
manually combining these features using weighted averages in an intuitive and explain-
able system. The past decade has seen considerable progress in the field of text scoring
and numerous approaches have been explored. More recent approaches rely on neu-
ral networks to score student writing. For example, SkipFlow [6] uses a mechanism
for modeling relationships between hidden representation snapshots generated by Long
Short-Term Memory Networks [7]. Hochreiter and Schmidhuber [7] trained a network
to predict human scores for a set of essays that were written in response to eight prompts.
Their model achieved an average Quadratic Weighted Kappa of 0.764, denoting a high
level of agreement with the human scores. Alikaniotis, Yannakoudakis and Rei [8] con-
struct a fully automated framework based on LSTMs trained on the same dataset as
SkipFlow, with a reported Spearman rank correlation coefficient of 0.91.

Taghipour and Ng [9] used a combination of a convolutional layer to extract local
features from the texts, followed by a Recurrent Neural Network to predict the human
scores. Similarly, Jin, He, Hui and Sun [10] introduced a two-stage neural network that
aims to increase the performance of AES models in prompt-independent contexts. Their
network was trained on human-rated essays with different prompts to detect essays with
a level of quality that has high deviation from the average; then, these essays were used
as pseudo-training data in the second stage.

Our approach consists of a simpler model, based on domain and language indepen-
dent indices. We also consider the interpretability of our model and attempt to find the
most relevant indices used by the Neural Network for our target evaluation criteria.

3 Method

3.1 Corpus

Our corpus consists of 2,976 summaries of 87 reference texts. Expert human raters
provided summary scores on seven different analytic measures, which reflect various
qualities of the summary and were manually evaluated on a 1 to 4 Likert scale: main
idea coverage (“main point”), amount of key conveyed information (“details”), sum-
mary cohesiveness (“cohesion”), use of appropriate paraphrasing (“paraphrasing”), use
of lexical and syntactic structures beyond those present in the reference text (“language
beyond source text”), objectivity of the language used (“objective language”) and sum-
mary length. As a proof-of-concept, the current study focuses only on the prediction of
the main idea coverage criteria. All expert raters were normed on a set of summaries
not included in the main dataset. The raters were considered normed once their inter-
rater reliability (IRR) reached Kappa .70. After norming, raters scored each summary
independently. IRR after independent rating reported Kappa > .60. After independent
rating, raters adjudicated any scores that differed by more than one between the raters.



324 R.-M. Botarleanu et al.

Given the diversity of the corpus, we opted to perform a selection of the test data
based on the statistical distributions of the human scores, with the aim of choosing a
subset of reference texts and their corresponding scored summaries that provided a wide
range of quality. We first combined the seven target scores into a single measure by
summing the values for each. We checked for strong multicollinearity (defined as r >

.899) and found that none of the variables correlated above that threshold with each
other (correlations ranged between .37 and .72). Afterwards, the population variance
was measured for each of the 87 reference texts (M = 16.87; SD = 10.10; Min = 1.30;
Max = 44.26). Sorting the source texts in decreasing order of their population variance,
we then select a number of reference texts that amount to at least 10% of the number of
summaries in the corpus and that have at least 30 summarizations.

In developing the test set, we ensured that none of the selected summaries had
reference texts present during training and that there was a large number of summaries,
with a wide variance of target scores. In the end, our test data was based on three
reference texts, included ~10% of the data that included the highest population variance
(i.e., the widest range of possible values). This selection guaranteed that the test set
contains examples that have both well written summaries, as well as poorly written ones,
ensuring that it is sufficiently complex in order to properly evaluate the effectiveness of
our models.

3.2 Linguistic and Semantic Features

We used the ReaderBench framework [11] to generate over 730 linguistic and semantic
textual complexity indices, covering the following categories:

• Surface. Indices that measure statistical attributes of the text such as the number of
words, punctuation marks, and character entropies.

• Morphology. Indices regarding parts of speech (e.g., noun, verb, adverb).
• Syntax. Indices using parse trees to define quantifiable information on the syntactical
structure of the text. These include the parse tree imbalance, depth, and others.

• Cohesion. Indices derived from Cohesion Network Analysis [12] that measure
semantic similarities between text elements (i.e., paragraph, sentences, words).

• Co-reference. Indices measuring the length of coreference chains and semantic
overlap between words and concepts.

• Lexical.Various indices related to lexical features (e.g., hypernymy, polysemy counts,
word frequency, word familiarity and lexical complexity.

• N-gram. Bi-gram and tri-gram frequencies, such as the number of unique and the
total number of n-grams found in a text.

• Subjectivity. Frequency of subjective and objective words and phrases.

ReaderBench features were augmented with indices reflecting the degree of overlap
between the summary and reference texts, such as their cosine similarities, the Jaccard
overlap of their n-grams, and the percentage of the summary that constitutes novel or
existing vocabulary with regards to the reference text.
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In total, 1466 features were initially considered and were normalized using z-scores.
For linear regression models, variance inflation factor was used to filter these features
into a subset of 67 that did not exhibit multicollinearity. We also considered applying
some common-sense filtering to these indices; for example, using only indices potentially
related to text cohesion or summary length targets. However, we found that there are non-
trivial interactions between the reference and the summary texts. For instance, reference
texts that are already fairly compact in details, but lengthy, would also lead to fairly
lengthy summaries. In such a case, even though the absolute number of words in the
summary may be larger than in other cases, a summary that manages to preserve key
information from the reference text,while performing onlyminimal shortening,would be
found more appropriate than a summary with too much information removed. As such,
using indices measured only on the summary text would not give the model enough
information to accurately predict the human ratings.

3.3 Machine Learning Models

Machine learning regressors were trained on our dataset to predict the main idea cover-
age score. In order to have baseline evaluations for the selected models and features, we
selected to use Random Forest [2] and Lasso Regressors [3]. These models were trained
using the ReaderBench linguistic and semantic indices [11] and the vectors representing
TF-IDF scores [13]. We also utilize Linear Regressors that use ReaderBench indices to
predict the main idea coverage score. Since Linear Regression has issues with multi-
collinearity that the non-linear models (i.e., Neural Networks, Random Forests) do not,
we utilize a Variance Inflation Factor cutoff of 10 [14] to select a subset of indices that
does not present multicollinearity. For our models, we elect to not discretize the target
score into categorical variables because it has a relevant numerical order, and interme-
diate values (e.g., a predicted score of 3.2) can still be useful for the user, as they can
indicate whether a summary is closer to one range of the rounding interval than the other
(e.g., summary is closer to 3.5 than 2.5).

The architecture of the Neural Network model is provided in Fig. 1a. The feed-
forward network consists of a single hidden layer alongside ReLu activations [15],
together with Batch Normalization layers [16] for controlling covariate shift between
layers, and Dropout [17] layers with rate p ranging from 0.2 for the input to 0.5 for
intermediate layers (0.5 denotes that half of the inputs are zeroed before being used by
the successive layer). This helps control the variance of the model and prevent it from
overfitting. The target consists of a single continuous variable for the regressors trained
on the main idea coverage score. These models are all trained using a One-Cycle Policy
[18] for 50 epochs with a batch size of 8. The optimal learning rate for the One-Cycle
Policy was searched in a logarithmic space from 1e−5 to 10 for 70 data points.

We also examined the performance of a BERT [1] model. As shown in in Fig. 1b,
the output embeddings were concatenated and then passed through a non-linear layer
to perform regression, which was run on both the summary and the reference text. For
the BERT model we removed the prediction heads used during pre-training and added
a regression head. Since the source texts can exceed the limit of 512 tokens typically
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used by BERT, we elect to only use the first 512 tokens in these. We have experimented
with running the BERT model on blocks of 512 tokens from the source texts and then
concatenating the representations; however, the results were poorer than the simpler
alternative that trims texts that are too long.

The BERT model was fine-tuned over 7 epochs, utilizing linear schedule with
warmup with a learning rate initialized at 0.0001 and the Adam optimizer. We explored
different hyperparameter configurations and varied the width and depth of the regression
head that uses the BERT outputs and found the best success with using the standard fine-
tuning hyperparameters together with a single fully-connected layer used to combine
summary and reference features, before estimating the score. Finally, we assessed two
models that combined the ReaderBench and BERT indices. Leveraging the architecture
illustrated in Figs. 1a and b, the input comprised a concatenation of the document repre-
sentations generated by BERT, combined with the ReaderBench indices. The combined
model attempts to simultaneously finetune BERT and learn to use the ReaderBench
indices to predict the target score. The training setup uses the same configuration as the
BERT-based model.

(a) (b)

Fig. 1. a. ReaderBench neural network model architecture. b. BERT architecture.
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4 Results

4.1 Prediction of Main Idea Coverage Score

The results for predicting main idea coverage scores are presented in Table 1. We can
observe that ReaderBench Neural Network model outperforms the BERT and the TF-
IDF models. This indicates that the general-purpose language baselines were outper-
formed, on average, by the networks trained using textual complexity indices. Com-
paring the three types of machine learning models that used ReaderBench indices, the
neural network model tended to yield better results than the other three models.

Table 1. Normalized MAE and R2 for the “Main Idea Coverage” summarization evaluation
criterion.

Models Normalized MAE R2

TF-IDF (Lasso) .17 −.09

TF-IDF (RF) .17 −.12

ReaderBench: Linear Regression .16 .15

ReaderBench: Lasso Regression .17 −.07

ReaderBench: Random Forest .16 .18

ReaderBench: Neural Network .13 .46

BERT .16 .15

Combined model (ReaderBench & BERT) .14 .39

4.2 Feature Importance

The relevance of features can be measured for the Random Forest Regressors using
the Gini importance, with features being assigned importance values, defined as a nor-
malized measurement of the amount of reduced impurity. Linear models can have their
feature importance values directly measured through the feature coefficients after train-
ing. Because the neural models used are non-linear networks, we selected Integrated
Gradients [19], a method of approximating feature importance by using the gradients
resulted from the loss function, for a given sample. Starting from an arbitrary baseline,
a line integral is computed along the path from the baseline to the sample, with respect
to the feature gradients. This is then scaled with the distance between each intermediate
sample and the baseline. The equation describing the integrated gradients of a feature i,
using a sample x and a baseline x’, is the following:

IntegratedGradientsi(x) = (
xi − x′

i

) ×
∫ 1

α=0

∂F(x′ + α × (
x − x′)

)

∂xi
dα (1)

Integrated gradients, by design, only measure the relative importance of a feature with
regards to a given sample and baseline. In our case, the baseline x’ is a zero vector (i.e.,
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no indices aremeasured). The integrated gradients for each feature weremeasured on the
entirety of the training set in order to obtain dataset-wise results, instead of sample-wise
results obtained by averaging the sample values.

We present a selection of 5 features from the 10 most important features by the
magnitude of their integrated gradients on the best performing model (see Table 2),
accompanied by the top 5 features according to their Gini importance for the Random
Forest model. For each index, we also specify whether it was measured on the reference
(i.e., reference text), the summary, or if it is an overlap index. In addition, we marked
each featurewith “±” to highlight whether the corresponding gradients have a positive or
negative average, before multiplying this value with the difference between the sample
and the intermediate baselines. This gives a sense of the directionality of the features. The
reason for choosing thismethod of determining directionality, instead ofmore traditional
approaches (e.g., Spearman rank correlations), is that many important features marked
by themodel are not linearly correlatedwith the target variable. The sign of the gradients,
on the other hand, should give an indication as to the directionality of the features.

The interpretability of a neural network using integrated gradients is significantly
more limited than what the coefficients of a trained linear model can yield.While feature
importance is useful as rough guideline, it does not appropriately express the complexity
of non-linear interactions that themodel uses tomake its prediction. Since themodel con-
sidersmore than a thousand features, results in Table 2 give only a shallow understanding
of what the model is doing on average, across the testing data. Another important obser-
vation is that integrated gradients are commonly used on a per-sample basis, whereas
we attempted to extrapolate a global understanding of the behavior of the model, by
aggregating the results on each testing sample. The features were chosen to show an
equitable distribution of both positive and negative directionalities, in order to give a
better insight into the behavior of the model.

Although there is a significant amount of noise in terms of features that have high
importance according to the IntegratedGradientsmethod, others aremuchmore intuitive
and three of the five are also reported by the Random Forest model. For instance, the
presence of overlap features in themain idea coverage score is expected, since this score is
dependent on the nature of the original text and howwell the summarymanages to capture
its reference material. Of these overlap features, the “Source-Summary Similarity” is
defined as the cosine similarity between the two texts, the “Existing Vocabulary” reflects
the vocabulary overlap between them, and the “Jaccard overlap” index measures the
similarity between the n-gram sets of the two texts. “Average parse tree imbalance”
and the “average block tree depth” are measures of textual structural complexity, while
“character entropy” gives a statistical understanding of a text’s repetitiveness with low
entropy texts typically corresponding to low effort writing. Integrated gradients provide
a straightforward measurement of feature importance in neural networks; however, it is
a post-hoc interpretation that only approximates the most important features, whereas
the non-linearity of neural networks cannot be expressed through simple scores assigned
to each input. Nevertheless, the use of integrated gradients and other similar approaches
is a way of circumventing the black box nature of modern neural network models and
can offer insight into what neural models are actually evaluating during inference.
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5 Conclusions

We performed predictive modelling on a dataset consisting of 2,976 summaries on 87
reference texts to predict main idea coverage. Our results show that, for datasets of
this size, the use of hand-crafted features is still very important, with models trained
using a variety of textual indices outperforming on average the results of both classic
Machine Learning models (such as those based on TF-IDF scores) and state-of-the-art
language models (such as BERT). The limitations of BERT, which was designed with
larger datasets of shorter texts in mind, made it so that a simpler, fully-connected model,
was able to outperform it consistently across different variations and hyper-parameter
configurations on our dataset. We relied on a rigorous approach of selecting a testing set
such that it precludes any sort of look-ahead bias. In addition, we introduce integrated
gradients in the context of using neural networks, together with hand-crafted textual
features to better understand what non-linear models are evaluating with regards to the
features they learn to use.

Based on our analyses, we found it necessary to use both features that were gen-
erated on the reference and the summary text separately, as well as features that were
constructed using both texts simultaneously (e.g., the vocabulary overlap). Our feature
importance analyses highlighted interesting relationships between the ReaderBench lin-
guistic features and the target variable. Both the Neural Network and the Random Forest
models indicate that the semantic similarity between the source text and the summary
is an important criterion when scoring the main idea coverage. In addition, the usage of
a similar vocabulary to the source text leads to an increase in a summary’s score. The
evaluations on what the neural model emphasized during inferencing through Integrated
Gradients can provide insights into how humans evaluate summaries.

There are several limitations to the proposedmethod. First of all, the size of the corpus
may explain the lower results for the BERT architecture in comparison to the algorithm
that uses textual complexity indices because large-scale Deep Learning models, like
BERT, benefit from having access to more data during training. Limited datasets, such
as the one used in this paper, may often lead to loss of generalization for deep models.
Our choice of combining the seven human rating criteria for test set selection offers a
proxy towards the holistic view humans develop while evaluating a summary; however,
the limited number of data points may have introduced biases. Finally, our method
for analyzing dataset-level importance of the different features offers some insight into
the mechanisms of the neural network; however, Integrated Gradients is usually used
on a sample-by-sample basis. For a certain sample, Integrated Gradients provides an
indication as to which sample features are more important, by looking at the gradients
that are propagated backward through the network from the loss function. The estimated
feature importance is closely tied to the internal mechanisms of the model because the
network is updated constantly during training through gradients. Nevertheless, averaging
these gradients over the entire dataset can result in certainmodel behaviors beingmasked
because they are less frequent.

Future avenues of research include the exploration of ways of integrating human
domain knowledge to build a model that more closely resembles what humans focus
on while evaluating summaries. Our approach considered analyzing the importance of
linguistic features after training. The integration of human evaluator preferences into
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the system could help increase the confidence that tutors have in such systems. One
possibility consists of positively weighting features that human evaluators deem most
relevant when evaluating a summary, thus encouraging the model to focus on them,
while still ensuring the freedom of finding unexpected feature interactions.

With a normalized mean absolute error of 0.13, our results indicate that the best
model is capable of matching human evaluations with an average deviation of only
13%. This error rate appears reasonable, if not exceptional. However, the real issue
with automated summary scoring systems is whether they are useful to the end-users,
namely to students and their teachers. For this, future studies in real-world settings will
be necessary to provide a better assessment of the impact of the system. Our approach
of performing a post-training analysis in order to identify the features that the model
focuses on can help build confidence in the generated scores, through correlating these
with human preconceptions. This process can help identify both possible biases in how
the scores are assigned, as well as better inform the development of automated summary
scoring systems in general through better feature engineering.

Acknowledgments. The work was funded by a grant of the Romanian National Authority for
Scientific Research and Innovation, CNCS – UEFISCDI, project number TE 70 PN-III-P1-1.1-
TE-2019-2209, ATES – “Automated Text Evaluation and Simplification”. This research was also
supported in part by the Institute of Education Sciences (R305A190063) and the Office of Naval
Research (N00014-17-1-2300 and N00014-19-1-2424). The opinions expressed are those of the
authors and do not represent views of the IES or ONR.

References

1. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding (2018). arXiv preprint: arXiv:1810.04805

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B

(Methodol.) 58(1), 267–288 (1996)
4. Roscoe, R.D., Varner, L.K., Crossley, S.A., McNamara, D.S.: Developing pedagogically-

guided algorithms for intelligent writing feedback. Int. J. Learn. Technol. 25, 8(4), 362–381
(2013)

5. Attali, Y., Burstein, J.: Automated essay scoring with e-rater V.2.0. In: Annual Meeting of
the International Association for Educational Assessment, p. 23. Association for Educational
Assessment, Philadelphia (2004)

6. Tay, Y., Phan,M.C., Tuan, L.A., Hui, S.C.: SkipFlow: Incorporating neural coherence features
for end-to-end automatic text scoring. In: Thirty-Second AAAI Conference on Artificial
Intelligence. AAAI, New Orleans (2018)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

8. Alikaniotis, D., Yannakoudakis, H., Rei, M.: Automatic text scoring using neural networks
(2016). arXiv preprint: arXiv:1606.04289

9. Taghipour, K., Ng, H.T.: A neural approach to automated essay scoring. In: EMLP, pp. 1882–
1891. ACL, Austin (2016)

10. Jin, C., He, B., Hui, K., Sun, L.: TDNN: a two-stage deep neural network for prompt-
independent automated essay scoring. In: 56th Annual Meeting of the ACL Vol. 1: Long
Papers, pp. 1088–1097. ACL, Melbourne (2018)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1606.04289


332 R.-M. Botarleanu et al.

11. Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu, S., Nardy, A.: Mining texts, learner
productions and strategies with ReaderBench. In: Peña-Ayala, A. (ed.) Educational Data
Mining: Applications and Trends, pp. 345–377. Springer, Cham (2014)

12. Dascalu, M., McNamara, D.S., Trausan-Matu, S., Allen, L.K.: Cohesion network analysis of
CSCL participation. Behav. Res. Methods 50(2), 604–619 (2018)

13. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In: 1st
Instructional Conference on Machine Learning, vol. 242, pp. 133–142. ACM, Piscataway
(2003)

14. Craney, T.A., Surles, J.G.: Model-dependent variance inflation factor cutoff values. Qual.
Eng. 14(3), 391–403 (2002)

15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:
Proceedings of the 27th International Conference onMachine Learning (ICML-10), pp. 807–
814 (2010)

16. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing
internal covariate shift (2015). arXiv preprint: arXiv:1502.03167

17. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using
rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 8609–8613. IEEE, Vancouver (2013)

18. Smith, L.N.: A disciplined approach to neural network hyper-parameters: Part 1–learning
rate, batch size, momentum, and weight decay (2018). arXiv preprint: arXiv:1803.09820

19. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks (2017). arXiv
preprint: arXiv:1703.01365

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1703.01365

	Title of article paper or other content: Automated Summary Scoring with ReaderBench
	Last Name First NameRow1: Botarleanu, Robert-Mihai
	AcademicOrganizational AffiliationRow1: University Politehnica of Bucharest, Romania
	ORCID IDRow1: 
	Last Name First NameRow2: Dascalu, Mihai
	AcademicOrganizational AffiliationRow2: University Politehnica of Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania
	ORCID IDRow2: 
	Last Name First NameRow3: Allen, Laura K.
	AcademicOrganizational AffiliationRow3: University of New Hampshire, Durham, NH, USA
	ORCID IDRow3: 
	Last Name First NameRow4: Crossley, Scott Andrew
	AcademicOrganizational AffiliationRow4: Department of Applied Linguistics/ESL, Georgia State University, Atlanta, GA, USA
	ORCID IDRow4: 
	Last Name First NameRow5: McNamara, Danielle S.
	AcademicOrganizational AffiliationRow5: Department of Psychology, Arizona State University, Tempe, AZ, USA
	ORCID IDRow5: 
	Last Name First NameRow6: 
	AcademicOrganizational AffiliationRow6: 
	ORCID IDRow6: 
	DOI or URL to published work if available: https://doi.org/10.1007/978-3-030-80421-3_35
	Office name: National Center for Education Research
	Name of institution, type of degree, and department granting degree: ITS 2021: Intelligent Tutoring Systems, pp. 321-332, Springer, Cham Switzerland
	PublicationCompletion Date —if in press enter year accepted or completed: 09 July 2021
	Grant number: R305A190063
	Institution: Arizona State University
	Office name(same): National Center for Education
	Group3: Choice3


